Chapter 1
Functions

This chapter lists and describes Mathcad’s built-in mathematical and statistical func-
tions. The functions are listed alphabetically.

Functions labele&rofessional are available only in Mathcad Professional. Certain
features labeled&xpert require Mathcad Professional and are available for sale sepa-
rately (in Mathcad Expert Solver).

Function names are case-sensitive, but not font-sensitive. Type them in any font, but
use the same capitalization as shown in the syntax section.

Many functions described here as accepting scalar arguments will, in fact, accept vector
arguments. For example, while the inpdior theacos function is specified as a “real

or complex number,acos will in fact evaluate correctly at each of a vector input of

real or complex numbers.

Some functions don’t accept input arguments with units. For such a fuf@ioarror
message “must be dimensionless” will arise when evalu§tigf x has units.

Function Categories
Each function falls within one of the following categories:

- Bessel

« Complex numbers

- Differential equation solving
+ Expression type

« File access

« Fourier transform

« Hyperbolic

 Interpolation and prediction
« Log and exponential

« Number theory/combinatorics
« Piecewise continuous

« Probability density

+ Probability distribution

« Random number

« Regression and smoothing

« Solving
« Sorting
« Special
-+ Statistics
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« String

« Trigonometric

« Truncation and round-off
« Vector and matrix

« Wavelet transform

The category name is indicated in the upper right corner of each Eotsge all the
functions that belong to a given category, check the index of this book.

Finding More Information
You can also find information about functions using either of these methods:

« To quickly see a short description of each function from within Mathcad, choose
Function from thelnsert menu. Select a function in the Function field, then read
the description in the Description field. Click on tHelp button to see the Help
topic on a selected function.

« Refer to the Resource Center QuickSheets for more detailed information about
functions, categories, and related topics. Sékastource Centerfrom theHelp
menu. Then click on the QuickSheets icon and select a specific topic.

About the References

References are provided in Appendix B for you to learn more about the numerical
algorithm underlying a given Mathcad function or operator. References are notintended
to give a description of the actual underlying source code. Some references (such as
Numerical Recipgsdo contain actual C code for the algorithms discussed therein, but
the use of the reference does not necessarily imply that the code is what is implemented
in Mathcad. The references are cited for background information only.
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Functions

acos Trigonometric
Syntax acos(2)
Description Returns the inverse cosinezifn radians). The resultis between 0 arifizis real For complex
z, the result is the principal value
Arguments
z real or complex number
acosh Hyperbolic
Syntax acosh(z)
Description Returns the inverse hyperbolic cosinezofhe result is the principal value for complex
Arguments
z real or complex number
acot Trigonometric
Syntax acot(2)
Description Returns the inverse cotangentzdin radians). The result is between 0 anidl zis real.
For complexz, the result is the principal value
Arguments
z real or complex number
acoth Hyperbolic
Syntax acoth(z)
Description Returns the inverse hyperbolic cotangent.dfhe result is the principal value for comptex
Arguments
z real or complex number
acsc Trigonometric
Syntax acsc(2)
Description Returns the inverse cosecanizdgin radians). The result is the principal value for complex
Arguments

z

real or complex number
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acsch Hyperbolic
Syntax acsch(2)
Description Returns the inverse hyperbolic cosecart. dthe result is the principal value for complex
Arguments
z real or complex number
Al (Professional) Bessel
Syntax Ai(x)
Description Returns the value of the Airy function of the first kind.
Arguments
X real number
Example [ 1] | el I ™ Wi 2 [E L TRl
el o FAr : [T SRR S
Comments This function is a solution of the differential equatiog:izy— xOy=10
Algorithm Asymptotic expansion (Abramowitz and Stegun, 1g7X2)

See also Bi
angle Trigonometric
Syntax angle(x, y)
Description Returns the angle (in radians) from positivaxis to pointX, y) in x-y plane The result is

between 0 andi2
Arguments
X, Y real numbers

See also arg, atan, atan2
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APPENDPRN

File Access

Syntax APPENDPRN(file) :== A
Description Appends a matriA to an existing structured ASCII data file. Each row in the matrix becomes
a new line in the data file. Existing data must have as many colurnsTéee function must
appear alone on the left side of a definition.
Arguments
file string variable corresponding to structured ASCII data filename or path
See also WRITEPRN for more details
arg Complex Numbers
Syntax arg(2
Description Returns the angle (in radians) from the positive real axis to poirthe complex plane. The
result is betweenm andrt. Returns the same value as tha efhenz is written asr (&1 5P .
Arguments
z real or complex number
See also angle, atan, atan2
asec Trigonometric
Syntax asec(2)
Description Returns the inverse secantzfin radians). The result is the principal value for complex
Arguments
z real or complex number
asech Hyperbolic
Syntax asech(2)
Description Returns the inverse hyperbolic secant.dfhe result is the principal value for complex
Arguments

z

real or complex number
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asin Trigonometric
Syntax asin(2)
Description Returns the inverse sine ofin radians). The result is betweer2 andm?2 if z is real. For
complexz, the result is the principal value.
Arguments
z real or complex number
asinh Hyperbolic
Syntax asinh(z)
Description Returns the inverse hyperbolic sinezoThe result is the principal value for complex
Arguments
z real or complex number
atan Trigonometric
Syntax atan(2)
Description Returns the inverse tangentaffin radians). The result is between2 andm2 if zis real. For
complexz, the result is the principal value.
Arguments
z real or complex number
See also angle, arg, atan2
atan2 Trigonometric
Syntax atan2(x, y)
Description Returns the angle (in radians) from positivaxis to pointX, y) in x-y plane The result is
between-mtandr.
Arguments
X, Y real numbers
See also angle, arg, atan
atanh Hyperbolic
Syntax atanh(2)
Description Returns the inverse hyperbolic tangenz.ofhe result is the principal value for complex
Arguments
z real or complex number
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augment

Vector and Matrix

Syntax augment(A, B)
Description Returns a matrix formed by placing the matrideandB side by side.
Arguments
A, B two matrices or vectorgs andB must have the same number of rows
Example
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See also stack
bei (Professional) Bessel
Syntax bei(n, ¥
Description Returns the value of the imaginary Bessel Kelvin function of arder
Arguments
n integer,n=0
X real number
Comments The functionber(n, x) +i [bei(n, X) is a solution of the differential equation:
2
xzd—y+ ngy—(i 0é + n2) Oy = 0.
dX2 dx
Algorithm Series expansion (Abramowitz and Stegun, 1972)
See also ber
ber (Professional) Bessel
Syntax ber(n, ¥
Description Returns the value of the real Bessel Kelvin function of onder
Arguments
n integer,n=0
X real number
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Comments The functionber(n, x) +i [bei(n, x) is a solution of the differential equation:
2

xzd—y+ ngy—(i 0é + n2) Oy = 0.
dX2 dx
Algorithm Series expansion (Abramowitz and Stegun, 1972)
See also bei
Bi (Professional) Bessel
Syntax Bi(x)
Description Returns the value of the Airy function of the second kind.
Arguments
X real number
Comments This function is a solution of the differential equation:
2
d—y —-xOy=0 .
2
dx
Algorithm Asymptotic expansion (Abramowitz and Stegun, 1972)
See also Ai for example
bspline Interpolation and Prediction
Syntax bspline(vx, vy, u, n)
Description Returns the vector of coefficients of a B-spline of degregven the knot locations indicated
by the values in. The output vector becomes the first argument ofrttep function.
Arguments
VX, VY real vectors of the same size; elementgxofmust be in ascending order
u real vector withn—1 fewer elements thex; elements ofi must be in ascending order
n integer equal to 1, 2, or 3; represents the degree of the individual piecewise linear, quadratic, or
cubic polynomial fits
Comments The knots, those values where the pieces fit together, are contained in the input.vEei®Is
unlike traditional splinedgpline, cspline, andpspline) where the knots are forced to be the
values contained in the vectax. The fact that knots are chosen or modified by the user gives
bspline more flexibility than the other splines.
See also Ispline for more details
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bulstoer

