I
Chapter 15

Programming

Pro With Mathcad Professional, you can write your own programs using
specialized programming operators. A Mathcad program has many
attributes associated with programming languages including conditional
branching, looping constructs, local scoping of variables, error handling,
the ability to use other programs as subroutines, and the ability to call
itself recursively. Mathcad programs make it easy to do tasks that may
be impossible or inconvenient to do in any other way.

This chapter contains the following sections:
Defining a program

How to aeate simple programs using locabeEynment statements.
Conditional statements

Using a condition to suppress execution of a statement.
Looping

Usingwhile andfor loops to control iteration.
Controlling program execution

Using thebreak, continue , andreturn statements to modify the execution of
a loop or an entire program.

Error handling

Using theon error statement to trap errors and #reor string function to
issue error tips.

Programs within programs
Using subroutines and recursion in a Mathcad program.

Pro 301

Defining a program

A Mathcad program is a special kind of Mathcad expression yo grreamm"’
create in Mathcad Professional—it's an expression made up ¢ spipirs &
sequence of statements created usmogramming operatoravail- § e

ar wdida

()
able on the Programming toolbar. Cl 5] on the Math toolbe
choose€Toolbarsd Programming from theView menu, to open th
Programming toolbar.

bibaa COkais

TEldimn 20 BT

You can think of a program as a compound expression that involves potentially many
programming operators. Like any expression, a program returns a value—a scalar,
vector, array, nested array, or string—when followed by the equal sign or the live
symbolic equal sign. Just as you can define a variable or function in terms of an
expression, you can also define either in terms of a program.

The following example shows how to make a simple program to define the function:
f(x, w) = log %g

Although the example chosen is simple enough not to require programming, it illus-
trates how to separate the statements making up the program and how to use the local

assignment operator .

m Type the left side of the function definition)|
followed by a “=". Make sure the place- f(x,w) = 4
holder is selected.

m Click on the Programming toolbar.
Alternatively, pres$. You'll see a vertical fiz.w) = |u
bar with two placeholders, which will hold |
the statements comprising your program.

m Click in the top placeholder. Ty then
click on the Programming toolbar.| |f(x.w) =
Alternatively, presg§ to inserta ‘-."

m Typex/w in the placeholder to the right of]
the “—.” Then pressTab] to move to the fixow) = |z
bottom placeholder.

H

m Enterthe value to be returned by the progr
in the remaining placeholder. Ty[@&(z) . | gy w) = [2-%

B |x

log(z)

302

Chapter 15 Programming Pro

Note

Tip

You can now use this function just as you would any other function in your worksheet.

You cannot use Mathcad’s usual assignment operator “:=" inside a program; you must use the
local assignment operator instead. Variables defined inside a program with the local assignment
operator “~,” such azin the example above, are local to the program and are undefined
elsewhere in the worksheet. However, you can refer to Mathcad variables and functions defined
previously in the worksheet within a program.
Figure 15-1 shows a more complex example involving the quadratic formula. Although
you can define the quadratic formula with a single statement as shown in the top half
of the figure, you may find it easier to define it with a series of simple statements as
shown in the bottom half.
]
im,k.ch = -l _-l_h__' i L Athough you can dafine complicatad
¥ & Tunciioes all on e line.
ri® b, ol = | discre J-? isc .M e e @asiod o bivak them ap
B g = ioH linple NEps alpway
1
Emgm— 7 5
r||||r|_

dannm
Figure 15-1: A more complex function defined in terms of both an expression
and a program.
A program can have any number of statements. To add a statemerf ##i Lirs | on the

Programming toolbar. Mathcad inserts a placeholder below whatever statement you've selected.
To delete the placeholder, click on it and prédssp].

As with any expression, a Mathcad program must have a value. This value is simply
the value of the last statement executed by the program. It could be a string expression
or a single number, or it could be an array of numbers. It could even be an array of
arrays (see “Nested arrays” on page 233).

You can also write a Mathcad program to retusymbolicexpression. When you
evaluate a program using the live symbolic equal sign,’‘lescribed in Chapter 14,
“Symbolic Calculation,” Mathcad passes the expression to its symbolic processor and,
when possible, returns a simplified symbolic expression. You can use Mathcad’s ability
to evaluate programs symbolically to generate complicated symbolic expressions,
polynomials, and matrices. Figure 15-2 shows a function that, when evaluated symbol-
ically, generates symbolic polynomials.

Pro

Defining a program 303

Note Programs that include thheturn andon error statements, described page 30&nd
page 310¢annot be evaluated symbolically since the symbolic processor does not recognize
these operators.

