[image: image1.jpg]NETWORK

AN INTERDISCIPLINARY APPROACH TO DESIGNING FAST NETWORKED DEVICES

GEORGE VARGHESE





Network Algorithmics
[image: image2.jpg]



The Morgan Kaufmann Series in Networking
Series Editor, David Clark, M.I.T.
Network Algorithmics: An Interdisciplinary Approach to
Designing Fast Networked Devices
George Varghese

Network Recovery: Protection and Restoration of Optical,
SONET-SDH, IP, and MPLS
Jean Philippe Vasseur, Mario Pickavet, and Piet Demeester

Routing, Flow, and Capacity Design in Communication
and Computer Networks
Michal Piуro and Deepankar Medhi

Wireless Sensor Networks: An Information Processing
Approach
Feng Zhao and Leonidas Guibas

Communication Networking: An Analytical Approach
Anurag Kumar, D. Manjunath, and Joy Kuri

The Internet and Its Protocols: A Comparative Approach
Adrian Farrel

Modern Cable Television Technology: Video, Voice, and
Data Communications, 2e

Walter Ciciora, James Farmer, David Large, and Michael Adams

Bluetooth Application Programming with the Java APIs
C. Bala Kumar, Paul J. Kline, and Timothy J. Thompson

Policy-Based Network Management: Solutions for
the Next Generation
John Strassner

Computer Networks: A Systems Approach, 3e

Larry L. Peterson and Bruce S. Davie

Network Architecture, Analysis, and Design, 2e

James D. McCabe

MPLS Network Management: MIBs, Tools, and Techniques
Thomas D. Nadeau

Developing IP-Based Services: Solutions for Service
Providers and Vendors
Monique Morrow and Kateel Vijayananda

Telecommunications Law in the Internet Age
Sharon K. Black



Optical Networks: A Practical Perspective, 2e

Rajiv Ramaswami and Kumar N. Sivarajan

Internet QoS: Architectures and Mechanisms
Zheng Wang

TCP/IP Sockets in Java: Practical Guide for Programmers
Michael J. Donahoo and Kenneth L. Calvert

TCP/IP Sockets in C: Practical Guide for Programmers
Kenneth L. Calvert and Michael J. Donahoo

Multicast Communication: Protocols, Programming,
and Applications
Ralph Wittmann and Martina Zitterbart

MPLS: Technology and Applications
Bruce Davie and Yakov Rekhter

High-Performance Communication Networks, 2e

Jean Walrand and Pravin Varaiya

Internetworking Multimedia
Jon Crowcroft, Mark Handley, and Ian Wakeman

Understanding Networked Applications: A First Course
David G. Messerschmitt

Integrated Management of Networked Systems: Concepts,
Architectures, and Their Operational Applications
Heinz-Gerd Hegering, Sebastian Abeck, and Bernhard Neumair

Virtual Private Networks: Making the Right Connection
Dennis Fowler

Networked Applications: A Guide to the New Computing
Infrastructure
David G. Messerschmitt

Wide Area Network Design: Concepts and Tools for
Optimization
Robert S. Cahn

For further information on these books and for a list of forth-
coming titles, please visit our website at http://www.mkp.com.
[image: image3.jpg]


[image: image4.jpg]



Network Algorithmics
An Interdisciplinary Approach to Designing
Fast Networked Devices
George Varghese
University of California, San Diego
AMSTERDAM • BOSTON • HEIDELBERG • LONDON

NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

MORGAN KAUFMANN PUBLISHERS IS AN IMPRINT OF ELSEVIER
Elsevier/Morgan Kaufmann

Publishing Director: Diane D. Cerra

Senior Acquisitions Editor: Rick Adams

Associate Editor: Karyn Johnson

Editorial Coordinator: Mona Buehler

Publishing Services Manager: Simon Crump

Senior Project Manager: Angela Dooley

Cover Design Manager: Cate Rickard Barr

Cover Design: Yvo Riezebos Design

Morgan Kaufmann is an imprint of Elsevier.



Cover Image: Getty Images

Text Design: Michael Remener

Composition: CEPHA

Technical Illustration: Dartmouth Publishing, Inc.

Copyeditor: Elliot Simon

Proofreader: Phyllis Coyne et al.

Indexer: Northwind Editorial

Interior Printer: The Maple-Vail Book Manufacturing Group

Cover Printer: Phoenix Color

500 Sansome Street, Suite 400, San Francisco, CA 94111

This book is printed on acid-free paper.

© 2005 by Elsevier Inc.

Designations used by companies to distinguish their products are often claimed as trademarks or registered

trademarks. In all instances in which Elsevier is aware of a claim, the product names appear in initial capital or all

capital letters. Readers, however, should contact the appropriate companies for more complete information regarding

trademarks and registration.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means

electronic, mechanical, photocopying, scanning, or otherwise without prior written permission of the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in Oxford, UK: phone:

(+44) 1865 843830, fax: (+44) 1865 853333, e-mail: permissions@elsevier.com.uk. You may also complete your

request on-line via the Elsevier homepage (http://elsevier.com) by selecting “Customer Support” and then “Obtaining

Permissions.”
Library of Congress Cataloging-in-Publication Data

Application submitted

ISBN: 0-12-088477-1

For information on all Morgan Kaufmann publications,

visit our website at www.mkp.com.

Printed in the United States of America

08 07 06 05 04
5 4 3 2 1

For Aju and Tim and Andrew, who made all this possible . . .

P R E F A C E
x i x



C O N T E N T S
P A R T I
T h e R u l e s o f t h e G a m e


1
C H A P T E R 1
Introducing Network Algorithmics
3
1.1
The Problem: Network Bottlenecks
3
1.1.1
Endnode Bottlenecks
4

1.1.2
Router Bottlenecks
5

1.2
The Techniques: Network Algorithmics
7
1.2.1
Warm-up Example: Scenting an Evil Packet
8

1.2.2
Strawman Solution
9

1.2.3
Thinking Algorithmically
9

1.2.4
Reﬁning the Algorithm: Exploiting Hardware
10

1.2.5
Cleaning Up
11

1.2.6
Characteristics of Network Algorithmics
13

1.3
Exercise
15
C H A P T E R 2
Network Implementation Models
16
2.1
Protocols
17
2.1.1
Transport and Routing Protocols
17

2.1.2
Abstract Protocol Model
17

2.1.3
Performance Environment and Measures
19

2.2
Hardware
21
2.2.1
Combinatorial Logic
21

2.2.2
Timing and Power
22



vii
viii


Contents



2.2.3
Raising the Abstraction Level of Hardware Design
23

2.2.4
Memories
25

2.2.5
Memory Subsystem Design Techniques
29

2.2.6
Component-Level Design
30

2.2.7
Final Hardware Lessons
31

2.3
Network Device Architectures
32
2.3.1
Endnode Architecture
32

2.3.2
Router Architecture
34

2.4
Operating Systems
39
2.4.1
Uninterrupted Computation via Processes
39

2.4.2
Inﬁnite Memory via Virtual Memory
41

2.4.3
Simple I/O via System Calls
43

2.5
Summary
44
2.6
Exercises
44
C H A P T E R 3
Fifteen Implementation Principles
50
3.1
Motivating the Use of Principles — Updating Ternary Content-Addressable
Memories
50
3.2
Algorithms versus Algorithmics
54
3.3
Fifteen Implementation Principles — Categorization and Description
56
3.3.1
Systems Principles
56

3.3.2
Principles for Modularity with Efﬁciency
61

3.3.3
Principles for Speeding Up Routines
63

3.4
Design versus Implementation Principles
65
3.5
Caveats
66
3.5.1
Eight Cautionary Questions
68

3.6
Summary
70
3.7
Exercises
70
C H A P T E R 4
Principles in Action
73
4.1
Buffer Validation of Application Device Channels
74
4.2
Scheduler for Asynchronous Transfer Mode Flow Control
76
4.3
Route Computation Using Dijkstra’s Algorithm
77
4.4
Ethernet Monitor Using Bridge Hardware
80

4.5
Demultiplexing in the X-Kernel
81
4.6
Tries with Node Compression
83
4.7
Packet Filtering in Routers
85
4.8
Avoiding Fragmentation of Link State Packets
87
4.9
Policing Trafﬁc Patterns
90
4.10
Identifying a Resource Hog
92
4.11
Getting Rid of the TCP Open Connection List
93
4.12
Acknowledgment Withholding
96
4.13
Incrementally Reading a Large Database
98
4.14
Binary Search of Long Identiﬁers
100
4.15
Video Conferencing via Asynchronous Transfer Mode
102


Contents



ix
P A R T II
P l a y i n g w i t h E n d n o d e s
C H A P T E R 5
Copying Data
107
5.1
Why Data Copies
109
5.2
Reducing Copying via Local Restructuring
111
5.2.1
Exploiting Adaptor Memory
111

5.2.2
Using Copy-on-Write
113

5.2.3
Fbufs: Optimizing Page Remapping
115



105
5.2.4
Transparently Emulating Copy Semantics
119

5.3
Avoiding Copying Using Remote DMA
121
5.3.1
Avoiding Copying in a Cluster
122

5.3.2
Modern-Day Incarnations of RDMA
123

5.4
Broadening to File Systems
125
5.4.1
Shared Memory
125

5.4.2
IO-Lite: A Uniﬁed View of Buffering
126

5.4.3
Avoiding File System Copies via I/O Splicing
128

5.5
Broadening beyond Copies
129
5.6
Broadening beyond Data Manipulations
131
5.6.1
Using Caches Effectively
131

5.6.2
Direct Memory Access versus Programmed I/O
135

x


Contents
5.7
Conclusions
135
5.8
Exercises
137
C H A P T E R 6
Transferring Control
139
6.1
Why Control Overhead?
141
6.2
Avoiding Scheduling Overhead in Networking Code
143
6.2.1
Making User-Level Protocol Implementations Real
144

6.3
Avoiding Context-Switching Overhead in Applications
146
6.3.1
Process per Client
147

6.3.2
Thread per Client
148

6.3.3
Event-Driven Scheduler
150

6.3.4
Event-Driven Server with Helper Processes
150

6.3.5
Task-Based Structuring
151

6.4
Fast Select
153
6.4.1
A Server Mystery
153

6.4.2
Existing Use and Implementation of Select()
154

6.4.3
Analysis of Select()
155

6.4.4
Speeding Up Select() without Changing the API
157

6.4.5
Speeding Up Select() by Changing the API
158

6.5
Avoiding System Calls
159
6.5.1
The Virtual Interface Architecture (VIA) Proposal
162

6.6
Reducing Interrupts
163
6.6.1
Avoiding Receiver Livelock
164

6.7
Conclusions
165
6.8
Exercises
166
C H A P T E R 7
Maintaining Timers
169
7.1
Why Timers?
169
7.2
Model and Performance Measures
171
7.3
Simplest Timer Schemes
172
7.4
Timing Wheels
173
7.5
Hashed Wheels
175
7.6
Hierarchical Wheels
176
7.7
BSD Implementation
178

7.8
Obtaining Fine-Granularity Timers
179
7.9
Conclusions
180
7.10
Exercises
181
C H A P T E R 8
Demultiplexing
182


Contents



xi
8.1
Opportunities and Challenges of Early Demultiplexing
184
8.2
Goals
184
8.3
CMU/Stanford Packet Filter: Pioneering Packet Filters
185
8.4
Berkeley Packet Filter: Enabling High-Performance Monitoring
186
8.5
Pathﬁnder: Factoring Out Common Checks
189
8.6
Dynamic Packet Filter: Compilers to the Rescue
192
8.7
Conclusions
195
8.8
Exercises
195
C H A P T E R 9
Protocol Processing
197
9.1
Buffer Management
198
9.1.1
Buffer Allocation
199

9.1.2
Sharing Buffers
201

9.2
Cyclic Redundancy Checks and Checksums
203
9.2.1
Cyclic Redundancy Checks
204

9.2.2
Internet Checksums
207

9.2.3
Finessing Checksums
209

9.3
Generic Protocol Processing
209
9.3.1
UDP Processing
212

9.4
Reassembly
213
9.4.1
Efﬁcient Reassembly
214

9.5
Conclusions
216
9.6
Exercises
217
P A R T III
P l a y i n g w i t h R o u t e r s
C H A P T E R 1 0
Exact-Match Lookups
221
10.1
Challenge 1: Ethernet under Fire
222


219
xii


Contents
10.2
Challenge 2: Wire Speed Forwarding
224
10.3
Challenge 3: Scaling Lookups to Higher Speeds
228
10.3.1 Scaling via Hashing
228

10.3.2 Using Hardware Parallelism
230

10.4
Summary
231
10.5
Exercise
232
C H A P T E R 1 1
Preﬁx-Match Lookups
233
11.1
Introduction to Preﬁx Lookups
234
11.1.1
Preﬁx Notation
234

11.1.2
Why Variable-Length Preﬁxes?
235

11.1.3
Lookup Model
236

11.2
Finessing Lookups
238
11.2.1
Threaded Indices and Tag Switching
238

11.2.2
Flow Switching
240

11.2.3
Status of Tag Switching, Flow Switching, and Multiprotocol

Label Switching
241

11.3
Nonalgorithmic Techniques for Preﬁx Matching
242
11.3.1
Caching
242

11.3.2
Ternary Content-Addressable Memories
242

11.4
Unibit Tries
243
11.5
Multibit Tries
245
11.5.1
Fixed-Stride Tries
246

11.5.2
Variable-Stride Tries
247

11.5.3
Incremental Update
250

11.6
Level-Compressed (LC) Tries
250
11.7
Lulea-Compressed Tries
252
11.8
Tree Bitmap
255
11.8.1
Tree Bitmap Ideas
255

11.8.2
Tree Bitmap Search Algorithm
256

11.9
Binary Search on Ranges
257
11.10 Binary Search on Preﬁx Lengths
259
11.11 Memory Allocation in Compressed Schemes
261
11.11.1 Frame-Based Compaction
262

11.12 Lookup-Chip Model
263
11.13 Conclusions
265
11.14 Exercises
266
C H A P T E R 1 2
Packet Classiﬁcation
270
12.1
Why Packet Classiﬁcation?
271
12.2
Packet-Classiﬁcation Problem
273
12.3
Requirements and Metrics
275
12.4
Simple Solutions
276
12.4.1 Linear Search
276

12.4.2 Caching
276

12.4.3 Demultiplexing Algorithms
277

12.4.4 Passing Labels
277

12.4.5 Content-Addressable Memories
278

12.5
Two-Dimensional Schemes
278
12.5.1 Fast Searching Using Set-Pruning Trees
278

12.5.2 Reducing Memory Using Backtracking
281

12.5.3 The Best of Both Worlds: Grid of Tries
281

12.6
Approaches to General Rule Sets
284
12.6.1 Geometric View of Classiﬁcation
284

12.6.2 Beyond Two Dimensions: The Bad News
286

12.6.3 Beyond Two Dimensions: The Good News
286

12.7
Extending Two-Dimensional Schemes
287
12.8
Using Divide-and-Conquer
288
12.9
Bit Vector Linear Search
289
12.10 Cross-Producting
292
12.11 Equivalenced Cross-Producting
293
12.12 Decision Tree Approaches
296
12.13 Conclusions
299
12.14 Exercises
300
C H A P T E R 1 3
Switching
302
13.1
Router versus Telephone Switches
304


Contents



xiii
xiv


Contents
13.2
Shared-Memory Switches
305
13.3
Router History: From Buses to Crossbars
305
13.4
The Take-a-Ticket Crossbar Scheduler
307
13.5
Head-of-Line Blocking
311
13.6
Avoiding Head-of-Line Blocking via Output Queuing
312
13.7
Avoiding Head-of-Line Blocking by Using Parallel Iterative
Matching
314
13.8
Avoiding Randomization with iSLIP
316
13.8.1 Extending iSLIP to Multicast and Priority
320

13.8.2 iSLIP Implementation Notes
322

13.9
Scaling to Larger Switches
323
13.9.1 Measuring Switch Cost
324

13.9.2 Clos Networks for Medium-Size Routers
324

13.9.3 Benes Networks for Larger Routers
328

13.10 Scaling to Faster Switches
333
13.10.1 Using Bit Slicing for Higher-Speed Fabrics
333

13.10.2 Using Short Links for Higher-Speed Fabrics
334

13.10.3 Memory Scaling Using Randomization
335

13.11 Conclusions
336
13.12 Exercises
337
C H A P T E R 1 4
Scheduling Packets
339
14.1
Motivation for Quality of Service
340
14.2
Random Early Detection
342
14.3
Token Bucket Policing
345
14.4
Multiple Outbound Queues and Priority
346
14.5
A Quick Detour into Reservation Protocols
347
14.6
Providing Bandwidth Guarantees
348
14.6.1 The Parochial Parcel Service
348

14.6.2 Deﬁcit Round-Robin
350

14.6.3 Implementation and Extensions of Deﬁcit Round-Robin
351

14.7
Schedulers That Provide Delay Guarantees
354
14.8
Scalable Fair Queuing
358
14.8.1 Random Aggregation
359


14.8.2 Edge Aggregation
359

14.8.3 Edge Aggregation with Policing
360

14.9
Summary
361
14.10 Exercises
361


Contents



xv
C H A P T E R 1 5
Routers as Distributed Systems
362
15.1
Internal Flow Control
363
15.1.1 Improving Performance
364

15.1.2 Rescuing Reliability
365

15.2
Internal Striping
368
15.2.1 Improving Performance
368

15.2.2 Rescuing Reliability
369

15.3
Asynchronous Updates
371
15.3.1 Improving Performance
372

15.3.2 Rescuing Reliability
373

15.4
Conclusions
373
15.5
Exercises
374
P A R T IV
E n d g a m e


377
C H A P T E R 1 6
Measuring Network Trafﬁc
379
16.1
Why Measurement Is Hard
381
16.1.1 Why Counting Is Hard
381

16.2
Reducing SRAM Width Using DRAM Backing Store
382
16.3
Reducing Counter Width Using Randomized Counting
384
16.4
Reducing Counters Using Threshold Aggregation
385
16.5
Reducing Counters Using Flow Counting
387
16.6
Reducing Processing Using Sampled NetFlow
388
16.7
Reducing Reporting Using Sampled Charging
389
16.8
Correlating Measurements Using Trajectory Sampling
390
16.9
A Concerted Approach to Accounting
392
16.10 Computing Trafﬁc Matrices
393
16.10.1 Approach 1: Internet Tomography
394

xvi


Contents



16.10.2 Approach 2: Per-Preﬁx Counters
394

16.10.3 Approach 3: Class Counters
395

16.11 Sting as an Example of Passive Measurement
395
16.12 Conclusion
396
16.13 Exercises
397
C H A P T E R 1 7
Network Security
399
17.1
Searching for Multiple Strings in Packet Payloads
401
17.1.1 Integrated String Matching Using Aho–Corasick
402

17.1.2 Integrated String Matching Using Boyer–Moore
403

17.2
Approximate String Matching
405
17.3
IP Traceback via Probabilistic Marking
406
17.4
IP Traceback via Logging
409
17.4.1 Bloom Filters
410

17.4.2 Bloom Filter Implementation of Packet Logging
412

17.5
Detecting Worms
413
17.6
Conclusion
415
17.7
Exercises
415
C H A P T E R 1 8
Conclusions
417
18.1
What This Book Has Been About
418
18.1.1 Endnode Algorithmics
418

18.1.2 Router Algorithmics
419

18.1.3 Toward a Synthesis
420

18.2
What Network Algorithmics Is About
423
18.2.1 Interdisciplinary Thinking
423

18.2.2 Systems Thinking
424

18.2.3 Algorithmic Thinking
425

18.3
Network Algorithmics and Real Products
427
18.4
Network Algorithmics: Back to the Future
429
18.4.1 New Abstractions
429

18.4.2 New Connecting Disciplines
430

18.4.3 New Requirements
431

18.5
The Inner Life of a Networking Device
431
A P P E N D I X
Detailed Models
433
A.1
TCP and IP
433
A.1.1
Transport Protocols
433

A.1.2
Routing Protocols
436

A.2
Hardware Models
437
A.2.1
From Transistors to Logic Gates
437

A.2.2
Timing Delays
439

A.2.3
Hardware Design Building Blocks
439

A.2.4
Memories: The Inside Scoop
440

A.2.5
Chip Design
441

A.3
Switching Theory
442


Contents



xvii
A.3.1
Matching Algorithms for Clos Networks with k = n
442

A.4
The Interconnection Network Zoo
443
Bibliography
445
Index
457

P R E F A C E
Computer networks have become an integral part of society. We take for granted the ability

to transact commerce over the Internet and that users can avail themselves of a burgeoning

set of communication methods, which range from ﬁle sharing to Web logs. However, for

networks to take their place as part of the fundamental infrastructure of society, they must

provide performance guarantees.