(Professional) Differential Equation Solving

Syntax bulstoer(y, x1, x2, accp, kmax, save
Description Solves a differential equation using the smooth Bulirsch-Stoer method. Provides DE solution
estimate ak2
Arguments Several arguments for this function are the same as describekfifad.
y real vector of initial values
x1, x2 real endpoints of the solution interval
acc realacc> 0 controls the accuracy of the solution; a small valuecoforces the algorithm to
take smaller steps along the trajectory, thereby increasing the accuracy of the solution. Values
of accaround 0.001 will generally yield accurate solutions.
D(x, ) real vector-valued function containing the derivatives of the unknown functions
kmax integerkmax> 0 specifies maximum number of intermediate points at which the solution is
approximated; places an upper bound on the number of rows of the matrix returned by these
functions
save realsave> 0 specifies the smallest allowable spacing between values at which the solutions are
approximated; places a lower bound on the difference between any two numbers in the first
column of the matrix returned by the function
Comments The specialized DE solveBulstoer, Rkadapt, Stiffb, andStiffr provide the solutiog(x) over
a number of uniformly spacedvalues in the integration interval boundeddiyandx2. When
you want the value of the solution at only the endpg(®g), usebulstoer, rkadapt, stiffb, and
stiffr instead.
Algorithm Adaptive step Bulirsch-Stoer method (Presal, 1992)
See also rkfixed, a more general differential equation solver, for information on output and arguments.
Bulstoer (Professional) Differential Equation Solving
Syntax Bulstoer(y, x1, x2, nptsD)
Description Solves a differential equation using the smooth Bulirsch-Stoer method. Provides DE solution at
equally spaced-values by repeated calls balstoer.
Arguments All arguments for this function are the same as describetkfixed.
y real vector of initial values
x1, x2 real endpoints of the solution interval
npts integernpts> 0 specifies the number of points beyond initial point at which the solution is to be
approximated; controls the number of rows in the matrix output
D(x,y) realvector-valued function containing the derivatives of the unknown functions
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Comments When you know the solution is smooth, useBlstoer function instead ofkfixed. The
Bulstoer function uses the Bulirsch-Stoer method which is slightly more accurate under these
circumstances than the Runge-Kutta method use#fixed.

Algorithm Fixed step Bulirsch-Stoer method with adaptive intermediate steps éPas<992)
See also rkfixed, a more general differential equation solver, for information on output and arguments.
bvalfit (Professional) Differential Equation Solving

Syntax bvalfit(vl, v2 x1, x2, xfD, load1, load2, scorg

Description Converts a boundary value differential equation to initial/terminal value problems. Useful when
derivatives have a single discontinuity at an intermediate gbint

Arguments
vl real vector containing guesses for initial values left unspecifigd at
v2 real vector containing guesses for initial values left unspecified at x2
x1, x2 real endpoints of the interval on which the solution to the DEs are evaluated
xf point betweerx1 andx2 at which the trajectories of the solutions beginninglatnd those
beginning ak2 are constrained to be equal
D(x, ) realn-element vector-valued function containing the derivatives of the unknown functions
load1(x1, v1) real vector-valued function whoeelements correspond to the values oftheknown functions
atx1. Some of these values are constants specified by your initial conditions. If a value is
unknown, you should use the corresponding guess valuevftom
load2(x2, v2) analogous tdoad1 but for values taken by theunknown functions at2
scorgxf, y) realn-element vector-valued function used to specify how you want the solutions to meftch at
One usually defines scord(y) :=y to make the solutions to all unknown functions match up at
Example
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Comments

If you have information at the initial and terminal points, thensisal. If, instead, you know
something about the solution and its finst 1 derivatives at some intermediatexfyafissn
usebvalfit.

bvalfit solves a two-point boundary value problem of this type by shooting from the endpoints
and matching the trajectories of the solution and its derivatives at the intermediatbyadfitt.

is especially useful when a derivative has a discontinuity somewhere in the integration interval,
as the above example illustratbsalfit does not return a solution to a differential equation. It
merely computes the initial values the solution must have in order for the solution to match the
final values you specify. You must then take the initial values returnéddifit and solve the
resulting initial value problem usingfixed or any of the other more specialized DE solvers.

Algorithm Shooting method with 4th order Runge-Kutta method (Feeak, 1992)
See also rkfixed, for more information on output and arguments.
ceil Truncation and Round-off
Syntax ceil(x)
Description Returns the least integeix.
Arguments
X real number
See also floor for more detailsyound, trunc
cfft Fourier Transform
Syntax cfft(A)
Description Returns the fast discrete Fourier transform of complex data (representing measurements atregula
intervals in the time domain). Returns an array of the same size as its argument
Arguments
A real or complex matrix or vector

Functions 13



Example
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Comments There are two reasons why you may not be able to us/ifis=ouriertransform pair discussed

elsewhere:

» The datamay be complex-valued, hence Mathcad can no longer exploit the symmetry present
in the real-valued case.

» The data vector might not have exac2y' data points in it, hence Mathcad cannot take
advantage of the efficient FFT algorithm used byfttigft pair.

Although thecfft/icfft pair works on arrays of any size, the functions work significantly faster
when the number of rows and columns contains many smaller factors. Vectors with2&hgth

fall into this category, as do vectors having lengths like 100 or 120. Conversely, a vector whose
length is a large prime number slows down the Fourier transform algorithm.

Algorithm Singleton method (Singleton, 1986)

See also fft for more details
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CFFT Fourier Transform
Syntax CFFT(A)

Description Returns the fast discrete Fourier transform of complex data (representing measurements atregula
intervals in the time domain). Returns an array of the same size as its argument
Identical tocfft(A), except uses a different normalizing factor and sign convention (see example).

Arguments
A real or complex matrix or vector
Example i
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Algorithm Singleton method (Singleton, 1986)

See also fft for more details
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cholesky (Professional) Vector and Matrix
Syntax cholesky(M)
Description Returns a lower triangular matrixsatisfying the equatioh L. T = M
Arguments
M real, symmetric, positive definite, square matrix
Comments cholesky takesM to be symmetric, in the sense that it uses only the upper triangular part of
and assumes it to match the lower triangular part.
cnorm Probability Distribution
Syntax cnorm(x)
Description Returns the cumulative standard normal distribution. Sameasn(x, 0, 1).
Arguments
X real number
Comments cnorm is provided mainly for compatibility with documents created in earlier versions of
Mathcad.
cols Vector and Matrix
Syntax cols(A)
Description Returns the number of columns in arfay
Arguments
A matrix or vector
Example
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See also rows
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combin

Number Theory/Combinatorics

Syntax combin(n, K
Description Returns the number of subsets each of Isiteat can be formed fromobjects.
Arguments
n, k integers, 0<k<n
Comments Each such subset is known as a combination. The number of combmaﬂonam
See also permut
concat (Professional) String
Syntax concat(S1, S2, S3,)..
Description Appends string2to the end of strin§1, stringS3to the end of strin§2,and so on
Arguments
S1, S2,S3, ... string expressions
condl (Professional) Vector and Matrix
Syntax cond1(M)
Description Returns the condition number of the matvixbased on thé;  norm.
Arguments
M real or complex square matrix
cond2 (Professional) Vector and Matrix
Syntax cond2(M)
Description Returns the condition number of the matvixbased on thé, norm.
Arguments
M real or complex square matrix
Algorithm Singular value computation (Wilkinson and Reinsch, 1971)
conde (Professional) Vector and Matrix
Syntax conde(M)
Description Returns the condition number of the matvixoased on the Euclidean norm.
Arguments
M real or complex square matrix
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condi (Professional) Vector and Matrix

Syntax condi(M)
Description Returns the condition number of the matvixbased on the infinity norm.
Arguments