& luncfinn in geanarate & palyramial.

Hnh B
b
while i%n
2. :] w1 a ¢:|'E . Malhcsd can svalunin

thit piidegi gt symbalically

l—F+1 pwnn iauih w b undebeaid,

Eyvaluaie symmbalically

2. Eapand symitalic

Iy mepands The resall.
Prises [Cul])S it radad | Toi
the symbalic kKeyward operaiog

WAl arpisd —= 485+ 088 & 7

Figure 15-2: Using a Mathcad program to generate a symbolic expression.

On-line Help For programming examples, see the “Programming” section in the Resource Center
QuickSheets. The Resource Center also includes a special section, “The Treasury Guide to
Programming,” which provides detailed examples and applications of Mathcad programs.

Conditional statements

In general, Mathcad evaluates each statement in your program from the top down. There
may be times, however, when you want Mathcad to evaluate a statement only when a
particular condition is met. You can do this by includingfestatement.

For example, suppose you want to define a function that forms a semicircle around the
origin but is otherwise constant. To do this:

m Type the left side of the function definition
followed by a “=". Make sure the place- f(x) = af

holder is selected.

304 Chapter 15 Programming Pro

Click on the Programming toolbar.
Alternatively, pres$. You'll see a vertical

bar with two placeholders. These placeho
ers will hold the statements making up yo

program.

Click[_*]on the Programming toolbar i
the top placeholder. Alternatively, prgss
Do not type “if.”

Enter a Boolean expression in the right pla
holder using one of the relational operatot
on the Evaluation toolbar. In the left place]
holder, type the value you want the expre

sion to take whenever the expression in the
right placeholder is trudf necessary, add

more placeholders by clickir#m L |

Select the remaining placeholder and clic

on the Programming toolbar.

f(x) |. if
f(x) |u if |x|>2
al
(%) 0 if |x|>2

1| otherwise

Type the value you want the program to

gl = I"IlIHI'\-.i' 1] \IL- |‘I I
loriie iim i ity

sl inuiaairg . Thei phil ienk s
dffarant wihan dedsel axis
brrwn @ o uwod,

Fou can sy use e 1 Tesciien m oo Wi,
.lllhnu!:h whal yau gain in an s nes, yoo

return if the condition in the first statement| f(x):= |0 if [x]>2
not met. 2 .
4 - % otherwise
Figure 15-3 shows a plot of this function.
Kwis |0 fuf=2
-.IJ--HI it Ewiss
s o=-10,-58 10
| ‘
iwi i ! ! e ik T Wb R e

Figure 15-3: Using thé statement to define a piecewise continuous function.

Pro

Conditional statements

305

Note Theif statement in a Mathcad program is not the same abfthection (see “Piecewise

continuous functions” on page 177). Although it is not hard to define a simple program using the
if function, as shown in Figure 15-3, tifidunction can become unwieldy as the number of
branches exceeds two.

Looping

Tip

“for” loops

One of the greatest strengths of programmability is the ability to execute a sequence of
statements repeatedly in a loop. Mathcad provides two loop structures. The choice of
which loop to use depends on how you plan to tell the loop to stop executing.

= If you know exactly how many times a loop is to execute, dse Bbop.

= If you wantthe loop to stop upon the occurrence of a condition, but you don’t know
how many loops will be required, usevaile loop.

See “Controlling program execution” on page 308 for methods to interrupt calculation within
the body of a loop.

Afor loopis a loop that terminates after a predetermined number of iterations. Iteration
is controlled by aiiteration variabledefined at the top of the loop. The definition of
the iteration variable is entirely local to the program.

To create dor loop:

m Click[_#__]on the Programming toolbar.
Do not type the word “for.” for ae s

m Type the name of the iteration variable in the
placeholder to the left of théT™”

m Enter the range of values the iteration var
able should take in the placeholder to the right |for i< 1..n
ofthe “00.” You usually specify this range the 1
same way you would for arange variable (see
page 125).

306

Chapter 15 Programming Pro

Note

“while” loops

m Type the expression you want to evaluate|
the remaining placeholder. This expressid
generally involves the iteration variable. If
necessary, add placeholders by clicking

for iel.n

=

S—S+1

on the Programming toolbar.

The upper half of Figure 15-4 shows tfig loop being used to add a sequence of integers.