We take for granted that electricity will ﬂow when a switch is ﬂicked and that telephone

calls will be routed on Mother’s Day. But the performance of computer networks such as the

Internet is still notoriously unreliable. While there are many factors that go into performance,

one major issue is that of network bottlenecks. There are two types of network bottlenecks:

resource bottlenecks and implementation bottlenecks.

Resource bottlenecks occur when network performance is limited by the speed of the

underlying hardware; examples include slow processors in server platforms and slow com-

munication links. Resource bottlenecks can be worked around, at some cost, by buying faster

hardware. However, it is quite often the case that the underlying hardware is perfectly ade-

quate but that the real bottleneck is a design issue in the implementation. For example, a Web

server running on the fastest processors may run slowly because of redundant data copying.

Similarly, a router with a simple packet classiﬁcation algorithm may start dropping packets

when the number of ACL rules grows beyond a limit, though it keeps up with link speeds

when classiﬁcation is turned off. This book concentrates on such network implementation

bottlenecks, especially at servers and routers.

Beyond servers and routers, new breeds of networking devices that introduce new perfor-

mance bottlenecks are becoming popular. As networks become more integrated, devices such

as storage area networks (SANs) and multimedia switches are becoming common. Further, as

networks get more complex, various special-purpose network appliances for ﬁle systems and

security are proliferating. While the ﬁrst generation of such devices justiﬁed themselves by

the new functions they provided, it is becoming critical that future network appliances keep

up with link speeds.

Thus the objective of this book is to provide a set of techniques to overcome implemen-

tation bottlenecks at all networking devices and to provide a set of principles and models to

help overcome current and future networking bottlenecks.

xix
xx


Preface
AUDIENCE
This book was written to answer a need for a text on efﬁcient protocol implementations.

The vast majority of networking books are on network protocols; even the implementation

books are, for the most part, detailed explanations of the protocol. While protocols form the

foundation of the ﬁeld, there are just a handful of fundamental network infrastucture protocols

left, such as TCP and IP. On the other hand, there are many implementations as most companies

and start-ups customize their products to gain competitive advantage. This is exacerbated by

the tendency to place TCP and IP everywhere, from bridges to SAN switches to toasters.

Thus there are many more people implementing protocols than designing them. This is a
textbook for implementors, networking students, and networking researchers, covering ground
from the art of building a fast Web server to building a fast router and beyond.
To do so, this book describes a collection of efﬁcient implementation techniques; in fact,

an initial section of each chapter concludes with a Quick Reference Guide for implementors

that points to the most useful techniques for each topic. However, the book goes further and

distills a fundamental method of crafting solutions to new network bottlenecks that we call

network algorithmics. This provides the reader tools to design different implementations for

speciﬁc contexts and to deal with new bottlenecks that will undoubtedly arise in a changing

world.

Here is a detailed proﬁle of our intended audience.

•
Network Protocol Implementors: This group includes implementors of endnode

networking stacks for large servers, PCs, and workstations and for network appliances. It

also includes implementors of classic network interconnection devices, such as routers,

bridges, switches, and gateways, as well as devices that monitor networks for measurement

and security purposes. It also includes implementors of storage area networks, distributed

computing infrastructures, multimedia switches and gateways, and other new networking

devices. This book can be especially useful for implementors in start-ups as well as in

established companies, for whom improved performance can provide an edge.

•
Networking Students: Undergraduate and graduate students who have mastered the basics

of network protocols can use this book as a text that describes how protocols should be

implemented to improve performance, potentially an important aspect of their future jobs.

•
Instructors: Instructors can use this book as a textbook for a one-semester course on

network algorithmics.

•
Systems Researchers: Networking and other systems researchers can use this text as a

reference and as a stimulus for further research in improving system performance. Given

that disributed operating systems and distributed computing infrastructures (e.g., the Grid)

rely on an underlying networking core whose performance can be critical, this book can be

useful to general systems researchers.

WHAT THIS BOOK IS ABOUT
Chapter 1 provides a more detailed introduction to network algorithmics. For now, we infor-

mally deﬁne network algorithmics as an interdisciplinary systems approach to streamlining

Preface



xxi
network implementations. Network algorithmics is interdisciplinary, because it requires tech-

niques from diverse ﬁelds such as architecture, operating systems, hardware design, and

algorithms. Network algorithmics is also a systems approach, because routers and servers are

systems in which efﬁciencies can be gained by moving functions in time and space between

subsystems.

In essence, this book is about three things: fundamental networking implementation bot-

tlenecks, general principles to address new bottlenecks, and techniques for speciﬁc bottlenecks

that can be derived from the general principles.

Fundamental bottlenecks for an endnode such as a PC or workstation include data copy-

ing, control transfer, demultiplexing, timers, buffer allocation, checksums, and protocol

processing. Similarly, fundamental bottlenecks for interconnect devices such as routers and

SAN switches include exact and preﬁx lookups, packet classiﬁcation, switching, and the

implementation of measurement and security primitives. Chapter 1 goes into more detail

about the inherent causes of these bottlenecks.

The fundamental methods that encompass network algorithmics include implementation

models (Chapter 2) and 15 implementation principles (Chapter 3). The implementation models

include models of operating systems, protocols, hardware, and architecture. They are included

because the world of network protocol implementation requires the skills of several different

communities, including operating system experts, protocol pundits, hardware designers, and

computer architects. The implementation models are an attempt to bridge the gaps between

these traditionally separate communities.

On the other hand, the implementation principles are an attempt to abstract the main ideas

behind many speciﬁc implementation techniques. They include such well-known principles as

“Optimize the expected case.” They also include somewhat less well-known principles, such

as “Combine DRAM with SRAM,” which is a surprisingly powerful principle for producing

fast hardware designs for network devices.

While Part I of the book lays out the methodology of network algorithmics, Part II applies
the methodology to speciﬁc network bottlenecks in endnodes and servers. For example, Part

II discusses copy avoidance techniques (such as passing virtual memory pointers and RDMA)

and efﬁcient control transfer methods (such as bypassing the kernel, as in the VIA proposal,

and techniques for building event-driven servers).

Similarly, Part III of the book applies the methodology of Part I to interconnect devices,

such as network routers. For example, Part III discusses effﬁcient preﬁx-lookup schemes (such

as multibit or compressed tries) and efﬁcient switching schemes (such as those based on virtual

output queues and bipartite matching).

Finally, Part IV of the book applies the methodology of Part I to new functions for security

and measurement that could be housed in either servers or interconnect devices. For example,

Part IV discusses efﬁcient methods to compress large trafﬁc reports and efﬁcient methods to

detect attacks.

ORGANIZATION OF THE BOOK
This book is organized into four overall parts. Each part is made as self-contained as possible

to allow detailed study. Readers that are pressed for time can consult the index or Table of

Contents for a particular topic (e.g., IP lookups). More importantly, the opening section of

xxii


Preface
each chapter concludes with a Quick Reference Guide that points to the most important topics

for implementors. The Quick Reference Guide may be the fastest guide for usefully skimming

a chapter.

Part I of the book aims to familiarize the reader with the rules and philosophy of network

algorithmics. It starts with Chapter 2, which describes simple models of protocols, operating

systems, hardware design, and endnode and router architectures. Chapter 3 describes in detail

the 15 principles used as a cornerstone for the book. Chapter 4 rounds out the ﬁrst part by

providing 15 examples, drawn for the most part from real implementation problems, to allow

the reader a ﬁrst opportunity to see the principles in action on real problems.

Part II of the book, called “Playing with Endnodes,” shows how to build fast endnode

implementations, such as Web servers, that run on general-purpose operating systems and stan-

dard computer architectures. It starts with Chapter 5, which shows how to reduce or avoid extra

data copying. (Copying often occurs when network data is passed between implementation

modules) and how to increase cache efﬁciency. Chapter 6 shows how to reduce or avoid the

overhead of transferring control between implementation modules, such as the device driver,

the kernel, and the application. Chapter 7 describes how to efﬁciently manage thousands of

outstanding timers, a critical issue for large servers. Chapter 8 describes how to efﬁciently

demultiplex data to receiving applications in a single step, allowing innovations such as user-

level networking. Chapter 9 describes how to implement speciﬁc functions that often recur

in speciﬁc protocol implementations, such as buffer allocation, checksums, sequence number

bookkeeping, and reassembly. An overview of Part II can be found in Figure 1.1.

Part III of the book, called “Playing with Routers,” shows how to build fast routers, bridges,

and gateways. It begins with three chapters that describe state lookups of increasing complexity.

Chapter 10 describes exact-match lookups, which are essential for the design of bridges and

ARP caches. Chapter 11 describes preﬁx-match lookups, which are used by Internet routers

to forward packets. Chapter 12 describes packet classiﬁcation, a more sophisticated form of

lookup required for security and quality of service. Chapter 13 describes how to build crossbar

switches, which interconnect input and output links of devices such as routers. Finally, Chapter

14 describes packet-scheduling algorithms, which are used to provide quality-of-service, and

Chapter 15 discusses routers as distributed systems, with examples focusing on performance

and the use of design and reasoning techniques from distributed algorithms. While this list of

functions seems short, one can build a fast router by designing a fast lookup algorithm, a fast

switch, and fast packet-scheduling algorithms. Part IV, called “Endgame,” starts by speculating

on the potential need for implementing more complex tasks in the future. For example, Chapter

16 describes efﬁcient implementation techniques for measurement primitives, while Chapter

17 describes efﬁcient implementation techniques for security primitives. The book ends with

a short chapter, Chapter 18, which reaches closure by distilling the unities that underly the

many different topics in this book. This chapter also brieﬂy presents examples of the use of

algorithmics in a canonical router (the Cisco GSR) and a canonical server (the Flash Web

server). A more detailed overview of Parts III and IV of the book can be found in Figure 1.2.

FEATURES
The book has the following features that readers, implementors, students, and instructors can

take advantage of.

Preface



xxiii
Intuitive introduction: The introductory paragraph of each chapter in Parts II, III, and IV uses

an intuitive, real-world analogy to motivate each bottleneck. For example, we use the

analogy of making multiple photocopies of a document for data copying and the analogy

of a ﬂight database for preﬁx lookups.

Quick Reference Guide: For readers familiar with a topic and pressed for time, the opening

section of each chapter concludes with a Quick Reference Guide that points to the most

important implementation ideas and the corresponding section numbers.

Chapter organization: To help orient the reader, immediately after the Quick Reference Guide

in each chapter is a map of the entire chapter.

Summary of techniques: To emphasize the correlation between principles and techniques, at

the start of each chapter is a table that summarizes the techniques described, together with

the corresponding principles.

Consistent use of principles: After a detailed description in Chapter 3 of 15 principles, the

rest of the book consistently uses these principles in describing speciﬁc techniques. For

reference, the principles are summarized inside the front cover. Principles are referred

to consistently by number — for example, P9 for Principle 9. Since principle numbers

are hard to remember, three aids are provided. Besides the inside front cover summary

and the summary at the start of each chapter, the ﬁrst use of a principle in any chapter is

accompanied by an explicit statement of the principle.

Exercises: Chapter 4 of the book provides a set of real-life examples of applying the principles

that have been enjoyed by past attendees of tutorials on network algorithmics. Every

subsequent chapter through Chapter 17 is followed by a set of exercises. Brief solutions to

these exercises can be found in an instructor’s manual obtainable from Morgan Kaufmann.

Slides: Lecture slides in pdf for most chapters are available at Morgan Kaufmann’s Web site

www.mkp.com.

USAGE
This book can be used in many ways.

Textbook:
Students and instructors can use this book as the basis of a one-semester class.

A semester class on network algorithmics can include most of Part I and can sample

chapters from Part II (e.g., Chapter 5 on copying, Chapter 6 on control overhead) and

from Part III (e.g., Chapter 11 on preﬁx lookups, Chapter 13 on switching).

Implementation guide:
Implementors who care about performance may wish to read all of

Part I and then sample Parts II and III according to their needs.

Reference book:
Implementors and students can also use this book as a reference book in

addition to other books on network protocols.

WHY THIS BOOK WAS WRITTEN
The impetus for this book came from my academic research into efﬁcient protocol implemen-

tation. It also came from three networking products I worked on with colleagues: the ﬁrst

bridge, the Gigaswitch, and the Procket 40 Gbps router. To prove itself against detractors, the

ﬁrst bridge was designed to operate at wire speed, an idea that spread to routers and the entire

xxiv


Preface
industry. My experience watching the work of Mark Kempf on the ﬁrst bridge (see Chapter 10)

led to a lasting interest in speeding up networking devices.

Next, the DEC Gigaswitch introduced me to the world of switching. Finally, the Procket

router was designed by an interdisciplinary team that included digital designers who had

designed processors, experts who had written vast amounts of the software in core routers, and

some people like myself who were interested in algorithms. Despite the varied backgrounds,

the team produced innovative new ideas, which convinced me of the importance of interdis-

ciplinary thinking for performance breakthroughs. This motivated the writing of Chapter 2

on implementation models, an attempt to bridge the gaps between the different communities

involved in high-performance designs.

For several years, I taught a class that collected together these techniques. The 15 principles

emerged as a way to break up the techniques more ﬁnely and systematically. In retrospect,

some principles seem redundant and glib. However, they serve as part of a ﬁrst attempt to

organize a vast amount of material.

I have taught ﬁve classes and three tutorials based on the material in this book, and so this

book has been greatly inﬂuenced by student responses and ideas.

ACKNOWLEDGMENTS
A special thanks to my editors: Karen Gettman and Rick Adams and Karyn Johnson; to all my

advisors, who taught me so much: Wushow Chou, Arne Nillson, Baruch Awerbuch, Nancy

Lynch; to all my mentors: Alan Kirby, Radia Perlman, Tony Lauck, Bob Thomas, Bob Simcoe,

Jon Turner; to numerous colleages at DEC and other companies, especially to Sharad Merhotra,

Bill Lynch, and Tony Li of Procket Networks, who taught me about real routers; to students

who adventured in the ﬁeld of network algorithmics with me; to numerous reviewers of this

book and especially to Jon Snader, Tony Lauck, Brian Kernighan, Craig Partridge, and Radia

Perlman for detailed comments; to Kevin D’Souza, Stefano Previdi, Anees Shaikh, and Darryl

Veitch for their reviews and ideas; to my family, my mother, my wife’s father and mother, and

my sister; and, of course, to my wife, Aju, and my sons, Tim and Andrew.

I’d like to end by acknowledging my heroes: four teachers who have inﬂuenced me. The

ﬁrst is Leonard Bernstein, who taught me in his lectures on music that a teacher’s enthusiasm

for the material can be infectious. The second is George Polya, who taught me in his books

on problem solving that the process of discovery is as important as the ﬁnal discoveries them-

selves. The third is Socrates, who taught me through Plato that it is worth always questioning

assumptions. The fourth is Jesus, who has taught me that life, and indeed this book, is not a

matter of merit but of grace and gift.


P A R T I
The Rules of the Game
“Come, Watson, come!” he cried. “The game is afoot!”
—Arthur Conan Doyle in The Abbey Grange
The ﬁrst part of this book deals with specifying the rules of the network algorithmics

game. We start with a quick introduction where we deﬁne network algorithmics and

contrast it to algorithm design. Next, we present models of protocols, operating

systems, processor architecture, and hardware design; these are the key disciplines

used in the rest of the book. Then we present a set of 15 principles abstracted from

the speciﬁc techniques presented later in the book. Part I ends with a set of sample

problems together with solutions obtained using the principles. Implementors pressed

for time should skim the Quick Reference Guides directly following the introduction

to each chapter.


C H A P T E R 1
Introducing Network Algorithmics
What really makes it an invention is that someone decides not to change the solution
to a known problem, but to change the question.
—Dean Kamen

Just as the objective of chess is to checkmate the opponent and the objective of tennis is to win

matches, the objective of the network algorithmics game is to battle networking implementation

bottlenecks.

Beyond speciﬁc techniques, this book distills a fundamental way of crafting solutions

to internet bottlenecks that we call network algorithmics. This provides the reader tools to

design different implementations for speciﬁc contexts and to deal with new bottlenecks that

will undoubtedly arise in the changing world of networks.

So what is network algorithmics? Network algorithmics goes beyond the design of efﬁ-

cient algorithms for networking tasks, though this has an important place. In particular,

network algorithmics recognizes the primary importance of taking an interdisciplinary systems

approach to streamlining network implementations.

Network algorithmics is an interdisciplinary approach because it encompasses such ﬁelds

as architecture and operating systems (for speeding up servers), hardware design (for speeding

up network devices such as routers), and algorithm design (for designing scalable algorithms).

Network algorithmics is also a systems approach, because it is described in this book using a set

of 15 principles that exploit the fact that routers and servers are systems, in which efﬁciencies

can be gained by moving functions in time and space between subsystems.

The problems addressed by network algorithmics are fundamental networking perfor-

mance bottlenecks. The solutions advocated by network algorithmics are a set of fundamental

techniques to address these bottlenecks. Next, we provide a quick preview of both the

bottlenecks and the methods.

1.1 THE PROBLEM: NETWORK BOTTLENECKS
The main problem considered in this book is how to make networks easy to use while at the

same time realizing the performance of the raw hardware. Ease of use comes from the use of

powerful network abstractions, such as socket interfaces and preﬁx-based forwarding. Unfor-

tunately, without care such abstractions exact a large performance penalty when compared to

the capacity of raw transmission links such as optical ﬁber. To study this performance gap

3

4


C H A P T E R 1
Introducing Network Algorithmics
in more detail we examine two fundamental categories of networking devices, endnodes and

routers.

1.1.1 Endnode Bottlenecks
Endnodes are the endpoints of the network. They include personal computers and workstations

as well as large servers that provide services. Endnodes are specialized toward computation,

as opposed to networking, and are typically designed to support general-purpose computation.

Thus endnode bottlenecks are typically the result of two forces: structure and scale.

•
Structure: To be able to run arbitrary code, personal computers and large servers typically

have an operating system that mediates between applications and the hardware. To ease

software development, most large operating systems are carefully structured as layered
software; to protect the operating system from other applications, operating systems

implement a set of protection mechanisms; ﬁnally, core operating systems routines, such

as schedulers and allocators, are written using general mechanisms that target as wide a

class of applications as possible. Unfortunately, the combination of layered software,

protection mechanisms, and excessive generality can slow down networking software

greatly, even with the fastest processors.

•
Scale: The emergence of large servers providing Web and other services causes further

performance problems. In particular, a large server such as a Web server will typically have

thousands of concurrent clients. Many operating systems use inefﬁcient data structures and

algorithms that were designed for an era when the number of connections was small.

Figure 1.1 previews the main endnode bottlenecks covered in this book, together with

causes and solutions. The ﬁrst bottleneck occurs because conventional operating system struc-

tures cause packet data copying across protection domains; the situation is further complicated

Bottleneck
Chapter


Cause


Sample Solution
Copying
5


Protection, structure
Copying many data blocks without

Context



6


OS intervention (e.g., RDMA)

Complex scheduling
User-level protocol implementations

switching

System


Event-driven Web servers

Protection, structure
Direct channels from applications

calls

Timers


6

7



Scaling with

number of timers

Scaling with


to drivers (e.g., VIA)

Timing wheels

Demultiplexing
8


number of endpoints


BPF and Pathfinder

Checksums/

CRCs

Protocol

code



9

9


Generality

Scaling with link speeds

Generality


Multibit computation

Header prediction  

F I G U R E 1.1
Preview of endnode bottlenecks, solutions to which are described in Part II of the book.

1.1 The Problem: Network Bottlenecks



5
in Web servers by similar copying with respect to the ﬁle system and by other manipula-

tions, such as checksums, that examine all the packet data. Chapter 5 describes a number of

techniques to reduce these overheads while preserving the goals of system abstractions, such

as protection and structure. The second major overhead is the control overhead
caused by

switching between threads of control (or protection domains) while processing a packet; this

is addressed in Chapter 6.

Networking applications use timers to deal with failure. With a large number of connec-

tions the timer overhead at a server can become large; this overhead is addressed in Chapter 7.

Similarly, network messages must be demultiplexed (i.e., steered) on receipt to the right end

application; techniques to address this bottleneck are addressed in Chapter 8. Finally, there

are several other common protocol processing tasks, such as buffer allocation and checksums,

which are addressed in Chapter 9.

1.1.2 Router Bottlenecks
Though we concentrate on Internet routers, almost all the techniques described in this book

apply equally well to any other network devices, such as bridges, switches, gateways, monitors,

and security appliances, and to protocols other than IP, such as FiberChannel.

Thus throughout the rest of the book, it is often useful to think of a router as a “generic

network interconnection device.” Unlike endnodes, these are special-purpose devices devoted

to networking. Thus there is very little structural overhead within a router, with only the use

of a very lightweight operating system and a clearly separated forwarding path that often is

completely implemented in hardware. Instead of structure, the fundamental problems faced

by routers are caused by scale and services.

