
unc-

pa-

, but

ector

f
Chapter 1
Functions

This chapter lists and describes Mathcad’s built-in mathematical and statistical f
tions. The functions are listed alphabetically.

Functions labeled Professional are available only in Mathcad Professional. Certain
features labeled Expert require Mathcad Professional and are available for sale se
rately (in Mathcad Expert Solver).

Function names are case-sensitive, but not font-sensitive. Type them in any font
use the same capitalization as shown in the syntax section.

Many functions described here as accepting scalar arguments will, in fact, accept v
arguments. For example, while the input z for the acos function is specified as a “real
or complex number,” acos will in fact evaluate correctly at each of a vector input o
real or complex numbers.

Some functions don’t accept input arguments with units. For such a function f, an error
message “must be dimensionless” will arise when evaluating f(x), if x has units.

Function Categories
Each function falls within one of the following categories:

• Bessel

• Complex numbers

• Differential equation solving

• Expression type

• File access

• Fourier transform

• Hyperbolic

• Interpolation and prediction

• Log and exponential

• Number theory/combinatorics

• Piecewise continuous

• Probability density

• Probability distribution

• Random number

• Regression and smoothing

• Solving

• Sorting

• Special

• Statistics
Function Categories 3

se
d

ut

l
nded
h as

 but
ented
• String

• Trigonometric

• Truncation and round-off

• Vector and matrix

• Wavelet transform

The category name is indicated in the upper right corner of each entry. To see all the
functions that belong to a given category, check the index of this book.

Finding More Information
You can also find information about functions using either of these methods:

• To quickly see a short description of each function from within Mathcad, choo
Function from the Insert menu. Select a function in the Function field, then rea
the description in the Description field. Click on the Help button to see the Help
topic on a selected function.

• Refer to the Resource Center QuickSheets for more detailed information abo
functions, categories, and related topics. Select Resource Center from the Help
menu. Then click on the QuickSheets icon and select a specific topic.

About the References
References are provided in Appendix B for you to learn more about the numerica
algorithm underlying a given Mathcad function or operator. References are not inte
to give a description of the actual underlying source code. Some references (suc
Numerical Recipes) do contain actual C code for the algorithms discussed therein,
the use of the reference does not necessarily imply that the code is what is implem
in Mathcad. The references are cited for background information only.
4 Chapter 1 Functions

Functions

acos Trigonometric

Syntax acos(z)

Description Returns the inverse cosine of z (in radians). The result is between 0 and π if z is real. For complex
z, the result is the principal value.

Arguments
z real or complex number

acosh Hyperbolic

Syntax acosh(z)

Description Returns the inverse hyperbolic cosine of z. The result is the principal value for complex z.

Arguments
z real or complex number

acot Trigonometric

Syntax acot(z)

Description Returns the inverse cotangent of z (in radians). The result is between 0 and π if z is real.
For complex z, the result is the principal value.

Arguments
z real or complex number

acoth Hyperbolic

Syntax acoth(z)

Description Returns the inverse hyperbolic cotangent of z. The result is the principal value for complex z.

Arguments
z real or complex number

acsc Trigonometric

Syntax acsc(z)

Description Returns the inverse cosecant of z (in radians). The result is the principal value for complex z.

Arguments
z real or complex number
Functions 5

acsch Hyperbolic

Syntax acsch(z)

Description Returns the inverse hyperbolic cosecant of z. The result is the principal value for complex z.

Arguments
z real or complex number

Ai (Professional) Bessel

Syntax Ai(x)

Description Returns the value of the Airy function of the first kind.

Arguments
x real number

Example

Comments This function is a solution of the differential equation: .

Algorithm Asymptotic expansion (Abramowitz and Stegun, 1972)

See also Bi

angle Trigonometric

Syntax angle(x, y)

Description Returns the angle (in radians) from positive x-axis to point (x, y) in x-y plane. The result is
between 0 and 2π.

Arguments
x, y real numbers

See also arg, atan, atan2

d
2

dx
2

--------y x y⋅– 0=
6 Chapter 1 Functions

es
APPENDPRN File Access

Syntax APPENDPRN(file) := A

Description Appends a matrix A to an existing structured ASCII data file. Each row in the matrix becom
a new line in the data file. Existing data must have as many columns as A. The function must
appear alone on the left side of a definition.

Arguments
file string variable corresponding to structured ASCII data filename or path

See also WRITEPRN for more details

arg Complex Numbers

Syntax arg(z)

Description Returns the angle (in radians) from the positive real axis to point z in the complex plane. The
result is between −π and π. Returns the same value as that of θ when z is written as .

Arguments
z real or complex number

See also angle, atan, atan2

asec Trigonometric

Syntax asec(z)

Description Returns the inverse secant of z (in radians). The result is the principal value for complex z.

Arguments
z real or complex number

asech Hyperbolic

Syntax asech(z)

Description Returns the inverse hyperbolic secant of z. The result is the principal value for complex z.

Arguments
z real or complex number

r ei θ⋅⋅
Functions 7

asin Trigonometric

Syntax asin(z)

Description Returns the inverse sine of z (in radians). The result is between −π/2 and π/2 if z is real. For
complex z, the result is the principal value.

Arguments
z real or complex number

asinh Hyperbolic

Syntax asinh(z)

Description Returns the inverse hyperbolic sine of z. The result is the principal value for complex z.

Arguments
z real or complex number

atan Trigonometric

Syntax atan(z)

Description Returns the inverse tangent of z (in radians). The result is between −π/2 and π/2 if z is real. For
complex z, the result is the principal value.

Arguments
z real or complex number

See also angle, arg, atan2

atan2 Trigonometric

Syntax atan2(x, y)

Description Returns the angle (in radians) from positive x-axis to point (x, y) in x-y plane. The result is
between −π and π.

Arguments
x, y real numbers

See also angle, arg, atan

atanh Hyperbolic

Syntax atanh(z)

Description Returns the inverse hyperbolic tangent of z. The result is the principal value for complex z.

Arguments
z real or complex number
8 Chapter 1 Functions

augment Vector and Matrix

Syntax augment(A, B)

Description Returns a matrix formed by placing the matrices A and B side by side.

Arguments
A, B two matrices or vectors; A and B must have the same number of rows

Example

See also stack

bei (Professional) Bessel

Syntax bei(n, x)

Description Returns the value of the imaginary Bessel Kelvin function of order n.

Arguments
n integer, n ≥ 0

x real number

Comments The function is a solution of the differential equation:

.

Algorithm Series expansion (Abramowitz and Stegun, 1972)

See also ber

ber (Professional) Bessel

Syntax ber(n, x)

Description Returns the value of the real Bessel Kelvin function of order n.

Arguments
n integer, n ≥ 0

x real number

ber n x,() i bei n x,()⋅+

x
2 d

2

dx
2

--------y x d
dx
------y i(x

2
n

2) y⋅+⋅–⋅+ 0=
Functions 9

tic, or

es
Comments The function is a solution of the differential equation:

.

Algorithm Series expansion (Abramowitz and Stegun, 1972)

See also bei

Bi (Professional) Bessel

Syntax Bi(x)

Description Returns the value of the Airy function of the second kind.

Arguments
x real number

Comments This function is a solution of the differential equation:

.

Algorithm Asymptotic expansion (Abramowitz and Stegun, 1972)

See also Ai for example

bspline Interpolation and Prediction

Syntax bspline(vx, vy, u, n)

Description Returns the vector of coefficients of a B-spline of degree n, given the knot locations indicated
by the values in u. The output vector becomes the first argument of the interp function.

Arguments
vx, vy real vectors of the same size; elements of vx must be in ascending order

u real vector with fewer elements than vx; elements of u must be in ascending order

n integer equal to 1, 2, or 3; represents the degree of the individual piecewise linear, quadra
cubic polynomial fits

Comments The knots, those values where the pieces fit together, are contained in the input vector u. This is
unlike traditional splines (lspline, cspline, and pspline) where the knots are forced to be the
values contained in the vector vx. The fact that knots are chosen or modified by the user giv
bspline more flexibility than the other splines.

See also lspline for more details

ber n x,() i bei n x,()⋅+

x
2 d

2

dx
2

--------y x d
dx
------y i(x

2
n

2) y⋅+⋅–⋅+ 0=

d
2

dx
2

--------y x y⋅ 0=–

n 1–
10 Chapter 1 Functions

tion

alues

ese

s are
irst

nts.

on at

 be
bulstoer (Professional) Differential Equation Solving

Syntax bulstoer(y, x1, x2, acc, D, kmax, save)

Description Solves a differential equation using the smooth Bulirsch-Stoer method. Provides DE solu
estimate at x2.