M real or complex square matrix

corr Statistics

Syntax corr(A, B)
Description Returns the Pearson correlation coefficient for the elements imtwam ArnarysB:

corr(A,B) = —CVaNA.B)
stdeyA) stdeyB)
Arguments
A, B real or complexnx n matrices or vectors of the same size
See also cvar

cos Trigonometric

Syntax cos(2), for zin radians;

cos(zdeg), forzin degrees
Description Returns the cosine af
Arguments
z real or complex number

cosh Hyperbolic

Syntax cosh(2)
Description Returns the hyperbolic cosine of
Arguments

z real or complex number

cot Trigonometric

Syntax cot(2), for zin radians;

cot(z-deg), forzin degrees

Description Returns the cotangent af
Arguments

z

real or complex number

18
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coth Hyperbolic
Syntax coth(2)
Description Returns the hyperbolic cotangentzof
Arguments
z real or complex number
Csc Trigonometric
Syntax csc(2), forzin radians;
csc(z-deg), forzin degrees
Description Returns the cosecant nf
Arguments
z real or complex number
csch Hyperbolic
Syntax csch(2)
Description Returns the hyperbolic cosecantzof
Arguments
z real or complex number
csgn Complex Numbers
Syntax csgn(2)
Description Returns 0 ifz=0, 1 if Re¢)>0 or (Ref)=0 and Img)>0), -1 otherwise.
Arguments
z real or complex number
See also sign, signum

Functions
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csort Sorting
Syntax Csort(A, j)
Description Sorts the rows of the matrix by placing the elements in colurnim ascending order. The result
is the same size #s
Arguments
A m x n matrix or vector
i integer, 0<j<n-1
Algorithm Heap sort (Presst al, 1992)
See also sort for more detailstsort
cspline Interpolation and Prediction
One-dimensional Case
Syntax cspline(vx, vy)
Description Returns the vector of coefficients of a cubic spline with cubic ends. This vector becomes the first
argument of thénterp function.
Arguments
VX, VY real vectors of the same size; elementgxofmust be in ascending order

Two-dimensional Case

Syntax

Description

Arguments
Mxy

Mz

Algorithm

See also

cspline(Mxy, Mz)

Returns the vector of coefficients of a two-dimensional cubic spline, constrained to be cubic at
region boundaries spanned lxy . This vector becomes the first argument ofittterp
function.

nx 2 matrix whose elementd/xy; , amdixy, ; , specifythandy-coordinates along the
diagonalof a rectangular grid. This matrix plays exactly the same role asthe one-

dimensional case described above. Since these points describe a diagonal, the elements in each
column ofMxy must be in ascending ordeviky; | < MXY; whenevej ).

n x n matrix whosejth element is the-coordinate corresponding to the paint Mxy; o and

y = Mxy; ;. Mz plays exactly the same roleasdoes in the one-dimensional case above.

Tridiagonal system solving (Pressal, 1992; Lorczak)

Ispline for more details

20
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cvar Statistics
Syntax cvar(A, B)
Description Returns the covariance of the elements in ta® n arkagadB :
1 m-1n-1
cvar(A,B) = = Zo Z [A;;—mear(A)][B; ;—mear(B)] , where the bar indicates
mnéy o '
complex conjugation.
Arguments
A B real or complexnx n matrices or vectors
See also corr
dbeta Probability Density
Syntax dbeta(x, s1, s2
Description Returns the probability density for a beta distributi r:(sl *S) ' 1 —x)sz_l
r;sl) 0 (sy)
Arguments
X real number0<x<1
sl,s2 real shape parameters,; >0, s,>0
dbinom Probability Density
Syntax dbinom(k, n, p)
Description Returns PrK = K) when the random variabk has the binomial distribution:
n! k —k
—  _pK(1=p)"—K,
Kin—tiP (1=P)
Arguments
k,n integers,0<k<n
p real numberQ<p<1
dcauchy Probability Density
Syntax dcauchy(x, I, s)
Description Returns the probability density for the Cauchy distributigms(1 + ((x—1)/s)2))1
Arguments
X real number
I real location parameter
S real scale parametes>0
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dchisq

Probability Density

Syntax dchisq(x, d)
. X/ 2 d/2-1)
Description Returns the probability density for the chi-squared distribut%ergté/—z) %g
Arguments
X real numberx=0
d integer degrees of freedom > 0
dexp Probability Density
Syntax dexp(x, r)
Description Returns the probability density for the exponential distributien*x
Arguments
X real numberx=0
r real rate,r >0
dF Probability Density
Syntax dF(x, d1, dJ
Description Returns the probability density for the F distribution:
d%24%2"2r ((d, + d,)/ 2) (41-2)/2
M(dy/2)r(dy/2) (d2+dlx)(d1+d2)/2
Arguments
X real numberx=0
di, d2 integer degrees of freedom, > 0, d, >0
dgamma Probability Density
Syntax dgammayg(x, s)
L —1,=
Description Returns the probability density for the gamma distribut?éip:(s—(iX
Arguments
X real numberx=0
S real shape parametes> 0

22
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dgeom

Probability Density

Syntax dgeom(k, p)
Description Returns PiX = k) when the random variab}has the geometric distributiop(1 — p)K
Arguments
k integer,k=0
p real numberQ<p<1
dhypergeom Probability Density
Syntax dhypergeom(m, a, b, n)
Description Returns PiX = m) when the random variab}has the hypergeometric distribution:
RO@ b g/m@m+tbD _ i :
G0 — mZ(D 0O where max 0,n—b} <m< min{ n § ;0 fomelsewhere.
Arguments
m, a, b, n integers,0sm<a , 0sn-m<b ,0sn<a+b
diag (Professional) Vector and Matrix
Syntax diag(v)
Description Returns a diagonal matrix containing, on its diagonal, the elements of
Arguments
% real or complex vector
dinorm Probability Density
Syntax dinorm(x, y, o)
Description Returns the probability density for the lognormal distributient— exp%—ziz( In(x) — p)zg
TIoX o
Arguments
X real numberx =0
u real logmean
g real logdeviationg >0
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dlogis

Probability Density

Syntax dlogis(x, I, 9)
Description Returns the probability density for the logistic distributies: exp({(x—1)/s)
s(1+ exp(—(x—1)/s))2
Arguments
X real number
I real location parameter
S real scale parametes> 0
dnbinom Probability Density
Syntax dnbinom(k, n, p)
Description Returns PiX = K) when the random variab}has the negative binomial distribution:
+k-1
Eﬂ ‘ Hpn(1 - p)k
Arguments
k, n integersn>0 an&k=0
p real numberQ<p<1
dnorm Probability Density
Syntax dnorm(x, Y, 0)
_ - . PO | 01 20
Description Returns the probability density for the normal distributier— exp=———=(x— )
p p Yy y o P 292 0
Arguments
X real number
u real mean
g real standard deviatio >0
Example
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dpois

Probability Density

Syntax dpois(k, A)
_— k
Description Returns PrK = K) when the random variabk has the Poisson distributio%e—"
Arguments
k integer,k=0
A real mean)A >0
dt Probability Density
Syntax dt(x, d)
.. . X o . r((d+1)/2) XZD—(d+l)/2
Description Returns the probability density for Studerttdistribution: + =0
r(d/2)Jmd d
Arguments
X real number
d integer degrees of freedom > 0
dunif Probability Density
Syntax dunif(x, a, b)
Description Returns the probability density for the uniform distributi%ﬁl.—a
Arguments
X real number, a< x<b
a,b real numbersa<b
dweibull Probability Density
Syntax dweibull(x, s)
Description Returns the probability density for the Weibull distributiené —1exp(—xS)
Arguments
X real numberx=0
S real shape parametes>0
eigenvals Vector and Matrix
Syntax eigenvals(M)
Description Returns a vector of eigenvalues for the maltix
Arguments
M real or complex square matrix
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Example
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Algorithm Reduction to Hessenberg form coupled with QR decomposition (Erats1992)
See also eigenvec, eigenvecs
eigenvec Vector and Matrix
Syntax eigenvec(M, 2)

Description Returns a vector containing the normalized eigenvector corresponding to the eigen¥#hee
square matriM.

Arguments

M real or complex square matrix
z real or complex number
Algorithm Inverse iteration (Prest al, 1992; Lorczak)
See also eigenvals, eigenvecs
eigenvecs (Professional) Vector and Matrix
Syntax eigenvecs(M)

Description Returns a matrix containing the normalized eigenvectors corresponding to the eigenvalues of the
matrix M. Thenth column of the matrix is the eigenvector corresponding tattheigenvalue
returned byeigenvals.