•
Scale: Network devices face two areas of scaling: bandwidth scaling and population
scaling. Bandwidth scaling occurs because optical links keep getting faster, as the progress

from 1-Gbps to 40-Gbps links shows, and because Internet trafﬁc keeps growing due to a

diverse set of new applications. Population scaling occurs because more endpoints get

added to the Internet as more enterprises go online.

•
Services: The need for speed and scale drove much of the networking industry in the

1980s and 1990s as more businesses went online (e.g., Amazon.com) and whole new

online services were created (e.g., Ebay). But the very success of the Internet requires

careful attention in the next decade to make it more effective by providing guarantees in

terms of performance, security, and reliability. After all, if manufacturers (e.g., Dell) sell

more online than by other channels, it is important to provide network guarantees — delay

in times of congestion, protection during attacks, and availability when failures occur.

Finding ways to implement these new services at high speeds will be a major challenge

for router vendors in the next decade.

Figure 1.2 previews the main router (bridge/gateway) bottlenecks covered in this book, together

with causes and solutions.

First, all networking devices forward packets to their destination by looking up a for-

warding table. The simplest forwarding table lookup does an exact match with a destination

address, as exempliﬁed by bridges. Chapter 10 describes fast and scalable exact-match lookup

schemes. Unfortunately, population scaling has made lookups far more complex for routers.


6


C H A P T E R 1
Introducing Network Algorithmics
Bottleneck
Chapter
Cause
Exact

10
Link speed scaling



Sample Solution
Parallel hashing

lookups

Prefix

lookups

Packet

classification

Switching

Fair

queueing



11

12

13

14



Link speed scaling

Prefix database size scaling
Compressed multibit tries

Service differentiation
Decision tree algorithms

Link speed and size scaling
Hardware parallelism (CAMs)

Optical-electronic speed gap
Crossbar switches

Head-of-line blocking
Virtual output queues

Service differentiation
Weighted fair queueing

Link speed scaling
Deficit round robin

Memory scaling
DiffServ, Core Stateless

Internal

bandwidth



15


Scaling of internal

bus speeds



Reliable striping

Measurement
16



Link speed scaling



Juniper's DCU  

Security



17



Scaling in number and

intensity of attacks



Traceback with bloom filters

Extracting worm signatures

F I G U R E 1.2
Preview of router bottlenecks, solutions to which are described in Parts III and IV

of the book.

To deal with large Internet populations, routers keep a single entry called a preﬁx (analogous

to a telephone area code) for a large group of stations. Thus routers must do a more com-

plex longest-preﬁx-match lookup. Chapter 11 describes solutions to this problem that scale to

increasing speeds and table sizes.

Many routers today offer what is sometimes called service differentiation, where different

packets can be treated differently in order to provide service and security guarantees. Unfor-

tunately, this requires an even more complex form of lookup called packet classiﬁcation, in

which the lookup is based on the destination, source, and even the services that a packet is

providing. This challenging issue is tackled in Chapter 12.

Next, all networking devices can be abstractly considered as switches that shunt packets

coming in from a set of input links to a set of output links. Thus a fundamental issue is that of

building a high-speed switch. This is hard, especially in the face of the growing gap between

optical and electronic speeds. The standard solution is to use parallelism via a crossbar switch.

Unfortunately, it is nontrivial to schedule a crossbar at high speeds, and parallelism is limited

by a phenomenon known as
head-of-line blocking. Worse, population scaling and optical

multiplexing are forcing switch vendors to build switches with a large number of ports (e.g.,

256), which exacerbates these other problems. Solutions to these problems are described in

Chapter 13.

While the previous bottlenecks are caused by scaling, the next bottleneck is caused by

the need for new services. The issue of providing performance guarantees at high speeds is

treated in Chapter 14, where the issue of implementing so-called QoS (quality of service)

mechanisms is studied. Chapter 15 brieﬂy surveys another bottleneck that is becoming an

1.2 The Techniques: Network Algorithmics


7
increasing problem: the issue of bandwidth within a router. It describes sample techniques,

such as striping across internal buses and chip-to-chip links.

The ﬁnal sections of the book take a brief look at emerging services that must, we believe,

be part of a well-engineered Internet of the future. First, routers of the future must build in

support for measurement, because measurement is key to engineering networks to provide

guarantees. While routers today provide some support for measurement in terms of counters

and NetFlow records, Chapter 16 also considers more innovative measurement mechanisms

that may be implemented in the future.

Chapter 17 describes security support, some of which is already being built into routers.

Given the increased sophistication, virulence, and rate of network attacks, we believe that

implementing security features in networking devices (whether routers or dedicated intru-

sion prevention/detection devices) will be essential. Further, unless the security device can

keep up with high-speed links, the device may miss vital information required to spot an

attack.

1.2 THE TECHNIQUES: NETWORK ALGORITHMICS
Throughout this book, we will talk of many speciﬁc techniques: of interrupts, copies, and

timing wheels; of Pathﬁnder and Sting; of why some routers are very slow; and whether

Web servers can scale. But what underlies the assorted techniques in this book and makes

it more than a recipe book is the notion of network algorithmics. As said earlier, network

algorithmics recognizes the primary importance of taking a systems approach to streamlining

network implementations.

While everyone recognizes that the Internet is a system consisting of routers and links,

it is perhaps less obvious that every networking device, from the Cisco GSR to an Apache

Web server, is also a system. A system is built out of interconnected subsystems that are

instantiated at various points in time. For example, a core router consists of line cards with

forwarding engines and packet memories connected by a crossbar switch. The router behavior

is affected by decisions at various time scales, which range from manufacturing time (when

default parameters are stored in NVRAM) to route computation time (when routers conspire

to compute routes) to packet-forwarding time (when packets are sent to adjoining routers).

Thus one key observation in the systems approach is that one can often design an efﬁcient

subsystem by moving some of its functions in space (i.e., to other subsystems) or in
time
(i.e., to points in time before or after the function is apparently required). In some sense, the

practitioner of network algorithmics is an unscrupulous opportunist willing to change the rules

at any time to make the game easier. The only constraint is that the functions provided by the

overall system continue to satisfy users.

In one of Mark Twain’s books, a Connecticut Yankee is transported back in time to King

Arthur’s court. The Yankee then uses a gun to ﬁght against dueling knights accustomed to

jousting with lances. This is an example of changing system assumptions (replacing lances by

guns) to solve a problem (winning a duel).

Considering the constraints faced by the network implementor at high speeds — increas-

ingly complex tasks, larger systems to support, small amounts of high-speed memory, and

a small number of memory accesses — it may require every trick, every gun in one’s arse-

nal, to keep pace with the increasing speed and scale of the Internet. The designer can throw


8


C H A P T E R 1
Introducing Network Algorithmics
hardware at the problem, change the system assumptions, design a new algorithm — whatever

it takes to get the job done.

This book is divided into four parts. The ﬁrst part, of which this is the ﬁrst chapter, lays

a foundation for applying network algorithmics to packet processing. The second chapter of

the ﬁrst part outlines models, and the third chapter presents general principles used in the

remainder of the book.

One of the best ways to get a quick idea about what network algorithmics is about is to

plunge right away into a warm-up example. While the warm-up example that follows is in the

context of a device within the network where new hardware can be designed, note that Part 2

is about building efﬁcient servers using only software design techniques.

1.2.1 Warm-up Example: Scenting an Evil Packet
Imagine a front-end network monitor (or intrusion detection system) on the periphery of a

corporate network that wishes to ﬂag suspicious incoming packets — packets that could contain

attacks on internal computers. A common such attack is a buffer overﬂow attack, where the

attacker places machine code C in a network header ﬁeld F.

If the receiving computer allocates a buffer too small for header ﬁeld F
and is careless

about checking for overﬂow, the code C can spill onto the receiving machine’s stack. With a

little more effort, the intruder can make the receiving machine actually execute evil code C.

C then takes over the receiver machine. Figure 1.3 shows such an attack embodied in a familiar

ﬁeld, a destination Web URL (uniform resource locator). How might the monitor detect the

presence of such a suspicious URL? A possible way is to observe that URLs containing evil

code are often too long (an easy check) and often have a large fraction of unusual (at least in

URLs) characters, such as #. Thus the monitor could mark such packets (containing URLs that

are too long and have too many occurrences of such unusual characters) for more thorough

examination.

It is worth stating at the outset that the security implications of this strategy need to be

carefully thought out. For example, there may be several innocuous programs, such as CGI

scripts, in URLs that lead to false positives. Without getting too hung up in overall architectural

implications, let us assume that this was a speciﬁcation handed down to a chip architect by

a security architect. We now use this sample problem, suggested by Mike Fisk, to illustrate

algorithmics in action.

Faced with such a speciﬁcation, a chip designer may use the following design process,

which illustrates some of the principles of network algorithmics. The process starts with a

strawman design and reﬁnes the design using techniques such as designing a better algorithm,

relaxing the speciﬁcation, and exploiting hardware.

Evil code

Intrusion

Detection

System



Get AIM://overflow   #  *  #  !  *  #  .  .  .  .  *

F I G U R E 1.3
Getting wind of an evil packet by noticing the frequency of unprintable characters.


Threshold

Array

0
2%



Count

Array

5



1.2 The Techniques: Network Algorithmics
Evil code

Get AIM://overflow   #  *  #  !  *  #  .  .  #  .  *



9
#
1%

255



3
Increment

F I G U R E 1.4
Strawman solution for detecting an evil packet by counting occurrences of each char-

acter via a count array (middle) and then comparing in a ﬁnal pass with an array of acceptable thresholds

(left).

1.2.2 Strawman Solution
The check of overall length is straightforward to implement, so we concentrate on checking for

a prevalence of suspicious characters. The ﬁrst strawman solution is illustrated in Figure 1.4.

The chip maintains two arrays, T and C, with 256 elements each, one for each possible value

of an 8-bit character. The threshold array, T , contains the acceptable percentage (as a fraction

of the entire URL length) for each character. If the occurrences of a character in an actual

URL fall above this fraction, the packet should be ﬂagged. Each character can have a different

threshold.

The count array,
C, in the middle, contains the current count
C[i]
for each possible

character i. When the chip reads a new character
i
in the URL, it increments C[i] by 1.

C[i] is initialized to 0 for all values of i when a new packet is encountered. The incrementing

process starts only after the chip parses the HTTP header and recognizes the start of a URL.

In HTTP, the end of a URL is signiﬁed by two newline characters; thus one can tell the

length of the URL only after parsing the entire URL string. Thus, after the end of the URL is

encountered, the chip makes a ﬁnal pass over the array C. If C[ j] ≥ L · T [ j] for any j, where

L is the length of the URL, the packet is ﬂagged.

Assume that packets are coming into the monitor at high speed and that we wish to ﬁnish

processing a packet before the next one arrives. This requirement, called wire speed processing,

is very common in networking; it prevents processing backlogs even in the worst case. To meet

wire speed requirements, ideally the chip should do a small constant number of operations for

every URL byte. Assume the main step of incrementing a counter can be done in the time to

receive a byte.

Unfortunately, the two passes over the array, ﬁrst to initialize it and then to check for

threshold violations, make this design slow. Minimum packet sizes are often as small as

40 bytes and include only network headers. Adding 768 more operations (1 write and 1 read

to each element of C, and 1 read of T for each of 256 indices) can make this design infeasible.

1.2.3 Thinking Algorithmically
Intuitively, the second pass through the arrays C and T at the end seems like a waste. For exam-

ple, it sufﬁces to alarm if any character is over the threshold. So why check all characters?


10


C H A P T E R 1
Introducing Network Algorithmics
Threshold
Count

Array
Array

0
2%
5



Evil code

#
1%

255



2) Read



3


Get AIM://overflow   #  *  #  !  *  #  .  .  #  .  *

1) Increment

3) If C[i]/T[i] > Max, Max = C[i]/T[i]

F I G U R E 1.5
Avoiding the ﬁnal loop through the threshold array by keeping track only of Max, the

highest counter encountered so far relative to its threshold value.

This suggests keeping track only of the largest character count c; at the end perhaps the

algorithm needs to check only whether c is over threshold with respect to the total URL

length L.

This does not quite work. A nonsuspicious character such as “e” may well have a very

high occurrence count. However, “e” is also likely to be speciﬁed with a high threshold. Thus

if we keep track only of “e” with, say, a count of 20, we may not keep track of “#” with, say, a

count of 10. If the threshold of “#” is much smaller, the algorithm may cause a false negative:

The chip may fail to alarm on a packet that should be ﬂagged.

The counterexample suggests the following ﬁx. The chip keeps track in a register of the

highest counter relativized to the threshold value. More precisely, the chip keeps track of the

highest relativized counter Max corresponding to some character k, such that C[k]/T [k] = Max
is the highest among all characters encountered so far. If a new character i is read, the chip

increments C[i]. If C[i]/T[i] > Max, then the chip replaces the current stored value of Max
with C[i]/T [i]. At the end of URL processing, the chip alarms if Max ≥ L.

Here’s why this works. If Max = C[k]/T [k] ≥
L, clearly the packet must be ﬂagged,

because character k is over threshold. On the other hand, if C[k]/T[k]
< L, then for any

character i, it follows that C[i]/T [i] ≤ C[k]/T [k] < L. Thus if Max falls below threshold, then

no character is above threshold. Thus there can be no false negatives. This solution is shown

in Figure 1.5.

1.2.4 Reﬁning the Algorithm: Exploiting Hardware
The new algorithm has eliminated the loop at the end but still has to deal with a divide operation

while processing each byte. Divide logic is somewhat complicated and worth avoiding if

possible — but how?

Returning to the speciﬁcation and its intended use, it seems likely that thresholds are not

meant to be exact ﬂoating point numbers. It is unlikely that the architect providing thresholds

can estimate the values precisely; one is likely to approximate 2.78% as 3% without causing

much difference to the security goals. So why not go further and approximate the threshold

by some power of 2 less than the exact intended threshold? Thus if the threshold is 1/29, why

not approximate it as 1/32?


Threshold plus

Count Array

0
2%
5

#
1%
3

255



1.2 The Techniques: Network Algorithmics
Evil code

Get AIM://overflow   #  *  #  !  *  #  .  .  #  .  *

1) Read wide word

2) Compare and flag if needed

3) Write incremented value



11
F I G U R E 1.6
Using a wide word and a coalesced array to combine 2 reads into one.

Changing the speciﬁcation in this way requires negotiation with the system architect.

Assume that the architect agrees to this new proposal. Then a threshold such as 1/32 can be

encoded compactly as the corresponding power of 2 — i.e., 5. This threshold shift value can

be stored in the threshold array instead of a fraction.

Thus when a character j is encountered, the chip increments C[ j] as usual and then shifts

C[ j] to the left — dividing by 1/x is the same as multiplying by x — by the speciﬁed threshold.

If the shifted value is higher than the last stored value for Max, the chip replaces the old value

with the new value and marches on.

Thus the logic required to implement the processing of a byte is a simple shift-and-

compare. The stored state is only a single register to store Max. As it stands, however, the

design requires a Read to the Threshold array (to read the shift value), a Read to the Count

array (to read the old count), and a Write to the Count array (to write back the incremented

value).

Now reads to memory — 1–2 nsec even for the fastest on-chip memories but possibly

even as slow as 10 nsec for slower memories — are slower than logic. Single gate delays are

only in the order of picoseconds, and shift logic does not require too many gate delays. Thus

the processing bottleneck is the number of memory accesses.

The chip implementation can combine the 2 Reads to memory into 1 Read by coalescing

the Count and Threshold arrays into a single array, as shown in Figure 1.6. The idea is to make

the memory words wide enough to hold the counter (say, 15 bits to handle packets of length

32K) and the threshold (depending on the precision necessary, no more than 14 bits). Thus the

two ﬁelds can easily be combined into a larger word of size 29 bits. In practice, hardware can

handle much larger words sizes of up to 1000 bits. Also, note that extracting the two ﬁelds

packed into a single word, quite a chore in software, is trivial in hardware by routing wires

appropriately between registers or by using multiplexers.

1.2.5 Cleaning Up
We have postponed one thorny issue to this point. The terminal loop has been eliminated

while leaving the initial initialization loop. To handle this, note that the chip has spare time for

initialization after parsing the URL of the current packet and before encountering the URL of

the next packet.


12


C H A P T E R 1
Introducing Network Algorithmics
Unfortunately, packets can be as small as 50 bytes, even with an HTTP header. Thus

even assuming a slack of 40 non-URL bytes other than the 10 bytes of the URL, this still does

not sufﬁce to initialize a 256-byte array without paying 256/40 = 6 more operations per byte

than during the processing of a URL. As in the URL processing loop, each initialization step

requires a Read and Write of some element of the coalesced array.

A trick among lazy people is to postpone work until it is absolutely needed, in the hope

that it may never be needed. Note that, strictly speaking, the chip need not initialize a C[i]

until character i is accessed for the ﬁrst time in a subsequent packet. But how can the chip tell

that it is seeing character i for the ﬁrst time?

To implement lazy evaluation, each memory word representing an entry in the coalesced

array must be expanded to include, say, a 3-bit generation number G[i]. The generation number

can be thought of as a value of clock time measured in terms of packets encountered so far,

except that it is limited to 3 bits. Thus, the chip keeps an additional register g, besides the

extra G[i] for each i, that is 3 bits long; g is incremented mod 8 for every packet encountered.

In addition, every time C[i] is updated, the chip updates G[i] as well to reﬂect the current

value of g.

Given the generation numbers, the chip need not initialize the count array after the current

packet has been processed. However, consider the case of a packet whose generation number

is h, which contains a character i in its URL. When the chip encounters i while processing the

packet the chip reads C[i] and G[i] from the Count array. If G[i] = h, this clearly indicates

that entry i was last accessed by an earlier packet and has not been subsequently initialized.

Thus the logic will write back the value of C[i] as 1 (initialization plus increment) and set G[i]

to h. This is shown in Figure 1.7.

The careful reader will immediately object. Since the generation number is only 3 bits,

once the value of g wraps around, there can be aliasing. Thus if G[i] is 5 and entry i is not

accessed until eight more packets have gone by, g will have wrapped around to 5. If the next

packet contains i, C[i] will not be initialized and the count will (wrongly) accumulate the count

of i in the current packet together with the count that occurred eight packets in the past.

The chip can avoid such aliasing by doing a separate “scrubbing” loop that reads the array

and initializes all counters with outdated generation numbers. For correctness, the chip must

guarantee one complete scan through the array for every eight packets processed. Given that

one has a slack of (say) 40 non-URL bytes per packet, this guarantees a slack of 320 non-URL

Shift Count
Gen
Evil code

0
1 bit
5
100

Get AIM://overflow   #  *  #  !  *  #  .  .  #  .  *

#
4 bits
3
101

1) Read wide word  

2) If Gen match, Write count + 1 else Write 1

3) if C[i] shifted by T[i] > Max, replace Max

255

CurrentGen=101

At the end, flag packet if Max > URL length

F I G U R E 1.7
The ﬁnal solution with generation numbers to ﬁnesse an initialization loop.

1.2 The Techniques: Network Algorithmics


13
bytes after eight packets, which sufﬁces to initialize a 256-element array using one Read and

one Write per byte, whether the byte is a URL or a non-URL byte. Clearly, the designer can

gain more slack, if needed, by increasing the bits in the generation number, at the cost of

slightly increased storage in the array.

The chip, then, must have two states: one for processing URL bytes and one for processing

non-URL bytes. When the URL is completely processed, the chip switches to the “Scrub” state.

The chip maintains another register, which points to the next array entry s to be scrubbed. In

the scrub state, when a non-URL character is received, the chip reads entry s in the coalesced

array. If G[s] = g, G[s] is reset to g and C[s] is initialized to 0.

Thus the use of 3 extra bits of generation number per array entry has reduced initialization

processing cycles, trading processing for storage. Altogether a coalesced array entry is now

only 32 bits, 15 bits for a counter, 14 bits for a threshold shift value, and 3 bits for a generation

number. Note that the added initialization check needed during URL byte processing does

not increase memory references (the bottleneck) but adds slightly to the processing logic. In

addition, it requires two more chip registers to hold g and s, a small additional expense.

1.2.6 Characteristics of Network Algorithmics
The example of scenting an evil packet illustrates three important aspects of network

algorithmics.

a. Network algorithmics is interdisciplinary: Given the high rates at which network

processing must be done, a router designer would be hard pressed not to use hardware. The

example exploited several features of hardware: It assumed that wide words of arbitrary size

were easily possible; it assumed that shifts were easier than divides; it assumed that memory

references were the bottleneck; it assumed that a 256-element array contained in fast on-chip

memory was feasible; it assumed that adding a few extra registers was feasible; and ﬁnally it

assumed that small changes to the logic to combine URL processing and initialization were

trivial to implement.

