Programming the Microsoft Agent Server Interface
ActiveX™ Technology for Interactive Software Agents
�
Last updated: October 1997�(updated info in Accessing Services Using Java)�Microsoft Corporation
Note:  This document is provided for informational purposes only and Microsoft makes no warranties, either expressed or implied, in this document. The entire risk of the use or the results of this document remains with the user.
Information in this document is subject to change without notice. Companies, names, and data used in examples herein are fictitious unless otherwise noted. No part of this document may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without the express written permission of Microsoft Corporation.
Microsoft may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. The furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property rights. Microsoft, MS, MS-DOS, Windows, Windows NT, and the Windows logo are either registered trademarks or trademarks of Microsoft Corporation in the U.S. and/or other countries. Other product and company names mentioned herein may be the trademarks of their respective owners.

Contents
Introduction
Adding Microsoft Agent Functionality to Your Application
Loading Character and Animation Data
Creating a Notification Sink
Accessing Services Using Java
Reference

Introduction
Microsoft Agent provides services that enable you to program animated characters from an application. These services are implemented as an OLE Automation server. OLE Automation enables an application to control another application’s object programmatically. This document assumes an understanding of the Component Object Model (COM) and OLE. For an introduction of these services, see the Programming Interface Overview. Sample programs are available at the Microsoft Agent Web site at http://www.microsoft.com/workshop/prog/agent/. 
Adding Microsoft Agent Functionality to Your Application
To access Microsoft Agent services, create an instance of the server and request a pointer to a specific interface that the server supports using the standard COM convention. In particular, the COM library provides an API function, CoCreateInstance, that creates an instance of the object and returns a pointer to the requested interface of the object. Request a pointer to the IAgent interface in your CoCreateInstance call or in a subsequent call to QueryInterface.
The following code illustrates this in C/C++:
hRes = CoCreateInstance(CLSID_AgentServer,
						NULL,
						CLSCTX_SERVER,
						IID_IAgent,
						(LPVOID *)&pAgent);
If the Microsoft Agent server is running, this function connects to the server; otherwise, it starts up the server.
Functions that take pointers to BSTRs allocate memory using SysAllocString. It is the caller’s responsibility to free this memory using SysFreeString.
Loading Character and Animation Data
Once you have a pointer to the IAgent interface, you can use the Load method to load a character and retrieve its IDispatch interface:
	// Create a variant to store the full path of the character to load

	VariantInit(&vPath);

	vPath.vt = VT_BSTR;
	vPath.bstrVal = SysAllocString(kpwszCharacter);

	// Load the character

	hRes = pAgent->Load(vPath, &lCharID, &lRequestID);

	// Get its IDispatch interface

	hRes = pAgent->GetCharacter(lCharID, &pdCharacter);
You can then use this information to request a pointer to the IAgentCharacter:
	// Query for IAgentCharacter

	hRes = pdCharacter->QueryInterface(IID_IAgentCharacter, (LPVOID *)&pCharacter);

// Release the IDispatch

	pdCharacter->Release();
You can use this interface to access the character’s methods:
	// Show the character.  The first parameter tells Microsoft
	// Agent to show the character by playing an animation.

	hRes = pCharacter->Show(FALSE, &lRequestID);

	// Make the character speak

	bszSpeak = SysAllocString(L"Hello World!");

	hRes = pCharacter->Speak(bszSpeak, NULL, &lRequestID);

	SysFreeString(bszSpeak);
When you no longer need Microsoft Agent services, such as when your client application shuts down, release its interfaces.  Note that releasing the character interface does not unload the character. Call the Unload method to do this before releasing the IAgent interface:
// Clean up

if (pCharacter) {

	// Release the character interface

	pCharacter->Release();

	// Unload the character.  NOTE:  releasing the character
	// interface does NOT make the character go away.  You must
	// call Unload.

	pAgent->Unload(lCharID);
}
	
// Release the Agent

pAgent->Release();

VariantClear(&vPath);
Creating a Notification Sink
To be notified of events by Microsoft Agent, you must implement the IAgentNotifySink interface, and create and register an object of that type following COM conventions:
// Create a notification sink

pSink = new AgentNotifySink;

pSink->AddRef();

// And register it with Microsoft Agent

hRes = pAgent->Register((IUnknown *)pSink, &lNotifySinkID);
Remember to unregister your notification sink when your application shuts down and releases Microsoft Agent’s interfaces.
Accessing Services Using Java
You can also access Microsoft Agent services from a Java™ applet. Many of the functions accessible through the Microsoft Agent interfaces return values through parameters passed by reference. In order to pass these parameters from Java, it is necessary to create single-element arrays in your code and pass them as parameters to the appropriate function. If you're using Microsoft Visual J++™ and have run the Java Type Library Wizard on the Microsoft Agent server, refer to the summary.txt file to review which functions require array arguments. The procedure is similar to that in C; you use the IAgent interface to create an instance of the server, then load the character:
private IAgent			m_Agent = null;
private IAgentCharacter	m_Merlin[] = {null};
private int				m_MerlinID[] = {-1};
private int				m_RequestID[] = {0};
private final String	m_CharacterPath = "c:\\agentx\\agtchared\\merlin.acs";

public void start()
{
		// Start the Microsoft Agent Server

		m_Agent = (IAgent) new AgentServer();

		try
		{
			// The filespec parameter of the Load method is a 
			// COM variant to accept alternate Agent data providers.
			// We want a standard provider so we can just specify
			// the filespec for our character.

			Variant characterPath = new Variant();
			characterPath.putString(m_CharacterPath);

			// Load the character

			m_Agent.Load(characterPath,
						 m_MerlinID,
						 m_RequestID);
		}
The procedure is slightly different when loading characters from a HTTP remote location such as a Web site. In this case the Load method is asynchronous and will raise a COM exception of E_PENDING (0x8000000a). You will need to catch this exception and handle it correctly as is done in the following functions:
// Constants used in asynchronous character loads

private final int E_PENDING = 0x8000000a;
private final int NOERROR = 0;


// This function loads a character from the specified path.
// It correctly handles the loading of characters from
// remote sites.

// This sample doesn't care about the request id returned
// from the Load call.  Real production code might use the
// request id and the RequestComplete callback to check for
// a successful character load before proceeding.

public int LoadCharacter(Variant path, int[] id)
{
   int requestid[] = {-1};
   int hRes = 0;

   try
   {
      // Load the character

      m_Agent.Load(path, id, requestid);
   }
   catch(com.ms.com.ComException e)
   {
      // Get the HRESULT

      hRes = e.getHResult();
      
      // If the error code is E_PENDING, we return NOERROR

      if (hRes == E_PENDING)
         hRes = NOERROR;
   }

   return hRes;
}

public void start()
{
   if (LoadCharacter(characterPath, m_MerlinID) != NOERROR)
   {
      stop();
      return;
   }

   // Other initialization code here

   .
   .
   .
}

Then get the IAgentCharacter interface that enables you to access its methods:
// Get the IAgentCharacter interface for the loaded
// character by passing its ID to the Agent server.

m_Agent.GetCharacter(m_MerlinID[0], m_Merlin);

// Show the character

m_Merlin[0].Show(FALSE, m_RequestID);

// And speak hello

m_Merlin[0].Speak("Hello World!", "", m_RequestID);
Similarly, to be notified of events, you must implement the IAgentNotifySink interface, creating and registering an object of that type:
…
// Declare an Agent Notify Sink so that we can get
// notification callbacks from the Agent server.

private AgentNotifySink m_Sink = null;
private int				m_SinkID[] = {-1};

public void start()
	{
	…
	// Create and register a notify sink

	m_Sink = new AgentNotifySink();

	m_Agent.Register(m_Sink, m_SinkID);
	…
	// Give our notify sink access to the character

	m_Sink.SetCharacter(m_Merlin[0]);
	…
	}
In order to access Microsoft Agent from a Java applet, you must generate Java classes that you then install with the applet. You can use the Visual J++ Java Type Library Wizard, for example, to generate these files. If you plan to host the applet on a Web page, you build a signed Java CAB that includes the generated class files and that downloads with the page. The class files are necessary to access the Microsoft Agent Server because it is a COM object that executes outside of the Java sandbox. To learn more about Trust-Based Security for Java, see http://www.microsoft.com/java/security/.
Reference
This reference contains the following sections:
Interfaces
Functions
Events
Interfaces
Microsoft Agent defines interfaces that allow applications to access its services, enabling an application to control the animation of a character, support user input events, and specify output.
All the Microsoft Agent interfaces are defined in header (.h) files.

IAgent
IAgent defines an interface that allows applications to load characters, receive events, and check the current state of the Microsoft Agent Server.
Methods in Vtable Order
IAgent Methods�Description��Load�Loads a character’s data file.��Unload�Unloads a character’s data file.��Register�Registers a notification sink for the client.��Unregister�Unregisters a client’s notification sink.��GetCharacter�Returns the IAgentCharacter interface for a loaded character.��GetSuspended�Returns whether the server is currently suspended.��
IAgent::GetCharacter
HRESULT GetCharacter(
   long dwCharID  // character ID
);
Retrieves the IAgentCharacter for a loaded character. 
•	Returns S_OK to indicate the operation was successful.
DwCharID 
The character’s ID.

IAgent::GetSuspended
HRESULT GetSuspended(
   long * pbSuspended  // address of variable for suspended flag
);
Retrieves whether the Microsoft Agent server is currently suspended.
•	Returns S_OK to indicate the operation was successful.
pbSuspended
Address of a variable that receives TRUE if the Microsoft Agent server is in the suspended state and FALSE if not.
Microsoft Agent loads in a suspended state when a client application attempts to start it up after the user has previously quit (by choosing the Exit command on the Microsoft Agent taskbar icon). In the suspended state Microsoft Agent handles connection requests, but returns failure on any animation methods. Therefore, a character cannot be displayed in this state. Client applications can advise users to restart the server (by choosing Restart on the taskbar pop-up menu), but cannot restart the server directly.
 
IAgent::Load
HRESULT Load(
   VARIANT vLoadKey,  // data provider
   long * pdwCharID,  // address of a variable for character ID
   long * pdwReqID    // address of a variable for request ID
);
Loads a character into the Characters collection. 
•	Returns S_OK to indicate the operation was successful.
vLoadKey
A variant datatype that must be one of the following:

filespec�The local file location of the specified character’s definition file.��URL�The HTTP address for the character’s definition file.��provider�An alternate character definition provider.��
pdwCharID
Address of a variable that receives the character’s ID.
pdwReqID
Address of a variable that receives  the Load request ID.
Microsoft Agent's data provider supports loading character data stored as a single structured file (.ACS) with character data and animation data together, or as separate character data (.ACF) and animation (.AAF) files. Generally, use the single structured .ACS file to load a character that is stored on a local disk drive or network and accessed using conventional file protocol (such as UNC pathnames). Use the separate .ACF and .AAF files when you want to load the animation files individually from a remote site where they are accessed using HTTP protocol. 
For .ACS files, using the Load method provides access a character’s animations. For .ACF files, you also use the Prepare method to load animation data. The Load method does not support downloading .ACS files from an HTTP site.
Loading a character does not automatically display the character. Use the Show method first to make the character visible.
The vLoadKey parameter also enables you specify your own data provider (that would be loaded separately) that can have its own methods for loading animation data. You need to create a data provider object only if you supply character data in special formats. 
 