Arguments

M real or complex square matrix
Algorithm Reduction to Hessenberg form coupled with QR decomposition (Erats1992)
See also eigenvals, eigenvec
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erf Special
Syntax erf(x)
.. X
Description Returns the error functioarf(x) = J’ 2
0/n
Arguments
X real number
Algorithm Continued fraction expansion (Abramowitz and Stegun, 1972; Lorczak)
See also erfc
erfc Special
Syntax erfc(x)
Description Returns the complementary error functienfc(x) := 1 — erf(x)
Arguments
X real number
Algorithm Continued fraction expansion (Abramowitz and Stegun, 1972; Lorczak)
See also erf
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error (Professional) String
Syntax error(S)
Description Returns the stringas an error message.
Arguments
S string
Example
(RES LIERL: rI v “rshenhi be b Poee 57
1 1
Comments Mathcad’s built-in error messages appear as “error tips” when a built-in function is used
incorrectly or could not return a result.
Use the string functioerror to define specialized error messages that will appear when your
user-defined functions are used improperly or cannot return answers.This function is especially
useful for trapping erroneous inputs to Mathcad programs you write.
When Mathcad encounters tbeor function in an expression, it highlights the expression in
red. When you click on the expression, the error message appears in a tool tip that hovers over
the expression. The text of the message is the string argument you supplgrtoittienction.
exp Log and Exponential
Syntax exp(2
Description Returns the value of the exponential funct&n
Arguments
z real or complex number
fft Fourier Transform
Syntax fft(v)
Description Returns the fast discrete Fourier transform of real data. Returns a vector 2fsize 1
Arguments
% real vector with2" elements (representing measurements at regular intervals in the time
domain), wheren is an integem > 0.
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When you define a vecterfor use with Fourier or wavelet transforms, be sure to startwyth
(or change the value of ORIGIN). If you do not defipe  , Mathcad automatically sets it to zero.
This can distort the results of the transform functions.

Mathcad comes with two types of Fourier transform pdftafft and cfft/icfft . These functions
can be applied only to discrete data (i.e., the inputs and outputs are vectors and matrices only).
You cannot apply them to continuous data.

Use thefft andifft functions if:
» the data values in the time domain are real, and

» the data vector hag™ elements.

Use thecfft andicfft functions in all other cases.
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Algorithm

The first condition is required because tfiffft pair takes advantage of the fact that, for real
data, the second half of the transform is just the conjugate of the first. Mathcad discards the
second half of the result vector to save time and memorycffifiefft pair does not assume
symmetry in the transform; therefore ymwstuse this pair for complex valued data. Because
the real numbers are just a subset of the complex numbers, you canaffiéidfiepair for real
numbers as well.

The second condition is required becausdftfiffit transform pair uses a highly efficient fast
Fourier transform algorithm. In order to do so, the vector you usdftithist have™  elements.
Thecfft/icfft Fourier transform pair uses an algorithm that permits vectors as well as matrices of
arbitrary size. When you use this transform pair with a matrix, you get back a two-dimensional
Fourier transform.

If you usedfft to get to the frequency domain, yowstuseifft to get back to the time domain.
Similarly, if you usedcfft to get to the frequency domain, yowstuseicfft to get back to the
time domain.

Different sources use different conventions concerning the initial factor of the Fourier transform
and whether to conjugate the results of either the transform or the inverse transform. The functions
fft, ifft, cfft, andicfft usel/ N as a normalizing factor and a positive exponent in going from the
time to the frequency domain. The functidfisT, IFFT, CFFT, andICFFT usel/N as a
normalizing factor and a negative exponent in going from the time to the frequency domain.

Be sure to use these functions in pairs. For example, if youdE€tto go from the time domain

to the frequency domain, yenustuselCFFT to transform back to the time domain.

The elements of the vector returnedffiysatisfy the following equation:
1 n-1
= 211 (j /n )k
g = z v, 2T
k=0

In this formula,n is the number of elementsyrandi is the imaginary unit.

The elements in the vector returned byffh&unction correspond to different frequencies. To
recover the actual frequency, you must know the sampling frequency of the original signal. If
is ann-element vector passed to fiitefunction, and the sampling frequencydis , the frequency
corresponding t@, is

k

fk:F]D:s

Therefore, itis impossible to detect frequencies above the sampling frequency. Thisis a limitation
not of Mathcad, but of the underlying mathematics itself. In order to correctly recover a signal
from the Fourier transform of its samples, you must sample the signal with a frequency of at least
twice its bandwidth. A thorough discussion of this phenomenon is outside the scope of this
manual but within that of any textbook on digital signal processing.

Cooley-Tukey (Presst al, 1992)
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FFT

Fourier Transform

Syntax FFT(v)
Description Identical tofft(v), except uses a different normalizing factor and sign convention. Returns a vector
of size2n~1+1 .
Arguments
% real vector witl2" elements (representing measurements at regular intervals in the time domain),
wheren is an integem > 0.
Comments The definitions for the Fourier transform discussed irffthentry are not the only ones used.
For example, the following definitions for the discrete Fourier transform and its inverse appear
in Ronald Bracewell’'The Fourier Transform and Its ApplicatiofidcGraw-Hill, 1986):
n n
1 . .
F = = —21Ti (U/N)T = 21 (1/n)v
(v) - Z f(1)e f(1) Z F(v)e
=1 v=1
These definitions are very common in engineering literature. To use these definitions rather than
those presented in the last section, use the fund&ehsIFFT, CFFT, andiICFFT. These differ
from those discussed in the last section as follows:
« Instead of a factor of 1/n in front of both forms, there is a factorroinifront of the
transform and no factor in front of the inverse.
* The minus sign appears in the exponent of the transform instead of in its inverse.
The functiong=FT, IFFT, CFFT, andICFFT are used in exactly the same way as the functions
fft, ifft, cfft, andicfft.
Algorithm Cooley-Tukey (Presst al, 1992)
See also fft for more details
fhyper (Professional) Special
Syntax fhyper(a, b, ¢ x)
Description Returns the value of the Gauss hypergeometric funcfigifa, b; c; x)
Arguments
a, b, c, x real numbersr-1<x<1
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Comments

The hypergeometric function is a solution of the differential equation
2
x1-x) 0%y + (c-(a+ b+1) ) D:—Xy—aEbDy= 0
dx

Many functions are special cases of the hypergeometric function, e.g., elementary ones like

In(1+x) = xOhyper(l 1 2—x), asin(x) =x thyper%, % g ng,
and more complicated ones like Legendre functions.

Algorithm Series expansion (Abramowitz and Stegun, 1972)
Find Solving
Syntax Find(varl, var2, .)
Description Returns values ofrarl, var2, ... which solve a prescribed system of equations, subject to
prescribed inequalities. The number of arguments matches the number of unknowns. Output is
a scalar if only one argument; otherwise it is a vector of answers.
Arguments
varl, var2, ... real or complex variablesarl, var2,.. must be assigned guess values before USimdy
Examples
"rhT i rpaeTe I, R L] m
carsn ol N
GasEnh -
] 4= |'-.
i el =
Fadkn o o= 2
F
Yty rE Ik 4 =18 [E- R-Fs
B" [ B-F
Example 1: A solve block with one equation in one unknown.
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Example 2: A solve block with both equations and inequalities.
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Example 3: Solving an equation repeatedly (by defining the Reynolds
number R to be a range variable).
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Example 4: A solve block for computing the square root of a matrix.
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Example 5: A solve block for computing the solution of a matrix equation.

Mathcad Professional lets you numerically solve a system of up to 200 simultaneous equations
in 200 unknowns. (For Mathcad Standard, the upper limit is 50 equations in 50 unknowns.) If
you aren't sure that a given system possesses a solution but need an approximate answer which
minimizes error, usMinerr instead. To solve an equation symbolically, that is, to find an exact
numerical answer in terms of elementary functions, ch8obdee for Variable from the

Symbolic menu or use thsolve keyword.

There are four steps to solving a system of simultaneous equations:

1. Provide initial guesses for all the unknowns you intend to solve for. These give Mathcad a
place to start searching for solutions. Use complex guess values if you anticipate complex
solutions; use real guess values if you anticipate real solutions.