For the reader unfamiliar with hardware design, this is a little like jumping into a game of

cards without knowing the rules and then ﬁnding oneself ﬁnessed and trumped in unexpected

ways. A contention of this book is that mastery of a few relevant aspects of hardware design can

help even a software designer understand at least the feasibility of different hardware designs.

A further contention of this book is that such interdisciplinary thinking can help produce the

best designs.

Thus Chapter 2 presents the rules of the game. It presents simple models of hardware that

point out opportunities for ﬁnessing and trumping troublesome implementation issues. It also

presents simple models of operating systems. This is done because end systems such as clients

and Web servers require tinkering with and understanding operating system issues to improve

performance, just as routers and network devices require tinkering with hardware.

b. Network algorithmics recognizes the primacy of systems thinking: The speciﬁcation

was relaxed to allow approximate thresholds in powers of 2, which simpliﬁed the hardware.

Relaxing speciﬁcations and moving work from one subsystem to another is an extremely com-

mon systems technique, but it is not encouraged by current educational practice in universities,

in which each area is taught in isolation.

Thus today one has separate courses in algorithms, in operating systems, and in net-

working. This tends to encourage “black box” thinking instead of holistic or systems thinking.


14


C H A P T E R 1
Introducing Network Algorithmics
The example alluded to other systems techniques, such as the use of lazy evaluation and trading
memory for processing in order to scrub the Count array.

Thus a feature of this book is an attempt to distill the systems principles used in algorithmics

into a set of 15 principles, which are catalogued inside the front cover of the book and are

explored in detail in Chapter 3. This book attempts to explain and dissect all the network

implementations described in this book in terms of these principles. The principles are also

given numbers for easy reference, though for the most part we will use both the number and the

name. For instance, take a quick peek at the inside front cover and you will ﬁnd that relaxing

speciﬁcations is principle P4 and lazy evaluation is P2a.
c. Network algorithmics can beneﬁt from algorithmic thinking:
While this book

stresses the primacy of systems thinking to ﬁnesse problems wherever possible, there are

many situations where systems constraints prevent any elimination of problems. In our exam-

ple, after attempting to ﬁnesse the need for algorithmic thinking by relaxing the speciﬁcation,

the problem of false positives led to considering keeping track of the highest counter relative

to its threshold value. As a second example, Chapter 11 shows that despite attempts to ﬁnesse

Internet lookups using what is called tag switching, many routers resort to efﬁcient algorithms

for lookup.

It is worth emphasizing, however, that because the models are somewhat different from

standard theoretical models, it is often insufﬁcient to blindly reuse existing algorithms. For

example, Chapter 13 discusses how the need to schedule a crossbar switch in 8 nsec leads to

considering simpler maximal matching heuristics, as opposed to more complicated algorithms

that produce optimal matchings in a bipartite graph.

As a second example, Chapter 11 describes how the BSD implementation of lookups

blindly reused a data structure called a Patricia trie, which uses a skip count, to do IP lookups.

The resulting algorithm requires complex backtracking.1A simple modiﬁcation that keeps the

actual bits that were skipped (instead of the count) avoids the need for backtracking. But this

requires some insight into the black box (i.e., the algorithm) and its application.

In summary, the uncritical use of standard algorithms can miss implementation break-

throughs because of inappropriate measures (e.g., for packet ﬁlters such as BPF, the insertion

of a new classiﬁer can afford to take more time than search), inappropriate models (e.g.,

ignoring the effects of cache lines in software or parallelism in hardware), and inappropriate

analysis (e.g., order-of-complexity results that hide constant factors crucial in ensuring wire

speed forwarding).

Thus another purpose of this book is to persuade implementors that insight into algo-

rithms and the use of fundamental algorithmic techniques such as divide-and-conquer and

randomization is important to master. This leads us to the following.

Deﬁnition:
Network algorithmics is the use of an interdisciplinary systems approach,

seasoned with algorithmic thinking, to design fast implementations of network processing

tasks at servers, routers, and other networking devices.

1The algorithm was considered to be the state of the art for many years and was even implemented in hardware

in several router designs. In fact, a patent for lookups issued to a major router company appears to be a hardware

implementation of BSD Patricia tries with backtracking. Any deﬁciencies of the algorithm can, of course, be mitigated

by fast hardware. However, it is worth considering that a simple change to the algorithm could have simpliﬁed the

hardware design.


Focus
Models

Strategies

Problems



Chapter
2

3

4



Motivation
Understand simple models

for OS, hardware, networks

Learn systems principles

for overcoming bottlenecks

Practice applying principles

on simple problems



1.3 Exercise
Sample Topic
Memory technology techniques

(interleaving, mixing SRAM/DRAM)

Pass hints, evaluate lazily

Add state, exploit locality

Designing a lookup engine for

a network monitor



15
F I G U R E 1.8
Preview of network algorithmics. Network algorithmics is introduced using a set of

models, strategies, and sample problems, which are described in Part I of the book.

Part I of the book is devoted to describing the network algorithmics approach in more

detail. An overview of Part I is given in Figure 1.8.

While this book concentrates on networking, the general algorithmics approach holds for

the implementation of any computer system, whether a database, a processor architecture,

or a software application. This general philosophy is alluded to in Chapter 3 by providing

illustrative examples from the ﬁeld of computer system implementation. The reader interested

only in networking should rest assured that the remainder of the book, other than Chapter 3,

avoids further digressions beyond networking.

While Parts II and III provide speciﬁc techniques for important speciﬁc problems, the main

goal of this book is to allow the reader to be able to tackle arbitrary packet-processing tasks

at high speeds in software or hardware. Thus the implementor of the future may be given the

task of speeding up XML processing in a Web server (likely, given current trends) or even the

task of computing the chi-square statistic in a router (possible because chi-square provides a

test for detecting abnormal observed frequencies for tasks such as intrusion detection). Despite

being assigned a completely unfamiliar task, the hope is that the implementor would be able

to craft a new solution to such tasks using the models, principles, and techniques described in

this book.

1.3 EXERCISE
1. Implementing Chi-Square: The chi-square statistic can be used to ﬁnd if the overall set

of observed character frequencies are unusually different (as compared to normal random

variation) from the expected character frequencies. This is a more sophisticated test,

statistically speaking, than the simple threshold detector used in the warm-up example.

Assume that the thresholds represent the expected frequencies. The statistic is computed

by ﬁnding the sum of

/

(ExpectedFrequency[i] − ObservedFrequency[i])2ExpectedFrequency[i]

for all values of character i. The chip should alarm if the ﬁnal statistic is above a speciﬁed

threshold. (For example, a value of 14.2 implies that there is only a 1.4% chance that the

difference is due to chance variation.) Find a way to efﬁciently implement this statistic,

assuming once again that the length is known only at the end.


C H A P T E R 2
Network Implementation Models
A rather small set of key concepts is enough. Only by learning the essence of each
topic, and by carrying along the least amount of mental baggage at each step, will
the student emerge with a good overall understanding of the subject.
— Carver Mead and Lynn Conway

To improve the performance of endnodes and routers, an implementor must know the rules of

the game. A central difﬁculty is that network algorithmics encompasses four separate areas:

protocols, hardware architectures, operating systems, and algorithms. Networking innovations

occur when area experts work together to produce synergistic solutions. But can a logic designer

understand protocol issues, and can a clever algorithm designer understand hardware trade-offs,

at least without deep study?

Useful dialog can begin with simple models that have explanatory and predictive power but

without unnecessary detail. At the least, such models should deﬁne terms used in the book; at the

best, such models should enable a creative person outside an area to play with and create designs

that can be checked by an expert within the area. For example, a hardware chip implementor

should be able to suggest software changes to the chip driver, and a theoretical computer

scientist should be able to dream up hardware matching algorithms for switch arbitration. This

is the goal of this chapter.

The chapter is organized as follows. Starting with a model for protocols in Section 2.1, the

implementation environment is described in bottom-up order. Section 2.2 describes relevant

aspects of hardware protocol implementation, surveying logic, memories, and components.

Section 2.3 describes a model for endnodes and network devices such as routers. Section 2.4

describes a model for the relevant aspects of operating systems that affect performance, espe-

cially in endnodes. To motivate the reader and to retain the interest of the area expert, the

chapter contains a large number of networking examples to illustrate the application of each

model.

Q u i c k R e f e r e n c e G u i d e
Hardware designers should skip most of Section 2.2, except for Example 3 (design of a switch

arbitrator), Example 4 (design of a ﬂow ID lookup chip), Example 5 (pin count limitations and their impli-

cations), and Section 2.2.5 (which summarizes three hardware design principles useful in networking).

Processor and architecture experts should skip Section 2.3 except for Example 7 (network processors).

16

2.1 Protocols
Implementors familiar with operating systems should skip Section 2.4, except for Example 8 (receiver

livelock as an example of how operating system structure inﬂuences protocol implementations). Even

those unfamiliar with an area such as operating systems may wish to consult these sections if needed

after reading the speciﬁc chapters that follow.

2.1 PROTOCOLS


17
Section 2.1.1 describes the transport protocol TCP and the IP routing protocol. These two

examples are used to provide an abstract model of a protocol and its functions in Section 2.1.2.

Section 2.1.3 ends with common network performance assumptions. Readers familiar with

TCP/IP may wish to skip to Section 2.1.2.

2.1.1 Transport and Routing Protocols
Applications subcontract the job of reliable delivery to a transport protocol such as the Trans-

mission Control Protocol (TCP). TCP’s job is to provide the sending and receiving applications

with the illusion of two shared data queues in each direction — despite the fact that the sender

and receiver machines are separated by a lossy network. Thus whatever the sender application

writes to its local TCP send queue should magically appear in the same order at the local TCP

receive queue at the receiver, and vice versa. TCP implements this mechanism by breaking

the queued application data into segments and retransmitting each segment until an acknowl-

edgment (ack) has been received. A more detailed description of TCP operation can be found

in Section A.1.1.

If the application is (say) a videoconferencing application that does not want reliability

guarantees, it can choose to use a protocol called UDP (User Datagram Protocol) instead of

TCP. Unlike TCP, UDP does not need acks or retransmissions because it does not guarantee

reliability.

Transport protocols such as TCP and UDP work by sending segments from a sender node

to a receiver node across the Internet. The actual job of sending a segment is subcontracted to

the Internet routing protocol IP.

Internet routing is broken into two conceptual parts, called
forwarding
and
routing.

Forwarding is the process by which packets move from source to destination through inter-

mediate routers. A packet is a TCP segment together with a routing header that contains the

destination Internet address.

While forwarding must be done at extremely high speeds, the forwarding tables at each

router must be built by a routing protocol, especially in the face of topology changes, such

as link failures. There are several commonly used routing protocols, such as distance vector

(e.g., RIP), link state (e.g., OSPF), and policy routing (e.g., BGP). More details and references

to other texts can be found in Section A.1.2 in the Appendix.

2.1.2 Abstract Protocol Model
A protocol is a state machine for all nodes participating in the protocol, together with inter-

faces and message formats. A model for a protocol state machine is shown in Figure 2.1.


18


C H A P T E R 2
Network Implementation Models
User calls

STATE

(e.g., seq numbers)



Timer calls

Send message



Receive message

F I G U R E 2.1
Abstract model of the state machine implementing a protocol at a node participating in

a protocol.

CONTROL TRANSFER

Demultiplex

Schedule tasks

Set timers

Manipulate state

Look Up state

Reassemble


PROTOCOL

PROCESSING

Allocate resources (buffers, CPU)

DATA MANIPULATION

(e.g., switch, copy, checksum)

F I G U R E 2.2
Common protocol functions. The small shaded black box to the lower left represents

the state table used by the protocol.

The speciﬁcation must describe how the state machine changes state and responds (e.g., by

sending messages, setting timers) to interface calls, received messages, and timer events.

For instance, when an application makes a connect request, the TCP sender state machine

initializes by picking an unused initial sequence number, goes to the so-called SYN-SENT

state, and sends a SYN message. As a second example, a link state routing protocol like OSPF

has a state machine at each router; when a link state packet (LSP) arrives at a router with a

higher sequence number than the last LSP from the source, the new LSP should be stored and

sent to all neighbors. While the link state protocol is very different from TCP, both protocols

can be abstracted by the state machine model shown in Figure 2.1.

This book is devoted to protocol implementations. Besides TCP and IP, this book will

consider other protocols, such as HTTP. Thus, it is worth abstracting out the generic and time-
consuming functions that a protocol state machine performs based on our TCP and routing

examples. Such a model, shown in Figure 2.2, will guide us through this book.

First, at the bottom of Figure 2.2, a protocol state machine must receive and send data

packets. This involves data manipulations, or operations that must read or write every byte in a

packet. For instance, a TCP must copy received data to application buffers, while a router has to

2.1 Protocols



19
switch packets from input links to output links. The TCP header also speciﬁes a checksum that

must be computed over all the data bytes. Data copying also requires allocation of resources

such as buffers.

Second, at the top of Figure 2.2, the state machine must demultiplex data to one of many

clients. In some cases, the client programs must be activated, requiring potentially expensive

control transfer. For instance, when a receiving TCP receives a Web page, it has to demultiplex

the data to the Web browser application using the port number ﬁelds and may have to wake

up the process running the browser.

Figure 2.2 also depicts several generic functions shared by many protocols. First, protocols

have crucial state that must be looked up at high speeds and sometimes manipulated. For

instance, a received TCP packet causes TCP to look up
a table of connection state, while a

received IP packet causes IP to look up a forwarding table. Second, protocols need to efﬁciently

set timers, for example, to control retransmission in TCP. Third, if a protocol module is

handling several different clients, it needs to efﬁciently schedule these clients. For instance,

TCP must schedule the processing of different connections, while a router must make sure that

unruly conversations between some pair of computers do not lock out other conversations.

Many protocols also allow large pieces of data to be fragmented into smaller pieces that need

reassembly.

One of the major theses of this book is that though such generic functions are often

expensive, their cost can be mitigated with the right techniques. Thus each generic protocol

function is worth studying in isolation. Therefore after Part I of this book, the remaining

chapters address speciﬁc protocol functions for endnodes and routers.

2.1.3 Performance Environment and Measures
This section describes some important measures and performance assumptions. Consider a

system (such as a network or even a single router) where jobs (such as messages) arrive

and, after completion, leave. The two most important metrics in networks are throughput and

latency. Throughput roughly measures the number of jobs completed per second. Latency
measures the time (typically worst case) to complete a job. System owners (e.g., ISPs, routers)

seek to maximize throughput to maximize revenues, while users of a system want end-to-end

latencies lower than a few hundred milliseconds. Latency also affects the speed of computation

across the network, as, for example, in the performance of a remote procedure call.

The following performance-related observations about the Internet milieu are helpful when

considering implementation trade-offs.

•
Link Speeds: Backbone links are upgrading to 10 Gbps and 40 Gbps, and local links are

upgrading to gigabit speeds. However, wireless and home links are currently orders of

magnitude slower.

•
TCP and Web Dominance: Web trafﬁc accounts for over 70% of trafﬁc in bytes or packets.

Similarly, TCP accounts for 90% of trafﬁc in a a recent study [Bra98].

•
Small Transfers: Most accessed Web documents accessed are small; for example, a SPEC

[Car96] study shows that 50% of accessed ﬁles are 50 kilobytes (KB) or less.

•
Poor Latencies: Real round-trip delays exceed speed-of-light limitations; measurements in

Crovella and Carter [CC95] report a mean of 241 msec across the United States compared


20


C H A P T E R 2
Network Implementation Models
to speed-of-light delays of less than 30 msec. Increased latency can be caused by efforts

to improve throughput, such as batch compression at modems and pipelining in routers.

•
Poor Locality: Backbone trafﬁc studies [TMW97] show 250,000 different source–
destination pairs (sometimes called ﬂows) passing through a router in a very short

duration. More recent estimates show around a million concurrent ﬂows. Aggregating

groups of headers with the same destination address or other means does not reduce the

number of header classes signiﬁcantly. Thus locality, or the likelihood of computation

invested in a packet being reused on a future packet, is small.

•
Small Packets: Thompson et al. [TMW97] also show that roughly half the packets received

by a router are minimum-size 40-byte TCP acknowledgments. To avoid losing important

packets in a stream of minimum-size packets, most router- and network-adaptor vendors

aim for “wire speed forwarding” — this is the ability to process minimum-size (40-byte)

packets at the speed of the input link.1
•
Critical Measures: It is worth distinguishing between global performance measures, such

as end-to-end delay and bandwidth, and local performance measures, such as router

lookup speeds. While global performance measures are crucial to overall network

performance, this book focuses only on local performance measures, which are a key

piece of the puzzle. In particular, this book focuses on forwarding performance and

resource (e.g., memory, logic) measures.

•
Tools: Most network management tools, such as HP’s OpenView, deal with global

measures. The tools needed for local measures are tools to measure performance within

computers, such as proﬁling software. Examples include Rational’s Quantify

(http://www.rational.com) for application software, Intel’s VTune (www.intel.com/

software/products/vtune/), and even hardware oscilloscopes. Network monitors such

as tcpdump (www.tcpdump.org) are also useful.

Case Study 1: SANs and iSCSI
This case study shows that protocol features can greatly affect application per-

formance. Many large data centers connect their disk drives and computers together

using a storage area network (SAN). This allows computers to share disks. Currently,

storage area networks are based on FiberChannel [Ben95] components, which are

more expensive than say Gigabit Ethernet. The proponents of iSCSI (Internet storage)

[SSMe01] protocols seek to replace FiberChannel protocols with (hopefully cheaper)

TCP/IP protocols and components.

SCSI is the protocol used by computers to communicate with local disks. It can also

be used to communicate with disks across a network. A single SCSI command could

ask to read 10 megabytes (MB) of data from a remote disk. Currently, such remote

SCSI commands run over a FiberChannel transport protocol implemented in the net-

work adaptors. Thus a 10-MB transfer is broken up into multiple FiberChannel packets,

1The preoccupation with wire speed forwarding in networking is extremely different from the mentality in

computer architecture, which is content with optimizing typical (and not worst-case) performance as measured on

benchmarks.


2.2 Hardware
sent, delivered, and acknowledged (acked) without any per-packet processing by the

requesting computer or responding disk.

The obvious approach to reduce costs is to replace the proprietary FiberChannel

transport layer with TCP and the FiberChannel network layer with IP. This would allow us

to replace expensive FiberChannel switches in SANs with commodity Ethernet switches.

However, this has three implications. First, to compete with FiberChannel performance,

TCP will probably have to be implemented in hardware. Second, TCP sends and delivers

a byte stream (see Figure A.1 in the Appendix if needed). Thus multiple sent SCSI

messages can be merged at the receiver. Message boundaries must be recovered by

adding another iSCSI header containing the length of the next SCSI message.

The third implication is trickier. Storage vendors [SSMe01] wish to process SCSI

commands out of order. If two independent SCSI messages C1 and C2 are sent in

order but the C2 data arrives before C1, TCP will buffer C2 until C1 arrives. But the

storage enthusiast wishes to steer C2 directly to a preallocated SCSI buffer and process

C2 out of order, a prospect that makes the TCP purist cringe. The length ﬁeld method

described earlier fails for this purpose because a missing TCP segment (containing the

SCSI message length) makes it impossible to ﬁnd later message boundaries. An alternate

proposal suggests having the iSCSI layer insert headers at periodic intervals in the TCP

byte stream, but the jury is still out.

2.2 HARDWARE


21
As links approach 40-gigabit/sec OC-768 speeds, a 40-byte packet must be forwarded in 8 nsec.

At such speeds, packet forwarding is typically directly implemented in hardware instead of

on a programmable processor. You cannot participate in the design process of such hardware-

intensive designs without understanding the tools and constraints of hardware designers. And

yet a few simple models can allow you to understand and even play with hardware designs.

Even if you have no familiarity with and have a positive distaste for hardware, you are invited

to take a quick tour of hardware design, full of networking examples to keep you awake.

Internet lookups are often implemented using combinational logic, Internet packets are

stored in router memories, and an Internet router is put together with components such as

switches, and lookup chips. Thus our tour begins with logic implementation, continues with

memory internals, and ends with component-based design. For more details, we refer the

reader to the classic VLSI text [MC80], which still wears well despite its age, and the classic

computer architecture text [HP96].

2.2.1 Combinatorial Logic
Section A.2.1 in the Appendix describes very simple models of basic hardware gates, such as

NOT, NAND, and NOR, that can be understood by even a software designer who is willing to

read a few pages. However, even knowing how basic gates are implemented is not required to

have some insight into hardware design.

The ﬁrst key to understanding logic design is the following observation. Given NOT,

NAND, and NOR gates, Boolean algebra shows that any Boolean function f (I1, . . . , In) of

n inputs can be implemented. Each bit of a multibit output can be considered a function of


22


C H A P T E R 2
Network Implementation Models
the input bits. Logic minimization is often used to eliminate redundant gates and sometimes

to increase speed. For example, if + denotes OR and
· denotes AND, then the function

O = I1· I2+ I1· I2can be simpliﬁed to O = I1.