IAgent::Register
HRESULT Register(
   IUnknown * punkNotifySink  // IUnknown address for client notification sink
   long * pdwSinkID           // address of the notification sink ID
);
Registers a notification sink for the client application. 
•	Returns S_OK to indicate the operation was successful.
IUnknown
Address of IUnknown for your notification sink interface.
pdwSinkID
Address of notification sink ID (used to unregister the notification sink).
You need to register your notification sink (also known as a notify sink or event sink) to receive events from the Microsoft Agent server.
See also IAgent::Unregister
 
IAgent::UnLoad
HRESULT UnLoad(
   long * dwCharID  //character ID
);
Unloads the character data for the specified character from the Characters collection. 
•	Returns S_OK to indicate the operation was successful.
dwCharID
The character’s ID.
Use this method when you no longer need a character, to free up memory used to store information about the character. If you access the character again, use the Load method.
See also IAgent::Load
 
IAgent::Unregister
HRESULT Unregister(
   long dwSinkID  //notification sink ID
);
Unloads the character data for the specified character from the Characters collection. 
•	Returns S_OK to indicate the operation was successful.
dwSinkID
The notification sink ID.
Use this method when you no longer need Microsoft Agent services, such as when your application shuts down.
See also IAgent::Register
IAgentCharacter
IAgentCharacter defines an interface that allows applications to query character properties and play animations.
Methods in Vtable Order
IAgentCharacter Methods�Description��GetVisible�Returns whether the character (frame) is currently visible.��SetPosition�Sets the position of the character frame.��GetPosition�Returns the position of the character frame.��SetSize�Sets the size of the character frame.��GetSize�Returns the size of the character frame.��GetName�Returns the name of the character.��GetDescription�Returns the description for the character.��GetTTSSpeed�Returns the current TTS output speed setting for the character.��GetTTSPitch�Returns the current TTS pitch setting for the character.��Activate�Sets whether a client is active or a character is topmost.��SetIdleOn�Sets the server’s idle processing.��GetIdleOn�Returns the setting of the server’s idle processing.��Prepare�Retrieves animation data for the character.��Play�Plays a specified animation.��Stop�Stops an animation for a character.��StopAll�Stops all animations for a character.��Wait�Holds the character’s animation queue.��Interrupt�Interrupts a character’s animation.��Show�Displays the character and plays the character’s Showing state animation.��Hide�Plays the character’s Hiding state animation and hides the character’s frame.��Speak�Plays spoken output for the character.��MoveTo�Moves the character frame to the specified location.��GestureAt�Plays a gesturing animation based on the specified location.��GetMoveCause�Retrieves the cause of the character’s last move.��GetVisibilityCause�Retrieves the cause of the last change to the character’s visibility state.��HasOtherClients�Retrieves whether the character has other current clients.��SetSoundEffectsOn�Determines whether a character animation’s sound effects play.��GetSoundEffectsOn�Retrieves whether a character’s sound effects setting is enabled.��SetName�Sets the character’s name.��SetDescription�Sets the character’s description.��GetExtraData�Retrieves additional data stored with the character.��
IAgentCharacter::Activate
HRESULT Activate(
   short sState, // topmost character or client setting
);
Sets whether a client is active or a character is topmost.
•	Returns S_OK to indicate the operation was successful.
•	Returns S_FALSE to indicate the operation was not successful.
sState
You can specify the following values for this parameter:
0		Set as not the active client.
1		Set as the active client. 
2		Make the topmost character.
When multiple characters are visible, only one of the characters receives speech input at a time. Similarly, when multiple client applications share the same character, only one of the clients receives mouse input (for example, Microsoft Agent control click or drag events) at a time. The character set to receive mouse and speech input is the topmost character and the client that receives input is the character's active client. (The topmost character’s window also appears at the top of the character window's z-order.) Typically, the user determines which character is topmost by explicitly selecting it. However, topmost activation also changes when a character is shown or hidden (the character becomes or is no longer topmost, respectively.) 
You can also use this method to explicitly manage when your client receives input directed to the character, such as when your application itself becomes active. For example, setting State to 2 makes the character topmost, and your client receives all mouse and speech input events generated from user interaction with the character. Therefore, it also makes your client the input-active client of the character. However, you can also set the active client for a character without making the character topmost, by setting State to 1. This enables your client to receive input directed to that character when the character becomes topmost. Similarly, you can set your client to not be the active client (to not receive input) when the character becomes topmost, by setting State to 0. You can determine if a character has other current clients using IAgentCharacter::HasOtherClients.
Avoid calling this method directly after a Show method. Show automatically sets the input-active client. When the character is hidden, the Activate call may fail if it gets processed before the Show method completes.
If you call this method to a function, it returns a Boolean value that indicates whether the method succeeded. Attempting to call this method with the State parameter set to 2 when the specified character is hidden will fail. Similarly, if you set State to 0 and your application is the only client, this call fails because a character must always have a topmost client.
See also IAgentCharacter::HasOtherClients
 
IAgentCharacter::GestureAt
HRESULT GestureAt(
   short x,         // x-coordinate of specified location
   short y,         // y-coordinate of specified location
   long * pdwReqID  // address of a request ID
);
Plays the associated Gesturing state animation based on the specified location. 
•	Returns S_OK to indicate the operation was successful. When the function returns, pdwReqID contains the ID of the request.
x
The x-coordinate of the specified location in pixels, relative to the screen origin (upper left). 
y
The y-coordinate of the specified location in pixels, relative to the screen origin (upper left). 
pdwReqID
Address of a variable that receives the GestureAt request ID.
The server automatically determines and plays the appropriate gesturing animation based on the character’s current position and the specified location. When using the HTTP protocol to access character and animation data, use the Prepare method to ensure that the animations are available before calling this method. 
 
IAgentCharacter::GetDescription
HRESULT GetDescription(
   BSTR * pbszDescription   // address of buffer for character description
); 
Retrieves the description of the character.
•	Returns S_OK to indicate the operation was successful.
pbszDescription
The address of a BSTR that receives the value of the description for the character. A character’s description is defined when it is compiled with the Microsoft Agent Character Editor. The description setting is optional and may not be supplied for all characters.
 
 IAgentCharacter::GetExtraData
HRESULT GetExtraData(
   BSTR * pbszExtraData   // address of buffer for additional character data
); 
Retrieves additional data stored as part of the character.
•	Returns S_OK to indicate the operation was successful.
pbszExtraData
The address of a BSTR that receives the value of the additional data for the character. A character’s additional data is defined when it is compiled with the Microsoft Agent Character Editor. A character developer can supply this string by editing the .ACD file for a character. The setting is optional and may not be supplied for all characters, nor can the data be defined or changed at run time. In addition, the meaning of the data supplied is defined by the character developer.

IAgentCharacter::GetIdleOn
HRESULT GetIdleOn(
   long * pbOn  // address of idle processing flag
);
Indicates the automatic idle processing state for a character.
•	Returns S_OK to indicate the operation was successful.
pbOn
Address of a variable that receives TRUE if the Microsoft Agent server automatically plays Idling state animations for a character and FALSE if not.
See also IAgentCharacter::SetIdleOn
 
IAgentCharacter::GetMoveCause
HRESULT GetMoveCause(
   long * pdwCause  // address of variable for cause of character move
);
Retrieves the cause of the character’s last move.
•	Returns S_OK to indicate the operation was successful.
pdwCause
Address of a variable that receives the cause of the character’s last move and will be one of the following:

const unsigned short NeverMoved = 0;�Character has not been moved.��const unsigned short UserMoved = 1;�User dragged the character.��const unsigned short ProgramMoved = 2;�Your application moved the character.��const unsigned short OtherProgramMoved = 3;�Another application moved the character.��See also IAgentNotifySink::Move

IAgentCharacter::GetName
HRESULT GetName(
   BSTR * pbszName   // address of buffer for character name
);
Retrieves the name of the character.
•	Returns S_OK to indicate the operation was successful.
pbszName
The address of a BSTR that receives the value of the name for the character. A character’s default name is defined when it is compiled with the Microsoft Agent Character Editor. The name setting is optional and may not be supported for all characters. You can also set the character’s name using IAgentCharacter:SetName; however, this changes the name for all current clients of the character.
See also IAgentCharacter::SetName 

IAgentCharacter::GetPosition
HRESULT GetPosition(
   long * plLeft,  // address of variable for left edge of character 
   long * plTop    // address of variable for top edge of character 
);
Retrieves the character’s animation frame position. 
•	Returns S_OK to indicate the operation was successful.
plLeft
Address of a variable that receives the screen coordinate of the character animation frame’s left edge in pixels, relative to the screen origin (upper left).
plTop
Address of a variable that receives the screen coordinate of the character animation frame’s top edge in pixels, relative to the screen origin (upper left).
Even though the character appears in an irregularly shaped region window, the location of the character is based on its rectangular animation frame.
See also IAgentCharacter::SetPosition, IAgentCharacter::GetSize
 
IAgentCharacter::GetSize
HRESULT GetSize(
   long * plWidth,  // address of variable for character width 
   long * plHeight  // address of variable for character height
);
Retrieves the size of the character’s animation frame.
•	Returns S_OK to indicate the operation was successful.
plWidth
Address of a variable that receives the width of the character animation frame in pixels, relative to the screen origin (upper left).
plHeight
Address of a variable that receives the height of the character animation frame in pixels, relative to the screen origin (upper left).
Even though the character appears in an irregularly shaped region window, the location of the character is based on its rectangular animation frame.
See also IAgent::SetSize
 
IAgentCharacter::GetSoundEffectsOn
HRESULT GetSoundEffectsOn(
   long * pbOn  // address of variable for sound effects setting 
);
Retrieves whether the character’s sound effects setting is enabled.
•	Returns S_OK to indicate the operation was successful.
pbOn
Address of a variable that receives TRUE if the character’s sound effects setting is enabled, FALSE if disabled.
The character's sound effects setting determines whether sound effects compiled as a part of the character are played when you play an associated animation. The setting is subject to the user’s global sound effects setting in IAgentAudioOutputProperties::GetUsingSoundEffects.
See also IAgentCharacter::SetSoundEffectsOn, IAgentAudioOutputProperties::GetUsingSoundEffects
 
IAgentCharacter::GetTTSPitch
HRESULT GetTTSPitch(
   long * pdwPitch  // address of variable for character TTS pitch
);
Retrieves the character’s TTS output pitch setting.
•	Returns S_OK to indicate the operation was successful.
pdwPitch
Address of a variable that receives the character’s current TTS pitch setting in Hertz. 
Although your application cannot write this value, you can include pitch tags in your output text that will temporarily increase the pitch for a particular utterance. This method applies only to characters configured for TTS output. If the speech synthesis (TTS) engine is not enabled (or installed) or the character does not support TTS output, this method returns zero (0).
 
IAgentCharacter::GetTTSSpeed
HRESULT GetTTSSpeed(
   long * pdwSpeed  // address of variable for character TTS output speed
);
Retrieves the character’s TTS output speed setting.
•	Returns S_OK to indicate the operation was successful.
pdwSpeed
Address of a variable that receives the output speed of the character in words per minute. 
Although your application cannot write this value, you can include speed tags in your output text that will temporarily speed up the output for a particular utterance.
This property returns the current speaking output speed setting for the character. For characters using TTS output, the property returns the actual TTS output for the character. If TTS is not enabled or the character does not support TTS output, the setting reflects the user setting for output speed. 
 
IAgentCharacter::GetVisibilityCause
HRESULT GetVisibilityCause(
   long * pdwCause  // address of variable for cause of character visible state
);
Retrieves the cause of the character’s visible state.
•	Returns S_OK to indicate the operation was successful.
pdwCause
Address of a variable that receives the cause of the character’s last visibility state change and will be one of the following:

const unsigned short NeverShown = 0;�Character has not been shown.��const unsigned short UserHid = 1;�User hid the character.��const unsigned short UserShowed = 2;�User showed the character.��const unsigned short ProgramHid = 3;�Your application hid the character.��const unsigned short ProgramShowed = 4;�Your application showed the character.��const unsigned short OtherProgramHid = 5;�Another application hid the character.��const unsigned short OtherProgramShowed = 6;�Another application showed the character.��
See also IAgentNotifySink::Hide, IAgentNotifySink::Show

IAgentCharacter::GetVisible
HRESULT GetVisible(
   long * pbVisible  // address of variable for character Visible setting
);
Determines whether the character’s animation frame is currently visible. 
•	Returns S_OK to indicate the operation was successful.
pbVisible
Address of a variable that receives TRUE if the character’s frame is visible and FALSE if hidden.
You can use this method to determine whether the character’s frame is currently visible. To make a character visible, use the Show method. To hide a character, use the Hide method.
 
IAgentCharacter::HasOtherClients
HRESULT HasOtherClients(
   long * pbHasOtherClients  // address of variable for whether character has
);                           // other clients
Retrieves whether a character has other clients.
•	Returns S_OK to indicate the operation was successful.
pbHasOtherClients
Address of a variable that receives TRUE if the character has other clients and FALSE if not.

IAgentCharacter::Hide
HRESULT Hide(
   long bFast,      // play Hiding state animation flag
   long * pdwReqID  // address of request ID
);
Hides the character.
•	Returns S_OK to indicate the operation was successful. When the function returns, pdwReqID contains the ID of the request.
bFast
Hiding state animation flag. If this parameter is TRUE, the Hiding animation does not play before the character frame is hidden; if FALSE, the animation plays.
pdwReqID
Address of a variable that receives the Hide request ID.
The server queues the animation associated with the Hide method in the character’s queue. This allows you to use it to hide the character after a sequence of other animations. You can play the action immediately by using the Stop method before calling the Hide method.
When using the HTTP protocol to access character and animation data, use the Prepare method to ensure the availability of the Hiding state animation before calling this method. 
Hiding a character can also result in triggering the ActivateInput event of another visible character. 
Hidden characters cannot access the audio channel. The server will pass back a failure status in the RequestComplete event if you generate an animation request and the character is hidden. 
See also IAgentCharacter::Show
 
IAgentCharacter::Interrupt
HRESULT Interrupt(
   long dwReqID,    // request ID to interrupt
   long * pdwReqID  // address of request ID
);
Interrupts the specified animation (request) of another character. 
•	Returns S_OK to indicate the operation was successful. When the function returns, pdwReqID contains the ID of the request.
dwReqID
An ID of the request to interrupt.
pdwReqID
Address of a variable that receives the Interrupt request ID.
You can use this method to sync up animation between characters. For example, if another character is in a looping animation, this method will stop the looping animation and start the next animation in the character’s queue. 
Interrupt halts the existing animation, but does not flush the character’s animation queue. It starts the next animation in the character’s queue. To halt and flush a character’s queue, use the Stop method.
You cannot use this method to have a character interrupt itself because the Microsoft Agent server queues the Interrupt method in the character’s animation queue. Therefore, you can only use Interrupt to halt the animation of another character you have loaded. 
 