Arguments Several arguments for this function are the same as described for rkfixed.
y real vector of initial values

x1, x2 real endpoints of the solution interval

acc real acc > 0 controls the accuracy of the solution; a small value of acc forces the algorithm to
take smaller steps along the trajectory, thereby increasing the accuracy of the solution. V
of acc around 0.001 will generally yield accurate solutions.

D(x, y) real vector-valued function containing the derivatives of the unknown functions

kmax integer kmax > 0 specifies maximum number of intermediate points at which the solution is
approximated; places an upper bound on the number of rows of the matrix returned by th
functions

save real save > 0 specifies the smallest allowable spacing between values at which the solution
approximated; places a lower bound on the difference between any two numbers in the f
column of the matrix returned by the function

Comments The specialized DE solvers Bulstoer, Rkadapt, Stiffb, and Stiffr provide the solution y(x) over
a number of uniformly spaced x-values in the integration interval bounded by x1 and x2. When
you want the value of the solution at only the endpoint, y(x2), use bulstoer, rkadapt, stiffb, and
stiffr instead.

Algorithm Adaptive step Bulirsch-Stoer method (Press et al., 1992)

See also rkfixed, a more general differential equation solver, for information on output and argume

Bulstoer (Professional) Differential Equation Solving

Syntax Bulstoer(y, x1, x2, npts, D)

Description Solves a differential equation using the smooth Bulirsch-Stoer method. Provides DE soluti
equally spaced x-values by repeated calls to bulstoer.

Arguments All arguments for this function are the same as described for rkfixed.
y real vector of initial values

x1, x2 real endpoints of the solution interval

npts integer npts > 0 specifies the number of points beyond initial point at which the solution is to
approximated; controls the number of rows in the matrix output

D(x,y) real vector-valued function containing the derivatives of the unknown functions
Functions 11

ese

nts.

hen

 at
t
Comments When you know the solution is smooth, use the Bulstoer function instead of rkfixed. The
Bulstoer function uses the Bulirsch-Stoer method which is slightly more accurate under th
circumstances than the Runge-Kutta method used by rkfixed.

Algorithm Fixed step Bulirsch-Stoer method with adaptive intermediate steps (Press et al., 1992)

See also rkfixed, a more general differential equation solver, for information on output and argume

bvalfit (Professional) Differential Equation Solving

Syntax bvalfit(v1, v2, x1, x2, xf, D, load1, load2, score)

Description Converts a boundary value differential equation to initial/terminal value problems. Useful w
derivatives have a single discontinuity at an intermediate point xf.

Arguments
v1 real vector containing guesses for initial values left unspecified at x1

v2 real vector containing guesses for initial values left unspecified at x2

x1, x2 real endpoints of the interval on which the solution to the DEs are evaluated

xf point between x1 and x2 at which the trajectories of the solutions beginning at x1 and those
beginning at x2 are constrained to be equal

D(x, y) real n-element vector-valued function containing the derivatives of the unknown functions

load1(x1, v1) real vector-valued function whose n elements correspond to the values of the n unknown functions
at x1. Some of these values are constants specified by your initial conditions. If a value is
unknown, you should use the corresponding guess value from v1

load2(x2, v2) analogous to load1 but for values taken by the n unknown functions at x2

score(xf, y) real n-element vector-valued function used to specify how you want the solutions to matchxf
One usually defines score(xf, y) := y to make the solutions to all unknown functions match up axf

Example
12 Chapter 1 Functions

ints

rval,
t
h the

regular
Comments If you have information at the initial and terminal points, then use sbval. If, instead, you know
something about the solution and its first derivatives at some intermediate value xf, then
use bvalfit.

bvalfit solves a two-point boundary value problem of this type by shooting from the endpo
and matching the trajectories of the solution and its derivatives at the intermediate point. bvalfit
is especially useful when a derivative has a discontinuity somewhere in the integration inte
as the above example illustrates. bvalfit does not return a solution to a differential equation. I
merely computes the initial values the solution must have in order for the solution to matc
final values you specify. You must then take the initial values returned by bvalfit and solve the
resulting initial value problem using rkfixed or any of the other more specialized DE solvers.

Algorithm Shooting method with 4th order Runge-Kutta method (Press et al., 1992)

See also rkfixed, for more information on output and arguments.

ceil Truncation and Round-off

Syntax ceil(x)

Description Returns the least integer ≥ x.

Arguments
x real number

See also floor for more details, round, trunc

cfft Fourier Transform

Syntax cfft(A)

Description Returns the fast discrete Fourier transform of complex data (representing measurements at
intervals in the time domain). Returns an array of the same size as its argument.

Arguments
A real or complex matrix or vector

n 1–
Functions 13

resent

ke

r

hose
Example

Comments There are two reasons why you may not be able to use the fft/ifft Fourier transform pair discussed
elsewhere:

• The data may be complex-valued, hence Mathcad can no longer exploit the symmetry p
in the real-valued case.

• The data vector might not have exactly data points in it, hence Mathcad cannot ta
advantage of the efficient FFT algorithm used by the fft/ifft pair.

Although the cfft/icfft pair works on arrays of any size, the functions work significantly faste
when the number of rows and columns contains many smaller factors. Vectors with length
fall into this category, as do vectors having lengths like 100 or 120. Conversely, a vector w
length is a large prime number slows down the Fourier transform algorithm.

Algorithm Singleton method (Singleton, 1986)

See also fft for more details

2m

2m
14 Chapter 1 Functions

regular

ple).
CFFT Fourier Transform

Syntax CFFT(A)

Description Returns the fast discrete Fourier transform of complex data (representing measurements at
intervals in the time domain). Returns an array of the same size as its argument.
Identical to cfft(A), except uses a different normalizing factor and sign convention (see exam

Arguments
A real or complex matrix or vector

Example

Algorithm Singleton method (Singleton, 1986)

See also fft for more details
Functions 15

f
cholesky (Professional) Vector and Matrix

Syntax cholesky(M)

Description Returns a lower triangular matrix L satisfying the equation .

Arguments
M real, symmetric, positive definite, square matrix

Comments cholesky takes M to be symmetric, in the sense that it uses only the upper triangular part oM
and assumes it to match the lower triangular part.

cnorm Probability Distribution

Syntax cnorm(x)

Description Returns the cumulative standard normal distribution. Same as pnorm(x, 0, 1).

Arguments
x real number

Comments cnorm is provided mainly for compatibility with documents created in earlier versions of
Mathcad.

cols Vector and Matrix

Syntax cols(A)

Description Returns the number of columns in array A.

Arguments
A matrix or vector

Example

See also rows

L L T⋅ M=
16 Chapter 1 Functions

.
combin Number Theory/Combinatorics

Syntax combin(n, k)

Description Returns the number of subsets each of size k that can be formed from n objects.

Arguments
n, k integers,

Comments Each such subset is known as a combination. The number of combinations is C

See also permut

concat (Professional) String

Syntax concat(S1, S2, S3, ...)

Description Appends string S2 to the end of string S1, string S3 to the end of string S2, and so on.

Arguments
S1, S2, S3, ... string expressions

cond1 (Professional) Vector and Matrix

Syntax cond1(M)

Description Returns the condition number of the matrix M based on the norm.

Arguments
M real or complex square matrix

cond2 (Professional) Vector and Matrix

Syntax cond2(M)

Description Returns the condition number of the matrix M based on the norm.

Arguments
M real or complex square matrix

Algorithm Singular value computation (Wilkinson and Reinsch, 1971)

conde (Professional) Vector and Matrix

Syntax conde(M)

Description Returns the condition number of the matrix M based on the Euclidean norm.

Arguments
M real or complex square matrix

0 k n≤ ≤
n

k

n!
k! n k–()!⋅
---------------------------=

L1

L2
Functions 17

condi (Professional) Vector and Matrix

Syntax condi(M)

Description Returns the condition number of the matrix M based on the infinity norm.

Arguments
M real or complex square matrix

corr Statistics

Syntax corr(A, B)

Description Returns the Pearson correlation coefficient for the elements in two arrays A and B:

Arguments
A, B real or complex matrices or vectors of the same size

See also cvar

cos Trigonometric

Syntax cos(z), for z in radians;
cos(z·deg), for z in degrees

Description Returns the cosine of z.

Arguments
z real or complex number

cosh Hyperbolic

Syntax cosh(z)

Description Returns the hyperbolic cosine of z.

Arguments
z real or complex number

cot Trigonometric

Syntax cot(z), for z in radians;
cot(z·deg), for z in degrees

Description Returns the cotangent of z.

Arguments
z real or complex number

m n×

corr A B,() cvar A B,()
stdev A() stdev B()⋅
--=

m n×
18 Chapter 1 Functions

coth Hyperbolic

Syntax coth(z)

Description Returns the hyperbolic cotangent of z.