◆ Example 1. Quality of Service and Priority Encoders: Suppose we have a network router that

maintains n output packet queues for a link, where queue i has higher priority than queue j if

i
< j. This problem comes under the category of providing quality of service (QOS), which

is covered in Chapter 14. The transmit scheduler in the router must pick a packet from the

ﬁrst nonempty packet queue in priority order. Assume the scheduler maintains an N -bit vector

(bitmap) I such that I [ j] = 1 if and only if queue j is nonempty. Then the scheduler can ﬁnd

the highest-priority nonempty queue by ﬁnding the smallest position in I
in which a bit is

set. Hardware designers know this function intimately as a priority encoder. However, even

a software designer should realize that this function is feasible for hardware implementation

for reasonable n. This function is examined more closely in Example 2.

2.2.2 Timing and Power
To forward a 40-byte packet at OC-768 speeds, any networking function on the packet must

complete in 8 nsec. Thus the maximum signal transmission delay from inputs to outputs on any

logic path must not exceed 8 nsec.2To ensure this constraint, a model of signal transmission

delay in a transistor is needed.

Roughly speaking, each logic gate, such as a NAND or NOT gate, can be thought of as

a set of capacitors and resistors that must be charged (when input values change) in order to

compute output values. Worse, charging one input gate can cause the outputs of later gates

to charge further inputs, and so on. Thus for a combinatorial function, the delay to compute

the function is the sum of the charging and discharging delays over the worst-case path of

transistors. Such path delays must ﬁt within a minimum packet arrival time. Besides the time

to charge capacitors, another source of delay is wire delay. More details can be found in

Section A.2.2.

It also takes energy to charge capacitors, where the energy per unit time (power) scales

with the square of the voltage, the capacitance, and the clock frequency at which inputs can

change; P = CV2f . While new processes shrink voltage levels and capacitance, higher-speed

circuits must increase clock frequency. Similarly, parallelism implies more capacitors being

charged at a time. Thus many high-speed chips dissipate a lot of heat, requiring nontrivial

cooling techniques such as heat sinks. ISPs and colocation facilities are large consumers of

power. While our level of abstraction precludes understanding power trade-offs, it is good to

be aware that chips and routers are sometimes power limited. Some practical limits today are

30 watts per square centimeter on a single die and 10,000 watts per square foot in a data center.

◆
Example 2. Priority Encoder Design: Consider the problem of estimating timing for the priority

encoder of Example 1 for an OC-768 link using 40-byte packets. Thus the circuit has 8 nsec

to produce the output. Assume the input I and outputs O are N-bit vectors such that O[j] = 1

if and only if I[j] = 1 and I[k] = 0 for all k < j. Notice that the output is represented in unary

(often called 1-hot representation) rather than binary. The speciﬁcation leads directly to the

combinational logic equation O[j] = I[1] . . . I[j − 1]I[j] for j > 0.

2Alternatively, parts of the function can be parallelized/pipelined, but then each part must complete in 8 nsec.


2.2 Hardware



23
This design can be implemented directly using N AND gates, one for each output bit,

where the N gates take a number of inputs that range from 1 to N . Intuitively, since N
input

AND gates take O(N) transistors, we have a design, Design 1, with O(N2) transistors that

appears to take O(1) time.3Even this level of design is helpful, though one can do better.

A more area-economical design is based on the observation that every output bit O[j]

requires the AND of the complement of the ﬁrst j − 1 input bits. Thus we deﬁne the partial

results P[j] =
I[1] . . . I[j − 1] for j
=
2 . . . N. Clearly,
O[j] =
I[j]P[j]. But
P[j] can be

constructed recursively using the equation P[j] =
P[j − 1]I[j], which can be implemented

using N two-input AND gates, connected in series. This produces a design, Design 2, that

takes O(N ) transistors but takes O(N) time.

Design 1 is fast and fat, and Design 2 is slow and lean. This is a familiar time–space

trade-off and suggests we can get something in between. The computation of P[j] in Design

2 resembles an unbalanced binary tree of height N. However, it is obvious that P[N] can be

computed using a fully balanced binary of 2-input AND gates of height log N. A little thought

then shows that the partial results of the binary tree can be combined in simple ways to get

P[j] for all j < N using the same binary tree [WH00].

For example, if N
= 8, to compute P[8] we compute X = I[0] . . . I[3] andY
= I[4] . . . I[7]
and compute the AND of X and Y at the root. Thus, it is easy to calculate P[5], for instance,

using one more AND gate by computing X · I[4]. Such a method is very commonly used by

hardware designers to replace apparently long O(N) computation chains with chains of length

2 log N . Since it was ﬁrst used to speed up carry chains in addition, it is known as carry look-
ahead or simply look-ahead. While look-ahead techniques appear complex, even software

designers can master them because at their core they use divide-and-conquer.

2.2.3 Raising the Abstraction Level of Hardware Design
Hand designing each transistor in a network chip design consisting of 1 million transistors

would be time consuming. The design process can be reduced to a few months using building

blocks. A quick description of building block technologies, such as PLAs, PALs, and standard

cells, can be found in Section A.2.5.

The high-order bit, however, is that just as software designers reuse code, so also hardware

designers reuse a repertoire of commonly occurring functions. Besides common computational

blocks, such as adders, multipliers, comparators, and priority encoders, designs also use

decoders, barrel shifters, multiplexers, and demultiplexers. It is helpful to be familiar with

these “arrows” in the hardware designer’s quiver.

A decoder coverts a log N –bit binary value to an N -bit unary encoding of the same value;

while binary representations are more compact, unary representations are more convenient for

computation. A barrel shifter shifts an input I
by s positions to the left or right, with the bits

shifted off from an end coming around to the other end.

A multiplexer (mux) connects one of several inputs to a common output, while its dual, the

demultiplexer, routes one input to one of several possible outputs. More precisely, a multiplexer

(mux) connects one of n input bits Ijto the output O if a log n–bit select signal S encodes the

value j in binary. Its dual, the demultiplexer, connects input I to output Ojif the signal S
encodes the value j in binary.

3A more precise argument, due to David Harris, using the method of Sutherland et al. [SSH99] shows the delay

scales as log(N log N) because of the effort required to charge a tree of N transistors in each AND gate.


24


C H A P T E R 2
Network Implementation Models
S0
I0
I1
I2
I3
S0


S1


Output
O
F I G U R E 2.3
Building a 4-input mux with select bits S0 and S1 from three 2-input muxes. The ﬁgure

uses the standard trapezoidal icon for a mux.

Thus the game becomes one of decomposing a complex logic function into instances of

the standard functions, even using recursion when needed. This is exactly akin to reduction

and divide-and-conquer and is easily picked up by software designers. For example, Figure 2.3

shows the typical Lego puzzle faced by hardware designers: Build a 4-input multiplexer from

2-input multiplexers. Start by choosing one of I0 and I1 using a 2-input mux and then choosing

one of I2 and I3
by another 2-input mux. Clearly, the outputs of the 2-input muxes in the ﬁrst

stage must be combined using a third 2-input mux; the only cleverness required is to realize

that the select signal for the ﬁrst two muxes is the least signiﬁcant bit S0of the 2-bit select

signal, while the third mux chooses between the upper and lower halves and so uses S1as the

select bit.

The following networking example shows that reduction is a powerful design tool for

designing critical networking functions.

◆
Example 3. Crossbar Scheduling and Programmable Priority Encoders: Examples 1 and 2

motivated and designed a fast priority encoder (PE). A commonly used router arbitration

mechanism uses an enhanced form of priority encoder called a programmable priority encoder

(PPE). There is an N-bit input I as before, together with an additional log N-bit input P. The

PPE circuit must compute an output O such that O[j] = 1, where j is the ﬁrst position beyond

P (treated as a binary value) that has a nonzero bit in
I. If P
=
0, this reduces to a simple

priority encoder.

PPEs arise naturally in switch arbitration (see Chapter 13 for details). For now, suppose a

router connects N communication links. Suppose several input links wish to transmit a packet

at the same time to output link L. To avoid contention at L, each of the inputs sends a request

to L in the ﬁrst time slot; L chooses which input link to grant a request to in the second slot;

the granted input sends a packet in the third time slot.

To make its grant decision, L
can store the requests received at the end of Slot 1 in an

N-bit request vector R, where R[i] = 1 if input link i wishes to transmit to L. For fairness, L
should remember the last input link P it granted a request to. Then, L should confer the grant

to the ﬁrst input link beyond P that has a request. This is exactly a PPE problem with R and P
as inputs. Since a router must do arbitration for each time slot and each output link, a fast and


2.2 Hardware



25
area-efﬁcient PPE design is needed. Even a software designer can understand and possibly

repeat the process [GM99a] used to design the PPE found in the Tiny Tera, a switch built at

Stanford and later commercialized. The basic idea is reduction: reducing the design of a PPE

to the design of a PE (Example 2).

The ﬁrst idea is simple. A PPE is essentially a PE whose highest-priority value starts at

position P instead of at 0. A barrel shifter can be used to shift I ﬁrst to the left by P bits. After

this a simple PE can be used. Of course, the output-bit vector is now shifted; we recover the

original order by shifting the output of the PE to the right by P bits. A barrel shifter for N-bit

inputs can be implemented using a tree of 2-input multiplexers in around log N time. Thus two

barrel shifters and a PE take around 3 log N gate delays.

A faster design used in Gupta and McKeown [GM99a], which requires only 2 log N gate

delays is as follows. Split the problem into two parts. If the input has some bit set at position

P or greater, then the result can be found by using a PE operating on the original input after

setting to zero all input bits with positions less than P.4On the other hand, if the input has no

bit set at a position P or greater, then the result can be found by using a PE on the original

input with no masking at all. This results in the design of Figure 2.4, which, when tested on a

Texas Instrument Cell Library, was nearly twice as fast and took three times less area than the

barrel shifter design for a 32-port router.

The message here is that the logic design used for a time-critical component of a very

inﬂuential switch design can be achieved using simple reductions and simple models. Such

models are not beyond the reach of those of us who do not live and breathe digital design.

2.2.4 Memories
In endnodes and routers, packet forwarding is performed using combinational logic, but packets

and forwarding state are stored in memories. Since memory access times are signiﬁcantly

slower than logic delays, memories form major bottlenecks in routers and endnodes.

Further, different subsystems require different memory characteristics. For example,

router vendors feel it is important to buffer 200 msec — an upper bound on a round-trip

delay — worth of packets to avoid dropping packets during periods of congestion. At, say,

40 Gbit/sec per link, such packet buffering requires an enormous amount of memory. On the

other hand, router lookups require a smaller amount of memory, which is accessed randomly.

Thus it helps to have simple models for different memory technologies. Next, we describe reg-

isters, SRAMs, DRAMs, and interleaved memory technology. Simple implementation models

of these memory components can be found in Section A.2.4 in the Appendix.

REGISTERS
A ﬂip-ﬂop is a way of connecting two or more transistors in a feedback loop so that (in the

absence of Writes and power failures) the bit stays indeﬁnitely without “leaking” away. A

register is an ordered collection of ﬂip-ﬂops. For example, most modern processors have a

collection of 32- or 64-bit on-chip registers. A 32-bit register contains 32 ﬂip-ﬂops, each storing

a bit. Access from logic to a register on the same chip is extremely fast, around 0.5–1 nsec.

4This can be done by ANDing the input with P encoded as a mask; such a mask is commonly known in the

hardware community as a thermometer encoding of P.


26


C H A P T E R 2
Network Implementation Models
Pointer P

log N bits

Encode as



Request R

N bits

Copy 2

N-bit mask



AND


N bits


of PE

N bits

Copy 1

 of PE

N bits



Any bit set?



AND

OR


N bits

Grant (N bits)

F I G U R E 2.4
The Tiny Tera PPE design uses copy 1 of a priority encoder to ﬁnd the highest bit set,

if any, of all bits greater than P using a mask encoding of P. If such a bit is not found, the output of a

second copy of a priority encoder is enabled using the bottom AND gate. The results of the two copies

are then combined using an N -input OR gate.

SRAM
A static random access memory (SRAM) contains N registers addressed by log N address bits

A. SRAM is so named because the underlying ﬂip-ﬂops refresh themselves and so are “static.”
Besides ﬂip-ﬂops, an SRAM also needs a decoder that decodes A into a unary value used to

select the right register. Accessing an SRAM on-chip is only slightly slower than accessing a

register, because of the added decode delay. At the time of writing, it was possible to obtain

on-chip SRAMs with 0.5-nsec access times. Access times of of 1–2 nsec for on-chip SRAM

and 5–10 nsec for off-chip SRAM are common.

DYNAMIC RAM
An SRAM bit cell requires at least ﬁve transistors. Thus SRAM is always less dense or more

expensive than memory technology based on dynamic RAM (DRAM). The key idea is to

replace the feedback loop (and extra transistors) used to store a bit in a ﬂip-ﬂop with an output

capacitance that can store the bit; thus the charge leaks, but it leaks slowly. Loss due to leakage

is ﬁxed by refreshing the DRAM cell externally within a few milliseconds. Of course, the

complexity comes in manufacturing a high capacitance using a tiny amount of silicon.

DRAM chips appear to quadruple in capacity every 3 years [FPCe97] and are heading

towards 1 gigabit on a single chip. Addressing these bits, even if they are packed together as 4-

or even 32-bit “registers,” is tricky. Recall that the address must be decoded from (say) 20 bits


Address bits



Row

decoder

Column

decoder



selected row of bits

row buffer

selected word within row



2.2 Hardware



27
F I G U R E 2.5
Most large memories are organized two-dimensionally in terms of rows and columns.

Selecting a word consists of selecting ﬁrst the row and then the column within the row.

to (say) one of 220values. The complexity of such decode logic suggests divide-and-conquer.

Why not decode in two stages?

Figure 2.5 shows that most memories are internally organized two-dimensionally into

rows and columns. The upper address bits are decoded to select the row, and then the lower

address bits are used to decode the column. More precisely, the user ﬁrst supplies the row

address bits and enables a signal called RAS (row address strobe); later, the user supplies

the column address bits,5and enables a signal called CAS (column address strobe). After

a speciﬁed time, the desired memory word can be read out. Assuming equal-size rows and

columns, this reduces decode gate complexity from O(N) to O(
(N)) at the expense of one

extra decode delay. Besides the required delay between RAS and CAS, there is also a precharge
delay between successive RAS and CAS invocations to allow time for capacitors to charge.

The fastest off-chip DRAMs take around 40–60 nsec to access (latency), with longer times,

such as 100 nsec, between successive reads (throughput) because of precharge restrictions.

Some of this latency includes the time to drive the address using external lines onto the DRAM

interface pins; recent innovations allow on-chip DRAM with lower access times of around

30 nsec. It seems clear that DRAM will always be denser but slower than SRAM.

PAGE-MODE DRAMS
One reason to understand DRAM structure is to understand how function can follow form. A

classic example is a trick to speed up access times called page mode. Page mode is beneﬁcial for

access patterns that exhibit spatial locality, in which adjacent memory words are successively

accessed. But having made a row access in Figure 2.5, one can access words within the

row without incurring additional RAS and precharge delays. Video RAMs exploit the same

structure by having a row read into an SRAM, which can be read out serially to refresh a

display at high speed. Besides page mode and video RAMS, perhaps there are other ideas that

exploit DRAM structure that could be useful in networking.

5Many DRAM chips take advantage of the fact that row and column addresses are not required at the same time

to multiplex row and column addresses on the same set of pins, reducing the pin count of the chip.


28


C H A P T E R 2
Network Implementation Models
Address Bus

Bank 1
Bank 2

Data Bus



• • •
Bank B

Single chip

F I G U R E 2.6
The idea behind RAMBUS, SDRAM, and numerous variants is to create a single chip

containing multiple DRAM parallel memories to gain memory bandwidth while using only one set of

address and data lines.

INTERLEAVED DRAMS
While memory latency is critical for computation speed, memory throughput (often called

bandwidth) is also important for many network applications. Suppose a DRAM has a word

size of 32 bits and a cycle time of 100 nsec. Then the throughput using a single copy of

the DRAM is limited to 32 bits every 100 nsec. Clearly, throughput can be improved using

accesses to multiple DRAMs. As in Figure 2.6, multiple DRAMs (called banks) can be strung

together on a single bus. The user can start a Read to Bank 1 by placing the address on the

address bus. Assume each DRAM bank takes 100 nsec to return the selected data.

Instead of idling during this 100-nsec delay, the user can place a second address for Bank

2, a third for Bank 3, and so on. If the placing of each address takes 10 nsec, the user can

“feed” 10 DRAM banks before the answer to the ﬁrst DRAM bank query arrives, followed

10 nsec later by the answer to the second DRAM bank query, and so on. Thus the net memory

bandwidth in this example is 10 times the memory bandwidth of a single DRAM, as long as

the user can arrange to have consecutive accesses touch different banks.

While using multiple memory banks is a very old idea, it is only in the last 5 years

that memory designers have integrated several banks into a single memory chip (Figure 2.6),

where the address and data lines for all banks are multiplexed using a common high-speed

network called a bus. In addition, page-mode accesses are often allowed on each bank. Memory

technologies based on this core idea abound, with different values for the DRAM sizes, the

protocol to read and write, and the number of banks. Prominent examples include SDRAM

with two banks and RDRAM with 16 banks.

◆
Example 4. Pipelined Flow ID Lookups: A ﬂow is characterized by source and destination IP

addresses and TCP ports. Some customers would like routers to keep track of the number of

packets sent by each network ﬂow, for accounting purposes. This requires a data structure that

stores a counter for each ﬂow ID and supports the two operations of Insert (FlowId) to insert

a new ﬂow ID, and Lookup (FlowId) to ﬁnd the location of a counter for a ﬂow ID. Lookup

requires an exact match on the ﬂow ID – which is around 96 bits – in the time to receive a

packet. This can be done by any exact-matching algorithm, such as hashing.


Queue of

results

Flow ID queue

LOOKUP CHIP



Lookup

Logic



Address

Data



2.2 Hardware
Bank 1

Bank 16

RDRAM



29
F I G U R E 2.7
Solving the ﬂow ID lookup problem by using a pipelined lookup chip that works on

up to 16 concurrent ﬂow ID lookups, each of which accesses an independent bank of the RDRAM. The

lookup chip returns an index to, say, a network processor that updates the ﬂow ID counter.

However, if, as many router vendors wish to do, the worst-case lookup time must be small

and bounded, binary search [CLR90] is a better idea. Assume that ﬂow ID lookups must be

done at wire speeds for worst-case 40-byte packets at 2.5 Gbits/sec or OC-48 speeds. Thus the

chip has 128 nsec to look up a ﬂow ID.

To bound lookup delays, consider using a balanced binary tree, such as a B-tree. The

logic for tree traversal is fairly easy. For speed, ideally the ﬂow IDs and counters should be

stored in SRAM. However, current estimates in core routers [TMW97] show around a million

concurrent ﬂows. Keeping state for a million ﬂows in SRAM is expensive. However, plain

DRAM using a binary tree with a branching factor of 2 would require log21,000,000
= 20

memory accesses. Even assuming an optimistic DRAM cycle time of 50 nsec, the overall

lookup time is 1 usec, which is too slow.

A solution is to use pipelining, as shown in Figure 2.7, where the pipelined logic accesses

ﬂow IDs stored in an RDRAM with 16 banks of memory as shown in Figure 2.6. All the nodes

at height i
in the binary tree are stored in Bank
i of the RDRAM. The lookup chip works

on 16 ﬂow ID lookups (for 16 packets) concurrently. For example, after looking at the root

node for Packet 1 in Bank 1, the chip can look up the second-level tree node for Packet 1 in

Bank 2 and (very slightly after that) look up the root for Packet 2 in Bank 1. When Packet 1’s

lookup “thread” is accessing Bank 16, Packet 16’s lookup thread is accessing Bank 1. Since

direct RDRAM runs at 800 MHz, the time between address requests to the RAMBUS is small

compared with the read access time of around 60 nsec. Thus while a single packet takes around

16 ∗ 60 nsec to complete, processing 16 packets concurrently allows a throughput of one ﬂow

ID lookup every 60 nsec.

Unfortunately, a binary tree with 16 levels allows only 216= 64K ﬂow IDs, which is too

small. Fortunately, RAMBUS allows a variation of page mode where 8 data words of 32 bits

can be accessed in almost the same time as 1 word. This allows us to retrieve two 96-bit keys

and three 20-bit pointers in one 256-bit memory access. Thus a tree with 3-way branching can

be used, which allows potentially 316, or potentially 43 million, ﬂow IDs.

2.2.5 Memory Subsystem Design Techniques
The ﬂow ID lookup problem illustrates three major design techniques commonly used in

memory subsystem designs for networking chips.