IAgentCharacter::MoveTo
HRESULT MoveTo(
   short x,         // x-coordinate of new location
   short y,         // y-coordinate of new location
   long lSpeed,     // speed to move the character
   long * pdwReqID  // address of request ID
);
Plays the associated Moving state animation and moves the character frame to the specified location. 
•	Returns S_OK to indicate the operation was successful. When the function returns, this variable contains the ID of the request.
x
The x-coordinate of the new position in pixels, relative to the screen origin (upper left). The location of a character is based on the upper left corner of its animation frame. 
y
The y-coordinate of the new position in pixels, relative to the screen origin (upper left). The location of a character is based on the upper left corner of its animation frame. 
lSpeed
A parameter specifying in milliseconds how quickly the character’s frame moves. The recommended  value is 1000. Specifying zero (0) moves the frame without playing an animation.
pdwReqID
Address of a variable that receives the MoveTo request ID.
When using the HTTP protocol to access character and animation data, use the Prepare method to ensure the availability of the Moving state animations before calling this method. Even if the animation is not loaded, the server still moves the frame.
See also IAgentCharacter::SetPosition
 
IAgentCharacter::Play
HRESULT Play(
   BSTR bszAnimation,  // name of an animation
   long * pdwReqID     // address of request ID
);
Plays the specified animation. 
•	Returns S_OK to indicate the operation was successful. When the function returns, pdwReqID contains the ID of the request.
bszAnimation
The name of an animation.
pdwReqID
Address of a variable that receives the Play request ID.
An animation’s name is defined when the character is compiled with the Microsoft Agent Character Editor. Before playing the specified animation, the server attempts to play the Return animation for the previous animation (if one has been assigned).
When a character’s animation data is stored on the user’s local machine, you can use the Play method and specify the name of the animation. When using the HTTP protocol to access animation data, use the Prepare method to ensure the availability of the animation before calling this method.
See also IAgentCharacter::Prepare
 
IAgentCharacter::Prepare
HRESULT Prepare(
   long dwType,     // type of animation data to load
   BSTR bszName,    // name of the animation 
   long bQueue,     // queue the request
   long * pdwReqID  // address of request ID
);
Retrieves animation data for a character. 
•	Returns S_OK to indicate the operation was successful. When the function returns, pdwReqID contains the ID of the request.
dwType
A value that indicates the animation data type to load that must be one of the following:

const unsigned short PREPARE_ANIMATION = 0;�A character’s animation data. ��const unsigned short PREPARE_STATE = 1;�A character’s state data. ��const unsigned short PREPARE_WAVE = 2�A character’s sound file (.WAV or .LWV) for spoken output. ��
bszName
The name of the animation or state. 
The animation name is based on that defined for the character when it was saved using the Microsoft Agent Character Editor. 
For states, the value can be one of the following:

“Gesturing”�To retrieve all Gesturing state animations.��“GesturingDown”�To retrieve GesturingDown animations.��“GesturingLeft”�To retrieve GesturingLeft animations.��“GesturingRight”�To retrieve GesturingRight animations.��“GesturingUp”�To retrieve GesturingUp animations.��“Hiding”�To retrieve the Hiding state animations.��“Hearing”�To retrieve the Hearing state animations.��“Idling”�To retrieve all Idling state animations.��“IdlingLevel1”�To retrieve all IdlingLevel1 animations.��“IdlingLevel2”�To retrieve all IdlingLevel2 animations.��“IdlingLevel3”�To retrieve all IdlingLevel3 animations.��“Listening”�To retrieve the Listening state animations.��“Moving”�To retrieve all Moving state animations.��“MovingDown”�To retrieve all Moving animations.��“MovingLeft”�To retrieve all MovingLeft animations.��“MovingRight”�To retrieve all MovingRight animations.��“MovingUp”�To retrieve all MovingUp animations.��“Showing”�To retrieve the Showing state animations.��“Speaking”�To retrieve the Speaking state animations.��
For .WAV files, set bszName to the URL or file specification for the .WAV file. If the specification is not complete, it is interpreted as being relative to the specification used in the Load method. 
bQueue
A Boolean specifying whether the server queues the Prepare request. TRUE queues the request and causes any animation request that follows it to wait until the animation data it specifies is loaded. FALSE retrieves the animation data asynchronously.
pdwReqID
Address of a variable that receives the Prepare request ID.
You can specify multiple animations and states by separating them with commas. However, you cannot mix types in the same Prepare statement.
 
IAgentCharacter::SetDescription
HRESULT SetDescription(
   BSTR bszDescription   // character description
); 
Sets the description of the character.
•	Returns S_OK to indicate the operation was successful.
bszDescription
A BSTR that sets the description for the character. A character’s default description is defined when it is compiled with the Microsoft Agent Character Editor. The description setting is optional and may not be supplied for all characters. You can change the character’s description using IAgentCharacter::SetDescription; however, this value is not persistent (stored permanently). The character’s description reverts to its default setting whenever the character is first loaded by a client.
See also IAgentCharacter::GetDescription
 
IAgentCharacter::SetIdleOn
HRESULT SetIdleOn(
   long bOn  // idle processing flag
);
Sets automatic idle processing for a character.
•	Returns S_OK to indicate the operation was successful.
bOn
Idle processing flag. If this parameter is TRUE, the Microsoft Agent automatically plays Idling state animations. 
The server automatically sets a time out after the last animation played for a character. When this timer’s interval is complete, the server begins the Idling states for a character, playing its associated Idling animations at regular intervals. If you want to manage the Idling state animations yourself, set the property to FALSE.
See also IAgentCharacter::GetIdleOn

IAgentCharacter::SetName
HRESULT SetName(
   BSTR bszName   // character name
);
Sets the name of the character.
•	Returns S_OK to indicate the operation was successful.
bszName
A BSTR that sets the character’s name. A character’s default name is defined when it is compiled with the Microsoft Agent Character Editor. You can change it using IAgentCharacter::SetName; however, this changes the character name for all current clients of the character. This property is not persistent (stored permanently). The character’s name reverts to its default name whenever the character is first loaded by a client.
The server uses the character’s name setting in parts of the Microsoft Agent’s interface, such as the Commands Window title when the character is input-active and in the Microsoft Agent taskbar pop-up menu.
See also IAgentCharacter::GetName
 
IAgentCharacter::SetPosition
HRESULT SetPosition(
   long lLeft,  // screen coordinate of the left edge of character 
   long lTop    // screen coordinate of the top edge of character 
);
Sets the position of the character’s animation frame. 
•	Returns S_OK to indicate the operation was successful.
lLeft
Screen coordinate of the character animation frame’s left edge in pixels, relative to the screen origin (upper left).
lTop
Screen coordinate of the character animation frame’s top edge in pixels, relative to the screen origin (upper left).
Even though the character appears in an irregularly shaped region window, the location of the character is based on its rectangular animation frame.
Note	Unlike the MoveTo method, this function is not queued.
See also IAgent::GetPosition
 
IAgentCharacter::SetSize
HRESULT SetSize(
   long * lWidth,  // width of the character frame
   long * lHeight  // height of the character frame
);
Sets the size of the character’s animation frame.
•	Returns S_OK to indicate the operation was successful.
lWidth
The width of the character’s animation frame in pixels.
lHeight
The height of the character’s animation frame in pixels.
Changing the character’s frame size scales the character to the size set with this method.
Even though the character appears in an irregularly shaped region window, the location of the character is based on its rectangular animation frame.
See also IAgentCharacter::GetSize
 
IAgentCharacter::SetSoundEffectsOn
HRESULT SetSoundEffectsOn(
   long bOn  // character sound effects setting 
);
Determines whether the character’s sound effects are played.
•	Returns S_OK to indicate the operation was successful.
bOn
Sound effects setting. If this parameter is TRUE, the sound effects for animations are played when the animation plays; if FALSE, sound effects are not played.
This setting determines whether sound effects compiled as a part of the character are played when you play an associated animation. The setting is subject to the user’s global sound effects setting in IAgentAudioOutputProperties::GetUsingSoundEffects.
See also IAgentCharacter::GetSoundEffectsOn, IAgentAudioOutputProperties::GetUsingSoundEffects
 
IAgentCharacter::Show
HRESULT Show(
   long bFast,      // play Showing state animation flag
   long * pdwReqID  // address of request ID
);
Displays a character.
•	Returns S_OK to indicate the operation was successful. When the function returns, pdwReqID contains the ID of the request.
bFast
Showing state animation flag. If this parameter is TRUE, the Showing state animation plays after making the character visible; if FALSE, the animation does not play.
pdwReqID
Address of a variable that receives the Show request ID.
Avoid setting the bFast parameter to TRUE without playing an animation beforehand, otherwise, the character frame may be displayed, but have no image to display. In particular, note that that if you call MoveTo when the character is not visible, it does not play any animation. Therefore, if you call the Show method with bFast set to TRUE, no image will be displayed. Similarly, if you call Hide then Show with bFast set to TRUE, there will be no visible image.
When using the HTTP protocol to access character and animation data, use the Prepare method to ensure the availability of the Showing state animation before calling this method.
See also IAgentCharacter::Hide
 
IAgentCharacter::Speak
HRESULT Speak(
   BSTR bszText,    // text to speak
   BSTR bszURL,     // URL of a file to speak
   long * pdwReqID  // address of a request ID
);
Speaks the 
•	Returns S_OK to indicate the operation was successful.
bszText
The text the character is to speak.
bszURL
The URL (or file specification) of a sound file to use for spoken output. This can be a standard sound file (.WAV) or linguistically enhanced sound file (.LWV). 
pdwReqID
Address of a variable that receives the Speak request ID.
To use this method with a character configured to speak using a text-to-speech (TTS) engine; simply provide the bszText parameter. You can include vertical bar characters (|) in the bszText parameter to designate alternative strings, so that each time the server processes the method, it randomly choose a different string. Support of TTS output is defined when the character is compiled using the Microsoft Agent Character Editor. 
If you want to use sound file output for the character, specify the location for the file in the bszURL parameter. When using the HTTP protocol to download a sound file, use the Prepare method to ensure the availability of the file before using this method. You can use the bszText parameter to specify the words that appear in the character’s word balloon. If you specify a linguistically enhanced sound file (.LWV) for the bszURL parameter and do not specify text, the bszText parameter uses the text stored in the file. 
The Speak method uses the last animation played to determine which speaking animation to play. For example, if you precede the Speak command with a Play “GestureRight”, the server will play GestureRight and then the GestureRight speaking animation. 
If you call Speak and the audio channel is busy, the character’s audio output will not be heard, but the text will display in the word balloon. The word balloon’s Enabled property must also be TRUE for the text to display. 
See also IAgentCharacter::Play, IAgentBalloon::Enabled, IAgentCharacter::Prepare
 
IAgentCharacter::Stop
HRESULT Stop(
   long dwReqID  // request ID
);
Stops the specified animation (request) and removes it from the character’s animation queue. 
•	Returns S_OK to indicate the operation was successful. 
dwReqID
The ID of the request to stop.
Stop can also be used to halt any queued Prepare calls.
See also IAgentCharacter::Prepare, IAgentCharacter::StopAll
 
IAgentCharacter::StopAll
HRESULT StopAll();
   long lType,  // request type
Stops all animations (requests) and removes them from the character’s animation queue. 
lType
A bit field that indicates the types of requests to stop (and remove from the character’s queue), comprised from the following:
 
const unsigned long STOP_TYPE_ALL = 0xFFFFFFFF;�Stops all animation requests, including non-queued Prepare requests.��const unsigned long STOP_TYPE_PLAY = 0x00000001;�Stops all Play requests.��const unsigned long STOP_TYPE_MOVE = 0x00000002;�Stops all Move requests.��const unsigned long STOP_TYPE_SPEAK = 0x00000004;�Stops all Speak requests.��const unsigned long STOP_TYPE_PREPARE = 0x00000008;�Stops all queued Prepare requests.��const unsigned long STOP_TYPE_NONQUEUEDPREPARE = 0x00000010;�Stops all non-queued Prepare requests.��const unsigned long STOP_TYPE_VISIBLE = 0x00000020;�Stops all Hide or Show requests.��See also IAgentCharacter::Stop
 
IAgentCharacter::Wait
HRESULT Wait(
   long dwReqID,    // request ID
   long * pdwReqID  // address of request ID
);
Holds the character’s animation queue at the specified animation (request) until another request for another character completes. 
•	Returns S_OK to indicate the operation was successful.
dwReqID
The ID of the request to wait for.
pdwReqID
Address of a variable that receives the Wait request ID.
Use this method only when you support multiple (simultaneous) characters and want to sequence their interaction (as a single client). (For a single character, each animation request is played sequentially--after the previous request completes.) If you have two characters and want one character’s animation request to wait until the other character’s animation completes, set the Wait method to the other character’s animation request ID.
IAgentCommands
The Microsoft Agent server maintains a list of commands that are currently available to the user. This list includes commands that the server defines for general interaction, such as Hide and Microsoft Agent Properties, the list of available (but non-input-active) clients, and the commands defined by the current active client. The first two sets of commands are global commands; that is, they are available at any time, regardless of the input-active client. Client-defined commands are available only when that client is input-active. 
Retrieve an IAgentCommands interface by querying the IAgentCharacter interface for IAgentCommands. Each Microsoft Agent client application can define a collection of commands called a Commands collection. To add a Command to the collection, use the Add or Insert method. Although you can specify a Command’s properties using IAgentCommand methods, for optimum code performance, specify all of a Command’s properties in the IAgentCommands::Add or IAgentCommands::Insert methods when initially setting the properties for a new Command. You can use the IAgentCommand methods to query or change the property settings.
For each Command in the Commands collection, you can determine whether the command appears on the character’s pop-up menu, in the Commands Window, in both, or in neither. For example, if you want a command to appear on the pop-up menu for the character, set the command’s Caption and Visible properties. To display the command in the Commands Window, set the command’s Caption and Voice properties. 
A user can access the individual commands in your Commands collection only when your client application is input-active. Therefore, you will typically want to set the Caption and Voice properties for the Commands collection object as well as for the commands in the collection, because this places an entry for your Commands collection on a character’s pop-up menu and in the Commands Window. When the user switches to your client by choosing its entry, the server automatically makes your client input-active and makes the Commands in its collection available. This enables the server to present and accept only the Commands that apply to the current input-active client’s context. It also serves to avoid Command-name collisions between clients. 
When a character’s pop-up menu is displayed, changes to the properties of a Commands collection or the commands in its collection do not appear until the user redisplays the menu. However, when open, the Commands Window does display changes as they happen.
IAgentCommands defines an interface that allows applications to add, remove, set, and query properties for a Commands collection. A Commands collection can appear as a command in both the pop-up menu and the Commands Window for a character. To make the Commands collection appear, you must set its Caption property. The following table summarizes how the properties of a Commands collection affect its presentation.