Arguments
z real or complex number

csc Trigonometric

Syntax csc(z), for z in radians;
csc(z·deg), for z in degrees

Description Returns the cosecant of z.

Arguments
z real or complex number

csch Hyperbolic

Syntax csch(z)

Description Returns the hyperbolic cosecant of z.

Arguments
z real or complex number

csgn Complex Numbers

Syntax csgn(z)

Description Returns 0 if z=0, 1 if Re(z)>0 or (Re(z)=0 and Im(z)>0), −1 otherwise.

Arguments
z real or complex number

See also sign, signum
Functions 19

e first

ic at

 in each

d
csort Sorting

Syntax csort(A, j)

Description Sorts the rows of the matrix A by placing the elements in column j in ascending order. The result
is the same size as A.

Arguments
A matrix or vector

j integer,

Algorithm Heap sort (Press et al., 1992)

See also sort for more details, rsort

cspline Interpolation and Prediction

One-dimensional Case

Syntax cspline(vx, vy)

Description Returns the vector of coefficients of a cubic spline with cubic ends. This vector becomes th
argument of the interp function.

Arguments
vx, vy real vectors of the same size; elements of vx must be in ascending order

Two-dimensional Case

Syntax cspline(Mxy , Mz)

Description Returns the vector of coefficients of a two-dimensional cubic spline, constrained to be cub
region boundaries spanned by Mxy . This vector becomes the first argument of the interp
function.

Arguments
Mxy matrix whose elements, and , specify the x- and y-coordinates along the

diagonal of a rectangular grid. This matrix plays exactly the same role as vx in the one-
dimensional case described above. Since these points describe a diagonal, the elements
column of Mxy must be in ascending order (whenever).

Mz matrix whose ij th element is the z-coordinate corresponding to the point an
. Mz plays exactly the same role as vy does in the one-dimensional case above.

Algorithm Tridiagonal system solving (Press et al., 1992; Lorczak)

See also lspline for more details

m n×
0 j n 1–≤ ≤

n 2× Mxyi 0, Mxyi 1,

Mxyi k, Mxyj k,< i j<
n n× x Mxyi 0,=
y Mxyj 1,=
20 Chapter 1 Functions

cvar Statistics

Syntax cvar(A, B)

Description Returns the covariance of the elements in two arrays A and B :

, where the bar indicates

complex conjugation.

Arguments
A, B real or complex matrices or vectors

See also corr

dbeta Probability Density

Syntax dbeta(x, s1, s2)

Description Returns the probability density for a beta distribution: .

Arguments
x real number,

s1, s2 real shape parameters,

dbinom Probability Density

Syntax dbinom(k, n, p)

Description Returns Pr(X = k) when the random variable X has the binomial distribution:

.

Arguments
k, n integers,

p real number,

dcauchy Probability Density

Syntax dcauchy(x, l, s)

Description Returns the probability density for the Cauchy distribution: .

Arguments
x real number

l real location parameter

s real scale parameter,

m n×

cvar A B,() 1
mn
------- Ai j, meanA()–[] Bi j, meanB()–[]

j 0=

n 1–

∑
i 0=

m 1–

∑=

m n×

Γ s1 s2+()
Γ s1() Γ s2()⋅
------------------------------- x

s1 1–
1 x–()s2 1–⋅ ⋅

0 x 1< <
s1 0> s2, 0>

n!
k! n k–()!
-----------------------pk 1 p–()n k–

0 k n≤ ≤
0 p 1≤ ≤

πs 1 x l–() s⁄()2+()() 1–

s 0>
Functions 21

dchisq Probability Density

Syntax dchisq(x, d)

Description Returns the probability density for the chi-squared distribution: .

Arguments
x real number,

d integer degrees of freedom,

dexp Probability Density

Syntax dexp(x, r)

Description Returns the probability density for the exponential distribution: .

Arguments
x real number,

r real rate,

dF Probability Density

Syntax dF(x, d1, d2)

Description Returns the probability density for the F distribution:

.

Arguments
x real number,

d1, d2 integer degrees of freedom,

dgamma Probability Density

Syntax dgamma(x, s)

Description Returns the probability density for the gamma distribution: .

Arguments
x real number,

s real shape parameter,

e x 2⁄–

2Γ d 2⁄()
---------------------- x

2
--- 

  d 2⁄ 1–()

x 0≥
d 0>

re rx–

x 0≥
r 0>

d1
d1 2⁄

d2
d2 2⁄ Γ d1 d2+() 2⁄()

Γ d1 2⁄()Γ d2 2⁄()
--- x

d1 2–() 2⁄

d2 d1x+() d1 d2+() 2⁄
--⋅

x 0≥
d1 0> d2, 0>

xs 1– e x–

Γ s()

x 0≥
s 0>
22 Chapter 1 Functions

.

dgeom Probability Density

Syntax dgeom(k, p)

Description Returns Pr(X = k) when the random variable X has the geometric distribution: .

Arguments
k integer,

p real number,

dhypergeom Probability Density

Syntax dhypergeom(m, a, b, n)

Description Returns Pr(X = m) when the random variable X has the hypergeometric distribution:

 where ; 0 for m elsewhere.

Arguments
m, a, b, n integers, , ,

diag (Professional) Vector and Matrix

Syntax diag(v)

Description Returns a diagonal matrix containing, on its diagonal, the elements of v.

Arguments
v real or complex vector

dlnorm Probability Density

Syntax dlnorm(x, µ, σ)

Description Returns the probability density for the lognormal distribution:

Arguments
x real number,

µ real logmean

σ real logdeviation,

p 1 p–()k

k 0≥
0 p 1≤<

a
m 

  b
n m– 

  a b+
n 

 ⁄⋅ max 0 n b–,{ } m min n a,{ }≤ ≤

0 m a≤ ≤ 0 n m b≤–≤ 0 n a b+≤ ≤

1

2πσx
----------------- 1

2σ2
---------– x()ln µ–()2

 
 exp

x 0≥

σ 0>
Functions 23

dlogis Probability Density

Syntax dlogis(x, l, s)

Description Returns the probability density for the logistic distribution: .

Arguments
x real number

l real location parameter

s real scale parameter,

dnbinom Probability Density

Syntax dnbinom(k, n, p)

Description Returns Pr(X = k) when the random variable X has the negative binomial distribution:

Arguments
k, n integers, and

p real number,

dnorm Probability Density

Syntax dnorm(x, µ, σ)

Description Returns the probability density for the normal distribution: .

Arguments
x real number

µ real mean

σ real standard deviation,

Example

x l–() s⁄–()exp

s 1 x l–() s⁄–()exp+()2
--

s 0>

n k 1–+

k 
  pn 1 p–()k

n 0> k 0≥
0 p 1≤<

1

2πσ
-------------- 1

2σ2
---------– x µ–()2

 
 exp

σ 0>
24 Chapter 1 Functions

dpois Probability Density

Syntax dpois(k, λ)

Description Returns Pr(X = k) when the random variable X has the Poisson distribution: .

Arguments
k integer,

λ real mean,

dt Probability Density

Syntax dt(x, d)

Description Returns the probability density for Student’s t distribution: .

Arguments
x real number

d integer degrees of freedom,

dunif Probability Density

Syntax dunif(x, a, b)

Description Returns the probability density for the uniform distribution: .

Arguments
x real number,

a, b real numbers,

dweibull Probability Density

Syntax dweibull(x, s)

Description Returns the probability density for the Weibull distribution: .

Arguments
x real number,

s real shape parameter,

eigenvals Vector and Matrix

Syntax eigenvals(M)

Description Returns a vector of eigenvalues for the matrix M .

Arguments
M real or complex square matrix

λk

k!
-----e λ–

k 0≥
λ 0>

Γ d 1+() 2⁄()
Γ d 2⁄() πd
--------------------------------- 1 x2

d
-----+ 

  d 1+() 2⁄–

d 0>

1
b a–

a x≤ b≤
a b<

sxs 1– x– s()exp

x 0≥
s 0>
Functions 25

 of the
Example

Algorithm Reduction to Hessenberg form coupled with QR decomposition (Press et al., 1992)

See also eigenvec, eigenvecs

eigenvec Vector and Matrix

Syntax eigenvec(M , z)

Description Returns a vector containing the normalized eigenvector corresponding to the eigenvalue z of the
square matrix M .

Arguments
M real or complex square matrix

z real or complex number

Algorithm Inverse iteration (Press et al., 1992; Lorczak)

See also eigenvals, eigenvecs

eigenvecs (Professional) Vector and Matrix

Syntax eigenvecs(M)

Description Returns a matrix containing the normalized eigenvectors corresponding to the eigenvalues
matrix M . The nth column of the matrix is the eigenvector corresponding to the nth eigenvalue
returned by eigenvals.