2. Type the wordsiven. This tells Mathcad that what follows is a system of equality or
inequality constraints. You can ty@ven or given in any style. Just don't type it while in
a text region.

3. Type the equations and inequalities in any order below the @igah. Use[Ctrl ]=to
type “=."
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4. Finally, type thé=ind function with your list of unknowns. You can’t put numerical values
in the list of unknowns: for examplEind(2) in Example 1 isn’t permitted. Likgiven, you
can typeFind or find in any style.

The wordGiven, the equations and inequalities that follow, andRine function form asolve
block

Example 1 shows a worksheet that contains a solve block for one equation in one unknown. For
one equation in one unknown, you can also useathteor polyroots functions.

Mathcad is very specific about the types of expressions that can appear ligivezesndrind.
See Example 2. The types of allowable constraintszam, x>y, X<y, x2y andx<y. Mathcad
does not allow the following inside a solve block:

» Constraints with £”

* Range variables or expressions involving range variables of any kind

* Inequalities of the forma< b<c

* Any kind of assignment statement (statements)ikd. )

If you want to include the outcome of a solve block in an iterative calculation, see Example 3.

Solve blocks cannot be nested inside each other. Each solve block can have @ieoraad
oneFind. You can however, define a function like) := Find(x) atthe end of one solve block
and use this same function in another solve block.

If the solver cannot make any further improvements to the solution but the constraittadire
satisfied, then the solver stops and mdikel with an error message. This happens whenever
the difference between successive approximations to the solution is greater thandOL

* The solver reaches a point where it cannot reduce the error any further.

» The solver reaches a point from which there is no preferred direction. Because of this, the
solver has no basis on which to make further iterations.

* The solver reaches the limit of its accuracy. Roundoff errors make it unlikely that further
computation would increase accuracy of the solution. This often happens if you set TOL to
a value belowl 015

The following problems may cause this sort of failure:
» There may actually be no solution.

* You may have given real guesses for an equation with no real solution. If the solution for a
variable is complex, the solver will not find it unless the starting value for that variable is
also complex.

» The solver may have become trapped in a local minimum for the error values. To find the
actual solution, try using different starting values or add an inequality to keep Mathcad from
being trapped in the local minimum.

» The solver may have become trapped on a point that is not a local minimum, but from which
it cannot determine where to go next. Again, try changing the initial guesses or adding an
inequality to avoid the undesirable stopping point.

* It may not be possible to solve the constraints to within the desired tolerance. Try defining
TOL with a larger value somewhere above the solve block. Increasing the tolerance changes
what Mathcad considers close enough to call a solution.
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In Mathcad Professional, the context menu (available via right mouse click) associateiddvith
contains the following options:

* AutoSelect- chooses an appropriate algorithm

» Linear option- indicates that the problem is linear (and thus applies linear programming
methods to the problemjuess values forarl, var2,... are immaterial (can all be zero)

» Nonlinear option- indicates that the problem is nonlinear (and thus applies these general
methods to the problem: the conjugate gradient solver; if that fails to converge, the Leven-
berg-Marquadt solver; if that too fails, the quasi-Newton solvepiess values fararl,
var2,... greatly affect the solution

* Quadratic option (appears only if the Mathcad Expert Solver product is instaifetizates
that the problem is quadratic (and thus applies quadratic programming methods to the
problem) guess values fararl, var2... are immaterial (can all be zero)

* Advanced options applies only to the nonlinear conjugate gradient and the quasi-Newton
solvers

These options provide you more control in trying different algorithms for testing and comparison.
You may also adjust the values of the built-in variables CTOL and TOLcdrsraint tolerance
CTOL controls how closely a constraint must be met for a solution to be acceptable; if CTOL
were 0.001, then a constraint such awould be considered satisfied if the value of x satisfied

x <2.001. This can be defined or changed in the same way esrthergence tolerancEOL.

The default value for CTOL is 0.

Algorithm For the non-linear case: Levenberg-Marquardt, Quasi-Newton, Conjugate Gradient
For the linear case: simplex method with branch/bound techniques
(Presset al, 1992; Polak, 1997; Winston, 1994)
See also Minerr, Maximize, Minimize
floor Truncation and Round-off
Syntax floor(x)
Description Returns the greatest integek.
Arguments
X real number
Example
il | 1 TR - 4 Bl X by =
EEVAIE 8 L PEEIE
mawmny 1A% 1.
Comments Can be used to define the positive fractional part of a numimertissa(x) := x - floor(x).
See also ceil, round, trunc
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gcd

Number Theory/Combinatorics

Syntax gcd(A)
Description Returns the largest positive integer that is a divisor of all the values in thé\aiThjs integer
is known as the greatest common divisor of the elemerms in
Arguments
A integer matrix or vector; all elements/fare greater than zero
Algorithm Euclid’s algorithm (Niven and Zuckerman, 1972)
See also lcm
genfit Regression and Smoothing
Syntax genfit(vx, vy, vg, F)
Description Returns a vector containing the parameters that make a fuhciorandn parameters
Ug, Ug, ---, U, _ 1 best approximate the datavir andvy.
Arguments
VX, VY real vectors of the same size
vg realvector of guess values for theparameters
F a function that returns am+1 element vector containirfgand its partial derivatives
with respect to its parameters
Example
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Comments

The functiondinfit andgenfit are closely related. Anything you can do wittfit you can also

do, albeit less conveniently, wigienfit. The difference between these two functions is analogous

to the difference between solving a system of linear equations and solving a system of nonlinear
equations. The former is easily done using the methods of linear algebra. The latter is far more
difficult and generally must be solved by iteration. This explains génfit needs a vector of

guess values as an argument knfit does not.

The example above usgenfit to find the exponent that best fits a set of data. By decreasing the
value of the built-in TOL variable, higher accuracyggnfit might be achieved.

Algorithm Levenberg-Marquardt (Pressal, 1992)
See also linfit
geninv (Professional) Vector and Matrix
Syntax geninv(A)
Description Returns the left inverse of a matéx
Arguments
A realmx n matrix, wheren= n
Comments If L denotes the leftinverse, therA = | wheigthe identity matrix witltols(l)=cols(A).
Algorithm SVD-based construction (Nash, 1979)
genvals (Professional) Vector and Matrix
Syntax genvals(M, N)
Description Returns a vector of eigenvalues each of which satisfies the generalized eigenvalue equation
MO = v; N [X for nonzero eigenvectors
Arguments
M, N real square matrices of the same size
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Comments To compute the eigenvectors, wEnvec.
Algorithm Stable QZ method (Golub and Van Loan, 1989)
genvecs (Professional) Vector and Matrix
Syntax genvecs(M, N)
Description Returns a matrix of normalized eigenvectors corresponding to the eigenvaludiseiivector
returned bygenvals. Thejth column of this matrix is the eigenveckmsatisfying the generalized
eigenvalue problelM k = v; [N [x
Arguments
M, N real square matrices of the same size
Algorithm Stable QZ method (Golub and Van Loan, 1989)
See also genvals for example
gmean Statistics
Syntax gmean(A)
-1n-1 D1/(mn)
Description Returns the geometric mean of the elemenss:ofgmearfA) = D|_| |_| A jD
) 0
=0j=0
Arguments
A real mx n matrix or vector with all elements greater than zero
See also hmean, mean, median, mode
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Her (Professional) Special
Syntax Her(n, X
Description Returns the value of the Hermite polynomial of degraex.
Arguments
n integer,n=0
X real number
Comments Thenth degree Hermite polynomial is a solution of the differential equation:
o’ d
xO—y-2xO=y+2 0= 0.
dX2 dx
Algorithm Recurrence relation (Abramowitz and Stegun, 1972)
hist Statistics
Syntax hist(intervals, A)
Description Returns a vector containing the frequencies with which value&ithin the intervals represented
by theintervals vector. The resulting histogram vector is one element shorteirtteamals.
Arguments
intervals real vector with elements in ascending order
A real matrix
Example
[ | Er | iala [ | slew i
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Comments

Theintervals vector contains the endpoints of subintervals constituting a partition of the data.
The result of théuist function is a vectof, in whichf; is the number of valuesAnsatisfying
the conditionintervalg < value< intervals, ; .