Caption Property�Voice Property �Visible Property�Appears in �Character’s Pop-up Menu�Appears in �Commands Window��Yes�Yes�True�Yes�Yes��Yes�Yes�False�No�Yes��Yes�No�True�Yes�No��Yes�No�False�No�No��No�Yes�True�No�No*��No�Yes�False�No�No*��No�No�True�No�No��No�No�False�No�No��*The command is still voice-accessible. If the client is input-active and has Commands in its collection, “(command undefined)” appears in the Commands Window.

Methods in Vtable Order
IAgentCommands Methods�Description��GetCommand�Retrieves a Command object from the Commands collection.��GetCount�Returns the value of the number of Commands in a Commands collection.��SetCaption�Sets the value of the Caption property for a Commands collection.��GetCaption�Returns the value of the Caption property of a Commands collection.��SetVoice�Sets the value of the Voice property for a Commands collection.��GetVoice�Returns the value of the Voice property of a Commands collection.��SetVisible�Sets the value of the Visible property for a Commands collection.��GetVisible�Returns the value of the Visible property of a Commands collection.��Add�Adds a Command object to a Commands collection.��Insert�Inserts a Command object in a Commands collection.��Remove�Removes a Command object in a Commands collection.��RemoveAll�Removes all Command objects from a Commands collection.��
IAgentCommands::Add
HRESULT Add(
   BSTR bszCaption,  // Caption setting for Command
   BSTR bszVoice,    // Voice setting for Command
   long bEnabled,    // Enabled setting for Command
   long bVisible,    // Visible setting for Command
   long * pdwID      // address for variable for ID
);
Adds a Command to a Commands collection.
•	Returns S_OK to indicate the operation was successful.
bszCaption
A BSTR that specifies the value of the Caption text displayed for a Command in a Commands collection.
bszVoice
A BSTR that specifies the value of the Voice text setting for a Command in a Commands collection.
bEnabled
A Boolean expression that specifies the Enabled setting for a Command in a Commands collection. If the parameter is TRUE, the Command is enabled and can be selected; if FALSE, the Command is disabled.
bVisible
A Boolean expression that specifies the Visible setting for a Command in a Commands collection. If the parameter is TRUE, the Command will be visible in the character’s pop-up menu (if the Caption property is also set).
pdwID 
Address of a variable that receives the ID for the added Command.
See also IAgentCommand::SetCaption, IAgentCommand::SetEnabled, IAgentCommand::SetVisible, IAgentCommand::SetVoice, IAgentCommands::Insert, IAgentCommands::Remove, IAgentCommands::RemoveAll
 
IAgentCommands::GetCaption
HRESULT GetCaption(
   BSTR * pbszCaption  // address of Caption text for Commands collection
);
Retrieves the Caption for a Commands collection.
•	Returns S_OK to indicate the operation was successful.
pbszCaption
The address of a BSTR that receives the value of the Caption text setting displayed for a Commands collection.
See also IAgentCommands::SetCaption, IAgentCommands::GetVisible, IAgentCommands::GetVoice
 
IAgentCommands::GetCommand
HRESULT GetCommand(
   long dwCommandID,         // Command ID
   IUnknown ** ppunkCommand  // address of IUnknown interface
);                    
Retrieves a Command object from the Commands collection.
•	Returns S_OK to indicate the operation was successful. 
dwCommandID
The ID of a Command object in the Commands collection.
IUnknown
The address of the IUnknown interface for the Command object.
See also IAgentCommand
 
IAgentCommands::GetCount
HRESULT GetCount(
   long * pdwCount  // address of count of commands
);                    
Retrieves the number of Command objects in a Commands collection.
•	Returns S_OK to indicate the operation was successful.
pdwCount
Address of a variable that receives the number of Commands in a Commands collection.
pdwCount includes only the number of Commands you define in your Commands collection. Server or other client entries are not included.
 
IAgentCommands::GetVisible
HRESULT GetVisible(
   long * pbVisible  // address of Visible setting for Commands collection
);
Retrieves the value of the Visible property for a Commands collection.
•	Returns S_OK to indicate the operation was successful.
pbVisible
The address of a variable that receives the value of the Visible property for a Commands collection.
See also IAgentCommands::SetVisible, IAgentCommands::SetCaption
 
IAgentCommands::GetVoice
HRESULT GetVoice(
   BSTR * pbszVoice  // address of Voice setting for Commands collection
);
Retrieves the value of the Voice property for a Commands collection. 
•	Returns S_OK to indicate the operation was successful. 
pbszVoice
The address of a BSTR that receives the value of the Voice text setting for a Commands collection.
See also IAgentCommands::SetVoice, IAgentCommands::GetCaption, IAgentCommands::GetVisible
 
IAgentCommands::Insert
HRESULT Insert(
   BSTR bszCaption,  // Caption setting for Command
   BSTR bszVoice,    // Voice setting for Command
   long bEnabled,    // Enabled setting for Command
   long bVisible,    // Visible setting for Command
   long dwRefID,     // reference Command for insertion
   long dBefore,     // insertion position flag
   long * pdwID      // address for variable for Command ID
);
Inserts a Command object in a Commands collection.
•	Returns S_OK to indicate the operation was successful.
bszCaption
A BSTR that specifies the value of the Caption text displayed for the Command.
bszVoice
A BSTR that specifies the value of the Voice text setting for a Command.
bEnabled
A Boolean expression that specifies the Enabled setting for a Command. If the parameter is TRUE, the Command is enabled and can be selected; if FALSE, the Command is disabled.
bVisible
A Boolean expression that specifies the Visible setting for a Command. If the parameter is TRUE, the Command will be visible in the character’s pop-up menu (if the Caption property is also set).
dwRefID
The ID of a Command used as a reference for the relative insertion of the new Command.
dBefore
A Boolean expression that specifies where to place the Command. If this parameter is TRUE, the new Command is inserted before the referenced Command; if FALSE, the new Command is placed after the referenced Command.
pdwID 
Address of a variable that receives the ID for the inserted Command.
See also IAgentCommand::Add, IAgentCommands::Remove, IAgentCommands::RemoveAll
 
IAgentCommands::Remove
HRESULT Remove(
   long dwID  // Command ID
);
Removes the specified Command from a Commands collection. 
•	Returns S_OK to indicate the operation was successful.
dwID
The ID of a Command to remove from the Commands collection. 
Removing a Command from a Commands collection also removes it from the pop-up menu and the Commands Window when your application is input-active.
See also IAgentCommands::Add, IAgentCommands::Insert, IAgentCommands::RemoveAll
 
IAgentCommands::RemoveAll
HRESULT Remove();
Removes all Commands from a Commands collection. 
•	Returns S_OK to indicate the operation was successful.
Removing all Commands from a Commands collection also removes them from the pop-up menu and the Commands Window when your application is input-active. RemoveAll does not remove server or other client's entries.
See also IAgentCommands::Add, IAgentCommands::Insert, IAgentCommands::Remove
 
IAgentCommands::SetCaption
HRESULT SetCaption(
   BSTR bszCaption  // Caption setting for Commands collection
);
Sets the Caption text displayed for a Commands collection. 
•	Returns S_OK to indicate the operation was successful. 
bszCaption
A BSTR that specifies the value for the Caption property for a Commands collection.
A Commands collection with its Caption property set and its Visible property set to TRUE appears in the character’s pop-up menu. If its Voice property is also set, it appears in the Commands Window. If you define commands for a Commands collection that have their Caption, Enabled, and Voice properties set, you typically also define Caption and Voice settings for the associated Commands collection. If the Commands collection has no Voice or no Caption setting and is currently input-active, but the Commands in its collection have Caption and Voice settings, the Commands appear in the Commands Window tree view under “(undefined command)” when your client application becomes input-active.
See also IAgentCommands::GetCaption, IAgentCommands::SetVisible, IAgentCommands::SetVoice
 
IAgentCommands::SetVisible
HRESULT SetVisible(
   long bVisible  // the Visible setting for Commands collection
);
Sets the value of the Visible property for a Commands collection. 
•	Returns S_OK to indicate the operation was successful.
bVisible
A Boolean value that determines the Visible property of a Commands collection. TRUE sets the Commands collection’s Caption to be visible when the character’s pop-up menu is displayed; FALSE does not display it.
A Commands collection must have its Caption property set and its Visible property set to TRUE to appear on the character’s pop-up menu. The Visible property must also be set to TRUE for commands in the collection to appear when your client application is input-active.
See also IAgentCommands::GetVisible, IAgent::SetCaption
 
IAgentCommands::SetVoice
HRESULT SetVoice(
   BSTR bszVoice  // the Voice setting for Command collection
);
Sets the Voice text property for a Command. 
•	Returns S_OK to indicate the operation was successful.
bszVoice
A BSTR that specifies the value for the Voice text property of a Commands collection.
A Commands collection must have its Voice text property set to be voice-accessible. It also must have its Caption property set to appear in the Commands Window and its Visible property set to TRUE to appear on the character’s pop-up menu.
The BSTR expression you supply can include square bracket characters ([ ]) to indicate optional words and vertical bar characters (|) to indicate alternative strings. Alternates must be enclosed in parentheses. For example, “(hello [there] | hi)” tells the speech engine to accept “hello,” “hello there,” or “hi” for the command. Remember to include appropriate spaces between words you include in brackets or parentheses as well as other text. Remember to include appropriate spaces between the text that's in brackets or parentheses and the text that's not in brackets or parentheses.
You can also use an ellipsis (…) to support word spotting, that is, telling the speech recognition engine to ignore words spoken in this position in the phrase (sometimes called garbage words). When you use ellipses, the speech engine recognizes only specific words in the string regardless of when spoken with adjacent words or phrases. For example, if you set this property to “…check mail…” the speech recognition engine will match phrases like “please check mail” or “check mail please” to this command. Ellipses can be used anywhere within a string. However, be careful using this technique as voice settings with ellipses may increase the potential of unwanted matches. 
When defining the words and grammar for your command, always make sure that you include at least one word that is required; that is, avoid supplying only optional words. In addition, make sure that the word includes only pronounceable words and letters. For numbers, it is better to spell out the word rather than using the numeric representation. Also, omit any punctuation or symbols. For example, instead of “the #1 $10 pizza!”, use “the number one ten dollar pizza”. Including non-pronounceable characters or symbols for one command may cause the speech engine to fail to compile the grammar for all your commands. Finally, make your voice parameter as distinct as reasonably possible from other voice commands you define. The greater the similarity between the voice grammar for commands, the more likely the speech engine will make a recognition error. You can also use the confidence scores to better distinguish between two commands that may have similar or similar-sounding voice grammar.
The operation of this property depends on the state of Microsoft Agent server’s speech recognition state. For example, if speech recognition is disabled or not installed, this function has no immediate effect. If speech recognition is enabled during a session, however, the command will become accessible when its client application is input-active.
See also IAgentCommands::GetVoice, IAgentCommands::SetCaption, IAgentCommands::SetVisible
IAgentCommand
A Command object is an item in a Commands collection. The server provides the user access to your commands your client application becomes input active. To retrieve a Command, call IAgentCommands::GetCommand.
IAgentCommand defines an interface that allows applications to set and query properties for Command objects that can appear in a character’s pop-up menu and in the Commands Window. A Command object is an item in a Commands collection. The server provides the user access to your commands when your client application becomes input active.
A Command may appear in either or both the character's pop-up menu and the Commands Window. To appear in the pop-up menu, it must have a Caption and have the Visible property set to TRUE. The Visible property for its Commands collection object must also be set to TRUE for the command to appear in the pop-up menu when your client application is input-active. To appear in the Commands Window, a Command must have its Caption and Voice properties set. 
A character’s pop-up menu entries do not change while the menu is displayed. If you add or remove Commands or change their properties while the character’s popup menu is displayed, the menu displays those changes when redisplayed. However, the Commands Window does display changes as you make them.
The following table summarizes how the properties of a command affect its presentation.