Although the expression to the right of thé"is usually a range, it can also be a vector or a list
of scalars, ranges, and vectors separated by commas. The lower half of Figure 15-4 shows an

example in which the iteration variable is defined as the elements of two vectors.

smmi 4L

w1
lor je 1. ®
=+ i
= B
mi—1
for wer s
V=K

me—im + 1

n
Lguivalaniio.. = =44 ™ i =590
=1
0 — 5 = undedinad awvyachere nussds the
Pglam.
L]
w
i) ¢ @) = | 103

1
¥

Figure 15-4: Using dor loop with two different kinds of iteration variables.

A while loop is driven by the truth of some condition. Because of this, you don’t need
to know in advance how many times the loop will execute. It is important, however, to
have a statement somewhere, either within the loop or elsewhere in the program, that
eventually makes the condition false. Otherwise, the loop executes indefinitely.

To create avhile loop:

m Click[_#h&] on the Programming toolbar.
Do not type the word “while.”

m Click in the top placeholder and type a co
dition. This is typically a Boolean expressid
like the one shown.

while

while |vj| zthres

1

Pro

Looping

307

m Type the expression you want evaluated i
the remaining placeholder. If necessary, ai |while |v,|<thres

placeholders by clickin[##Lr] onthe Pr¢ | j—j+1
gramming toolbar.

Figure 15-5 shows a larger program incorporating the above loop. Upon encountering
awhile loop, Mathcad checks the condition. If the condition is true, Mathcad executes
the body of the loop and checks the condition again. If the condition is false, Mathcad
exits the loop.

Finiiag thi S alainent of 4 waod it opoapiks & spocilod valee.
m - 350 Cimale & vecion,
L
w_ o= 1w dnim) " e
| a 1
& 1041
] | B
I3 1141
il w, e = 1] initial e 2 Ly
[= I— — niNnaiuce cou T .i I:ll:l]l
wakaly 'ul'.llll'h :T 07
fam] 4 1 | 1 B53
[5] 1 901
I —— Rt n 0. e TTE
0 T
HIna raaanE
AW, 180 =B ! Thee firsi alomess in pecoed 198 s the Iz e
dth mlemanl in fa vacier M3 = ‘:
[l 1om
[1z 145

Figure 15-5: Using avhile loop to find the first occurrence of a particular
number in a matrix.

Controlling program execution

The Programming toolbar in Mathcad Professional includes three statements for
controlling program execution:

m Use thebreak statement within &ér orwhile loop to interrupt the loop when a
condition occurs and move execution to the next statement outside the loop.

m Use thecontinue statement within &r orwhile loop to interrupt the current
iteration and force program execution to continue with the next iteration of the loop.

m Usethaeturn statementto stop a program and return a particular value from within
the program rather than from the last statement evaluated.

308 Chapter 15 Programming Pro

The “break” statement

It is often useful to break out of a loop upon the occurrence of some condition. For
example, in Figure 15-6lareak statement is used to stop a loop when a negative
number is encountered in an input vector.

To insert abreak statement, click on a placeholder inside a loop and on
the Programming toolbar. Do not type the word “break.” You typically irgesk

into the left-hand placeholder of drstatement. Thereak is evaluated only when the
right-hand side of thé is true.

Tip To create the program Figure 15-6for example, you would clid_B#& | first, then click

The “continue” statement

Toignore an iteration of a loop, usentinue . For example, in Figure 15-@antinue
statement is used to ignore nonpositive numbers in an input vector.

Toinserttheontinue statement, click on a placeholder inside a loop and[zemas |
on the Programming toolbar. Do not type the word “continue.” As lritiak , you
typically insertcontinue into the left-hand placeholder of drstatement. The
continue statement is evaluated only when the right-hand side df ibérue.

The “canilnee” and “eesk” St mons cosrel oo s @farently

This piagram #logs the lesp an te
e manp osive sembion . . .
PElaimb (0} = |i—-1

I=—-1

while [lamtiv]

l—i+ 1

Jams i 1

[araain I'IlrI

k']

. - - wibila th sna ineiely skips over the
neaposihe menbons ., . .
PElame) = fi—-1
-
while [« laa{wv)
Lo & 1
cosnus H LA &'l
ITER

Figure 15-6: Thebreak statement halts the loop, but execution resumes on

the next iteration wheaontinue is used.

The “return” statement

A Mathcad program returns the value of the last expression evaluated in the program.
In simple programs, the last expression evaluated is in the last line of the program. As

Pro Controlling program execution 309

Tip

you create more complicated programs, you may need more flexibilityeTina
statement allows you to interrupt the program and return particular values other than
the default value.

A return statement can be used anywhere in a program, even within a deeply nested
loop, to force program termination and the return of a scalar, vector, array, or string.
As with break andcontinue , you typically useeturn on the left-hand side of dn
statement, and theturn statement is evaluated only when the right-hand side of the

if is true.