30


C H A P T E R 2
Network Implementation Models
•
Memory Interleaving and Pipelining: Similar techniques are used in IP lookup,

classiﬁcation, and in scheduling algorithms that implement QoS. The multiple banks

can be implemented using several external memories, a single external memory like

a RAMBUS, or on-chip SRAM within a chip that also contains processing logic.

•
Wide Word Parallelism: A common theme in many networking designs, such as the

Lucent bit vector scheme (Chapter 12), is to use wide memory words that can be processed

in parallel. This can be implemented using DRAM and exploiting page mode or by using

SRAM and making each memory word wider.

•
Combining DRAM and SRAM: Given that SRAM is expensive and fast and that DRAM

is cheap and slow, it makes sense to combine the two technologies to attempt to obtain the

best of both worlds. While the use of SRAM as a cache for DRAM databases is classical,

there are many more creative applications of the idea of a memory hierarchy. For instance,

the exercises explore the effect of a small amount of SRAM on the design of the ﬂow

ID lookup chip. Chapter 16 describes a more unusual application of this technique to

implement a large number of counters, where the low-order bits of each counter are stored

in SRAM.

It is more important for a novice designer to understand these design techniques (than to know

memory implementation details) in order to produce creative hardware implementations of

networking functions.

2.2.6 Component-Level Design
The methods of the last two subsections can be used to implement a state machine that imple-

ments arbitrary computation. A state machine has a current state stored in memory; the machine

processes inputs using combinatorial logic that reads the current state and possibly writes the

state. An example of a complex state machine is a Pentium processor, whose state is the com-

bination of registers, caches, and main memory. An example of a simpler state machine is

the ﬂow ID lookup chip of Figure 2.7, whose state is the registers used to track each of 16

concurrent lookups and the RDRAM storing the B-tree.

While a few key chips may have to be designed to build a router or a network interface

card, the remainder of the design can be called component-level design: organizing and inter-

connecting chips on a board and placing the board in a box while paying attention to form

factor, power, and cooling. A key aspect of component-level design is understanding pin-count

limitations, which often provide a quick “parity check” on feasible designs.

◆
Example 5. Pin-Count Implications for Router Buffers: Consider a router than has ﬁve

10 Gb/sec links. The overall buffering required is 200 msec * 50 Gb/sec, which is 10 gigabits.

For cost and power, we use DRAM for packet buffers. Since each packet must go in and out

of the buffer, the overall memory bandwidth needs to be twice the bandwidth into the box —
i.e., 100 Gb/sec. Assuming 100% overhead for internal packet headers, links between packets

in queues, and wasted memory bandwidth, it is reasonable to aim for 200-Gb/sec memory

bandwidth.

Using a single direct RDRAM with 16 banks, speciﬁcations show peak memory bandwidth

of 1.6 GB/sec, or 13 Gb/sec. Accessing each RDRAM requires 64 interface pins for data and

25 other pins for address and control, for a total of 90 pins. A 200-Gbps memory bandwidth

requires 16 RDRAMs, which require 1440 pins in total. A conservative upper bound on the


2.2 Hardware



31
number of pins on a chip is around 1000. This implies that even if the router vendor were to

build an extremely fast custom-designed packet-forwarding chip that could handle all packets

at the maximum box rate, one would still need at least one more chip to drive data in and out

of the RAMBUS packet buffers. Our message is that pin limitations are a key constraint in

partitioning a design between chips.

2.2.7 Final Hardware Lessons
If all else is forgotten in this hardware design section, it is helpful to remember the design

techniques of Section 2.2.5. A knowledge of the following parameter values is also useful

to help system designers quickly weed out infeasible designs without a detailed knowledge

of hardware design. Unfortunately, these parameters are a moving target, and the following

numbers were written based on technology available in 2004.

•
Chip Complexity Scaling: The number of components per chip appears to double every

2 years. While 0.13-micron processes are common, 90-nm technology is ramping up, and

65-nm technology is expected after that. As a result, current ASICs can pack several

million gate equivalents (that’s a lot of combinatorial logic) plus up to 50 Mbits (at the

time of writing, using half a 12-mm/side die) of on-chip SRAM on an ASIC.6Embedded

DRAM is also a common option to get more space on-chip at the cost of larger latency.

•
Chip Speeds: As feature sizes go down, on-chip clock speeds of 1 GHz are becoming

common, with some chips even pushing close to 3 GHz. To put this in perspective, the

clock cycle to do a piece of computation on a 1-GHz chip is 1 nsec. By using parallelism

via pipelining and wide memory words, multiple operations can be performed per clock

cycle.

•
Chip I/O: The number of pins per chip grows, but rather slowly. While there are

some promising technologies, it is best to assume that designs are pin limited to

around 1000 pins.

•
Serial I/O: Chip-to-chip I/O has also come a long way, with 10-Gbit serial links available

to connect chips.

•
Memory Scaling: On-chip SRAM with access times of 1 nsec are available, with even

smaller access times being worked on. Off-chip SRAM with access times of 2.5 nsec are

commonly available. On-chip DRAM access times are around 30 nsec, while off-chip

DRAM of around 60 nsec is common. Of course, the use of interleaved DRAM, as

discussed in the memory subsection, is a good way to increase memory subsystem

throughput for certain applications. DRAM costs roughly 4–10 times less than SRAM

per bit.

•
Power and Packaging: The large power consumption of high-speed routers requires

careful design of the cooling system. Finally, most ISPs have severe rack space limitations,

and so there is considerable pressure to build routers that have small form factors.

These parameter values have clear implications for high-speed networking designs. For

instance, at OC-768 speeds, a 40-byte packet arrives in 3.2 nsec. Thus it seems clear that all

6FPGAs are more programmable chips that can only offer smaller amounts of on-chip SRAM.


32


C H A P T E R 2
Network Implementation Models
state required to process the packet must be in on-chip SRAM. While the amount of on-chip

SRAM is growing, this memory is not growing as fast as the number of ﬂows seen by a router.

Similarly, with 1-nsec SRAMs, at most three memory accesses can be made to a single memory

bank in a packet arrival time.

Thus the design techniques of Section 2.2.5 must be used within a chip to gain parallelism

using multiple memory banks and wide words and to increase the usable memory by creative

combinations that involve off- and on-chip memory. However, given that chip densities and

power constraints limit parallelism to, say, a factor of at most 60, the bottom line is that all

packet-processing functions at high speeds must complete using at most 200 memory accesses

and limited on-chip memory.7Despite these limitations, a rich variety of packet-processing

functions have been implemented at high speeds.

2.3 NETWORK DEVICE ARCHITECTURES
Optimizing network performance requires optimizing the path of data through the internals

of the source node, the sink node, and every router. Thus it is important to understand the

internal architecture of endnodes and routers. The earlier part of this chapter argued that logic

and memory can be combined to form state machines. In essence, both routers and endnodes

are state machines. However, their architectures are optimized for different purposes: endnode

architectures (Section 2.3.1) for general computation and router architectures (Section 2.3.2)

for Internet communication.
2.3.1 Endnode Architecture
A processor such as a Pentium is a state machine that takes a sequence of instructions and data

as input and writes output to I/O devices, such as printers and terminals. To allow programs

that have a large state space, the bulk of processor state is stored externally in cheap DRAM.

In PCs, this is referred to as main memory and is often implemented using 1 GB or more of

interleaved DRAM, such as SDRAM. However, recall that DRAM access times are large, say,

60 nsec. If processor state were stored only in DRAM, an instruction would take 60 nsec to

read or write to memory.

Processors gain speed using caches, which are comparitively small chunks of SRAM that

can store commonly used pieces of state for faster access. Some SRAM (i.e., the L1 cache)

is placed on the processor chip, and some more SRAM (i.e., the L2 cache) is placed external

to the processor. A cache is a hash table that maps between memory address locations and

contents. CPU caches use a simple hash function: They extract some bits from the address

to index into an array and then search in parallel for all the addresses that map into the array

element.8When a memory location has to be read from DRAM, it is placed in the cache, and

an existing cache element may be evicted. Commonly used data is stored in a data cache, and

commonly used instructions in an instruction cache.

7Of course, there are ways to work around these limits, for instance, by using multiple chips, but such

implementations often do badly in terms of cost, complexity, and power consumption.

8The number of elements that can be searched in parallel in a hash bucket is called the associativity of the cache.

While router designers rightly consider bit extraction to be a poor hash function, the addition of associativity improves

overall hashing performance, especially on computing workloads.


2.3 Network Device Architectures



33
Caching works well if the instructions and data exhibit temporal locality (i.e., the corre-

sponding location is reused frequently in a small time period) or spatial locality (i.e., accessing

a location is followed by access to a nearby location). Spatial locality is taken advantage of as

follows. Recall that accessing a DRAM location involves accessing a row R and then a column

within the row. Thus reading words within row R is cheaper after R is accessed. A Pentium

takes advantage of this observation by prefetching 128 (cache line size) contiguous bits into

the cache whenever 32 bits of data are accessed. Accesses to the adjoining 96 bits will not

incur a cache miss penalty.

Many computing benchmarks exhibit temporal and spatial locality; however, a stream of

packets probably exhibits only spatial locality. Thus improving endnode protocol implemen-

tations often requires paying attention to cache effects.

The foregoing discussion should set the stage for the endnode architecture model shown

in Figure 2.8. The processor, or CPU — e.g., a Pentium or an Alpha — sits on a bus. A bus

can be thought of as a network like an Ethernet, but optimized for the fact that the devices

on the bus are close to each other. The processor interacts with other components by sending

messages across the bus.

The input–output (I/O) devices are typically memory mapped. In other words, even I/O

devices like the network adaptor and the disk look like pieces of memory. For example, the

adaptor memory may be locations 100–200 on the bus. This allows uniform communication

between the CPU and any device by using the same conventions used to interact with memory.

In terms of networking, a Read (or Write) can be thought of as a message sent on the bus

addressed to the memory location. Thus a Read 100 is sent on the bus, and the device that

owns memory location 100 (e.g., the adaptor) will receive the message and reply with the

contents of location 100.

Modern machines allow direct memory access (DMA), where devices such as the disk

or the network adaptor send Reads and Writes directly to the memory via the bus without

processor intervention. However, only one entity can use the bus at a time. Thus the adaptor

has to contend for the bus; any device that gets hold of the bus “steals cycles” from the

processor. This is because the processor is forced to wait to access memory while a device is

sending messages across the bus.

In Figure 2.8 notice also that the adaptor actually sits on a different bus (system bus or

memory bus) from the bus on which the network adaptor and other peripherals (I/O bus) sit.

CPU

Memory

MMU, Cache

System bus

Bus adaptor

Network interface

I/O bus

F I G U R E 2.8
Model of a workstation.


34


C H A P T E R 2
Network Implementation Models
Programmable

parallel switch

Processor

Network

adaptor



Memory 1

Memory 2

F I G U R E 2.9
Using parallel connections within an endnode architecture to allow concurrent

processing and network trafﬁc via a parallel switch.

The memory bus is designed for speed and is redesigned for every new processor; the I/O bus

is a standard bus (e.g., a PCI bus) chosen to stay compatible with older I/O devices. Thus the

I/O bus is typically slower than the memory bus.

A big lesson for networking in Figure 2.8 is that the throughput of a networking application

is crucially limited by the speed of the slowest bus, typically the I/O bus. Worse, the need for

extra copies to preserve operating system structure causes every packet received or sent by a

workstation to traverse the bus multiple times. Techniques to avoid redundant bus traversals

are described in Chapter 5.

Modern processors are heavily pipelined with instruction fetch, instruction decode, data

reads, and data writes split into separate stages.
Superscalar
and multithreaded
machines

go beyond pipelining by issuing multiple instructions concurrently. While these innovations

(see, for example, the classic reference on endnode architecture [HP96]) remove computation

bottlenecks, they do little for data-movement bottlenecks. Consider instead the following

speculative architecture.

◆
Example 6. Endnode Architecture Using a Crossbar Switch: Figure 2.9 shows the endnode

bus being replaced by a programmable hardware switch, as is commonly used by routers.

The switch internally contains a number of parallel buses so that any set of disjoint endpoint

pairs can be connected in parallel by the switch. Thus in the ﬁgure the processor is connected

to Memory 1, while the network adaptor is connected to Memory 2. Thus packets from the

network can be placed in Memory 2 without interfering with the processor’s reading from

Memory 1. If the processor now wishes to read the incoming packet, the switch can be

reprogrammed to connect the processor to Memory 2 and the adaptor to Memory 1. This can

work well if the queue of empty packet buffers used by the adaptor alternates between the two

memories.

There are recent proposals for Inﬁniband switch technology to replace the I/O bus in

processors (Chapter 5). The ultimate message of this example is not that architectures such

as Figure 2.9 are necessarily good but that simple architectural ideas to improve network

performance, such as Figure 2.9, are not hard for even protocol designers to conceive, given

simple models of hardware and architecture.

2.3.2 Router Architecture
A router model that covers both high-end routers (such as Juniper’s M-series routers) and

low-end routers (such as the Cisco Catalyst) is shown in Figure 2.10. Basically, a router is a


Input link i



ROUTER

B2
Switching

B1


2.3 Network Device Architectures
B3
Output link

Scheduling



35
Address lookup

F I G U R E 2.10
A model of a router labeled with the three main bottlenecks in the forwarding path:

address lookup (B1), switching (B2), and output scheduling (B3).

box with a set of input links, shown on the left, and a set of output links, shown on the right;

the task of the router is to switch a packet from an input link to the appropriate output link

based on the destination address in the packet. While the input and output links are shown

separately, the two links in each direction between two routers are often packaged together.

We review three main bottlenecks in a router: lookup, switching, and output queuing.

LOOKUP
A packet arrives on, say, the left link, input link i. Every packet carries a 32-bit Internet (IP)

address.9Assume that the ﬁrst six bits of the destination address of a sample packet are 100100.

A processor in the router inspects the destination address to determine where to forward the

packet.

The processor consults a forwarding table to determine the output link for the packet. The

forwarding table is sometimes called a FIB, for forwarding information base. The FIB contains

a set of preﬁxes with corresponding output links. The reason for preﬁxes will be explained in

Chapter 11; for now think of preﬁxes as variable-length “area codes” that greatly reduce the

FIB size. A preﬁx like 01*, where the * denotes the usual “don’t care” symbol, matches IP

addresses that start with 01. Assume that preﬁx 100* has associated output link 6, while preﬁx

1* has output link 2. Thus our sample packet, whose destination address starts with 100100,

matches both preﬁx 100* and 1*. The disambiguating rule that IP routers use is to match an

address to the longest matching preﬁx. Assuming no longer matching preﬁxes, our sample

packet should be forwarded to output link 6.

The processor that does the lookup and basic packet processing can be either shared or

dedicated and can be either a general processor or a special-purpose chip. Early router designs

used a shared processor (or processors), but this proved to be a bottleneck. Later designs,

including Cisco’s GSR family, use a dedicated processor per input link interface. The earliest

designs used a standard CPU processor, but many of the fastest routers today, such as Juniper’s

M-160, use a dedicated chip (ASIC) with some degree of programmability. There has been a

9Recall that while most users deal with domain names, these names are translated to an IP address by a directory

service, called DNS, before packets are sent.


36


C H A P T E R 2
Network Implementation Models
backlash to this trend toward ASICs, however, with customers asking routers to perform new

functions, such as Web load balancing. Thus some new routers use network processors (see

Example 7), which are general-purpose processors optimized for networking.

Algorithms for preﬁx lookups are described in Chapter 11. Many routers today also offer

a more complex lookup called packet classiﬁcation (Chapter 12), where the lookup takes as

input the destination address as well as source address and TCP ports.

SWITCHING
After address lookup in the example of Figure 2.10, the processor instructs an internal switching

system to transfer the packet from link i to output link 6. In older processors, the switch was a

simple bus, such as shown in Figure 2.8. This proved to be a major bottleneck because, if the

switch has N input links running at B bits per second, the bus would have to have a bandwidth

of B · N. Unfortunately, as N increases, electrical effects (such as the capacitive load of a bus)

predominate, limiting the bus speed.

Thus the fastest routers today internally use a parallel switch of the sort shown in Figure 2.9.

The throughput of the switch is increased by using N parallel buses, one for each input and

one for each output. An input and an output are connected by turning on transistors connecting

the corresponding input bus and output bus. While it is easy to build the data path, it is harder

to schedule the switch, because multiple inputs may wish to send to the same output link at

the same time. The switch-scheduling problem boils down to matching available inputs and

outputs every packet arrival time. Algorithms for this purpose are described in Chapter 13.

QUEUING
Once the packet in Figure 2.10 has been looked up and switched to output link 6, output

link 6 may be congested, and thus the packet may have to be placed in a queue for output

link 6. Many older routers simply place the packet in a ﬁrst-in ﬁrst-out (FIFO) transmission

queue. However, some routers employ more sophisticated output scheduling to provide fair

bandwidth allocation and delay guarantees. Output scheduling is described in Chapter 14.

Besides the major tasks of lookups, switching, and queuing, there are a number of other

tasks that are less time critical.

HEADER VALIDATION AND CHECKSUMS
The version number of a packet is checked, and the header-length ﬁeld is checked for options.

Options are additional processing directives that are rarely used; such packets are often shunted

to a separate route processor. The header also has a simple checksum that must be veriﬁed.

Finally, a time-to-live (TTL) ﬁeld must be decremented and the header checksum recalculated.

Chapter 9 shows how to incrementally update the checksum. Header validation and checksum

computation are often done in hardware.

ROUTE PROCESSING
Section A.1.2 describes brieﬂy how routers build forwarding tables using routing protocols.

Routers within domains implement RIP and OSPF, while routers that link domains also

must implement BGP.10These protocols are implemented in one or more route processors.

10It is possible to buy versions of these protocols, but the software must be customized for each new hardware

platform. A more insidious problem, especially with BGP and OSPF, is that many of the ﬁrst implementations of these


2.3 Network Device Architectures



37
For example, when a link state packet is sent to the router in Figure 2.10, lookup will recognize

that this is a packet destined for the router itself and will cause the packet to be switched to the

route processor. The route processor maintains the link state database and computes shortest

paths; after computation, the route processor loads the new forwarding databases in each of

the forwarding processors through either the switch or a separate out-of-band path.

In the early days, Cisco won its spurs by processing not just Internet packets but also other

routing protocols, such as DECNET, SNA, and Appletalk. The need for such multiprotocol

processing is less clear now. A much more important trend is multi-protocol-label switching

(MPLS), which appears to be de rigeur for core routers. In MPLS, the IP header is augmented

with a header containing simple integer indices that can be looked up directly without a preﬁx

lookup; Chapter 11 provides more details about MPLS.

PROTOCOL PROCESSING
All routers today have to implement the simple network management protocol (SNMP) and

provide a set of counters that can be inspected remotely. To allow remote communication with

the router, most routers also implement TCP and UDP. In addition, routers have to implement

the Internet control message protocol (ICMP), which is basically a protocol for sending error

messages, such as “time-to-live exceeded.”
FRAGMENTATION, REDIRECTS, AND ARPS
While it is clear that route and protocol processing is best relegated to a route processor on a

so-called “slow path,” there are a few router functions that are more ambiguous. For example,

if a packet of 4000 bytes is to be sent over a link with a maximum packet size (MTU) of

1500 bytes, the packet has to be fragmented into two pieces.11While the prevailing trend is for

sources, instead of routers, to do fragmentation, some routers do fragmentation in the fast path.

Another such function is the sending of Redirects. If an endnode sends a message to the wrong

router, the router is supposed to send a Redirect back to the endnode. A third such function is

the sending of address resolution protocol (ARP) requests, whose operation is explored in the

exercises.

Finally, routers today have a number of other tasks they may be called on to perform. Many

routers within enterprises do content-based handling of packets, where the packet processing

depends on strings found in the packet data. For example, a router that fronts a Web farm of

many servers may wish to forward packets with the same Web URL to the same Web server.

There are also the issues of accounting and trafﬁc measurement. Some of these new services

are described in Chapter 16.

◆
Example 7.
Network Processors: Network processors are general-purpose programmable pro-

cessors optimized for network trafﬁc. Their proponents say that they are needed because the

unpredictable nature of router tasks (such as content-based delivery) makes committing router

forwarding to silicon a risky proposition. For example, the Intel IXP1200 network proces-

sor evaluated in Spalink et al. [SKP00] internally contains six processors, each running at

protocols vary in subtle ways from the actual speciﬁcations. Thus a new implementation that meets the speciﬁcation

may not interoperate with existing routers. Thus ISPs are reluctant to buy new routers unless they can trust the “quality”
of the BGP code, in terms of its ability to interoperate with existing routers.

11Strictly speaking, since each fragment adds headers, there will be three pieces.


38


C H A P T E R 2
Network Implementation Models
177 MHz with a 5.6-nsec clock cycle. Each processor receives packets from an input queue;

packets are stored in a large DRAM; after the processor has looked up the packet destination,

the packet is placed on the output queue with a tag describing the output link it should be

forwarded to.