Arguments
M real or complex square matrix

Algorithm Reduction to Hessenberg form coupled with QR decomposition (Press et al., 1992)

See also eigenvals, eigenvec
26 Chapter 1 Functions

Example

erf Special

Syntax erf(x)

Description Returns the error function .

Arguments
x real number

Algorithm Continued fraction expansion (Abramowitz and Stegun, 1972; Lorczak)

See also erfc

erfc Special

Syntax erfc(x)

Description Returns the complementary error function .

Arguments
x real number

Algorithm Continued fraction expansion (Abramowitz and Stegun, 1972; Lorczak)

See also erf

erf x() 2

π
-------e t2– td

0

x

∫=

erfc x() 1 erf x()–:=
Functions 27

ur
cially

s over

.

error (Professional) String

Syntax error(S)

Description Returns the string S as an error message.

Arguments
S string

Example

Comments Mathcad’s built-in error messages appear as “error tips” when a built-in function is used
incorrectly or could not return a result.

Use the string function error to define specialized error messages that will appear when yo
user-defined functions are used improperly or cannot return answers.This function is espe
useful for trapping erroneous inputs to Mathcad programs you write.

When Mathcad encounters the error function in an expression, it highlights the expression in
red. When you click on the expression, the error message appears in a tool tip that hover
the expression. The text of the message is the string argument you supply to the error function.

exp Log and Exponential

Syntax exp(z)

Description Returns the value of the exponential function .

Arguments
z real or complex number

fft Fourier Transform

Syntax fft(v)

Description Returns the fast discrete Fourier transform of real data. Returns a vector of size

Arguments
v real vector with elements (representing measurements at regular intervals in the time

domain), where n is an integer, n > 0.

ez

2n 1– 1+

2n
28 Chapter 1 Functions

ero.

 only).
Example

Comments When you define a vector v for use with Fourier or wavelet transforms, be sure to start with
(or change the value of ORIGIN). If you do not define , Mathcad automatically sets it to z
This can distort the results of the transform functions.

Mathcad comes with two types of Fourier transform pairs: fft/ifft and cfft/icfft . These functions
can be applied only to discrete data (i.e., the inputs and outputs are vectors and matrices
You cannot apply them to continuous data.

Use the fft and ifft functions if:

• the data values in the time domain are real, and

• the data vector has elements.

Use the cfft and icfft functions in all other cases.

v0
v0

2m
Functions 29

he

e

es of
ional

form
ctions
the

in.

l. If
cy

tation
gnal
t least
is
The first condition is required because the fft/ifft pair takes advantage of the fact that, for real
data, the second half of the transform is just the conjugate of the first. Mathcad discards t
second half of the result vector to save time and memory. The cfft/icfft pair does not assume
symmetry in the transform; therefore you must use this pair for complex valued data. Becaus
the real numbers are just a subset of the complex numbers, you can use the cfft/icfft pair for real
numbers as well.

The second condition is required because the fft/ifft transform pair uses a highly efficient fast
Fourier transform algorithm. In order to do so, the vector you use with fft must have elements.
The cfft/icfft Fourier transform pair uses an algorithm that permits vectors as well as matric
arbitrary size. When you use this transform pair with a matrix, you get back a two-dimens
Fourier transform.

If you used fft to get to the frequency domain, you must use ifft to get back to the time domain.
Similarly, if you used cfft to get to the frequency domain, you must use icfft to get back to the
time domain.

Different sources use different conventions concerning the initial factor of the Fourier trans
and whether to conjugate the results of either the transform or the inverse transform. The fun
fft, ifft, cfft, and icfft use as a normalizing factor and a positive exponent in going from
time to the frequency domain. The functions FFT, IFFT, CFFT, and ICFFT use as a
normalizing factor and a negative exponent in going from the time to the frequency doma
Be sure to use these functions in pairs. For example, if you used CFFT to go from the time domain
to the frequency domain, you must use ICFFT to transform back to the time domain.

The elements of the vector returned by fft satisfy the following equation:

In this formula, n is the number of elements in v and i is the imaginary unit.

The elements in the vector returned by the fft function correspond to different frequencies. To
recover the actual frequency, you must know the sampling frequency of the original signav
is an n-element vector passed to the fft function, and the sampling frequency is , the frequen
corresponding to is

Therefore, it is impossible to detect frequencies above the sampling frequency. This is a limi
not of Mathcad, but of the underlying mathematics itself. In order to correctly recover a si
from the Fourier transform of its samples, you must sample the signal with a frequency of a
twice its bandwidth. A thorough discussion of this phenomenon is outside the scope of th
manual but within that of any textbook on digital signal processing.

Algorithm Cooley-Tukey (Press et al., 1992)

2m

1 N⁄
1 N⁄

cj
1

n
------- vke2π i j n⁄()k

k 0=

n 1–

∑=

fs
ck

fk
k
n
--- fs⋅=
30 Chapter 1 Functions

ctor

main),

pear

r than

ns
FFT Fourier Transform

Syntax FFT(v)

Description Identical to fft(v), except uses a different normalizing factor and sign convention. Returns a ve
of size .

Arguments
v real vector with elements (representing measurements at regular intervals in the time do

where n is an integer, n > 0.

Comments The definitions for the Fourier transform discussed in the fft entry are not the only ones used.
For example, the following definitions for the discrete Fourier transform and its inverse ap
in Ronald Bracewell’s The Fourier Transform and Its Applications (McGraw-Hill, 1986):

These definitions are very common in engineering literature. To use these definitions rathe
those presented in the last section, use the functions FFT, IFFT, CFFT, and ICFFT. These differ
from those discussed in the last section as follows:

• Instead of a factor of 1/ in front of both forms, there is a factor of 1/n in front of the
transform and no factor in front of the inverse.

• The minus sign appears in the exponent of the transform instead of in its inverse.

The functions FFT, IFFT, CFFT, and ICFFT are used in exactly the same way as the functio
fft, ifft, cfft, and icfft.

Algorithm Cooley-Tukey (Press et al., 1992)

See also fft for more details

fhyper (Professional) Special

Syntax fhyper(a, b, c, x)

Description Returns the value of the Gauss hypergeometric function .

Arguments
a, b, c, x real numbers,

2n 1– 1+

2n

F υ() 1
n
--- f τ()e 2π i υ n⁄()τ–

τ 1=

n

∑= f τ() F υ()e2π i τ n⁄()υ

υ 1=

n

∑=

n

F2 1 a b c x);;,(

1– x 1< <
Functions 31

ike

tput is
Comments The hypergeometric function is a solution of the differential equation

.

Many functions are special cases of the hypergeometric function, e.g., elementary ones l

, ,

and more complicated ones like Legendre functions.

Algorithm Series expansion (Abramowitz and Stegun, 1972)

Find Solving

Syntax Find(var1, var2, ...)

Description Returns values of var1, var2, ... which solve a prescribed system of equations, subject to
prescribed inequalities. The number of arguments matches the number of unknowns. Ou
a scalar if only one argument; otherwise it is a vector of answers.

Arguments
var1, var2, ... real or complex variables; var1, var2,.. must be assigned guess values before using Find.

Examples

Example 1: A solve block with one equation in one unknown.

x 1 x–() d
2

dx
2

--------y⋅ ⋅ c a b 1+ +()– x⋅() d
dx
------y⋅ a b y⋅ ⋅–+ 0=

1 x+() x fhyper 1 1 2 x–, , ,()⋅=ln x() x fhyper 1
2
--- 1

2
--- 3

2
--- x

2, , , 
 ⋅=asin
32 Chapter 1 Functions

Example 2: A solve block with both equations and inequalities.

Example 3: Solving an equation repeatedly (by defining the Reynolds
number R to be a range variable).
Functions 33

ations
.) If
r which
act

ad a
plex
Example 4: A solve block for computing the square root of a matrix.

Example 5: A solve block for computing the solution of a matrix equation.

Comments Mathcad Professional lets you numerically solve a system of up to 200 simultaneous equ
in 200 unknowns. (For Mathcad Standard, the upper limit is 50 equations in 50 unknowns
you aren’t sure that a given system possesses a solution but need an approximate answe
minimizes error, use Minerr instead. To solve an equation symbolically, that is, to find an ex
numerical answer in terms of elementary functions, choose Solve for Variable from the
Symbolic menu or use the solve keyword.

There are four steps to solving a system of simultaneous equations:

1. Provide initial guesses for all the unknowns you intend to solve for. These give Mathc
place to start searching for solutions. Use complex guess values if you anticipate com
solutions; use real guess values if you anticipate real solutions.