Caption Property�Voice Property �Visible Property�Enabled Property�Appears in Character’s Pop-up Menu�Appears in Commands Window��Yes�Yes�True�True�Normal�Yes��Yes�Yes�True�False�Disabled�No��Yes�Yes�False�True�Does not appear�Yes��Yes�Yes�False�False�Does not appear�No��Yes�No�True�True�Normal�No��Yes�No�True�False�Disabled�No��Yes�No�False�True�Does not appear�No��Yes�No�False�False�Does not appear�No��No�Yes�True �True�Does not appear�No*��No�Yes�True�False�Does not appear�No��No�Yes�False�True�Does not appear�No*��No�Yes�False�False�Does not appear�No��No�No�True�True�Does not appear�No��No�No�True�False�Does not appear�No��No�No�False�True�Does not appear�No��No�No�False�False�Does not appear�No��*The command is still voice-accessible.
Generally, if you define a Command with a Voice setting, you also define Caption and Voice settings for its associated Commands collection. If the Commands collection for a set of commands has no Voice or no Caption setting and is currently input-active, but the Commands have Caption and Voice settings, the Commands appear in the Commands Window tree view under “(undefined command)” when your client application becomes input-active. 
When the server receives input that matches one of the Command objects you defined for your Commands collection, it sends a IAgentNotifySink::Command event, and passes back the ID of the command as an attribute of the IAgentUserInput object. You can then use conditional statements to match and process the command.
Methods in Vtable Order
IAgentCommand Methods�Description��SetCaption�Sets the value for the Caption for a Command object.��GetCaption�Returns the value of the Caption property of a Command object.��SetVoice�Sets the value for the Voice text for a Command object.��GetVoice�Returns the value of the Caption property of a Command object.��SetEnabled�Sets the value of the Enabled property for a Command object.��GetEnabled�Returns the value of the Enabled property of a Command object.��SetVisible�Sets the value of the Visible property for a Command object.��GetVisible�Returns the value of the Visible property of a Command object.��SetConfidenceThreshold �Sets the value of the Confidence property for a Command object.��GetConfidenceThreshold�Returns the value of the Confidence property of a Command object.��SetConfidenceText�Sets the value of the ConfidenceText property for a Command object.��GetConfidenceText�Returns the value of the ConfidenceText property of a Command object.��GetID �Returns the ID of a Command object.��
IAgentCommand::GetCaption
HRESULT GetCaption(
   BSTR * pbszCaption  // address of Caption for Command
);
Retrieves the Caption for a Command.
•	Returns S_OK to indicate the operation was successful.
pbszCaption
The address of a BSTR that receives the value of the Caption text displayed for a Command.
See also IAgentCommand::SetCaption, IAgentCommand::SetEnabled, IAgentCommand::SetVisible, IAgentCommand::SetVoice, IAgentCommands::Add, IAgentCommands::Insert
 
IAgentCommand::GetConfidenceText
HRESULT GetConfidenceText(
   BSTR * pbszTipText  // address of ConfidenceText setting for Command 
);
Retrieves the Listening Tip text previously set for a Command.
•	Returns S_OK to indicate the operation was successful.
pbszTipText
The address of a BSTR that receives the value of the Listening Tip text for a Command.
See also IAgentCommand::SetConfidenceThreshold, IAgentCommand::GetConfidenceThreshold, IAgentCommand::SetConfidenceText, IAgentUserInput::GetItemConfidence
 
IAgentCommand::GetConfidenceThreshold
HRESULT GetConfidenceThreshold(
long * plConfidenceThreshold  // address of ConfidenceThreshold 
);                            // setting for Command
Retrieves the value of the ConfidenceThreshold property for a Command. 
•	Returns S_OK to indicate the operation was successful.
plConfidenceThreshold
The address of a variable that receives the value of the ConfidenceThreshold property for a Command.
See also IAgentCommand::SetConfidenceThreshold, IAgentCommand::SetConfidenceText, IAgentUserInput::GetItemConfidence
 
IAgentCommand::GetEnabled
HRESULT GetEnabled(
   long * pbEnabled  // address of Enabled setting for Command
);
Retrieves the value of the Enabled property for a Command. 
•	Returns S_OK to indicate the operation was successful.
pbEnabled
The address of a variable that receives TRUE if the Command is enabled, or FALSE if it is disabled. A disabled Command cannot be selected.
See also IAgentCommand::SetCaption, IAgent::SetVisible, IAgentCommand::SetVoice, IAgentCommands::Add, IAgentCommands::Insert
 
IAgentCommand::GetID
HRESULT GetID(
   long * pdwID  // address of ID for Command
);
Retrieves the ID for a Command. 
•	Returns S_OK to indicate the operation was successful.
pdwID
The address of a variable that receives the ID of a Command.
See also IAgentCommands::Add, IAgentCommands::Insert, IAgentCommands::Remove
 
IAgentCommand::GetVisible
HRESULT GetVisible(
   long * pbVisible  // address of Visible setting for Command
);
Retrieves the value of the Visible property for a Command. 
•	Returns S_OK to indicate the operation was successful.
pbVisible
The address of a variable that receives the Visible property for a Command.
See also IAgentCommand::SetVisible, IAgent::SetCaption, IAgentCommands::Add, IAgentCommands::Insert
 
IAgentCommand::GetVoice
HRESULT GetVoice(
   BSTR * pbszVoice  // address of Voice setting for Command
);
Retrieves the value of the Voice text property for a Command. 
•	Returns S_OK to indicate the operation was successful.
pbszVoice
The address of a BSTR that receives the Voice text property for a Command.
A Command with its Voice property set and its Enabled property set to TRUE will be voice-accessible. If its Caption property is also set it appears in the Commands Window. If its Visible property is set to TRUE, it appears in the character’s pop-up menu.
See also IAgentCommand::SetVoice, IAgentCommands::Add, IAgentCommands::Insert
 
IAgentCommand::SetCaption
HRESULT SetCaption(
   BSTR bszCaption  // Caption setting for Command
);
Sets the Caption text displayed for a Command. 
•	Returns S_OK to indicate the operation was successful.
bszCaption
A BSTR that specifies the text for the Caption property for a Command.
A Command with its Caption property set and its Visible property set to TRUE appears in the character’s pop-up menu. If its Voice property is also set, it appears in the Commands Window. To make it accessible, you must also set its Enabled property to TRUE.
See also IAgentCommand::GetCaption, IAgentCommand::SetEnabled, IAgentCommand::SetVisible, IAgentCommand::SetVoice, IAgentCommands::Add, IAgentCommands::Insert
 
IAgentCommand::SetConfidenceThreshold
HRESULT SetConfidenceThreshold(
   long lConfidence  // Confidence setting for Command
);
Sets the value of the Confidence property for a Command. 
•	Returns S_OK to indicate the operation was successful.
lConfidence
The value for the Confidence property of a Command.
If the confidence value returned of the best match returned in the Command event does not exceed the value set for the ConfidenceThreshold property, the text supplied in SetConfidenceText is displayed in the Listening Tip.
See also IAgentCommand::GetConfidenceThreshold, IAgentCommand::SetConfidenceText, IAgentUserInput::GetItemConfidence
 
IAgentCommand::SetConfidenceText
HRESULT SetConfidenceText(
   BSTR bszTipText  // ConfidenceText setting for Command 
);
Sets the value of the Listening Tip text for a Command. 
•	Returns S_OK to indicate the operation was successful.
bszTipText
A BSTR that specifies the text for the ConfidenceText property of a Command.
If the confidence value returned of the best match returned in the Command event does not exceed the value set for the ConfidenceThreshold property, the text supplied in bszTipText is displayed in the Listening Tip.
See also IAgentCommand::SetConfidenceThreshold, IAgentCommand::GetConfidenceThreshold, IAgentCommand::GetConfidenceText, IAgentUserInput::GetItemConfidence
 
IAgentCommand::SetEnabled
HRESULT SetEnabled(
   long bEnabled  // Enabled setting for Command
);
Sets the Enabled property for a Command. 
•	Returns S_OK to indicate the operation was successful.
bEnabled
A Boolean value that sets the value of the Enabled setting of a Command. TRUE enables the Command; FALSE disables it. A disabled Command cannot be selected. 
A Command must have its Enabled property set to TRUE to be selectable. It also must have its Caption property set and its Visible property set to TRUE to appear in the character’s pop-up menu. To make the Command appear in the Commands Window, you must set its Voice property.
See also IAgentCommand::GetCaption, IAgentCommand::SetVoice, IAgentCommands::Add, IAgentCommands::Insert
 
IAgentCommand::SetVisible
HRESULT SetVisible(
   long bVisible  // Visible setting for Command
);
Sets the value of the Visible property for a Command. 
•	Returns S_OK to indicate the operation was successful.
bVisible
A Boolean value that determines the Visible property of a Command. TRUE shows the Command; FALSE hides it.
A Command must have its Visible property set to TRUE and its Caption property set to appear in the character’s pop-up menu.
See also IAgentCommand::GetVisible, IAgent::SetCaption, IAgentCommands::Add, IAgentCommands::Insert
 
IAgentCommand::SetVoice
HRESULT SetVoice(
   BSTR bszVoice  // voice text setting for Command
);
Sets the Voice property for a Command. 
•	Returns S_OK to indicate the operation was successful.
bszVoice
A BSTR that specifies the text for the Voice property of a Command.
A Command must have its Voice property and Enabled property set to be voice-accessible. It also must have its Caption property set to appear in the Commands Window.
The BSTR expression you supply can include square bracket characters ([ ]) to indicate optional words and vertical bar characters (|) to indicate alternative strings. Alternates must be enclosed in parentheses. For example, “(hello [there] | hi)” tells the speech engine to accept “hello,” “hello there,” or “hi” for the command. Remember to include appropriate spaces between the text that's in brackets or parentheses and the text that's not in brackets or parentheses.
You can also use an ellipsis (…) to support word spotting, that is, telling the speech recognition engine to ignore words spoken in this position in the phrase (sometimes called garbage words). Therefore, the speech engine recognizes only specific words in the string regardless of when spoken with adjacent words or phrases. For example, if you set this property to “…check mail…” the speech recognition engine will match phrases like “please check mail” or “check mail please” to this command. Ellipses can be used anywhere within a string. However, be careful using this technique, because voice settings with ellipses may increase the potential of unwanted matches. 
When defining the words and grammar for your command, always make sure that you include at least one word that is required; that is, avoid supplying only optional words. In addition, make sure that the word includes only pronounceable words and letters. For numbers, it is better to spell out the word rather than using the numeric representation. Also, omit any punctuation or symbols. For example, instead of “the #1 $10 pizza!”, use “the number one ten dollar pizza”. Including non-pronounceable characters or symbols for one command may cause the speech engine to fail to compile the grammar for all your commands. Finally, make your voice parameter as distinct as reasonably possible from other voice commands you define. The greater the similarity between the voice grammar for commands, the more likely the speech engine will make a recognition error. You can also use the confidence scores to better distinguish between two commands that may have similar or similar-sounding voice grammar.
The operation of this property depends on the state of Microsoft Agent server’s speech recognition state. For example, if speech recognition is disabled or not installed, this function has no immediate effect. If speech recognition is enabled during a session, however, the command will become accessible when its client application is input-active.
See also IAgentCommand::GetVoice, IAgentCommand::SetCaption, IAgentCommand::SetEnabled, IAgentCommands::Add, IAgentCommands::Insert

IAgentUserInput
When a Command event occurs, the Microsoft Agent server returns information through the UserInput object. IAgentUserInput defines an interface that allows applications to query these values. 
Methods in Vtable Order
IAgentUserInput Methods�Description��GetCount�Returns the number of command alternatives returned in a Command event.��GetItemId�Returns the ID for a specific Command alternative.��GetItemConfidence�Returns the value of the Confidence property for a specific Command alternative.��GetItemText�Returns the value of Voice text for a specific Command alternative.��GetAllItemData�Returns the data for all Command alternatives.��
IAgentUserInput::GetAllItemData
HRESULT GetAllItemData(
   VARIANT * pdwItemIndices,  // address of variable for alternative IDs
   VARIANT * plConfidences,   // address of variable for confidence scores
   VARIANT * pbszText         // address of variable for voice text
);
Retrieves the data for all Command alternatives passed to an IAgentNotifySink::Command callback.
•	Returns S_OK to indicate the operation was successful.
pdwItemIndices
Address of a variable that receives the IDs of Commands passed to the IAgentNotifySink::Command callback.
plConfidences
Address of a variable that receives the confidence scores for Command alternatives passed to the IAgentNotifySink::Command callback.
pbszText
Address of a variable that receives the voice text for Command alternatives passed to the IAgentNotifySink::Command callback.
If voice input was not the source for the Command, for example, if the user selected the command from the character’s pop-up menu, the Microsoft Agent server returns the ID of the Command selected, with a confidence score of 100 and voice text as NULL. The other alternatives return as NULL with confidence scores of zero (0) and voice text as NULL.
See also IAgentUserInput::GetItemConfidence, IAgentUserInput::GetItemText, IAgentUserInput::GetItemID
 
IAgentUserInput::GetCount
HRESULT GetCount(
   long * pdwCount  // address of a variable for number of alternatives 
);
Retrieves the number of Command alternatives passed to an IAgentNotifySink::Command callback.
•	Returns S_OK to indicate the operation was successful.
pdwCount
Address of a variable that receives the count of Commands alternatives identified by the server.
If voice input was not the source for the command, for example, if the user selected the command from the character’s pop-up menu, GetCount returns 1. If GetCount returns zero (0), the speech recognition engine detected spoken input but determined that there was no matching command.
 