The following program fragment shows howedurn statement is used to return a
string upon the occurrence of a particular condition:

m Click[_#]on the Programming toolbar.

= Now click[&%] on the Programming too
bar. Do not type “return.” return o if u

m Create a string by typing the double-quotd
key (") on the placeholder to the right of | return "int" it «
return . Then type the string to be returne
by the program. Mathcad displays the string
between a pair of quotes.

m Type a condition in the placeholder to the
right of if. This is typically a Boolean expre{ return “int" it floor(x)=x
sion like the one show({Type [Ctrl]= for
the bold equal sign.)

In this example, the program returns the string “int” when the expresion(x) = x
is true.

You can add more lines to the expression to the righetofrn by clicking[## L= | on the
Programming toolbar.

I
Error handling

Errors may occur during program execution that cause Mathcad to stop calculating the
program. For example, because of a particular input, a program may attempt to divide
by 0in an expression and therefore encounter a singularity error. In these cases Mathcad
treats the program as it does any math expression: it marks the offending expression
with an error message and highlights the offending name or operator in a different color,
as described in Chapter 8, “Calculating in Mathcad.”

310

Chapter 15 Programming Pro

Mathcad Professional gives you two features to improve error handling in programs:

m Theonerror statementon the Programming toolbar allows you to trap a numerical
error that would otherwise force Mathcad to stop calculating the program.

m Theerror string function gives you access to Mathcad's error tip mechanism and
lets you customize error messages issued by your program.

“on error” statement

In some cases you may be able to anticipate program inputs that lead to a numerical
error (such as a singularity, an overflow, or a failure to converge) that would force
Mathcad to stop calculating the program. In more complicated cases, especially when
your programs rely heavily on Mathcad’s numerical operators or built-in function set,
you may not be able to anticipate or enumerate all of the possible numerical errors that
can occur in a program. Thea error statement is designed as a general-purpose error
trap to compute an alternative expression when a numerical error occurs that would
otherwise force Mathcad to stop calculating the program.

To use then error statement, clic[#&& | on the Programming toolbar. Do not type
“on error.” In the placeholder to the rightaf error , create the program statement(s)
you ordinarily expect to evaluate but in which you wish to trap any numerical errors.
In the placeholder to the left create the program statement(s) you want to evaluate
should the default expression on the right-hand side fail.

Figure 15-7 showsn error operating in a program to find a root of an expression.

B cirilim Pisd-fid g pioegi e tha oo relialici B "on S0 slalpmssnl

This g am by dalaill Wi w6 Mnd & fesl vosd ol an Eaprission, edng & geess of 0,
L vl ey to sesech Tor a comples reat, using 4 quess of B « 75 07 that tails;

RFLF &) = matifin) K} < Mgthcails usu sl samoics res Nndes,

RosdFiad (f] = |gi—@

§e—0 + &
RF(i.gc) onemar BFF gr) s Clich tha "an e
LN & (i
pregramming palatie is
insnit the sparasar bae
11|:"l} 2x-13 rdi} -I':-E-rﬁ
MoctPind (81 = -1.000 RooiFisd (£2) = 0500 - 1658

Wighoul “os smnr™ The secossl pxampla AF(E.) -

bl iR higE

't Comgee 11 el Tid
e (pea visles o phesch Hhae
s todusion raal aconi

Figure 15-7: Theon error statement traps numerical errors in a program.

Issuing error messages

Just as Mathcad automatically stops further evaluation and produces an appropriate
“error tip” on an expression that generates an error (see the bottom of Figure 15-7 for
an example), you can cause evaluation to stop and make custom error tips appear wher
your programs or other expressions are used improperly or cannot return answers.

Pro Error handling 311

Mathcad Professionalsrror string function gives you this capability. This function,
described in “String functions” on page 213, suspends further numerical evaluation of
an expression and produces an error tip whose text is simply the string it takes as an
argument. Typically you use tkegror string function in the placeholder on the left-
hand side of aif oron error programming statement so that an error and appropriate
error tip are generated when a particular condition is encountered.

Figure 15-8 shows how custom errors can be used even in a small program.