Mathcad ignores data points less than the first valirenvals or greater than the last value in
intervals.

hmean Statistics
Syntax hmean(A) N
_ 0 gm-1n-1 , a
Description Returns the harmonic mean of the element&:ofhmeafA) = H= Z Z _%
Hni £ i=oA,p
Arguments
A real or complexm X n matrix or vector with all elements nonzero
See also gmean, mean, median, mode
10 Bessel
Syntax 10(x)
Description Returns the value of the modified Bessel functigfx) of the first kind. Sain¢ag).
Arguments
X real number
Algorithm Small order approximation (Abramowitz and Stegun, 1972)
11 Bessel
Syntax 11(x)
Description Returns the value of the modified Bessel functigfx) of the first kind. Sain¢lag).
Arguments
X real number
Algorithm Small order approximation (Abramowitz and Stegun, 1972)
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ibeta (Professional) Special
Syntax ibeta(a, x, y
Description Returns the value of the incomplete beta function with pararagétr, y).
Arguments
a real number0<a<1
X, Y real numbersx>0,y>0
Comments The incomplete beta function often arises in probabilistic applications. It is defined by the
following formula:
; r(x+ a
ibeta(a, x, y) = XY -1 1 — gyt .
aa % y) F0 T (y) EJ’O H1-1)
Algorithm Continued fraction expansion (Abramowitz and Stegun, 1972)
icfft Fourier Transform
Syntax icfft(A)
Description Returns the inverse Fourier transform correspondiefftdReturns an array of the same size as
its argument.
Arguments
A real or complex matrix or vector
Comments The cfft andicfft functions are exact inversedcfft(cfft (A)) = A
Algorithm Singleton method (Singleton, 1986)
See also fft for more details andfft for example
ICFFT Fourier Transform
Syntax ICFFT(A)
Description Returns the inverse Fourier transform correspondi@6T. Returns an array of the same size
as its argument.
Arguments
A real or complex matrix or vector
Comments The CFFT andICFFT functions are exact inversedCFFT(CFFTA)) = A
Algorithm Singleton method (Singleton, 1986)
See also fft for more details an@FFT for example
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identity

Vector and Matrix

Syntax identity(n)
Description Returns the identity matrix of size
Arguments
n integer,n>0
if Piecewise Continuous
Syntax if(cond, x, ¥
Description Returnsx ory depending on the value ofnd.
If condis true (non-zero), returns If condis false (zero), returns
Arguments
cond arbitrary expression (usually a Boolean expression)
X, Y real or complex numbers
Example
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Comments

Useif to define a function that behaves one way below a certain number and a different way
above that number. That point of discontinuity is specified by its first arguowrd, The
remaining two arguments let you specify the behavior of the function on either side of that
discontinuity. The argumebndis usually a Boolean expression (made up using the Boolean
operators=s, >, <, 2, <or #).

To save time, Mathcad evaluates only the necessary arguments. For exacapldisiffalse,

there is no need to evaluatdecause it will not be returned anyway. Therefore, errors in the
unevaluated argument can escape detection. For example, Mathcad will never detect the fact that
In(0) is undefined in the expressionZf O, In(0), Ing)).

You can combine Boolean operators to create more complicated conditions. For example, the
condition(x <1) [({x>0) acts like an “and” gate, returning 1 if and onlyig between

0 and 1. Similarly, the expressi¢r > 1) + (x < 0) acts like an “or” gate, returning a 1 if and
only if x>1 orx<0.

ifft Fourier Transform
Syntax ifft(v)
Description Returns the inverse Fourier transform correspondirffj.tReturns a real vector of si2®
Arguments
% real or complex vector of size+ 2"~1 | wharés an integer.

Comments The argument is a vector similar to those generated byfthfinction. To compute the result,
Mathcad first creates a new vectoby taking the conjugates of the elementg afid appending
them to the vector. Then Mathcad computes a veatiowhose elements satisfy this formula:

n-1
d = a1 wye2m/nk
M=o
This is the same formula as tfiformula, except for the minus sign in the exponent.fifland
ifft functions are exact inverses. For all nealfft (fft (v)) = v .
Algorithm Cooley-Tukey (Presst al, 1992)
See also fft for more details
IFFT Fourier Transform
Syntax IFFT(v)
Description Returns the inverse transform correspondingRd. Returns a real vector of si28
Arguments
% real or complex vector of size+2"-1 | whaerés an integer.
Algorithm Cooley-Tukey (Presst al, 1992)
See also fft for more details
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Im Complex Numbers
Syntax Im(2)
Description Returns the imaginary part af
Arguments
z real or complex number
See also Re
In Bessel
Syntax In(m, x)
Description Returns the value of the modified Bessel functigx) of the first kind.
Arguments
m integer,0 < m< 100
X real number
Comments Solution of the differential equatio? Dd—zzy +X DC%(y—(x2 +n?)y =0
Algorithm Small order approximation, upward recg:)ljrrence relation (Abramowitz and Stegun, 1972t Press
al., 1992)
See also Kn
intercept Regression and Smoothing
Syntax intercept(vx, vy)
Description Returns thg-intercept of the least-squares regression line.
Arguments
VX, VY real vectors of the same size
See also slope for more detailsstderr
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interp

Interpolation and Prediction

One-dimensional Case

Syntax

Description

Arguments
Vs

VX, VY
X

Comments

interp(vs, vx, vy, X)

Interpolates the value from spline coefficients or regression coefficients. Takes three vector
argumentwsx, vy (of the same size) and. Returns the interpolatgdralue corresponding to the
pointx .

real vector output from interpolation routirtespline, cspline, Ispline, orpspline or regression
routinesregress or loess

real vectors of the same size
real number

To find the interpolated value for a particukauMathcad finds the two points whiatfalls

between. It then returns thi@alue on the cubic section enclosed by these two points viabres

less than the smallest pointiix, Mathcad extrapolates the cubic section connecting the smallest
two points ofvx. Similarly, forx values greater than the largest poinbinMathcad extrapolates

the cubic section connecting the largest two pointscof

For best results, do not use theerp function on values of far from the fitted points. Splines
are intended for interpolation, not extrapolation. Consequently, computed values foraluels
are unlikely to be useful. S@eedict for an alternative.

Two-dimensional Case

Syntax

Description

Arguments
Vs

Mxy, Mz
Y

Comments

See also

interp(vs, Mxy, Mz, v)

Interpolates the value from spline coefficients or regression coefficients. Takes two matrix
argumentdvixy andMz (with the same number of rows) and one vector argureiReturns
the interpolated value corresponding to the poixt= v,  apd v

real vector output from interpolation routinespline, cspline,Ispline, orpspline or regression
routinesregress or loess

real matrices (with the same number of rows)
real two-dimensional vector

For best results, do not use theerp function on values of andy far from the grid points.
Splines are intended for interpolation, not extrapolation. Consequently, computed values for such
x andy values are unlikely to be useful. Seedict for an alternative.