The biggest problem is that the processors are responsible for moving packets in and out

of DRAM. In the IXP1200, moving 32 bytes from the queue to the DRAM takes 45 clock

cycles, and moving from the DRAM to the queue takes 55 cycles. Since a minimum-size

packet is at least 40 bytes, this requires a total of 200 cycles = 1.12 usec, which translates to

a forwarding rate of only around 900K packets/second. The IXP1200 gets around this limit

by using six parallel processors and an old architectural idea called multithreading. The main

idea is that each processor works on multiple packets, each packet being a thread; when the

processing for one packet stalls because of a memory reference, processing for the next thread

is resumed. Using fast context switching between threads, and four contexts per processor, the

IXP1200 can theoretically obtain 6 * 4 * 900 = 21.4M packets/second.

Network processors also offer special-purpose instructions for address lookup and other

common forwarding functions. Some network processors also streamline the movement of

data packets by having hardware engines that present only the header of each data packet

to the processor. The remainder of the data packet ﬂows directly to the output queue. The

processor(s) read the header, do the lookup, and write the updated header to the output queue.

The hardware magically glues together the updated header with the original packet and keeps

all packets in order. While this approach avoids the movement of the remainder of the packet

through the processor, it does nothing for the case of minimum-size packets.

Case Study 2: Buffering and Optical Switching
As ﬁber-optic links scale to higher speeds, electronics implementing combinational

logic and memories in core routers becomes a bottleneck. Currently, packets arrive over

ﬁber-optic links with each bit encoded as a light pulse. Optics at the receiver convert

light to electrical pulses; the packet is then presented to forwarding logic implemented

electronically. The packet is then queued to an outbound link for transmission, upon

which the transmitting link optics convert electrical bits back to light. The electronic

bottleneck can be circumvented by creating an all-optical router without any electro-

optical conversions.

Unfortunately, doing IP lookups optically, and especially building dense optical

packet memories, seems hard today. But switching light between several endpoints is

feasible. Thus the numerous startups in the buzzing optical space tend to build optical

circuit switches that use electronics to set up the circuit switch. A circuit switch connects

input X to output Y for a large duration, as opposed to the duration of a single packet

as in a packet switch. Such circuit switches have found use as a ﬂexible “core” of an

ISP’s network to connect conventional routers. If trafﬁc between, say, routers R1 and R2

increases, an ISP operator can (at a large time scale of, say, minutes) change the circuit

switches to increase the bandwidth of the R1-to-R2 path. However, the wastefulness

of reserving switch paths for small ﬂow durations makes it likely that packet-switched

routers will continue to be popular in the near future.


2.4 OPERATING SYSTEMS


2.4 Operating Systems



39
An operating system is software that sits above hardware in order to make life easier for appli-

cation programmers. For most Internet routers, time-critical packet forwarding runs directly

on the hardware (Figure 2.10) and is not mediated by an operating system. Less time-critical

code runs on a router operating system that is stripped down such as Cisco’s IOS. However, to

improve end-to-end performance for, say, Web browsing, an implementor needs to understand

the costs and beneﬁts of operating systems.

Abstractions are idealizations or illusions we invent to deal with the perversity and irreg-

ularity of the real world. To ﬁnesse the difﬁculties of programming on a bare machine,

operating systems offer abstractions to application programmers. Three central difﬁculties

of dealing with raw hardware are dealing with interruptions, managing memory, and control-

ling I/O devices. To deal with these difﬁculties, operating systems offer the abstractions of

uninterrupted computation, inﬁnite memory, and simple I/O.

A good abstraction increases programmer productivity but has two costs. First, the mech-

anism implementing the abstraction has a price. For example, scheduling processes can cause

overhead for a Web server. A second, less obvious cost is that the abstraction can hide power,

preventing the programmer from making optimal use of resources. For example, operating

system memory management may prevent the programmer of an Internet lookup algorithm

from keeping the lookup data structure in memory in order to maximize performance. We now

provide a model of the costs and underlying mechanisms of the process (Section 2.4.1), virtual

memory (Section 2.4.2), and I/O (Section 2.4.3) abstractions. More details can be found in

Tanenbaum [Tan92].

2.4.1 Uninterrupted Computation via Processes
A program may not run very long on the processor before being interrupted by the network

adaptor. If application programmers had to deal with interrupts, a working 100-line program

would be a miracle. Thus operating systems provide programmers with the abstraction of

uninterrupted, sequential computation under the name of a process.

The process abstraction is realized by three mechanisms: context switching, scheduling,

and protection, the ﬁrst two of which are depicted in Figure 2.11. In Figure 2.11, Process P1

has the illusion that it runs on the processor by itself. In reality, as shown on the timeline below,

Process P1 may be interrupted by a timer interrupt, which causes the OS scheduler program

to run on the processor. Displacing P1 requires the operating system to save the state of P1 in

memory. The scheduler may run brieﬂy and decide to give Process P2 a turn. Restoring P2 to

Process P1 runs to completion all by itself

Illusion

Timeline

Reality

P1 starts

to run


On interrupt, kernel

saves P1’s state


Scheduler runs,

picks P2


P2’s state is

restored


P2 runs
•  •  •  •

P1 runs again

and finishes

F I G U R E 2.11
The programmer sees the illusion of an uninterrupted timeline shown above, while the real

processor timeline may switch back and forth between several processes.


40


C H A P T E R 2
Network Implementation Models
P1
P2
Application processes
P3

Socket Queues

TCP

IP

Shared IP

queue

Network

adaptor



Kernel

F I G U R E 2.12
The processing of a received Internet packet in BSD is divided between the network

adaptor, the kernel, and the destined process.

run on the processor requires restoring the state of P2 from memory. Thus the actual time line

of a processor may involve frequent context switches between processes, as orchestrated by

the scheduler. Finally, protection ensures that incorrect or malicious behavior of one process

cannot affect other processes.

As agents of computation, “processes” come in three ﬂavors — interrupt handlers, threads,

and user processes — ranked in order of increasing generality and cost. Interrupt handlers are

small pieces of computation used to service urgent requests, such as the arrival of a message

to the network adaptor; interrupt handlers use only a small amount of state, typically a few

registers.
User processes use the complete state of the machine, such as memory as well as

registers; thus it is expensive to switch between user processes as directed by the scheduler.

Within the context of a single process, threads offer a cheaper alternative to processes. A

thread is a lightweight process that requires less state, because threads within the same process

share the same memory (i.e., same variables). Thus context switching between two threads

in the same process is cheaper than switching processes, because memory does not have

to be remapped. The following example shows the relevance of these concepts to endnode

networking.

◆ Example 8. Receiver Livelock in BSD Unix: In BSD UNIX, as shown in Figure 2.12, the

arrival of a packet generates an interrupt. The interrupt is a hardware signal that causes the

processor to save the state of the currently running process, say, a Java program. The processor

then jumps to the interrupt handler code, bypassing the scheduler for speed. The interrupt

handler copies the packet to a kernel queue of IP packets waiting to be consumed, makes a

request for an operating system thread (called a software interrupt), and exits. Assuming no

further interrupts, the interrupt exit passes control to the scheduler, which is likely to cede the

processor to the software interrupt, which has higher priority than user processes.


2.4 Operating Systems



41
The kernel thread does TCP and IP processing and queues the packet to the appropriate

application queue, called a socket queue (Figure 2.12). Assume that the application is a browser

such as Netscape. Netscape runs as a process that may have been asleep waiting for data and

is now considered for being run on the processor by the scheduler. After the software interrupt

exits and control passes back to the scheduler, the scheduler may decide to run Netscape in

place of the original Java program.

Under high network load, the computer can enter what is called receiver livelock [MR97],

in which the computer spends all its time processing incoming packets, only to discard them

later because the applications never run. In our example, if there is a series of back-to-back

packet arrivals, only the highest-priority interrupt handler will run, possibly leaving no time

for the software interrupt and certainly leaving none for the browser process. Thus either the IP

or socket queues will ﬁll up, causing packets to be dropped after resources have been invested

in their processing. Methods to mitigate this effect are described in Chapter 6.

Notice also that the latency and throughput of network code in an endnode depend on

“process” activation times. For example, current ﬁgures for Pentium IV machines show around

2 µsec of interrupt latency for a null interrupt call, around 10 µsec for a Process Context switch

on a Linux machine with two processes, and much more time for Windows and Solaris on

the same machine. These times may seem small, but recall that 30 minimum-size (40-byte)

packets can arrive in 10 µsec on a Gigabit Ethernet link.

2.4.2 Inﬁnite Memory via Virtual Memory
In virtual memory (Figure 2.13), the programmer works with an abstraction of memory that

is a linear array into which a compiler assigns variable locations. Variable X
could be stored

Illusion

Process 1’s Virtual

Memory

Virtual



Main Memory



Reality



Disk Memory

Page 1

Virtual

Page 2

Virtual

Page M


Physical Page

40

Physical Page

200



Disk page

80

F I G U R E 2.13
The programmer sees the illusion of contiguous virtual memory, which is, in reality,

mapped to a collection of main memory and disk memory pages via page tables.

42


C H A P T E R 2
Network Implementation Models
in location 1010 in this imaginary (or virtual) array. The virtual memory abstraction is imple-

mented using the twin mechanisms of page table mapping and demand paging. Both these

mechanisms are crucial to understand in order to optimize data transfer costs in an endnode.

Any virtual address must be mapped to a physical memory address. The easiest mapping

is to use an offset into physical memory. For example, a virtual array of 15,000 locations

could be mapped into physical memory from, say, 12,000 to 27,000. This has two disad-

vantages. First, when the program runs, a block of 15,000 contiguous locations has to be

found. Second, the programmer is limited to using a total memory equal to the size of physical

memory.

Both problems can be avoided by a mapping based on table lookup. Since it takes too

much memory to implement a mapping from any virtual location to any physical location,

a more restricted mapping based on pages is used. Thus for any virtual address, let us say

that the high-order bits (e.g., 20 bits) form the page number and that the low-order bits (e.g.,

12 bits) form the location within a page. All locations within a virtual page are mapped to the

same relative location, but individual virtual pages can be mapped to arbitrary locations. Main

memory is also divided into physical pages, such that every group of 212memory words is a

physical page.

To map a virtual into a physical address, the corresponding virtual page (i.e., high-order

20 bits) is mapped to a physical page number while retaining the same location within the

page. The mapping is done by looking up a page table indexed by the virtual page number.

A virtual page can be located in any physical memory page. More generally, some pages

(e.g., Virtual Page 2 in Figure 2.13) may not be memory resident and can be marked as being

on disk. When such a page is accessed, the hardware will generate an exception and cause the

operating system to read the page from the disk page into a main memory page. This second

mechanism is called demand paging.

Together, page mapping and demand paging solve the two problems of storage allocation

and bounded memory allocations. Instead of solving the harder variable size storage allocation

problem, the OS needs only to keep a list of ﬁxed size free pages and to assign some free pages

to a new program. Also, the programmer can work with an abstraction of memory whose size

is bounded only by the size of disk and the number of instruction address bits.

The extra mapping can slow down each instruction considerably. A Read to virtual location

X may require two main memory accesses: a page table access to translate X to physical address

P, followed by a Read to address P. Modern processors get around this overhead by caching

the most recently used mappings between virtual and physical addresses in a translation look-
aside buffer (TLB), which is a processor-resident cache. The actual translation is done by a

piece of hardware called the memory management unit (MMU), as shown in Figure 2.8.

The page table mapping also provides a mechanism for protection between processes.

When a process makes a Read to virtual location X, unless there is a corresponding entry

in the page table, the hardware will generate a page fault exception. By ensuring that only

the operating system can change page table entries, the operating system can ensure that

one process cannot read from or write to the memory of another process in unauthorized

fashion.

While router forwarding works directly on physical memory, all endnode and server

networking code works on virtual memory. While virtual memory is a potential cost (e.g., for

TLB misses), it also reﬂects a possible opportunity. For example, it offers the potential that


2.4 Operating Systems



43
packet copying between the operating system and the application (see Example 8) can be done

more efﬁciently by manipulating page tables. This idea is explored further in Chapter 5.

2.4.3 Simple I/O via System Calls
Having an application programmer be aware of the variety and complexity of each I/O device

would be intolerable. Thus operating systems provide the programmer with the abstraction of

the devices as a piece of memory (Figure 2.14) that can be read and written.

The code that maps from a simple I/O interface call to the actual physical Read (with all

parameters ﬁlled in) to the device is called a device driver. If abstraction were the only concern,

the device driver code could be installed in a library of commonly available code that can be

“checked out” by each application. However, since devices such as disks must be shared by

all applications, if applications directly control the disk, an erroneous process could crash the

disk. Instead, secure operating system design requires that only the buggy application fail.

Thus it makes sense for the I/O calls to be handled by device drivers that are in a secure

portion of the operating system that cannot be affected by buggy processes. This secure portion,

called the kernel, provides a core of essential services, including I/O and page table updates,

that applications cannot be trusted to perform directly.

Thus when a browser such as Netscape wants to make a disk access to read a Web page, it

must make a so-called system call across the application–kernel boundary. System calls are a

protected form of a function call. The hardware instruction is said to “trap” to a more privileged

level (kernel mode), which allows access to operating system internals. When the function call

returns after the I/O completes, the application code runs at normal privilege levels. A system

call is more expensive than a function call because of the hardware privilege escalation and

the extra sanitizing checks for incorrect parameter values. A simple system call may take a

few microseconds on modern machines.

The relevance to networking is that when a browser wishes to send a message over the

network (e.g., Process 2 in Figure 2.14), it must do a system call to activate TCP processing.

A few microseconds for a system call may seem small, but it is really very high overhead on

a fast Pentium. Can applications speed up networking by bypassing the system call? If so,

Process 1

read file X



Process 2

write to TCP connection Y



Illusion

Choose platter

Move disk arm



Kernel



Write device register

Write network headers

Network adaptor



Reality

F I G U R E 2.14
The programmer sees devices as disparate as a disk and a network adaptor as pieces

of memory that can be read and written using system calls, but in reality the kernel manages a host of

device-speciﬁc details.

44


C H A P T E R 2
Network Implementation Models
does OS protection get tossed out of the window? Answers to these tantalizing questions are

postponed to Chapter 6.

2.5 SUMMARY
This chapter is best sampled based on the reader’s needs. Structurally, the chapter works its

way through four abstraction levels that affect performance: hardware, architecture, operating

systems, and protocols. Viewing across abstraction levels is helpful because packet-processing

speeds can be limited by transistor paths implementing packet processing, by architectural

limits such as bus speeds, by OS abstraction overheads such as system calls, and ﬁnally even

by protocol mechanisms. Several examples, which look ahead to the rest of the book, were

described to show that performance can be improved by understanding each abstraction level.

Designers that consider all four abstraction levels for each problem will soon be lost in

detail. However, there are a few important performance issues and major architectural decisions

for which simultaneous understanding of all abstraction levels is essential. For example, the

simple models given in this chapter can allow circuit designers, logic designers, architects,

microcoders, and software protocol implementors to work together to craft the architecture of

a world-class router. They can also allow operating system designers, algorithm experts, and

application writers to work together to design a world-class Web server. As link speeds cross

40 Gbps, such interdisciplinary teams will become even more important. This need is alluded

to by Raymond Kurzweil in a different context [Kur]:

There’s another aspect of creativity. We’ve been talking about great individual contrib-
utors, but when you’re creating technology it’s necessarily a group process, because
technology today is so complex that it has to be interdisciplinary. . . . And they’re all
essentially speaking their own languages, even about the same concepts. So we will
spend months establishing our common language. . . . I have a technique to get people
to think outside the box: I’ll give a signal-processing problem to the linguists, and vice
versa, and let them apply the disciplines in which they’ve grown up to a completely
different problem. The result is often an approach that the experts in the original ﬁeld
would never have thought of. Group process gives creativity a new dimension.
With ﬁelds like hardware implementation and protocol design replacing signal processing

and linguistics, Kurzweil’s manifesto reﬂects the goal of this chapter.

2.6 EXERCISES
1. TCP Protocols and Denial-of-Service Attacks: A common exploit for a hacker is to

attempt to bring down a popular service, such as Yahoo, by doing a denial-of-service

(DOS) attack. A simple DOS attack that can be understood using the simple TCP model

of Figure A.1 is TCP Syn-Flooding. In this attack, the hacker sends a number of SYN

packets to the chosen destination D (e.g., Yahoo) using randomly chosen source

addresses. D sends back a SYN-ACK to the supposed source S and waits for a response.

If S is not an active IP address, then there will be no response from S. Unfortunately,

state for S is kept in a pending connection queue at D until D ﬁnally times out S. By

periodically sending bogus connection attempts pretending to be from different sources,

2.6 Exercises



45
the attacker can ensure that the ﬁnite pending connection queue is always full. Thereafter,

legitimate connection requests to D will be denied.

• Assume there is a monitor that is watching all trafﬁc. What algorithm can be used to

detect denial-of-service attacks? Try to make your algorithm as fast and memory

efﬁcient as possible so that it can potentially be used in real time, even in a router.

This is a hard problem, but even starting to think about the problem is instructive.

• Suppose the monitor realizes a TCP ﬂood attack is under way. Why might it be hard to

distinguish between legitimate trafﬁc and ﬂood trafﬁc?

2. Digital Design: Multiplexers and barrel shifters are very useful in networking hardware,

so working this problem can help even a software person to build up hardware intuition.

• First, design a 2-input multiplexer from basic gates (AND, OR, NOT).

• Next, generalize the idea shown in the chapter to design an N-input multiplexer from

N/2 input multiplexers. Use this to describe a design that takes log N gate delays and

O(N) transistors.

• Show how to design a barrel shifter using a reduction to multiplexers (i.e, use as many

muxes as you need in your solution). Based on your earlier solutions, what are the gate

and time complexities of your solution?

• Try to design a barrel shifter directly at the transistor level. What are its time and

transistor complexities? You can do better using direct design than the simple reduction

earlier.

3. Memory Design: For the design of the pipelined ﬂow ID lookup scheme described

earlier, draw the timing diagrams for the pipelined lookups. Use the numbers described in

the chapter, and clearly sketch a sample binary tree with 15 leaves and show how it can

be looked up after four lookups on four different banks. Assume a binary tree, not a

ternary tree. Also, calculate the number of keys that can be supported using 16 banks

of RAMBUS if the ﬁrst k levels of the tree are cached in on-chip SRAM.

4. Memories and Pipelining Trees: This problem studies how to pipeline a heap. A heap is

important for applications like QoS, where a router wishes to transmit the packet with the

earliest timestamp ﬁrst. Thus it makes sense to have a heap ordered on timestamps. To

make it efﬁcient, the heap needs to be pipelined in the same fashion as the binary search

tree example in the chapter, though doing so for a heap is somewhat harder. Figure 2.15

shows an example of a P-heap capable of storing 15 keys. A P-heap [BL00] is a full

binary tree, such as a standard heap, except that nodes anywhere in the heap can be empty

as long as all children of the node are also empty (e.g., nodes 6, 12, 13).

For the following explanations consult Figures 2.15 and Figure 2.16. Consider

adding key 9 to the heap. Assume every node N has a count of the number of empty nodes

in the subtree rooted at N. Since 9 is less than the root value of 16, 9 must move below.

Since both the left and right children have empty nodes in their subtrees, we arbitrarily

choose to add 9 to the left subtree (node 2). The index, value, and position values shown

on the left of each tree are registers used to show the state of the current operation. Thus

in Figure 2.15, part (b), when 9 is added to the left subtree, the index represents the depth


46
index



C H A P T E R 2
Network Implementation Models
value
position
index

1



value



position



1

1

2

3


9


1



4

8



2

14



5

7


16



6



3

10



7

3


1

2

3



9



2



4

8



2

14



5

7


16



6



3

10



7

3

4


8
9
10
11
12
13 14
15

2
4
5

(a)



4


8
9
10
11
12
13 14
15

2
4
5

(b)

index

1

2

3



value

9



position

4

5
8



2

14



5

7



1

16



6



3

10



7

3



index

1

2

3



value



position

4

8



2

14



5

9



1

16



6



3

10



7

3

4

index

1

2

3

4



value


8
9 10
11
12
13 14
15

2
4
5

(c)

position

1

16

2
3

14
10

4
5
6
7

8
9
3

8
9
10
11
12
13 14
15

2
4
7
5

(e)



4



7


8
9
10
11
12
13 14
15

10
2
4
5

(d)

F I G U R E 2.15
An enqueue example in ﬁve snapshots to be read from left to right and then top down. In each

snapshot, the index represents the depth of the subtree, and the position is the number of the node that the value is

being added to.

of the subtree (depth 2) and the position is the number of the node (i.e., node 2) that the

value 9 is being added to.