IAgentUserInput::GetItemConfidence
HRESULT GetItemConfidence(
   long dwItemIndex,    // index of Command alternative
   long * plConfidence  // address of confidence value for Command 
);
Retrieves the confidence value for a Command passed to an IAgentNotifySink::Command callback.
•	Returns S_OK to indicate the operation was successful.
dwItemIndex
The index of a Command alternative passed to the IAgentNotifySink::Command callback.
plConfidence
Address of a variable that receives the confidence score for a Command alternative passed to the IAgentNotifySink::Command callback.
If voice input was not the source for the command, for example, if the user selected the command from the character’s pop-up menu, the Microsoft Agent server returns the confidence value of the best match as 100 and the confidence values for all other alternatives as zero (0).
See also IAgentUserInput::GetItemID, IAgentUserInput::GetAllItemData, IAgentUserInput::GetItemText
 
IAgentUserInput::GetItemID
HRESULT GetItemID(
   long dwItemIndex,    // index of Command alternative
   long * pdwCommandID  // address of a variable for number of alternatives 
);
Retrieves the identifier of a Command alternative passed to an IAgentNotifySink::Command callback.
•	Returns S_OK to indicate the operation was successful.
dwItemIndex
The index of the Command alternative passed to the IAgentNotifySink::Command callback.
pdwCommandID
Address of a variable that receives the ID of a Command.
If voice input triggers the IAgentNotifySink::Command callback, the server returns the IDs for any matching Commands defined by your application. 
See also IAgentUserInput::GetItemConfidence, IAgentUserInput::GetItemText, IAgentUserInput::GetAllItemData
 
IAgentUserInput::GetItemText
HRESULT GetItemText(
   Long dwItemIndex,  // index of Command alternative
   BSTR * pbszText    // address of voice text for Command 
);
Retrieves the voice text for a Command alternative passed to the IAgentNotifySink::Command callback.
•	Returns S_OK to indicate the operation was successful.
dwItemIndex
The index of a Command alternative passed to the IAgentNotifySink::Command callback.
pbszText
Address of a BSTR that receives the value of the voice text for the Command.
If voice input was not the source for the command, for example, if the user selected the command from the character’s pop-up menu, the server returns NULL for the Command’s voice text.
See also IAgentUserInput::GetItemConfidence, IAgentUserInput::GetItemID, IAgentUserInput::GetAllItemData
IAgentCommandWindow
IAgentCommandWindow defines an interface that allows applications to set and query the properties of the Commands Window. The Commands Window is a shared resource primarily designed for allowing users to view voice-enabled commands. If speech recognition is disabled or not installed, the Commands Window is not accessible. Attempting to set or query its properties will result in an error.
Methods in Vtable Order
IAgentCommandWindow Methods�Description��SetVisible�Sets the value of the Visible property of the Commands Window.��GetVisible�Returns the value of the Visible property of the Commands Window.��GetPosition�Returns the position of the Commands Window.��GetSize�Returns the size of the Commands Window.��
IAgentCommandWindow::GetPosition
HRESULT GetPosition(
   long * plLeft,  // address of variable for left-edge of Commands Window
   long * plTop    // address of variable for top-edge of Commands Window
);
Retrieves the Commands Windows’ position.
•	Returns S_OK to indicate the operation was successful.
plLeft
Address of a variable that receives the screen coordinate of the left edge of the Commands Window in pixels, relative to the screen origin (upper left).
plTop
Address of a variable that receives the screen coordinate of the top edge of the Commands Window in pixels, relative to the screen origin (upper left).
See also IAgentCommandWindow::GetSize
 
IAgentCommandWindow::GetSize
HRESULT GetSize(
   long * plWidth,  // address of variable for Commands Window width
   long * plHeight  // address of variable for Commands Window height
);
Retrieves the current size of the Commands Window.
•	Returns S_OK to indicate the operation was successful.
plWidth
Address of a variable that receives the width of the Commands Window in pixels, relative to the screen origin (upper left).
plHeight
Address of a variable that receives the height of the Commands Window in pixels, relative to the screen origin (upper left).
See also IAgentCommandWindow::GetPosition
 
IAgentCommandWindow::GetVisible
HRESULT GetVisible(
   long * pbVisible  // address of variable for Visible setting for 
);                   // Commands Window
Determines whether the Commands Window is visible or hidden.
•	Returns S_OK to indicate the operation was successful.
pbVisible
Address of a variable that receives TRUE if the Commands Window is visible, or FALSE if hidden.
See also IAgentCommandWindow::SetVisible
 
IAgentCommandWindow::SetVisible
HRESULT SetVisible(
   long bVisible  // Commands Window Visible setting 
);
Set the Visible property for the Commands Window.
•	Returns S_OK to indicate the operation was successful.
bVisible
Visible property setting. A value of TRUE displays the Commands Window; FALSE hides it. 
The user can override this property.
See also IAgentCommandWindow::GetVisible
IAgentSpeechInputProperties
IAgentSpeechInputProperties provides access to the speech recognition properties maintained by the server. Most of the properties are read-only for client applications, but the user can change them in the Microsoft Agent property sheet. The Microsoft Agent server only returns values if a compatible speech engine has been installed and is enabled. Querying these properties attempts to start the speech engine.
Methods in Vtable Order
IAgentSpeechInputProperties Methods�Description��GetInstalled�Returns whether a compatible speech recognition engine has been installed.��GetEnabled�Returns whether the speech recognition engine is enabled.��GetHotKey�Returns the current key assignment of the listening hot key.��GetLCID�Returns the locale (language) ID of the selected speech recognition engine.��GetEngine�Returns the ID of the selected speech recognition engine.��SetEngine�Sets the ID for the selected speech recognition engine.��GetListeningTip�Returns whether the Listening Tip is enabled.��
IAgentSpeechInputProperties::GetEnabled
HRESULT GetEnabled(
   long * pbEnabled  // address of variable for speech recognition engine 
);                   // Enabled setting
Retrieves a value indicating whether the installed speech recognition engine is enabled. 
•	Returns S_OK to indicate the operation was successful.
pbEnabled
Address of a variable that receives TRUE if the speech engine is currently enabled and FALSE if disabled.
If GetInstalled returns FALSE, querying this setting returns an error.
See also IAgentSpeechInput::GetInstalled
 
IAgentSpeechInputProperties::GetEngine
HRESULT GetEngine(
BSTR * pbszEngine  // address of variable for speech engine mode ID 
);                        
Retrieves the mode ID for the current selected speech recognition engine. 
•	Returns S_OK to indicate the operation was successful.
pbszEngine
Address of a BSTR that receives a string representation of the CLSID for the selected speech recognition engine.
If GetInstalled and GetEnabled return FALSE, querying this setting returns an error.
See also IAgentSpeechInput::SetEngine
 
IAgentSpeechInputProperties::GetHotKey
HRESULT GetHotKey(
BSTR * pbszHotCharKey  // address of variable for listening hotkey 
);                        
Retrieves the current keyboard assignment for the speech input listening hot key. 
•	Returns S_OK to indicate the operation was successful.
pbszHotCharKey
Address of a BSTR that receives the current hot key setting used to open the audio channel for speech input.
If GetInstalled and GetEnabled return FALSE, querying this setting raises an error.
See also IAgentSpeechInput::GetEnabled, IAgentSpeechInput::GetInstalled
 
IAgentSpeechInputProperties::GetInstalled
HRESULT GetInstalled(
long * pbInstalled  // address of variable for speech recognition engine
);                  // installation flag
Retrieves a value indicating whether a speech recognition engine has been installed. 
•	Returns S_OK to indicate the operation was successful.
pbInstalled
Address of a variable that receives TRUE if a compatible speech recognition engine has been installed and FALSE if no engine is installed.
If GetInstalled and GetEnabled return FALSE, querying any other speech input properties returns an error.
See also IAgentSpeechInput::GetEnabled
 
IAgentSpeechInputProperties::GetLCID
HRESULT GetLCID(
LCID * plcidCurrent  // address of variable for locale ID 
);                        
Retrieves the current setting for the locale ID. 
•	Returns S_OK to indicate the operation was successful.
plcidCurrent
Address of LCID that receives the current locale setting. The locale setting determines the language of the speech recognition engine.
If GetInstalled and GetEnabled return FALSE, querying this setting returns an error.
See also IAgentSpeechInput::GetEnabled, IAgentSpeechInput::GetInstalled
 
IAgentSpeechInputProperties::GetListeningTip
HRESULT GetListeningTip(
long * pbListeningTip  // address of variable for listening tip flag
);                       
Retrieves a value indicating whether the Listening Tip is enabled for display. 
•	Returns S_OK to indicate the operation was successful.
pbInstalled
Address of a variable that receives TRUE if the Listening Tip is enabled for display, or FALSE if the Listening Tip is disabled.
If GetInstalled and GetEnabled return FALSE, querying any other speech input properties returns an error.
See also IAgentSpeechInput::GetEnabled, IAgentSpeechInput::GetInstalled
 
IAgentSpeechInputProperties::SetEngine
HRESULT SetEngine(
BSTR bszEngine  // speech engine mode ID 
);                        
Sets the selected speech recognition engine. 
•	Returns S_OK to indicate the operation was successful.
bszEngine
A BSTR that contains a string representation of the CLSID for the desired speech recognition mode (engine).
If GetInstalled and GetEnabled return FALSE, setting this property returns an error.
See also IAgentSpeechInput::GetEngine
IAgentAudioOutputProperties
IAgentAudioOutputProperties provides access to audio output properties maintained by the Microsoft Agent server. The properties are read-only, but the user can change them in the Microsoft Agent property sheet.
Methods in Vtable Order
IAgentAudioOutputProperties Methods�Description��GetEnabled�Returns whether audio output is enabled.��GetUsingSoundEffects�Returns whether sound-effect output is enabled.��
IAgentAudioOutputProperties::GetEnabled
HRESULT GetEnabled(
long * pbEnabled  // address of variable for audio output Enabled setting 
);                      
Retrieves a value indicating whether character speech output is enabled. 
•	Returns S_OK to indicate the operation was successful.
pbEnabled
Address of a variable that receives TRUE if the speech output is currently enabled and FALSE if disabled.
Because this setting affects spoken output (TTS and sound file) for all characters, only the user can change this property in the Microsoft Agent property sheet.
 