Cin, i campuies tha numbar of cemliinstans ol & selecied from n

b dilfisia il eaiar maksagis an a waiiaty of Tely ispus:

Cin. k]l = [erar“mustbersal 3 W | (mim] =20 o (lmdk) =] |
arrar “miisd ba posilve™ | 0l I' a0 5 [k -_-|:I-:
wrrar “ust b inleger 3 W | Onetleor) o (kefimardkl) |
wrrar] “first arg must be > secced” 0 W (ndk)

& I)
_I_l1 [

.. noie mxn of “an pirm" in w8 emeccal apprazimatian
b the exa] Seimela ova e

i/ ‘Rl
DRl | ——————— |
Limd ((m- k3

&im0, WEl = 7.080 100
Diflerani messanes sppoar whan you ook os dio Tolesieg , |,
TR Gi-X &) ¢ CiLE 3) - s, 20 =

:l'.;.ll_d_;'r_-l: l.'-.l[‘-|'|'r.|'—l'_ :-i'u. |'[-|: -1-_‘-|-| Tl g e b '\-n.'\.-q.T

Figure 15-8: Generating custom errors via t@eor string function.

Programs within programs

Subroutines

The examples in previous sections have been chosen more for illustrative purposes
rather than their power. This section shows examples of more sophisticated programs.

Much of the flexibility inherent in programming arises from the ability to embed
programming structures inside one another. In Mathcad, you can do this in the following
ways:

m You can make one of the statements in a program be another program, or you can
define a program elsewhere and call it from within another program as if it were a
subroutine.

= You can define a function recursively.

Figure 15-9 shows two examples of programs containing a statement which is itself a
program. In principle, there is no limit to how deeply nested a program can be.

312

Chapter 15 Programming Pro

Tip

Fibsaart lmoinsoguiace = =1 B
Rawdan's mathod Gini = |g—1 il nsi
athniwiss
he=1
g1
far ked m
EE T [

=)
| 1]
while g - x| =T0OL

wenpd|F il &) = |axe—x-

Iu)
il W)
EH -y

|
Kul =K -4 Gin) Mutice that the
; szl B Lk
o) e R “athersiss™ in the
nrgan T o 1] =2 program shove gek
iz by aidding
Baas ram e
u “aithprwess™
13 placahaldiei.

EE&—K -

Figure 15-9: Programs in which statements are themselves programs.

One way many programmers avoid overly complicated programs is to bury the
complexity insubroutinesFigure 15-10 shows an example of this technique.

Breaking up long programs with subroutines is good programming practice. Long programs and
those containing deeply nested statements can become difficult for other users to understand at
a glance. They are also more cumbersome to edit and debug.

IRTEGRATIIN I WHICH WIDTHS OF INTERVAL § ARF CHOSEN A0AFTIVELY

migdmp(§ o2 b H] = |=—0
b-a
-——
]
fmr i H
I'|n+||-r|u||--ll'|n-3-r'-'] +fim+iw
e W L E
]
&
adaplif s b] = |x—inddmpil = b 10)

E H |x- inistespd T, 8 b %)) sTOL

! b ! b
wiapt |1 & "; | + saapi|1 “; | oiberaise

adapd g, 10" 1) = AA4ER0EAT

Figure 15-10: Using a subroutine to manage complexity.

Pro

Programs within programs 313

The functionadaptcarries out an adaptive quadrature or integration routine by using
intsimpto approximate the area in each subinterval. By definitsgmpelsewhere and
using it withinadapt the program used to defiadaptbecomes considerably simpler.

Recursion

Recursionis a powerful programming technique that involves defining a function in
terms of itself, as shown in Figure 15-11. See also the definitiadagftin Figure 15-
10. Recursive function definitions should always have at least two parts:

m A definition of the function in terms of a previous value of the function.
= An initial condition to prevent the recursion from going forever.

The idea is similar to that underlying mathematical induction: if you can determine
f(n+ 1) from f(n) , and you knowi(0) , then you know all there is to know ahout

Tip Recursive function definitions, despite their elegance and conciseness, are not always
computationally efficient. You may find that an equivalent definition using one of the iterative
loops described earlier will evaluate more quickly.

Factorial fueciss

faciniialin) - |1 i m=i

A taoielalm - 1) shonvise
Tacioiial 4] = 14

L pesd {rri e

Pin,i Pol =« |Po il a0
Fim-10 Pnji1+s% atheness
P31) = R Flaka wora bnotyppa Cirls o genorets tha
Brulcan copals syns uscd pside fho
[T

Figure 15-11: Defining functions recursively.

314 Chapter 15 Programming Pro

	Chapter 15
	Programming
	Defining a program
	Conditional statements
	Looping
	“for” loops
	“while” loops

	Controlling program execution
	The “break” statement
	The “continue” statement
	The “return” statement

	Error handling
	“on error” statement
	Issuing error messages

	Programs within programs
	Subroutines
	Recursion