Ispline for examplebspline, cspline, pspline, regress, loess
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ISArray (Professional) Expression Type
Syntax IsArray(x)
Description Returns 1 if is a matrix or vector; O otherwise.
Arguments
X arbitrary real or complex number, array, or string
IsScalar (Professional) Expression Type
Syntax IsScalar(x)
Description Returns 1 if is a real or complex number; 0 otherwise.
Arguments
X arbitrary real or complex number, array, or string
IsString (Professional) Expression Type
Syntax IsString(x)
Description Returns 1 ik is a string; 0 otherwise.
Arguments
X arbitrary real or complex number, array, or string
iwave (Professional) Wavelet Transform
Syntax iwave(v)
Description Returns the inverse wavelet transform correspondinaice.
Arguments
% real vector of2" elements, whemés an integern > 0.
Algorithm Pyramidal Daubechies 4-coefficient wavelet filter (Pietsal, 1992)
See also wave for example
JO Bessel
Syntax JO(x)
Description Returns the value of the Bessel functidyx) of the first kind. Sarde(8sx).
Arguments
X real number
Algorithm Steed’s method (Pressal, 1992)
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J1 Bessel
Syntax J1(x)
Description Returns the value of the Bessel functidyix) of the first kind. Sarde(asx).
Arguments
X real number
Algorithm Steed’s method (Press al, 1992)
Jac (Professional) Special
Syntax Jac(n, a, b, ¥
Description Returns the value of the Jacobi polynomial of degredth parametera andb, atx.
Arguments
n integer,n=0
a,b real numbersa>-1,b>-1
X real number
Comments The Jacobi polynomial is a solution of the differential equation:
1= Dd—22y+(b—a—(a+ b+2) [X) Dc%(y+ nOn+ a+ b+1) = 0
and includgsxthe Chebyshev and Legendre polynomials as special cases.
Algorithm Recurrence relation (Abramowitz and Stegun, 1972)
Jn Bessel
Syntax Jn(m, x)
Description Returns the value of the Bessel functigfx) of the first kind.
Arguments
m integer,0<m< 100 .
X real number
Comments Solution of the differential equatiox? Dd—zzy +X Dc%(y +(x2-n?)y = 0
Algorithm Steed’s method (Press al, 1992) >
See also Yn
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Js (Professional) Bessel
Syntax is(n, x)
Description Returns the value of the spherical Bessel function of the first kind, of mrdéex.
Arguments
X real numberx > 0; x = 0 is permitted fojs if n=0
n integer
2
Comments Solution of the differential equatiom(2 Dd—zy +2 X Dc%(y + (x2— nn+1))y=10
dx
Algorithm Small order approximation, upward recurrence relation (Abramowitz and Stegun, 1972t Press
al., 1992)
See also ys
KO Bessel
Syntax KO(x)
Description Returns the value of the modified Bessel functiog(x) of the second kind. Sanédax).
Arguments
X real numberx >0
Algorithm Small order approximation (Abramowitz and Stegun, 1972)
K1l Bessel
Syntax K1(x)
Description Returns the value of the modified Bessel functioy(x) of the second kind. Sanélax).
Arguments
X real numberx >0
Algorithm Small order approximation (Abramowitz and Stegun, 1972)
Kn Bessel
Syntax Kn(m, x)
Description Returns the value of the modified Bessel functiop(x) of the second kind.
Arguments
m integer,0<m< 100 .
X real numberx >0

Functions 49



2
Comments Solution of the differential equatiox? Dd—zy +X Dc%(y— (x2+n?)y =0
dx
See also In
Algorithm Small order approximation, upward recurrence relation (Abramowitz and Stegun, 1972t Press
al., 1992)
ksmooth (Professional) Regression and Smoothing
Syntax ksmooth(vx, vy, b)
Description Creates a new vector, of the same sizeyady using a Gaussian kernel to return weighted
averages ofy.
Arguments
VX, VY realvectors of the same size; elementsxoMmust be in ascending order
b real bandwidthp > 0; controls the smoothing window and should be setto a few times the spacing
between your data points on thaxis, depending on how big of a window you want to use when
smoothing
Comments Theksmooth function uses a Gaussian kernel to compute local weighted averages of the input
vectorvy. This smoother is most useful when your data lies along a band of relatively constant
width. If your data lies scattered along a band whose width fluctuates considerably, you should
use an adaptive smoother lig@psmooth.
For eachvy, in the-element vectory, theksmooth function returns a newy’;  given by:
n . — Vf’
z K%YX' EK/y-
4 b O 1 . 2 .
vy = ———— where:K(t) = Cexpp 0
VX 2 .37)2
iK%yxl VX0 J21[{0.37) [00.37)
i< b
andb is a bandwidth which you supply to tkemooth function. The bandwidth is usually set
to a few times the spacing between data points or #ixés, depending on how big a window
you want to use when smoothing.
Algorithm Moving window Gaussian kernel smoothing (Lorczak)
See also medsmooth for more detailssupsmooth
kurt Statistics
Syntax kurt(A)
Description Returns the kurtosis of the elementstof
0 -1n-1A. .- 40
kurt(A) = S mn(mn+ 1) e i mear(A) 0__ 3(mn-1)2
gmn— 1)(mn-2)(mn-3), ZO jZ OD StdeA) U % (mn—2)(mn-23)
Arguments
A real or complexm x n matrix or vectorm[n= 4
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Lag (Professional) Special
Syntax Lag(n, )
Description Returns the value of the Laguerre polynomial of degraex.
Arguments
n integer,n=0
X real number
Comments The Laguerre polynomial is a solution of the differential equation
o d
XO—y+(1-x)O=y+nly= 0.
dx dx
Algorithm Recurrence relation (Abramowitz and Stegun, 1972)
last Vector and Matrix
Syntax last(v)
Description Returns the index of the last element in vegtor
Arguments
\ vector
Comments last(v) =length(v) - 1 + ORIGIN
See also rows
lcm Number Theory/Combinatorics
Syntax lcm(A)
Description Returns the smallest positive integer that is a multiple of all the values in thAalaig integer
is known as the least common multiple of the elemems in
Arguments
A integer matrix or vector; all elements/fare greater than zero
Algorithm Euclid’s algorithm (Niven and Zuckerman, 1972)
See also gcd
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Leg (Professional) Special
Syntax Leg(n, )
Description Returns the value of the Legengrelynomial of degree at x.
Arguments
n integer,n=0
X real number
Comments The Legendre polynomial is a solution of the differential equation
2, _d* d
(1-x)O—=y-2O=y+ndOn+1)0= 0.
dX2 dx
Algorithm Recurrence relation (Abramowitz and Stegun, 1972)
length Vector and Matrix
Syntax length(v)
Description Returns the number of elements in vestor
Arguments
\ vector
Comments Same asows(v)
linfit Regression and Smoothing
Syntax linfit(vx, vy, F)
Description Returns a vector containing the coefficients used to create a linear combination of the functions
in F which best approximates the datavinandvy. Seegenfit for a more general technique.
Arguments
VX, VY realvectors of the same size; elementsxthould be in ascending order
F a function that returns a vector of functions
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Example

Comments

Algorithm

See also
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Not all data sets can be modeled by lines or polynomials. There are times when you need to model
your data with a linear combination of arbitrary functions, none of which represent terms of a
polynomial. For example, in a Fourier series you try to approximate data using a linear
combination of complex exponentials. Or you may believe your data can be modeled by a
weighted combination of Legendre polynomials, but you just don't know what weights to assign.

Thelinfit function is designed to solve these kinds of problems. If you believe your data could
be modeled by a linear combination of arbitrary functions:

y = agdg(x) +a, 01(x) + ... +a, [F,(x) , you should usknfit to evaluate the; . The exam-
ple above shows a linear combination of three functipr$, and(x + 1)~1 to model some data.

There are times however when the flexibilityliofit is still not enough. Your data may have to

be modeled not by a linear combination of data but by some function whose parameters must be
chosen. For example, if your data can be modeled by the sum:

f(x) = a,; [6in(2x) + a, (tanh(3x) and all you need to do is solve for the unknown weights

a, anda, , then thénfit function is sufficient. By contrast, if instead your data is to be modeled

by the sumf(x) = 2 [sin(a;x) + 3 tanh(a,x) and you now have to solve for the unknown
parametersy; and, ,you should usegdbasfit function.

SVD-based least squares minimization (Petsd, 1992)

genfit

linterp
Syntax
Description

Arguments
VX, VY
X

Interpolation and Prediction

linterp(vx, vy, X)

Returns a linearly interpolated valuexat

realvectors of the same size; elementsxothould be in ascending order
real number at which to interpolate
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Interpolation involves using existing data points to predict values between these data points.
Mathcad allows you to either connect the data points with straight lines (linear interpolation) or
to connect them with sections of a cubic polynomial (cubic spline interpolation).

Unlike the regression functions discussed elsewhere, these interpolation functions return a curve
which must pass through the points you specify. Therefore, the resulting function is very sensitive

to spurious data points. If your data is noisy, you should consider using the regression functions
instead.

Be sure that every element in theandvy arrays contains a data value. Because every element
in an array must have a value, Mathcad assigns 0 to any elements you have not explicitly assigned.

To find the interpolated value for a particulatinterp finds the two points between which the
value falls and returns the correspondinglue on the straight line between the two points.