IAgentAudioOutputProperties::GetUsingSoundEffects
HRESULT GetUsingSoundEffects(
long * pbUsingSoundEffects  // address of variable sound effects output 
);                          // setting 
Retrieves a value indicating whether sound effects output is enabled. 
•	Returns S_OK to indicate the operation was successful.
pbUsingSoundEffects
Address of a variable that receives TRUE if the sound effects output is currently enabled and FALSE if disabled.
Sound effects for a character’s animation are assigned in the Microsoft Agent Character Editor. Because this setting affects sound effects output for all characters, only the user can change this property in the Microsoft Agent property sheet.
IAgentPropertySheet
IAgentPropertySheet defines an interface that allows applications to set and query properties for the Microsoft Agent property sheet (window).
Methods in Vtable Order
IAgentPropertySheet Methods�Description��GetVisible�Returns whether the Microsoft Agent property sheet is visible.��SetVisible�Sets the Visible property of the Microsoft Agent property sheet.��GetPosition�Returns the position of the Microsoft Agent property sheet.��GetSize�Returns the size of the Microsoft Agent property sheet.��GetPage�Returns the current page for the Microsoft Agent property sheet.��SetPage�Sets the current page for the Microsoft Agent property sheet.��
IAgentPropertySheet::GetPage
HRESULT GetPage(
BSTR * pbszPage  // address of variable for current property page
);
Retrieves the current page of the Microsoft Agent property sheet.
•	Returns S_OK to indicate the operation was successful.
pbszPage
Address of a variable that receives the current page of the property sheet (last viewed page if the window is not open). The parameter can be one of the following:

“Speech”�The Speech Recognition page.��“Output”�The Output page.��“Copyright”�The Copyright page.��
See also IAgentPropertySheet::SetPage
 
IAgentPropertySheet::GetPosition
HRESULT GetPosition(
   long * plLeft,  // address of variable for left edge of property sheet
   long * plTop    // address of variable for top edge of property sheet
);
Retrieves the Microsoft Agent’s property sheet window position.
•	Returns S_OK to indicate the operation was successful.
plLeft
Address of a variable that receives the screen coordinate of the left edge of the property sheet in pixels, relative to the screen origin (upper left).
plTop
Address of a variable that receives the screen coordinate of the top edge of the property sheet in pixels, relative to the screen origin (upper left).
See also IAgentPropertySheet::GetSize
 
IAgentPropertySheet::GetSize
HRESULT GetSize(
   long * plWidth,  // address of variable for property sheet width
   long * plHeight  // address of variable for property sheet height
);
Retrieves the size of the Microsoft Agent property sheet window.
•	Returns S_OK to indicate the operation was successful.
plWidth
Address of a variable that receives the width of the property sheet in pixels, relative to the screen origin (upper left).
plHeight
Address of a variable that receives the height of the property sheet in pixels, relative to the screen origin (upper left).
See also IAgentPropertySheet::GetPosition
 
IAgentPropertySheet::GetVisible
HRESULT GetVisible(
   long * pbVisible  // address of variable for property sheet
);                   // Visible setting
Determines whether the Microsoft Agent property sheet is visible or hidden.
•	Returns S_OK to indicate the operation was successful.
pbVisible
Address of a variable that receives TRUE if the property sheet is visible and FALSE if hidden.
See also IAgentPropertySheet::SetVisible
 
IAgentPropertySheet::SetPage
HRESULT SetPage(
   BSTR bszPage  // current property page
);
Sets the current page of the Microsoft Agent property sheet.
•	Returns S_OK to indicate the operation was successful.
bszPage
A BSTR that sets the current page of the property. The parameter can be one of the following.

"Speech"�The Speech Recognition page.��"Output"�The Output page.��"Copyright"�The Copyright page.��
See also IAgentPropertySheet::GetPage
 
IAgentPropertySheet::SetVisible
HRESULT SetVisible(
   long bVisible  // property sheet Visible setting 
);
Sets the Visible property for the Microsoft Agent property sheet.
•	Returns S_OK to indicate the operation was successful.
bVisible
Visible property setting. A value of TRUE displays the property sheet; a value of FALSE hides it. 
See also IAgentPropertySheet::GetVisible
IAgentBalloon
IAgentBalloon defines an interface that allows applications to query properties for the Microsoft Agent word balloon.
Initial defaults for a character's word balloon are set in the Microsoft Agent Character Editor, but once the application is running, the user may override the Enabled and font properties. If a user changes the balloon’s properties, the change affects all characters.
Methods in Vtable Order
IAgentBalloon Methods�Description��GetEnabled�Returns whether the word balloon is enabled.��GetNumLines�Returns the number of lines displayed in the word balloon.��GetNumCharsPerLine �Returns the average number of characters per line displayed in the word balloon.��GetFontName�Returns the name of the font displayed in the word balloon.��GetFontSize �Returns the size of the font displayed in the word balloon.��GetFontBold�Returns whether the font displayed in the word balloon is bold.��GetFontItalic�Returns whether the font displayed in the word balloon is italic.��GetFontStrkethru�Returns whether the font displayed in the word balloon is displayed as strikethrough.��GetFontUnderline�Returns whether the font displayed in the word balloon is underlined.��GetForeColor  �Returns the foreground color displayed in the word balloon.��GetBackColor  �Returns the background color displayed in the word balloon.��GetBorderColor  �Returns the border color displayed in the word balloon.��SetVisible�Sets the word balloon to be visible.��GetVisible�Returns the visibility setting for the word balloon.��SetFontName�Sets the font used in the word balloon.��SetFontSize�Sets the font size used in the word balloon.��SetFontCharSet�Sets the character set used in the word balloon.��GetFontCharSet�Returns the character set used in the word balloon.��
IAgentBalloon::GetBackColor
HRESULT GetBackColor(
   long * plBGColor  // address of variable for background color displayed
);                   // in word balloon
Retrieves the value for the background color displayed in a word balloon. 
•	Returns S_OK to indicate the operation was successful.
plBGColor
The address of a variable that receives the color setting for the balloon background. 
The background color used in a character word balloon is defined in the Microsoft Agent Character Editor. It cannot be changed by an application. However, the user can change the background color of the word balloons for all characters through the Microsoft Agent property sheet.
See also IAgentBalloon::GetForeColor
 
IAgentBalloon::GetBorderColor
HRESULT GetBorderColor (
  long * plBorderColor// address of variable for border color displayed
);                    // for word balloon
Retrieves the value for the border color displayed for a word balloon. 
•	Returns S_OK to indicate the operation was successful.
plBorderColor
The address of a variable that receives the color setting for the balloon border. 
The border color for a character word balloon is defined in the Microsoft Agent Character Editor. It cannot be changed by an application. However, the user can change the border color of the word balloons for all characters through the Microsoft Agent property sheet.
See also IAgentBalloon::GetBackColor, IAgentBalloon::GetForeColor
 
IAgentBalloon::GetEnabled
HRESULT GetEnabled(
  long * pbEnabled  // address of variable for Enabled setting 
);                  // for word balloon
Retrieves the value of the Enabled property for a word balloon. 
•	Returns S_OK to indicate the operation was successful.
pbEnabled
The address of a variable that receives TRUE when the word balloon is enabled and FALSE when it is disabled. 
The Microsoft Agent server automatically displays the word balloon for spoken output, unless it is disabled. The word balloon can be disabled for a character in the Microsoft Agent Character Editor, or for all characters by the user, in the Microsoft Agent property sheet. If the user disables the word balloon, the client cannot restore it.
 
IAgentBalloon::GetFontBold
HRESULT GetFontBold(
   long * pbFontBold  // address of variable for bold setting for
);                    // font displayed in word balloon 
Indicates whether the font used in a word balloon is bold. 
•	Returns S_OK to indicate the operation was successful.
pbFontBold
The address of a value that receives TRUE if the font is bold and FALSE if not bold. 
The font style used in a character word balloon is defined in the Microsoft Agent Character Editor. It cannot be changed by an application. However, the user can override the font settings for all characters through the Microsoft Agent property sheet.
 
IAgentBalloon::GetFontCharSet
HRESULT GetFontCharSet(
   short * psFontCharSet  // character set displayed in word balloon
); 
Indicates the character set of the font displayed in a word balloon.
•	Returns S_OK to indicate the operation was successful.
psFontCharSet
The address of a value that receives the font's character set. The following are some common settings for value:

0�Standard Windows® characters (ANSI).��1�Default character set.��2�The symbol character set.��128�Double-byte character set (DBCS) unique to the Japanese version of Windows.��129�Double-byte character set (DBCS) unique to the Korean version of Windows.��134�Double-byte character set (DBCS) unique to the Simplified Chinese version of Windows.��136�Double-byte character set (DBCS) unique to the Traditional Chinese version of Windows.��255�Extended characters normally displayed by DOS applications.��
For other character set values, consult the Microsoft Win32® documentation.
The default character set used in a character's word balloon is defined in the Microsoft Agent Character Editor. You can change it using IAgentBalloon::SetFontCharSet. However, the user can override the character set setting for all characters using the Microsoft Agent property sheet.
See also IAgentBalloon::SetFontCharSet

IAgentBalloon::GetFontItalic
HRESULT GetFontItalic(
   long * pbFontItalic  // address of variable for italic setting for 
);                      // font displayed in word balloon 
Indicates whether the font used in a word balloon is italic. 
•	Returns S_OK to indicate the operation was successful.
pbFontItalic
The address of a value that receives TRUE if the font is italic and FALSE if not italic. 
The font style used in a character's word balloon is defined in the Microsoft Agent Character Editor. It cannot be changed by an application. However, the user can override the font settings for all characters through the Microsoft Agent property sheet.
 
IAgentBalloon::GetFontName
HRESULT GetFontName(
   BSTR * pbszFontName  // address of variable for font displayed 
);                      // in word balloon
                   
Retrieves the value for the font displayed in a word balloon. 
•	Returns S_OK to indicate the operation was successful.
pbszFontName
The address of a BSTR that receives the font name displayed in a word balloon. 
The default font used in a character word balloon is defined in the Microsoft Agent Character Editor. You can change it with IAgentBalloon::SetFontName. The user can override the font setting for all characters using the Microsoft Agent property sheet.
 
IAgentBalloon::GetFontSize
HRESULT GetFontSize(
   long * plFontSize  // address of variable for font size 
);                    // for font displayed in word balloon 
Retrieves the value for the size of the font displayed in a word balloon.
•	Returns S_OK to indicate the operation was successful.
plFontSize
The address of a value that receives the size of the font. 
The default font size used in a character word balloon is defined in the Microsoft Agent Character Editor. You can change it with IAgentBalloon::SetFontSize. However, the user can override also the font size settings for all characters using the Microsoft Agent property sheet.
 
IAgentBalloon::GetFontStrikethru
HRESULT GetFontStrikethru(
   long * pbFontStrikethru  // address of variable for strikethrough setting 
);                          // for font displayed in word balloon 
Indicates whether the font used in a word balloon has the strikethrough style set. 
•	Returns S_OK to indicate the operation was successful.
pbFontStrikethru
The address of a value that receives TRUE if the font strikethrough style is set and FALSE if not. 
The font style used in a character word balloon is defined in the Microsoft Agent Character Editor. It cannot be changed by an application. However, the user can override the font settings for all characters using the Microsoft Agent property sheet.
 
IAgentBalloon::GetFontUnderline
HRESULT GetFontUnderline(
   long * pbFontUnderline  // address of variable for underline setting
);                         // for font displayed in word balloon 
Indicates whether the font used in a word balloon has the underline style set. 
•	Returns S_OK to indicate the operation was successful.
pbFontUnderline
The address of a value that receives TRUE if the font underline style is set and FALSE if not. 
The font style used in a character word balloon is defined in the Microsoft Agent Character Editor. It cannot be changed by an application. However, the user can override the font settings for all characters using the Microsoft Agent property sheet.
 
IAgentBalloon::GetForeColor
HRESULT GetForeColor(
   long * plFGColor // address of variable for foreground color displayed
);                  // in word balloon
Retrieves the value for the foreground color displayed in a word balloon. 
•	Returns S_OK to indicate the operation was successful.
plFGColor
The address of a variable that receives the color setting for the balloon foreground. 
The foreground color used in a character word balloon is defined in the Microsoft Agent Character Editor. It cannot be changed by an application. However, the user can override the  foreground color of the word balloons for all characters through the Microsoft Agent property sheet.
See also IAgentBalloon::GetBackColor
 
IAgentBalloon::GetNumCharsPerLine
HRESULT GetNumCharsPerLine(
   long * plCharsPerLine  // address of variable for characters per line
);                        // displayed in word balloon
Retrieves the value for the average number of characters per line displayed in a word balloon. 
•	Returns S_OK to indicate the operation was successful.
pbCharsPerLine
The address of a variable that receives the number of characters per line. 
The Microsoft Agent server automatically scrolls the lines displayed for spoken output in the word balloon. The average number of characters per line for a character's word balloon is defined in the Microsoft Agent Character Editor. It cannot be changed by an application.
See also IAgentBalloon::GetNumLines
 
IAgentBalloon::GetNumLines
HRESULT GetNumLines(
   long * pbcLines  // address of variable for number of lines 
);                  // displayed in word balloon
Retrieves the value of the number of lines displayed in a word balloon. 
•	Returns S_OK to indicate the operation was successful.
pbcLines
The address of a variable that receives the number of lines displayed. 
The Microsoft Agent server automatically scrolls the lines displayed for spoken output in the word balloon. The number of lines for a character word balloon is defined in the Microsoft Agent Character Editor. It cannot be changed by an application.
See also IAgentBalloon::GetNumCharsPerLine

IAgentBalloon::GetVisible
HRESULT GetVisible(
   long * pbVisible  // address of variable for word balloon
);                   // Visible setting
Determines whether the word balloon is visible or hidden.
•	Returns S_OK to indicate the operation was successful.
pbVisible
Address of a variable that receives TRUE if the word balloon is visible and FALSE if hidden.
See also IAgentBalloon::SetVisible

IAgentBalloon::SetFontCharSet
HRESULT SetFontCharSet(
   short sFontCharSet  // character set displayed in word balloon
); 
Sets the character set of the font displayed in the word balloon.
•	Returns S_OK to indicate the operation was successful.
sFontCharSet
The character set of the font. The following are some common settings for value:

0�Standard Windows characters (ANSI).��1�Default character set.��2�The symbol character set.��128�Double-byte character set (DBCS) unique to the Japanese version of Windows.��129�Double-byte character set (DBCS) unique to the Korean version of Windows.��134�Double-byte character set (DBCS) unique to the Simplified Chinese version of Windows.��136�Double-byte character set (DBCS) unique to the Traditional Chinese version of Windows.��255�Extended characters normally displayed by DOS applications.��
For other character set values, consult the Microsoft Win32 documentation.