2. Type the word Given. This tells Mathcad that what follows is a system of equality or
inequality constraints. You can type Given or given in any style. Just don't type it while in
a text region.

3. Type the equations and inequalities in any order below the word Given. Use [Ctrl]= to
type “=.”
34 Chapter 1 Functions

s

n. For

le 3.

ck

r

, the

er
L to

for a
 is

 the
from

hich
 an

ning
anges
4. Finally, type the Find function with your list of unknowns. You can’t put numerical value
in the list of unknowns: for example, Find(2) in Example 1 isn’t permitted. Like given, you
can type Find or find in any style.

The word Given, the equations and inequalities that follow, and the Find function form a solve
block.

Example 1 shows a worksheet that contains a solve block for one equation in one unknow
one equation in one unknown, you can also use the root or polyroots functions.

Mathcad is very specific about the types of expressions that can appear between Given and Find.
See Example 2. The types of allowable constraints are z=w, x>y, x<y, x≥y and x≤y. Mathcad
does not allow the following inside a solve block:

• Constraints with “≠”

• Range variables or expressions involving range variables of any kind

• Inequalities of the form

• Any kind of assignment statement (statements like x:=1)

If you want to include the outcome of a solve block in an iterative calculation, see Examp

Solve blocks cannot be nested inside each other. Each solve block can have only one Given and
one Find. You can however, define a function like at the end of one solve blo
and use this same function in another solve block.

If the solver cannot make any further improvements to the solution but the constraints are not all
satisfied, then the solver stops and marks Find with an error message. This happens wheneve
the difference between successive approximations to the solution is greater than TOL and:

• The solver reaches a point where it cannot reduce the error any further.

• The solver reaches a point from which there is no preferred direction. Because of this
solver has no basis on which to make further iterations.

• The solver reaches the limit of its accuracy. Roundoff errors make it unlikely that furth
computation would increase accuracy of the solution. This often happens if you set TO
a value below .

The following problems may cause this sort of failure:

• There may actually be no solution.

• You may have given real guesses for an equation with no real solution. If the solution
variable is complex, the solver will not find it unless the starting value for that variable
also complex.

• The solver may have become trapped in a local minimum for the error values. To find
actual solution, try using different starting values or add an inequality to keep Mathcad
being trapped in the local minimum.

• The solver may have become trapped on a point that is not a local minimum, but from w
it cannot determine where to go next. Again, try changing the initial guesses or adding
inequality to avoid the undesirable stopping point.

• It may not be possible to solve the constraints to within the desired tolerance. Try defi
TOL with a larger value somewhere above the solve block. Increasing the tolerance ch
what Mathcad considers close enough to call a solution.

a b c< <

f x() Find x():=

10 15–
Functions 35

g

ral
ven-

ton

ison.

OL
d
In Mathcad Professional, the context menu (available via right mouse click) associated withFind
contains the following options:

• AutoSelect − chooses an appropriate algorithm

• Linear option − indicates that the problem is linear (and thus applies linear programmin
methods to the problem); guess values for var1, var2,... are immaterial (can all be zero)

• Nonlinear option − indicates that the problem is nonlinear (and thus applies these gene
methods to the problem: the conjugate gradient solver; if that fails to converge, the Le
berg-Marquadt solver; if that too fails, the quasi-Newton solver) − guess values for var1,
var2,... greatly affect the solution

• Quadratic option (appears only if the Mathcad Expert Solver product is installed) − indicates
that the problem is quadratic (and thus applies quadratic programming methods to the
problem); guess values for var1, var2,... are immaterial (can all be zero)

• Advanced options − applies only to the nonlinear conjugate gradient and the quasi-New
solvers

These options provide you more control in trying different algorithms for testing and compar
You may also adjust the values of the built-in variables CTOL and TOL. The constraint tolerance
CTOL controls how closely a constraint must be met for a solution to be acceptable; if CT
were 0.001, then a constraint such as x < 2 would be considered satisfied if the value of x satisfie
x < 2.001. This can be defined or changed in the same way as the convergence tolerance TOL.
The default value for CTOL is 0.

Algorithm For the non-linear case: Levenberg-Marquardt, Quasi-Newton, Conjugate Gradient
For the linear case: simplex method with branch/bound techniques
(Press et al., 1992; Polak, 1997; Winston, 1994)

See also Minerr, Maximize, Minimize

floor Truncation and Round-off

Syntax floor(x)

Description Returns the greatest integer ≤ x.

Arguments
x real number

Example

Comments Can be used to define the positive fractional part of a number: mantissa(x) := x - floor(x).

See also ceil, round, trunc
36 Chapter 1 Functions

gcd Number Theory/Combinatorics

Syntax gcd(A)

Description Returns the largest positive integer that is a divisor of all the values in the array A. This integer
is known as the greatest common divisor of the elements in A.

Arguments
A integer matrix or vector; all elements of A are greater than zero

Algorithm Euclid’s algorithm (Niven and Zuckerman, 1972)

See also lcm

genfit Regression and Smoothing

Syntax genfit(vx, vy, vg, F)

Description Returns a vector containing the parameters that make a function f of x and n parameters
 best approximate the data in vx and vy.

Arguments
vx, vy real vectors of the same size

vg real vector of guess values for the n parameters

F a function that returns an n+1 element vector containing f and its partial derivatives
with respect to its n parameters

Example

u0 u1 … un 1–, , ,
Functions 37

us
linear
 more

 the

ion
Comments The functions linfit and genfit are closely related. Anything you can do with linfit you can also
do, albeit less conveniently, with genfit. The difference between these two functions is analogo
to the difference between solving a system of linear equations and solving a system of non
equations. The former is easily done using the methods of linear algebra. The latter is far
difficult and generally must be solved by iteration. This explains why genfit needs a vector of
guess values as an argument and linfit does not.

The example above uses genfit to find the exponent that best fits a set of data. By decreasing
value of the built-in TOL variable, higher accuracy in genfit might be achieved.

Algorithm Levenberg-Marquardt (Press et al., 1992)

See also linfit

geninv (Professional) Vector and Matrix

Syntax geninv(A)

Description Returns the left inverse of a matrix A.

Arguments
A real matrix, where .

Comments If L denotes the left inverse, then where I is the identity matrix with cols(I)=cols(A).

Algorithm SVD-based construction (Nash, 1979)

genvals (Professional) Vector and Matrix

Syntax genvals(M , N)

Description Returns a vector v of eigenvalues each of which satisfies the generalized eigenvalue equat
 for nonzero eigenvectors x.

Arguments
M, N real square matrices of the same size

m n× m n≥

L A⋅ I=

M x⋅ vj N x⋅ ⋅=
38 Chapter 1 Functions

Example

Comments To compute the eigenvectors, use genvec.

Algorithm Stable QZ method (Golub and Van Loan, 1989)

genvecs (Professional) Vector and Matrix

Syntax genvecs(M , N)

Description Returns a matrix of normalized eigenvectors corresponding to the eigenvalues in v, the vector
returned by genvals. The jth column of this matrix is the eigenvector x satisfying the generalized
eigenvalue problem .

Arguments
M, N real square matrices of the same size

Algorithm Stable QZ method (Golub and Van Loan, 1989)

See also genvals for example

gmean Statistics

Syntax gmean(A)

Description Returns the geometric mean of the elements of A: .

Arguments
A real matrix or vector with all elements greater than zero

See also hmean, mean, median, mode

M x⋅ vj N x⋅ ⋅=

gmeanA() Ai j,
j 0=

n 1–

∏
i 0=

m 1–

∏ 
 
  1 mn()⁄

=

m n×
Functions 39

Her (Professional) Special

Syntax Her(n, x)

Description Returns the value of the Hermite polynomial of degree n at x.

Arguments
n integer, n ≥ 0

x real number

Comments The nth degree Hermite polynomial is a solution of the differential equation:

.

Algorithm Recurrence relation (Abramowitz and Stegun, 1972)

hist Statistics

Syntax hist(intervals, A)

Description Returns a vector containing the frequencies with which values in A fall in the intervals represented
by the intervals vector. The resulting histogram vector is one element shorter than intervals.

Arguments
intervals real vector with elements in ascending order

A real matrix

Example

x d
2

dx
2

--------y⋅ 2 x⋅– d
dx
------y 2 n y 0=⋅ ⋅+⋅
40 Chapter 1 Functions

ata.

Comments The intervals vector contains the endpoints of subintervals constituting a partition of the d
The result of the hist function is a vector f, in which is the number of values in A satisfying
the condition .

Mathcad ignores data points less than the first value in intervals or greater than the last value in
intervals.

hmean Statistics

Syntax hmean(A)

Description Returns the harmonic mean of the elements of A: .