For x values before the first point irx, linterp extrapolates the straight line between the first
two data points. Fax values beyond the last pointur, linterp extrapolates the straight line
between the last two data points.

For best results, the valuex$hould be between the largest and smallest values in the vector
vx. Thelinterp function is intended for interpolation, not extrapolation. Consequently, computed
values forx outside this range are unlikely to be useful. @eelict for an alternative.
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In
Syntax

Description

Arguments
Z

Example

Comments

See also

Log and Exponential
In(2)

Returns the natural logarithm of nonzer(o basee). It is the principal value (imaginary part
betweent and-1) for complexz

real or complex number
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In general, a complex argument to the natural log function returns:
In(x+i0y) = In|x+i0+atan(y/x) 0 + 2Ch Ot 0

Mathcad'dn function returns the value correspondingite= 0 , namely:
In(x+i0y) = In|x+i0 + atan(y/x) 0O (principal branch of the natural log function).

log

LoadColormap

Syntax
Description

Arguments
file

Comments

See also

File Access
LoadColormap(file)

Returns an array containing the values in the colorfitep

string variable corresponding to CMP filename

The filefile is the name of a colormap located in the CMAPS subdirectory of your Mathcad

directory. The functiom.oadColormap is useful when you want to edit a colormap or use it to

create a new colormap. See on-line Help for more information

SaveColormap
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loess

(Professional) Regression and Smoothing

One-dimensional Case

Syntax

Description

Arguments
VX, VY
span

Example

Comments

loess(vx, vy, span

Returns the vector required by timerp function to find the set of second order polynomials
that best fit particular neighborhoods of data points specified in arxaysdvy.

real vectors of the same size
realspan>0 specifies how large a neighborhdoess will consider in performing this local
regression
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Instead of generating a single polynomial the wegress doesjoess generates a different
second order polynomial depending on where you are on the curve. It does this by examining
the data in a small neighborhood of the point you're interested in. The argpaernontrols

the size of this neighborhood. Apangets largerloess becomes equivalent tegress with

n = 2. A good default value ispan= 0.75

The example above shows hepanaffects the fit generated by thaess function. A smaller
value ofspanmakes the fitted curve track fluctuations in data more effectively. A larger value
of spantends to smear out fluctuations in data and thereby generates a smoother fit.
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Two-dimensional Case

Syntax loess(Mxy, vz, spar)
Description Returns the vector required by timerp function to find the set of second order polynomials
that best fit particular neighborhoods of data points specified in avtaysandvz.
Arguments
Mxy real mx 2 matrix containingk-y coordinates of then data points
vz realm-element vector containing tzeoordinates corresponding to the points specifiddxn
span real span>0 specifies how large a neighborhdoess will consider in performing this local
regression
Comments Can be extended naturally to the three- and four-dimensional cases (that is, up to four independent
variables).
Algorithm Local polynomial estimation (Cleveland and Devlin, 1988)
See also regress for more details
log Log and Exponential
Classical Definition
Syntax log(2)
Description Returns the common logarithm of nonzexto base 10. The result is the principal value
(imaginary part between and-m) for complexz.
Arguments
z real or complex number
Extended Definition
Syntax log(z, b
Description Returns the logarithm of nonzemto baseb. The result is the principal value (imaginary part
betweent and-T) for complexz
Arguments
z real or complex number
b real numberb>1
See also In
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Isolve (Professional) Vector and Matrix

Syntax Isolve(M, v)
Description Returns a solution vectarsuch thaM x = v
Arguments
M real or complex square matrix that is neither singular nor nearly singular
% real or complex vector
Example
Ax-hiymf
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Comments A matrix is singular if its determinant is zero; itis nearly singular if it has a high condition number.
Alternatively, you can solve a system of linear equations by using matrix inversion, via numeric
or symbolic solve blocks.

Algorithm LU decomposition and forward/backward substitution (Pe¢ss, 1992)
Ispline Interpolation and Prediction
One-dimensional Case
Syntax Ispline(vx, vy)
Description Returns the vector of coefficients of a cubic spline with linear ends. This vector becomes the first

argument of thénterp function.

Arguments
VX, VY real vectors of the same size; elementgxofmust be in ascending order
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Comments
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Cubic spline interpolation lets you pass a curve through a set of points so that the first and second
derivatives of the curve are continuous across each point. This curve is assembled by taking three
adjacent points and constructing a cubic polynomial passing through those points. These cubic
polynomials are then strung together to form the completed curve.

To fit a cubic spline curve through a set of points:

1.

Create the vectoks andvy containing thec andy coordinates through which you want the
cubic spline to pass. The elementsrthould be in ascending order. (Although we use the
namesrx, vy, andvs, there is nothing special about these variable names; you can use
whatever names you prefer.)

Generate the vectars := Ispling(vx, vy) . The veatsis a vector of intermediate results
designed to be used wittiterp. It contains, among other things, the second derivatives for
the spline curve used to fit the points/iandvy.

To evaluate the cubic spline at an arbitrary pointxSagvaluateinterp(vs, vx vy, x0)
wherevs, vx, andvy are the vectors described earlier.

You could have accomplished the same task by evaluating:

interp(Isplingvx, vy), vx, vy, x0) . As a practical matter, though, you'll probably be
evaluatingnterp for many different points.

The call tdspline can be time-consuming and the result won't change from one point to the next,
so it makes sense to do it just once and store the outcomevisairay.

Be sure that every element in the input arrays contains a data value. Because every element in :
array must have a value, Mathcad assigns 0 to any elements you have not explicitly assigned.
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In addition talspline, Mathcad comes with three other cubic spline functipsgtine, cspline,
andbspline. Thepspline function generates a spline curve that approaches a parabola at the
endpoints, while thespline function generates a spline curve that can be fully cubic at the
endpoints.bspline, on the other hand, allows the interpolation knots to be chosen by the user.

Forlspline, the first three components of the output veutoarevs;=0 (a code tellingnterp
thatvsis the output of a spline function as opposed to a regression funetigs,(the index
within vswhere the second derivative coefficients begin)\apd0 (a code denotinigpline).
The first three components fespline andcspline are identical excepts,=1 (the code denoting
pspline) andvs,=2 (the code denotingspline), respectively.

Two-dimensional Case

Syntax

Description

Arguments
Mxy

Mz

Comments

Ispline(Mxy, Mz)

Returns the vector of coefficients of a two-dimensional cubic spline, constrained to be linear at
region boundaries spanned lxy . This vector becomes the first argument ofititerp
function.

nx 2 matrix whose elementd/xy; , amdixy, ; , specifythandy-coordinates along the
diagonalof a rectangular grid. This matrix plays exactly the same role asthe one-

dimensional case described earlier. Since these points describe a diagonal, the elements in each
column ofMxy must be in ascending ordeviky; | < MXY; whenevej ).

n x n matrix whosejth element is the-coordinate corresponding to the paint Mxy; o and

y = Mxy; ;. Mz plays exactly the same roleasdoes in the one-dimensional case above.

Mathcad handles two-dimensional cubic spline interpolation in much the same way as the one-

dimensional case. Instead of passing a curve through a set of points so that the first and second
derivatives of the curve are continuous across each point, Mathcad passes a surface through a

grid of points. This surface corresponds to a cubic polynombahimdy in which the first and

second partial derivatives are continuous in the corresponding direction across each grid point.

The first step in two-dimensional spline interpolation is exactly the same as that in the one-
dimensional case: specify the points through which the surface is to pass. The procedure,
however, is more complicated because you now have to specify a grid of points.

To perform two-dimensional spline interpolation, follow these steps:

1. CreateMxy.
2. CreateMz.
3. Generate the vectors:=Ispline(Mxy,Mz) . The vectsiis a vector of intermediate
results designed to be used wititerp.
To evaluate the cubic spline at an arbitrary point, (sé@y y0) , evaluate
0 0
interplvs, Mxy, Mz, {XO}D , Wherevs, Mxy, andMz are as described earlier.
O y0|O

The result is the value of the interpolating surface corresponding to the arbitrary point
(x0, y0) . You could have accomplished exactly the same task by evaluating:

. g . %08
interpdisplindMxy,Mz ), Mxy,Mz, O.
O y0|O
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