The default character set used in a character's word balloon is defined in the Microsoft Agent Character Editor. You can change it with IAgentBalloon::SetFontCharSet. However, the user can override the character set setting for all characters using the Microsoft Agent property sheet.
See also IAgentBalloon::GetFontCharSet

IAgentBalloon::SetFontName
HRESULT SetFontName(
   BSTR bszFontName  // font displayed in word balloon
);
                   
Sets the font displayed in the word balloon. 
•	Returns S_OK to indicate the operation was successful.
bszFontName
A BSTR that sets the font displayed in the word balloon. 
The default font used in a character's word balloon is defined in the Microsoft Agent Character Editor. You can change it with IAgentBalloon::SetFontName. However, the user can override the font setting for all characters using the Microsoft Agent property sheet.
See also IAgentBalloon::GetVisible

IAgentBalloon::SetFontSize
HRESULT SetFontSize(
   long lFontSize  // font size displayed in word balloon
); 
Sets the size of the font displayed in the word balloon.
•	Returns S_OK to indicate the operation was successful.
lFontSize
The size of the font. 
The default font size used in a character's word balloon is defined in the Microsoft Agent Character Editor. You can change it with IAgentBalloon::SetFontSize. However, the user can override the font size setting for all characters using the Microsoft Agent property sheet.
See also IAgentBalloon::GetFontSize

IAgentBalloon::SetVisible
HRESULT SetVisible(
   long bVisible  // word balloon Visible setting 
);
Sets the Visible property for the word balloon.
•	Returns S_OK to indicate the operation was successful.
bVisible
Visible property setting. A value of TRUE displays the word balloon; a value of FALSE hides it. 
See also IAgentBalloon::GetVisibleEvents
Microsoft Agent provides several events for tracking user interaction and server states. This section describes the event methods exposed by the IAgentNotifySink interface.
Events
Methods in Vtable Order

IAgentNotifySink�Description��Command�Occurs when the server processes a client-defined command.��ActivateInputState�Occurs when a character becomes or ceases to be input-active.��Restart�Occurs when the server restarts.��Shutdown�Occurs when the user exits the server.��VisibleState�Occurs when the character’s Visible state changes.��Click�Occurs when a character is clicked.��DblClick�Occurs when a character is double-clicked.��DragStart�Occurs when a user starts dragging a character.��DragComplete�Occurs when a user stops dragging a character. ��RequestStart�Occurs when the server begins processing a Request object.��RequestComplete�Occurs when the server completes processing a Request object.��Bookmark�Occurs when the server processes a bookmark.��Idle�Occurs when the server starts or ends idle processing.��Move�Occurs when a character has been moved.��Size�Occurs when a character has been resized.��BalloonVisibleState�Occurs when the visibility state of a character's word balloon changes.��
IAgentNotifySink::ActivateInputState
HRESULT ActivateInputState(
   long dwCharID,   // character ID
   long bActivated  // input activation flag
);                          
Notifies a client application that a character’s input active state changed. 
•	No return value.
dwCharID
Identifier of the character whose input activation state changed. 
bActivated
Input active flag. This Boolean value is TRUE if the character referred to by dwCharID became input active; and FALSE if the character lost its input active state.
See also IAgentCharacter::SetInputActive, IAgentCharacter::GetInputActive
 
IAgentNotifySink:: BalloonVisibleState
HRESULT BalloonVisibleState(
   long dwCharID,  // character ID
   long bVisible   // visibility flag
);                          
Notifies a client application when the visibility state of the character's word balloon changes.
•	No return value.
dwCharID
Identifier of the character whose word balloon's visibility state has changed.
bVisible
Visibility flag. This Boolean value is TRUE when character's word balloon becomes visible; and FALSE when it becomes hidden.
This event is sent to all clients of the character.

IAgentNotifySink::Bookmark
HRESULT Bookmark(
   long dwBookMarkID  // bookmark ID
);                          
Notifies a client application when its bookmark completes.
•	No return value.
dwBookMarkID
Identifier of the bookmark that resulted in triggering the event. 
When you include bookmark tags in a Speak method, you can track when they occur with this event.
See also IAgentCharacter::Speak, Speech Output Tags
 
IAgentNotifySink::Click
HRESULT Click(
   long dwCharID,  // character ID
   short fwKeys,   // mouse button and modifier key state
   long x,         // x coordinate of mouse pointer
   long y          // y coordinate of mouse pointer
);                          
Notifies a client application when the user clicks a character.
•	No return value.
dwCharID
Identifier of the clicked character. 
fwKeys
A parameter that indicates the mouse button and modifier key state. The parameter can return any combination of the following:
0x0001   	Left Button
0x0010   	Middle Button
0x0002   	Right Button
0x0004   	Shift Key Down
0x0008   	Control Key Down
0x0020   	Alt Key Down
x
The x-coordinate of the mouse pointer in pixels, relative to the screen origin (upper left).
y
The y-coordinate of the mouse pointer in pixels, relative to the screen origin (upper left).
 
IAgentNotifySink::Command
HRESULT Command(
   long dwCommandID,         // Command ID of the best match
   IUnknown * punkUserInput  // address of IAgentUserInput object 
);                          
Notifies a client application that a Command was selected by the user. 
•	No return value.
dwCommandID
Identifier of the best match command alternative.
punkUserInput
Address of the IUnknown interface for the IAgentUserInput object.
Use QueryInterface to retrieve the IAgentUserInput interface. 
See also IAgentUserInput
 
IAgentNotifySink::DblClick
HRESULT DblClick(
   long dwCharID,  // character ID
   short fwKeys,   // mouse button and modifier key state
   long x,         // x coordinate of mouse pointer
   long y          // y coordinate of mouse pointer
);                          
Notifies a client application when the user double-clicks a character.
•	No return value.
dwCharID
Identifier of the double-clicked character. 
fwKeys
A parameter that indicates the mouse button and modifier key state. The parameter can return any combination of the following:

0x0001   �Left Button��0x0010   �Middle Button��0x0002   �Right Button��0x0004   �Shift Key Down��0x0008   �Control Key Down��0x0020   �Alt Key Down��
x
The x-coordinate of the mouse pointer in pixels, relative to the screen origin (upper left).
y
The y-coordinate of the mouse pointer in pixels, relative to the screen origin (upper left).
 
IAgentNotifySink::DragComplete
HRESULT DragComplete(
   long dwCharID,  // character ID
   short fwKeys,   // mouse button and modifier key state
   long x,         // x-coordinate of mouse pointer
   long y          // y-coordinate of mouse pointer
);                          
Notifies a client application when the user stops dragging a character.
•	No return value.
dwCharID
Identifier of the dragged character. 
fwKeys
A parameter that indicates the mouse button and modifier key state. The parameter can return any combination of the following:

0x0001   �Left Button��0x0010   �Middle Button��0x0002   �Right Button��0x0004   �Shift Key Down��0x0008   �Control Key Down��0x0020   �Alt Key Down��x
The x-coordinate of the mouse pointer in pixels, relative to the screen origin (upper left).
y
The y-coordinate of the mouse pointer in pixels, relative to the screen origin (upper left).
 
IAgentNotifySink::DragStart
HRESULT DragStart(
   long dwCharID,  // character ID
   short fwKeys,   // mouse button and modifier key state
   long x,         // x-coordinate of mouse pointer
   long y          // y-coordinate of mouse pointer
);                          
Notifies a client application when the user starts dragging a character.
•	No return value.
dwCharID
Identifier of the dragged character. 
fwKeys
A parameter that indicates the mouse button and modifier key state. The parameter can return any combination of the following:

0x0001   �Left Button��0x0010   �Middle Button��0x0002   �Right Button��0x0004   �Shift Key Down��0x0008   �Control Key Down��0x0020   �Alt Key Down��
x
The x-coordinate of the mouse pointer in pixels, relative to the screen origin (upper left).
y
The y-coordinate of the mouse pointer in pixels, relative to the screen origin (upper left).
 
IAgentNotifySink::Idle
HRESULT Idle(
   long dwCharID,  // character ID
   long bStart     // start flag
);                          
Notifies a client application when a character’s Idling state has changed.
•	No return value.
dwCharID
Identifier of the request that started. 
bStart
Start flag. This Boolean value is TRUE when the character begins idling and FALSE when it stops idling.
This event enables you to track when the Microsoft Agent server starts or stops idle processing for a character.
See also IAgentCharacter::GetIdleOn, IAgentCharacter::SetIdleOn

IAgentNotifySink:: Move
HRESULT Move(
   long dwCharID,  // character ID
   long x,         // x-coordinate of new location
   long y,         // y-coordinate of new location
   long dwCause    // cause of move state
);                          
Notifies a client application when the character has been moved.
•	No return value.
dwCharID
Identifier of the character that has been moved.
x
The x-coordinate of the new position in pixels, relative to the screen origin (upper left). The location of a character is based on the upper left corner of its animation frame.
y
The y-coordinate of the new position in pixels, relative to the screen origin (upper left). The location of a character is based on the upper left corner of its animation frame.
dwCause
The cause of the character move. The parameter may be one of the following:

const unsigned short NeverMoved = 0;�Character has not been moved.��const unsigned short UserMoved = 1;�User dragged the character.��const unsigned short ProgramMoved = 2;�Your application moved the character.��const unsigned short OtherProgramMoved = 3;�Another application moved the character.��
This event is sent to all clients of the character.
See also IAgentCharacter::GetMoveCause, IAgentCharacter::MoveTo

IAgentNotifySink::RequestComplete
HRESULT RequestComplete(
   long dwRequestID,  // request ID
   long hrStatus      // status code
);                          
Notifies a client application when a request completes.
•	No return value.
dwRequestID
Identifier of the request that started. 
hrStatus
Status code. This parameters returns the status code for the request. 
This event enables you to track when a queued method completes.
See also IAgentNotifySink::RequestStart, IAgent::Load, IAgentCharacter::GestureAt, IAgentCharacter::Hide, IAgentCharacter::Interrupt, IAgentCharacter::MoveTo, IAgentCharacter::Prepare, IAgentCharacter::Play, IAgentCharacter::Show, IAgentCharacter::Speak, IAgentCharacter::Wait
 
IAgentNotifySink::RequestStart
HRESULT RequestStart(
   long dwRequestID  // request ID
);                          
Notifies a client application when a request begins.
•	No return value.
dwRequestID
Identifier of the request that started. 
This event enables you to track when a queued request begins.
See also IAgentNotifySink::RequestComplete, IAgent::Load, IAgentCharacter::GestureAt, IAgentCharacter::Hide, IAgentCharacter::Interrupt, IAgentCharacter::MoveTo, IAgentCharacter::Prepare, IAgentCharacter::Play, IAgentCharacter::Show, IAgentCharacter::Speak, IAgentCharacter::Wait
 
IAgentNotifySink::Restart
HRESULT Restart();                          
Notifies a client application that the Microsoft Agent server restarted. 
•	No return value.
See also IAgentNotifySink::Shutdown
 
IAgentNotifySink::Shutdown
HRESULT Shutdown();                          
Notifies a client application that the Microsoft Agent server shut down. 
•	No return value.
This event fires only when the user explicitly chooses the Exit command on the pop-up menu of the Microsoft Agent taskbar icon. Requests sent after the server shuts down will fail.
See also IAgentNotifySink::Restart

IAgentNotifySink:: Size
HRESULT Size(
   long dwCharID,  // character ID
   long lWidth,    // new width
   long lHeight,   // new height
);                          
Notifies a client application when the character has been resized.
•	No return value.
dwCharID
Identifier of the character that has been resized.
lWidth
The width of the character's animation frame in pixels.
lHeight
The height of the character's animation frame in pixels.
This event is sent to all clients of the character.
See also IAgentCharacter::GetSize, IAgentCharacter::SetSize
 
IAgentNotifySink::VisibleState
HRESULT VisibleState(
   long dwCharID,  // character ID
   long bVisible,  // visibility flag
   long dwCause,   // cause of visible state
);                          
Notifies a client application when the visibility state of the character changes.
•	No return value.
dwCharID
Identifier of the character whose visibility state is changed. 
bVisible
Visibility flag.  This Boolean value is TRUE when character becomes visible and FALSE when the character becomes hidden.
dwCause
Cause of last change to the character’s visibility state. The parameter may be one of the following:

const unsigned short NeverShown = 0;�Character has not been shown.��const unsigned short UserHid = 1;�User hid the character.��const unsigned short UserShowed = 2;�User showed the character.��const unsigned short ProgramHid = 3;�Your application hid the character.��const unsigned short ProgramShowed = 4;�Your application showed the character.��const unsigned short OtherProgramHid = 5;�Another application hid the character.��const unsigned short OtherProgramShowed = 6;�Another application showed the character.��
See also IAgentCharacter::GetVisible, IAgentCharacter::SetVisible, IAgentCharacter::GetVisibilityCause