Arguments
A real or complex matrix or vector with all elements nonzero

See also gmean, mean, median, mode

I0 Bessel

Syntax I0(x)

Description Returns the value of the modified Bessel function of the first kind. Same as In(0, x).

Arguments
x real number

Algorithm Small order approximation (Abramowitz and Stegun, 1972)

I1 Bessel

Syntax I1(x)

Description Returns the value of the modified Bessel function of the first kind. Same as In(1, x).

Arguments
x real number

Algorithm Small order approximation (Abramowitz and Stegun, 1972)

fi
intervalsi value intervalsi 1+<≤

hmeanA() 1
mn
------- 1

Ai j,

j 0=

n 1–

∑
i 0=

m 1–

∑
 
 
 
  1–

=

m n×

I0 x()

I1 x()
Functions 41

s

e
ibeta (Professional) Special

Syntax ibeta(a, x, y)

Description Returns the value of the incomplete beta function with parameter a, at (x, y).

Arguments
a real number,

x, y real numbers, x > 0, y > 0

Comments The incomplete beta function often arises in probabilistic applications. It is defined by the
following formula:

.

Algorithm Continued fraction expansion (Abramowitz and Stegun, 1972)

icfft Fourier Transform

Syntax icfft(A)

Description Returns the inverse Fourier transform corresponding to cfft. Returns an array of the same size a
its argument.

Arguments
A real or complex matrix or vector

Comments The cfft and icfft functions are exact inverses; .

Algorithm Singleton method (Singleton, 1986)

See also fft for more details and cfft for example

ICFFT Fourier Transform

Syntax ICFFT(A)

Description Returns the inverse Fourier transform corresponding to CFFT. Returns an array of the same siz
as its argument.

Arguments
A real or complex matrix or vector

Comments The CFFT and ICFFT functions are exact inverses; .

Algorithm Singleton method (Singleton, 1986)

See also fft for more details and CFFT for example

0 a 1≤ ≤

ibeta a x y, ,() Γ x y+()
Γ x() Γ y()⋅
--------------------------- tx 1– 1 t–()y 1–⋅ td

0

a

∫⋅=

icfft cfft A()() A=

ICFFT CFFT A()() A=
42 Chapter 1 Functions

identity Vector and Matrix

Syntax identity(n)

Description Returns the identity matrix of size n.

Arguments
n integer, n > 0

if Piecewise Continuous

Syntax if(cond, x, y)

Description Returns x or y depending on the value of cond.
If cond is true (non-zero), returns x. If cond is false (zero), returns y.

Arguments
cond arbitrary expression (usually a Boolean expression)

x, y real or complex numbers

Example
Functions 43

ay

t
an

ct that

, the

nd
Comments Use if to define a function that behaves one way below a certain number and a different w
above that number. That point of discontinuity is specified by its first argument, cond. The
remaining two arguments let you specify the behavior of the function on either side of tha
discontinuity. The argument cond is usually a Boolean expression (made up using the Boole
operators , >, <, ≥, ≤ or ≠).

To save time, Mathcad evaluates only the necessary arguments. For example, if cond is false,
there is no need to evaluate x because it will not be returned anyway. Therefore, errors in the
unevaluated argument can escape detection. For example, Mathcad will never detect the fa
ln(0) is undefined in the expression if(|z| < 0, ln(0), ln(z)).

You can combine Boolean operators to create more complicated conditions. For example
condition acts like an “and” gate, returning 1 if and only if x is between
0 and 1. Similarly, the expression acts like an “or” gate, returning a 1 if a
only if or .

ifft Fourier Transform

Syntax ifft(v)

Description Returns the inverse Fourier transform corresponding to fft. Returns a real vector of size .

Arguments
v real or complex vector of size , where n is an integer.

Comments The argument v is a vector similar to those generated by the fft function. To compute the result,
Mathcad first creates a new vector w by taking the conjugates of the elements of v and appending
them to the vector v. Then Mathcad computes a vector d whose elements satisfy this formula:

.

This is the same formula as the fft formula, except for the minus sign in the exponent. The fft and
ifft functions are exact inverses. For all real v, .

Algorithm Cooley-Tukey (Press et al., 1992)

See also fft for more details

IFFT Fourier Transform

Syntax IFFT(v)

Description Returns the inverse transform corresponding to FFT. Returns a real vector of size .

Arguments
v real or complex vector of size , where n is an integer.

Algorithm Cooley-Tukey (Press et al., 1992)

See also fft for more details

x 1<() x 0>()⋅
x 1>() x 0<()+

x 1> x 0<

2n

1 2n 1–+

dj
1

n
------- wke 2π i j n⁄()k–

k 0=

n 1–

∑=

ifft fft v()() v=

2n

1 2n 1–+
44 Chapter 1 Functions

ess
Im Complex Numbers

Syntax Im(z)

Description Returns the imaginary part of z.

Arguments
z real or complex number

See also Re

In Bessel

Syntax In(m, x)

Description Returns the value of the modified Bessel function of the first kind.

Arguments
m integer,

x real number

Comments Solution of the differential equation .

Algorithm Small order approximation, upward recurrence relation (Abramowitz and Stegun, 1972; Pret
al., 1992)

See also Kn

intercept Regression and Smoothing

Syntax intercept(vx, vy)

Description Returns the y-intercept of the least-squares regression line.

Arguments
vx, vy real vectors of the same size

See also slope for more details, stderr

Im x()

0 m 100≤ ≤

x2 d
2

dx
2

--------y⋅ x d
dx
------y⋅ x2 n2+() y⋅–+ 0=
Functions 45

or

lest

r such
interp Interpolation and Prediction

One-dimensional Case

Syntax interp(vs, vx, vy, x)

Description Interpolates the value from spline coefficients or regression coefficients. Takes three vect
arguments vx, vy (of the same size) and vs. Returns the interpolated y value corresponding to the
point x .

Arguments
vs real vector output from interpolation routines bspline, cspline, lspline, or pspline or regression

routines regress or loess

vx, vy real vectors of the same size

x real number

Comments To find the interpolated value for a particular x, Mathcad finds the two points which x falls
between. It then returns the y value on the cubic section enclosed by these two points. For x values
less than the smallest point in vx, Mathcad extrapolates the cubic section connecting the smal
two points of vx. Similarly, for x values greater than the largest point in vx, Mathcad extrapolates
the cubic section connecting the largest two points of vx.

For best results, do not use the interp function on values of x far from the fitted points. Splines
are intended for interpolation, not extrapolation. Consequently, computed values for such x values
are unlikely to be useful. See predict for an alternative.

Two-dimensional Case

Syntax interp(vs, Mxy , Mz, v)

Description Interpolates the value from spline coefficients or regression coefficients. Takes two matrix
arguments Mxy and Mz (with the same number of rows) and one vector argument vs. Returns
the interpolated z value corresponding to the point and .

Arguments
vs real vector output from interpolation routines bspline, cspline,lspline, or pspline or regression

routines regress or loess

Mxy, Mz real matrices (with the same number of rows)

v real two-dimensional vector

Comments For best results, do not use the interp function on values of x and y far from the grid points.
Splines are intended for interpolation, not extrapolation. Consequently, computed values fo
x and y values are unlikely to be useful. See predict for an alternative.

See also lspline for example, bspline, cspline, pspline, regress, loess

x v0= y v1=
46 Chapter 1 Functions

IsArray (Professional) Expression Type

Syntax IsArray(x)

Description Returns 1 if x is a matrix or vector; 0 otherwise.

Arguments
x arbitrary real or complex number, array, or string

IsScalar (Professional) Expression Type

Syntax IsScalar(x)

Description Returns 1 if x is a real or complex number; 0 otherwise.

Arguments
x arbitrary real or complex number, array, or string

IsString (Professional) Expression Type

Syntax IsString(x)

Description Returns 1 if x is a string; 0 otherwise.

Arguments
x arbitrary real or complex number, array, or string

iwave (Professional) Wavelet Transform

Syntax iwave(v)

Description Returns the inverse wavelet transform corresponding to wave.

Arguments
v real vector of elements, where n is an integer, n > 0.

Algorithm Pyramidal Daubechies 4-coefficient wavelet filter (Press et al., 1992)

See also wave for example

J0 Bessel

Syntax J0(x)

Description Returns the value of the Bessel function of the first kind. Same as Jn(0, x).

Arguments
x real number

Algorithm Steed’s method (Press et al., 1992)

2n

J0 x()
Functions 47

J1 Bessel

Syntax J1(x)

Description Returns the value of the Bessel function of the first kind. Same as Jn(1, x).

Arguments
x real number

Algorithm Steed’s method (Press et al., 1992)

Jac (Professional) Special

Syntax Jac(n, a, b, x)

Description Returns the value of the Jacobi polynomial of degree n with parameters a and b, at x.

Arguments
n integer,

a, b real numbers, a > −1, b > −1

x real number

Comments The Jacobi polynomial is a solution of the differential equation:

and includes the Chebyshev and Legendre polynomials as special cases.

Algorithm Recurrence relation (Abramowitz and Stegun, 1972)

Jn Bessel

Syntax Jn(m, x)

Description Returns the value of the Bessel function of the first kind.

Arguments
m integer, .

x real number

Comments Solution of the differential equation .

Algorithm Steed’s method (Press et al., 1992)

See also Yn

J1 x()

n 0≥

1 x
2

–() d
2

dx
2

--------y⋅ b a– a b 2+ +() x⋅–()+ d
dx
------y n n a b 1+ + +()⋅+ y 0=⋅ ⋅

Jm x()

0 m 100≤ ≤

x2 d
2

dx
2

--------y⋅ x d
dx
------y⋅ x2 n2–() y⋅+ + 0=
48 Chapter 1 Functions

ess
js (Professional) Bessel

Syntax js(n, x)

Description Returns the value of the spherical Bessel function of the first kind, of order n, at x.

Arguments
x real number, x > 0; x = 0 is permitted for js if

n integer

Comments Solution of the differential equation: .

Algorithm Small order approximation, upward recurrence relation (Abramowitz and Stegun, 1972; Pret
al., 1992)

See also ys

K0 Bessel

Syntax K0(x)

Description Returns the value of the modified Bessel function of the second kind. Same as Kn(0, x).

Arguments
x real number, x > 0

Algorithm Small order approximation (Abramowitz and Stegun, 1972)

K1 Bessel

Syntax K1(x)

Description Returns the value of the modified Bessel function of the second kind. Same as Kn(1, x).

Arguments
x real number, x > 0

Algorithm Small order approximation (Abramowitz and Stegun, 1972)

Kn Bessel

Syntax Kn(m, x)

Description Returns the value of the modified Bessel function of the second kind.

Arguments
m integer, .

x real number, x > 0

n 0≥

x
2 d

2

dx
2

--------y 2 x d
dx
------y x

2
n n 1+()⋅–()y 0=+⋅ ⋅+⋅

K0 x()

K1 x()

Km x()

0 m 100≤ ≤
Functions 49

ess

cing
en

input
stant
hould
Comments Solution of the differential equation .

See also In

Algorithm Small order approximation, upward recurrence relation (Abramowitz and Stegun, 1972; Pret
al., 1992)

ksmooth (Professional) Regression and Smoothing

Syntax ksmooth(vx, vy, b)

Description Creates a new vector, of the same size as vy, by using a Gaussian kernel to return weighted
averages of vy.

Arguments
vx, vy real vectors of the same size; elements of vx must be in ascending order

b real bandwidth b > 0; controls the smoothing window and should be set to a few times the spa
between your data points on the x-axis, depending on how big of a window you want to use wh
smoothing

Comments The ksmooth function uses a Gaussian kernel to compute local weighted averages of the
vector vy. This smoother is most useful when your data lies along a band of relatively con
width. If your data lies scattered along a band whose width fluctuates considerably, you s
use an adaptive smoother like supsmooth.

For each in the n-element vector vy, the ksmooth function returns a new given by:

 where:

and b is a bandwidth which you supply to the ksmooth function. The bandwidth is usually set
to a few times the spacing between data points on the x axis, depending on how big a window
you want to use when smoothing.

Algorithm Moving window Gaussian kernel smoothing (Lorczak)

See also medsmooth for more details, supsmooth

kurt Statistics

Syntax kurt(A)

Description Returns the kurtosis of the elements of A:

Arguments
A real or complex matrix or vector;

x2 d
2

dx
2

--------y⋅ x d
dx
------y⋅ x2 n2+() y⋅–+ 0=

vyi vy′i

vy′i

K
vxi vxj–

b
-------------------- 

  vyj
j 1=

n

∑

K
vxi vxj–

b
-------------------- 

 
j 1=

n

∑
--= K t() 1

2π 0.37()⋅
------------------------------ t2

2 0.37()2⋅
-------------------------– 

 exp⋅=

kurt A() mn mn 1+()
mn 1–() mn 2–() mn 3–()

A i j, meanA()–

Stdev A()
-- 

 
4

j 0=

n 1–

∑
i 0=

m 1–

∑
 
 
 
 

3 mn 1–()2

mn 2–() mn 3–()
---–=

m n× m n 4≥⋅
50 Chapter 1 Functions

Lag (Professional) Special

Syntax Lag(n, x)

Description Returns the value of the Laguerre polynomial of degree n at x.

Arguments
n integer,

x real number

Comments The Laguerre polynomial is a solution of the differential equation

.

Algorithm Recurrence relation (Abramowitz and Stegun, 1972)

last Vector and Matrix

Syntax last(v)

Description Returns the index of the last element in vector v.

Arguments
v vector

Comments last(v) = length(v) − 1 + ORIGIN

See also rows

lcm Number Theory/Combinatorics

Syntax lcm(A)

Description Returns the smallest positive integer that is a multiple of all the values in the array A. This integer
is known as the least common multiple of the elements in A.

Arguments
A integer matrix or vector; all elements of A are greater than zero

Algorithm Euclid’s algorithm (Niven and Zuckerman, 1972)

See also gcd

n 0≥

x d
2

dx
2

--------y⋅ 1 x–()+ d
dx
------y n y 0=⋅+⋅
Functions 51

tions
Leg (Professional) Special

Syntax Leg(n, x)

Description Returns the value of the Legendre polynomial of degree n at x.

Arguments
n integer,

x real number

Comments The Legendre polynomial is a solution of the differential equation

.

Algorithm Recurrence relation (Abramowitz and Stegun, 1972)

length Vector and Matrix

Syntax length(v)

Description Returns the number of elements in vector v.

Arguments
v vector

Comments Same as rows(v)

linfit Regression and Smoothing

Syntax linfit(vx, vy, F)

Description Returns a vector containing the coefficients used to create a linear combination of the func
in F which best approximates the data in vx and vy. See genfit for a more general technique.

Arguments
vx, vy real vectors of the same size; elements of vx should be in ascending order

F a function that returns a vector of functions

n 0≥

1 x
2

–() d
2

dx
2

--------y 2 x d
dx
------y⋅ ⋅ n n 1+() y 0=⋅ ⋅+–⋅
52 Chapter 1 Functions

 model
f a

sign.

uld

.

ust be

ed
n
Example

Comments Not all data sets can be modeled by lines or polynomials. There are times when you need to
your data with a linear combination of arbitrary functions, none of which represent terms o
polynomial. For example, in a Fourier series you try to approximate data using a linear
combination of complex exponentials. Or you may believe your data can be modeled by a
weighted combination of Legendre polynomials, but you just don't know what weights to as

The linfit function is designed to solve these kinds of problems. If you believe your data co
be modeled by a linear combination of arbitrary functions:

, you should use linfit to evaluate the . The exam-
ple above shows a linear combination of three functions x, , and to model some data

There are times however when the flexibility of linfit is still not enough. Your data may have to
be modeled not by a linear combination of data but by some function whose parameters m
chosen. For example, if your data can be modeled by the sum:

 and all you need to do is solve for the unknown weights
 and , then the linfit function is sufficient. By contrast, if instead your data is to be model

by the sum: and you now have to solve for the unknow
parameters and , you should use the genfit function.

Algorithm SVD-based least squares minimization (Press et al., 1992)

See also genfit

linterp Interpolation and Prediction

Syntax linterp(vx, vy, x)

Description Returns a linearly interpolated value at x.

Arguments
vx, vy real vectors of the same size; elements of vx should be in ascending order

x real number at which to interpolate

y a0 f0 x()⋅ a1 f1 x()⋅ … an fn x()⋅+ + += ai
x2 x 1+() 1–

f x() a1 2x()sin⋅ a2 3x()tanh⋅+=
a1 a2

f x() 2 a1x()sin⋅ 3 a2x()tanh⋅+=
a1 a2
Functions 53

ts.
n) or

 curve
sitive
ctions

ent
signed.

tor
ted
Example

Comments Interpolation involves using existing data points to predict values between these data poin
Mathcad allows you to either connect the data points with straight lines (linear interpolatio
to connect them with sections of a cubic polynomial (cubic spline interpolation).

Unlike the regression functions discussed elsewhere, these interpolation functions return a
which must pass through the points you specify. Therefore, the resulting function is very sen
to spurious data points. If your data is noisy, you should consider using the regression fun
instead.

Be sure that every element in the vx and vy arrays contains a data value. Because every elem
in an array must have a value, Mathcad assigns 0 to any elements you have not explicitly as

To find the interpolated value for a particular x, linterp finds the two points between which the
value falls and returns the corresponding y value on the straight line between the two points.

For x values before the first point in vx, linterp extrapolates the straight line between the first
two data points. For x values beyond the last point in vx, linterp extrapolates the straight line
between the last two data points.

For best results, the value of x should be between the largest and smallest values in the vec
vx. The linterp function is intended for interpolation, not extrapolation. Consequently, compu
values for x outside this range are unlikely to be useful. See predict for an alternative.
54 Chapter 1 Functions

d
to
ln Log and Exponential

Syntax ln(z)

Description Returns the natural logarithm of nonzero z (to base e). It is the principal value (imaginary part
between π and −π) for complex z.

Arguments
z real or complex number

Example

Comments In general, a complex argument to the natural log function returns:

Mathcad's ln function returns the value corresponding to , namely:
 (principal branch of the natural log function).

See also Iog

LoadColormap File Access

Syntax LoadColormap(file)

Description Returns an array containing the values in the colormap file.

Arguments
file string variable corresponding to CMP filename

Comments The file file is the name of a colormap located in the CMAPS subdirectory of your Mathca
directory. The function LoadColormap is useful when you want to edit a colormap or use it
create a new colormap. See on-line Help for more information

See also SaveColormap

x i y⋅+()ln x i y⋅+ln y x⁄() i⋅atan 2 n π i⋅ ⋅ ⋅+ +=

n 0=
x i y⋅+()ln x i y⋅+ln y x⁄() i⋅atan+=
Functions 55

ning

lue
loess (Professional) Regression and Smoothing

One-dimensional Case

Syntax loess(vx, vy, span)

Description Returns the vector required by the interp function to find the set of second order polynomials
that best fit particular neighborhoods of data points specified in arrays vx and vy.

Arguments
vx, vy real vectors of the same size

span real specifies how large a neighborhood loess will consider in performing this local
regression

Example

Comments Instead of generating a single polynomial the way regress does, loess generates a different
second order polynomial depending on where you are on the curve. It does this by exami
the data in a small neighborhood of the point you're interested in. The argument span controls
the size of this neighborhood. As span gets larger, loess becomes equivalent to regress with

. A good default value is .

The example above shows how span affects the fit generated by the loess function. A smaller
value of span makes the fitted curve track fluctuations in data more effectively. A larger va
of span tends to smear out fluctuations in data and thereby generates a smoother fit.

span 0>

n 2= span 0.75=
56 Chapter 1 Functions

endent

Two-dimensional Case

Syntax loess(Mxy , vz, span)

Description Returns the vector required by the interp function to find the set of second order polynomials
that best fit particular neighborhoods of data points specified in arrays Mxy and vz.

Arguments
Mxy real matrix containing x-y coordinates of the m data points

vz real m-element vector containing the z coordinates corresponding to the points specified in Mxy

span real specifies how large a neighborhood loess will consider in performing this local
regression

Comments Can be extended naturally to the three- and four-dimensional cases (that is, up to four indep
variables).

Algorithm Local polynomial estimation (Cleveland and Devlin, 1988)

See also regress for more details

log Log and Exponential

Classical Definition

Syntax log(z)

Description Returns the common logarithm of nonzero z to base 10. The result is the principal value
(imaginary part between π and −π) for complex z.

Arguments
z real or complex number

Extended Definition

Syntax log(z, b)

Description Returns the logarithm of nonzero z to base b. The result is the principal value (imaginary part
between π and −π) for complex z.

Arguments
z real or complex number

b real number, b > 1

See also In

m 2×

span 0>
Functions 57

ber.
eric

e first
lsolve (Professional) Vector and Matrix

Syntax lsolve(M, v)

Description Returns a solution vector x such that .

Arguments
M real or complex square matrix that is neither singular nor nearly singular

v real or complex vector

Example

Comments A matrix is singular if its determinant is zero; it is nearly singular if it has a high condition num
Alternatively, you can solve a system of linear equations by using matrix inversion, via num
or symbolic solve blocks.

Algorithm LU decomposition and forward/backward substitution (Press et al., 1992)

lspline Interpolation and Prediction

One-dimensional Case

Syntax lspline(vx, vy)

Description Returns the vector of coefficients of a cubic spline with linear ends. This vector becomes th
argument of the interp function.

Arguments
vx, vy real vectors of the same size; elements of vx must be in ascending order

M x⋅ v=
58 Chapter 1 Functions

econd
g three
 cubic

e

for

ext,

ent in a
ned.
Example

Comments Cubic spline interpolation lets you pass a curve through a set of points so that the first and s
derivatives of the curve are continuous across each point. This curve is assembled by takin
adjacent points and constructing a cubic polynomial passing through those points. These
polynomials are then strung together to form the completed curve.

To fit a cubic spline curve through a set of points:

1. Create the vectors vx and vy containing the x and y coordinates through which you want the
cubic spline to pass. The elements of vx should be in ascending order. (Although we use th
names vx, vy, and vs, there is nothing special about these variable names; you can use
whatever names you prefer.)

2. Generate the vector . The vector vs is a vector of intermediate results
designed to be used with interp. It contains, among other things, the second derivatives
the spline curve used to fit the points in vx and vy.

3. To evaluate the cubic spline at an arbitrary point, say x0, evaluate
where vs, vx, and vy are the vectors described earlier.
You could have accomplished the same task by evaluating:

. As a practical matter, though, you'll probably be
evaluating interp for many different points.

The call to lspline can be time-consuming and the result won't change from one point to the n
so it makes sense to do it just once and store the outcome in the vs array.

Be sure that every element in the input arrays contains a data value. Because every elem
array must have a value, Mathcad assigns 0 to any elements you have not explicitly assig

vs lspline vx vy,():=

interp vs vx vy x0, , ,()

interp lspline vx vy,() vx vy x0, , ,()
Functions 59

the

ser.

ar at

 in each

d

 one-
second
ugh a

 point.

e-
,

In addition to lspline, Mathcad comes with three other cubic spline functions: pspline, cspline,
and bspline. The pspline function generates a spline curve that approaches a parabola at
endpoints, while the cspline function generates a spline curve that can be fully cubic at the
endpoints. bspline, on the other hand, allows the interpolation knots to be chosen by the u

For lspline, the first three components of the output vector vs are vs0=0 (a code telling interp
that vs is the output of a spline function as opposed to a regression function), vs1=3 (the index
within vs where the second derivative coefficients begin) and vs2=0 (a code denoting lspline).
The first three components for pspline and cspline are identical except vs2=1 (the code denoting
pspline) and vs2=2 (the code denoting cspline), respectively.

Two-dimensional Case

Syntax lspline(Mxy , Mz)

Description Returns the vector of coefficients of a two-dimensional cubic spline, constrained to be line
region boundaries spanned by Mxy . This vector becomes the first argument of the interp
function.

Arguments
Mxy matrix whose elements, and , specify the x- and y-coordinates along the

diagonal of a rectangular grid. This matrix plays exactly the same role as vx in the one-
dimensional case described earlier. Since these points describe a diagonal, the elements
column of Mxy must be in ascending order (whenever).

Mz matrix whose ij th element is the z-coordinate corresponding to the point an
. Mz plays exactly the same role as vy does in the one-dimensional case above.

Comments Mathcad handles two-dimensional cubic spline interpolation in much the same way as the
dimensional case. Instead of passing a curve through a set of points so that the first and
derivatives of the curve are continuous across each point, Mathcad passes a surface thro
grid of points. This surface corresponds to a cubic polynomial in x and y in which the first and
second partial derivatives are continuous in the corresponding direction across each grid

The first step in two-dimensional spline interpolation is exactly the same as that in the on
dimensional case: specify the points through which the surface is to pass. The procedure
however, is more complicated because you now have to specify a grid of points.

To perform two-dimensional spline interpolation, follow these steps:

1. Create Mxy .

2. Create Mz.

3. Generate the vector . The vector vs is a vector of intermediate
results designed to be used with interp.
To evaluate the cubic spline at an arbitrary point, say , evaluate

, where vs, Mxy, and Mz are as described earlier.

The result is the value of the interpolating surface corresponding to the arbitrary point
. You could have accomplished exactly the same task by evaluating:

.

n 2× Mxyi 0, Mxyi 1,

Mxyi k, Mxyj k,< i j<
n n× x Mxyi 0,=
y Mxyj 1,=

vs lspline Mxy Mz,():=

x0 y0,()

interp vs Mxy Mz x0

y0
, , ,

 
 
 

x0 y0,()

interp lsplineMxy Mz,() Mxy Mz x0

y0
, , ,

 
 
 
60 Chapter 1 Functions

	Chapter 1 Functions
	Function Categories
	Finding More Information
	About the References
	Functions