Next, since 9 is less than 14 and since only the right child has space in its subtree,

9 is added to the subtree rooted at node 5. This time 9 is greater than 7, so 7 is replaced

with 9 (in node 5) and 7 is pushed down to the empty node, 10. Thus in Figure 2.15, part

(d), the index value is 4 (i.e., operation is at depth 4) and the position is 10. Although in

Figure 2.15 only one of the registers at any index/depth has nonempty information,

keeping separate registers for each index will allow pipelining.

Consider next what is involved in removing the largest element (dequeue). Remove

16 and try to push down the hole created until an empty subtree is created. Thus in Step 3,


index

1



value



position



2



1

16



3



index

1



value



position

1



2



2.6 Exercises
1



3



47
2

3



4

8


14



5

7



6


10



7

3


2

3



4

8


14



5

7



6


10



7

3

4


8
9
10
11
12
13 14
15

2
4
5

(a)



4


8
9
10
11
12
13 14
15

2
4
5

(b) local-dequeue(1)

index

1

2

3



value



position

2

4

8



2



5

7



14



6



3

10



7

3



index

1

2

3



value



position

4

4



2

8



5

7



14



6



3

10



7

3

4

index

1

2

3

4



value


8
9
10
11
12
13 14
15

2
4
5

(c) local-dequeue(2)

position

14

2
3

8
10

4
5
6
7

4
7
3

8
9
10
11
12
13 14
15

2
5

(e)



4


8
9
10
11
12
13 14
15

2
4
5

(d) local-dequeue(3)

F I G U R E 2.16
Dequeue example.

the hole is moved to node 2 (because its value, 14, is larger than its sibling, with

value 10), then to node 4, and ﬁnally to node 9. Each time a hole is moved down,

the corresponding nonempty value from below replaces the old hole.

• In order to make the enqueue operation work correctly, the count of empty subtree

nodes must be maintained. Explain brieﬂy how the count should be maintained for

each enqueue and dequeue operation (the structure will be pipelined in a moment,

so make sure the count values respect this goal).

• A logical thing to do is to pipeline by level, as we did for the binary tree in the chapter.

However, here we have a problem. At each level (say, inserting 9 at the root) the

operation has to consult the two children at the next level as well. Thus when the ﬁrst

operation moves down to level 2, one cannot bring in a second operation to level 1 or

48


C H A P T E R 2
Network Implementation Models
there will be memory contention. Clearly waiting till one operation ﬁnishes completely

will work, but this reduces to sequential processing of operations. What is the fastest

rate you can pipeline the heap?

• Consider the operations “Enqueue 9; Enqueue 4.5; Dequeue” pipelined as you have

answered earlier. Show six consecutive snapshots of the tree supporting these three

operations.

• Assume that each level memory is an on-chip SRAM that takes 5 nsec for a memory

access. Assume that you can read and write the value and count ﬁelds together in one

access. Remember that some of the memories can be queried in parallel. What is the

steady-state throughput of the heap, in operations per second?

• Could one improve the number of memory references by using a wider memory access

and laying out the tree appropriately?

• Before this design, previous designs used a memory element for each heap element as

well as logic for each element. Thus the amount of logic required scaled directly with

heap size, which scales poorly in terms of density and power. In this design, the

memory scales with the number of heap elements and thus scales with SRAM densities

and power, but the logic required scales much better. Explain.

5. Architecture, Caches, and Fast Hash Functions: The L1 cache in a CPU provides

essentially a fast hash function that maps from a physical memory address to its contents

via the L1 cache. Suppose that one wants to teach an old dog (the L1 cache) a new trick

(to do IP lookups) using a method suggested in Chieuh and Pradhan [CP98]. The goal is

to use the L1 cache as a hash table to map 32-bit IP addresses to 7-bit port numbers.

Assume a 16-KB L1 cache, of which the ﬁrst 4 KB are reserved for the hash table, and a

32-byte cache block size. Assume a byte-addressable machine, a 32-bit virtual address,

and a page size of 4 KB. Thus there are 512 32-byte blocks in the cache. Assume the L1

cache is directly indexed (called direct mapped). Thus bits 5 through 13 of a virtual

address are used to index into one of 512 blocks, with bits 0 through 4 identifying the

byte within each block.

• Given pages of size 4 KB and that the machine is byte addressable, how many bits in a

virtual address identify the virtual page? How many bits of the virtual page number

intersect with bits 5 through 13 used to index into the L1 cache?

• The only way to ensure that the hash table is not thrown out of the L1 cache when some

other virtual pages arrive is to mark any pages that could map into the same portion of

the L1 cache as uncacheable at start-up (this can be done). Based on your previous

answer and the fact that the hash table uses the ﬁrst 4 KB of L1 cache, precisely

identify which pages must be marked as uncacheable.

• To do a lookup of a 32-byte IP address, ﬁrst convert the address to a virtual address by

setting to 0 all bits except bits 5 through 11 (bits 12 and 13 are zero because only the

top quarter of the L1 cache is being used). Assume this is translated to the exact same

physical address. When a Read is done to this address, the L1 cache hardware will

return the contents of the ﬁrst 32-bit word of the corresponding cache block. Each

32-bit word will contain a 25-bit tag and a 7-bit port number. Next, compare all bits in

2.6 Exercises
the IP address, other than bits 5 through 11, with the tag, and keep doing so for each



49
32-bit entry in the block. How many L1 cache accesses are required in the worst case

for a hash lookup? Why might this be faster than a standard hash lookup in software?

6. Operating Systems and Lazy Receiver Processing: Example 8 described how BSD

protocol processing can lead to receiver livelock. Lazy receiver processing [DB96]

combats this problem via two mechanisms.

• The ﬁrst mechanism is to replace the single shared IP processing queue by a separate

queue per destination socket. Why does this help? Why might this not be easy to

implement?

• The second mechanism is to implement the protocol processing at the priority of the

receiving process and as part of the context of the received process (and not a separate

software interrupt). Why does this help? Why might this not be easy to implement?


C H A P T E R 3
Fifteen Implementation Principles
Instead of computing, I had to think about the problem, a formula for success that I
recommend highly.
— Ivan Sutherland

After understanding how queens and knights move in a game of chess, it helps to understand

basic strategies, such as castling and the promotion of pawns in the endgame. Similarly,

having studied some of the rules of the protocol implementation game in the last chap-

ter, you will be presented in this chapter with implementation strategies in the form of

15 principles. The principles are abstracted from protocol implementations that have worked

well. Many good implementors
unconsciously
use such principles. The point, however,

is to articulate such principles so that they can be
deliberately
applied to craft efﬁcient

implementations.

This chapter is organized as follows. Section 3.1 motivates the use of the principles using

a ternary CAM problem. Section 3.2 clariﬁes the distinction between algorithms and algorith-

mics using a network security forensics problem. Section 3.3 introduces 15 implementation

principles; Section 3.4 explains the differences between implementation and design principles.

Finally, Section 3.5 describes some cautionary questions that should be asked before applying

the principles.

Q u i c k R e f e r e n c e G u i d e
The reader pressed for time should consult the summaries of the 15 principles found in Figures

3.1, 3.2, and 3.3. Two networking applications of these principles can be found in a ternary CAM update

problem (Section 3.1) and a network security forensics problem (Section 3.2).

3.1 MOTIVATING THE USE OF PRINCIPLES — UPDATING TERNARY CONTENT-
ADDRESSABLE MEMORIES
Call a string ternary if it contains characters that are either 0, 1, or *, where * denotes a wildcard

that can match both a 0 and a 1. Examples of ternary strings of length 3 include S1 = 01* and

S2 = *1*; the actual binary string 011 matches both S1 and S2, while 111 matches only S2.

50

3.1 Motivating the Use of Principles — Updating Ternary Content-Addressable Memories



51
Number
P1
P2
  P2a
  P2b
  P2c
P3
  P3a
  P3b
  P3c
P4
  P4a
  P4b
  P4c
P5
  P5a
  P5b
  P5c


Principle
Avoid obvious waste

Shift computation in time

  Precompute

  Evaluate lazily

  Share expenses, batch

Relax system requirements

  Trade certainty for time

  Trade accuracy for time

  Shift computation in space

Leverage off system components

  Exploit locality

  Trade memory for speed

  Exploit existing hardware

Add hardware

  Use memory interleaving and pipelining

  Use wide word parallelism

  Combine DRAM and SRAM effectively



Used In
Zero-copy interfaces

Application device channels

Copy-on-write

Integrated layer processing

Stochastic fair queueing

Switch load balancing

IPv6 fragmentation

Locality-driven receiver

Processing; Lulea IP lookups

Fast TCP checksum

Pipelined IP lookups

Shared memory switches

Maintaining counters

F I G U R E 3.1
Summary of Principles 1–5 — systems thinking.

Number
P6
P7
P8
P9
P10


Principle
Create efficient specialized

routines

Avoid unnecessary generality

Don't be tied to reference

implementation

Pass hints in layer interfaces

Pass hints in protocol headers



Networking Example
UDP checksums

Fbufs

Upcalls

Packet filters

Tag switching

F I G U R E 3.2
Summary of Principles 6–10 — recovering efﬁciency while retaining modularity.

Number
P11
  P11a
P12
  P12a


Principle
Optimize the expected case

  Use caches

Add state for speed

  Compute incrementally



Networking Example
Header prediction

  Fbufs

Active VC list

  Recomputing CRCs

P13

Optimize degrees of freedom
IP trie lookups

P14

Use bucket sorting, bitmaps


Timing wheels

P15
Create efficient data

structures


Level-4 switching

F I G U R E 3.3
Summary of Principles 11–15 — speeding up key routines.


52


C H A P T E R 3
Fifteen Implementation Principles
Prefix
Next Hop
Free
Free



P1

P2

010001 *

110001 *

110*

111*

00*

01*

10*

0*


P5

P5

P3

P2

P1

P3

P4

P4


110001. .


P3

P4

P5

Router

F I G U R E 3.4
Example of using a ternary CAM for preﬁx lookups.

A ternary content-addressable memory (CAM) is a memory containing ternary strings of a

speciﬁed length together with associated information; when presented with an input string,

the CAM will search all its memory locations in parallel to output (in one cycle) the lowest

memory location whose ternary string matches the speciﬁed input key.

Figure 3.4 shows an application of ternary CAMs to the longest-matching-preﬁx problem

for Internet routers. For every incoming packet, each Internet router must extract a 32-bit

destination IP address from the incoming packet and match it against a forwarding database

of IP preﬁxes with their corresponding next hops. An IP preﬁx is a ternary string of length 32

where all the wildcards are at the end. We will change notation slightly and let * denote any

number of wildcard characters, so 101* matches 10100 and not just 1010.

Thus in Figure 3.4 a packet sent to a destination address that starts with 010001 matches the

preﬁxes 010001* and 01* but should be sent to Port P5 because Internet forwarding requires

that packets be forwarded using the longest match. We will have more to say about this problem

in Chapter 11. For now, note that if the preﬁxes are arranged in a ternary CAM such that all

longer preﬁxes occur before any shorter preﬁxes (as in Figure 3.4), the ternary CAM provides

the matching next hop in one memory cycle.

While ternary CAMs are extremely fast for message forwarding, they require that longer

preﬁxes occur before shorter preﬁxes. But routing protocols often add or delete preﬁxes.

Suppose in Figure 3.4 that a new preﬁx, 11*, with next hop Port 1 must be added to the

router database. The naive way to do insertion would make space in the group of length-2

preﬁxes (i.e., create a hole before 0*) by pushing up by one position all preﬁxes of length 2 or

higher.

Unfortunately, for a large database of around 100,000 preﬁxes kept by a typical core router,

this would take 100,000 memory cycles, which would make it very slow to add a preﬁx. We

can obtain a better solution systematically by applying the following two principles (described

later in this chapter as principles P13 and P15).

UNDERSTAND AND EXPLOIT DEGREES OF FREEDOM
In looking at the forwarding table on the left of Figure 3.4 we see that all preﬁxes of the same

length are arranged together and all preﬁxes of length i occur after all preﬁxes of length j > i.


3.1 Motivating the Use of Principles — Updating Ternary Content-Addressable Memories
Prefix
Next Hop
Free space

Y

Length-(i + 1) prefixes



53
X

Length-i prefixes


Create a hole here by

moving X to Y’s position

F I G U R E 3.5
Finding a spot for the new preﬁx by moving X to Y ’s position recursively requires us

to ﬁnd a spot to move Y .

However, in the ﬁgure all preﬁxes of the same length are also sorted by value. Thus 00* occurs

before 01*, which occurs before 10*. But this is unnecessary for the CAM to correctly return

longest matching preﬁxes: We only require ordering between preﬁxes of different lengths; we

do not require ordering between preﬁxes of the same length.

In looking at the more abstract view of Figure 3.4 shown in Figure 3.5, we see that if we

are to add an entry to the start of the set of length-i preﬁxes, we have to create a hole at the end

of the length-(i +1) set of preﬁxes. Thus we have to move the entry X, already at this position,

to another position. If we move X
one step up, we will be forced into our prior inefﬁcient

solution.

However, our observation about degrees of freedom says that we can place X anywhere
adjacent to the other length-(i + 1) preﬁxes. Thus, an alternative idea is to move X
to the

position held by Y, the last length-(i + 2) preﬁx. But this forces us to ﬁnd a new position for

Y . How does this help? We need a second principle.

USE ALGORITHMIC TECHNIQUES
Again, recursion suggests itself: We solve a problem by reducing the problem to a “smaller”
instance of the same problem. In this case, the new problem of assigning Y a new position is

“smaller” because the set of length-(i + 2) preﬁxes are closer to the free space at the top of the

CAM than the set of length-(i + 1) preﬁxes. Thus we move Y to the end of the length-(i + 3)

set of preﬁxes, etc.

While recursion is a natural way to think, a better implementation is to unwind the recursion

by starting from the top of the CAM and working downward by creating a hole at the end of

the length-1 preﬁxes,1creating a hole at the end of the length-2 preﬁxes, etc., until we create

a hole at the end of the length-i preﬁxes. Thus the worst-case time is 32 − i memory accesses,

which is around 32 for small i.

1For simplicity, this description has assumed that the CAM contains preﬁxes of all lengths; it is easy to modify

the algorithm to avoid this assumption.

54


C H A P T E R 3
Fifteen Implementation Principles
Are we done? No, we can do better by further exploiting degrees of freedom. First, in

Figure 3.5 we assumed that the free space was at the top of the CAM. But the free space could

be placed anywhere. In particular, it can be placed after the length-16 preﬁxes. This reduces

the worst-case number of memory accesses by a factor of 2 [SG01].

A more sophisticated degree of freedom is as follows. So far the speciﬁcation of the CAM

insertion algorithm required that “a preﬁx of length i must occur before a preﬁx of length j
if i > j.” Such a speciﬁcation is sufﬁcient for correctness but is not necessary. For example,

010* can occur before 111001* because there is no address that can match both preﬁxes!

Thus a less exacting speciﬁcation is “if two preﬁxes P and Q can match the same address,

then P must come before Q in the CAM if P is longer than Q.” This is used in Shah and Gupta

[SG01] to further reduce the worst-case number of memory accesses for insertion for some

practical databases.

While the last improvement is not worth its complexity, it points to another important

principle. We often divide a large problem into subproblems and hand over the subproblem

for a solution based on a speciﬁcation. For example, the CAM hardware designer may have

handed over the update problem to a microcoder, specifying that longer preﬁxes be placed

before shorter ones.

But, as before, such a speciﬁcation may not be the only way to solve the original problem.

Thus changes to the speciﬁcation (principle P3) can yield a more efﬁcient solution. Of course,

this requires curious and conﬁdent individuals who understand the big picture or who are brave

enough to ask dangerous questions.

3.2 ALGORITHMS VERSUS ALGORITHMICS
It may be possible to argue that the previous example is still essentially algorithmic and does

not require system thinking. One more quick example will help clarify the difference between

algorithms and algorithmics.

SECURITY FORENSICS PROBLEM
In many intrusion detection systems, a manager often ﬁnds that a ﬂow (deﬁned by some

packet header, for example, a source IP address) is likely to be misbehaving based on some

probabilistic check. For example, a source doing a port scan may be identiﬁed after it has sent

100,000 packets to different machines in the attacked subnet.

While there are methods to identify such sources, one problem is that the evidence (the

100,000 packets sent by the source) has typically disappeared (i.e., been forwarded from the

router) by the time the guilty source is identiﬁed. The problem is that the probabilistic check

requires accumulating some state (in, say, a suspicion table) for every packet received over
some period of time before a source can be deemed suspicious. Thus if a source is judged to

be suspicious after 10 seconds, how can one go back in time and retrieve the packets sent by

the source during those 10 seconds?

To accomplish this, in Figure 3.6 we keep a queue of the last 100,000 packets that were

sent by the router. When a packet is forwarded we also add a copy of the packet (or just keep

a pointer to the packet) to the head of the queue. To keep the queue bounded, when the queue

is full we delete from the tail as well.

The main difﬁculty with this scheme is that when a guilty ﬂow is detected there may be

lots of the ﬂow’s packets in the queue (Figure 3.6). All of these packets must be placed in


Packet P arrives

for flow F



Fast probabilistic

suspicion test



3.2 Algorithms versus Algorithmics
Forward P

Add copy

of P to Head



55
If alert, add F to table;
If F in Table, update state
Suspicion

table

 —
Report to manager periodically
Forensic



F

F

F



Queue of

last N

packets



Q
or upon bad flow detection
log


How to search memory for

all packets sent with flow ID F

to add to forensic log?

F I G U R E 3.6
Keeping a queue of the last 100,000 packets that contains forensic information about

what suspicious ﬂows have been sent in the past.

the forensic log for transmission to a manager. The naive method of searching through a large

DRAM buffer is very slow.

The textbook algorithms approach would be to add some index structure to search quickly

for ﬂow IDs. For example, one might maintain a hash table of ﬂow IDs that maps every ﬂow

to a list of pointers to all packets with that ﬂow ID in the queue. When a new packet is placed

in the queue, the ﬂow ID is looked up in the hash table and the address of the new packet in

the queue is placed at the end of the ﬂow’s list. Of course, when packets leave the queue, their

entries must be removed from the list, and the list can be long. Fortunately, the entry to be

deleted is guaranteed to be at the head of the queue for that ﬂow ID.

Despite this, the textbook scheme has some difﬁculties. It adds more space to maintain

these extra queues per ﬂow ID, and space can be at a premium for a high-speed implementation.

It also adds some extra complexity to packet processing to maintain the hash table, and requires

reading out all of a ﬂow’s packets to the forensic log before the packet is overwritten by a

packet that arrives 100,000 packets later. Instead the following “systems” solution may be

more elegant.

SOLUTION
Do not attempt to immediately identify all of a ﬂow F’s packets when F is identiﬁed, but

lazily identify them as they reach the end of the packet queue. This is shown in Figure 3.7.

When we add a packet to the head of the queue, we must remove a packet from the end of the

queue (at least when the queue is full).

If that packet (say, Q, see Figure 3.6) belongs to ﬂow F that is in the Suspicion Table and

ﬂow F has reached some threshold of suspicion, we then add packet Q to the forensic log. The

log can be sent to a manager. The overhead of this scheme is signiﬁcant but manageable; we

have to do two packet-processing steps, one for the packet being forwarded and one for the

packet being removed from the queue. But these two packet-processing steps are also required

in the textbook scheme; on the other hand, the elegant scheme requires no hashing and uses

much less storage (no pointers between the 100,000 packets).


56


C H A P T E R 3
Fifteen Implementation Principles
Packet P arrives

for flow F


Fast probabilistic

suspicion test

If alert, add F to table;
If F in Table, update state
Suspicion

table

 —


Q


Foward P

Add copy

of P to Head

Queue of

last N

packets

Report to manager periodically

or upon bad flow detection



Forensic

log



If packet Q’s flow F is deemed bad
in suspicion table, add Q to log
F I G U R E 3.7
Keeping a queue of the last 100,000 packets that contains forensic information about

what suspicious ﬂows have been sent in the past.

3.3 FIFTEEN IMPLEMENTATION PRINCIPLES — CATEGORIZATION AND DESCRIPTION
The two earlier examples and the warm-up exercise in Chapter 1 motivate the following

15 principles, which are used in the rest of the book. They are summarized inside the front

cover. To add more structure they are categorized as follows:

•
Systems Principles: Principles 1–5 take advantage of the fact that a system is constructed

from subsystems. By taking a systemwide rather than a black-box approach, one can often

improve performance.

•
Improving Efﬁciency While Retaining Modularity: Principles 6–10 suggest methods

for improving performance while allowing complex systems to be built modularly.

•
Speeding It Up: Principles 11–15 suggest techniques for speeding up a key routine

considered by itself.

Amazingly, many of these principles have been used for years by Chef Charlie at his

Greasy Spoon restaurant. This chapter sometimes uses illustrations drawn from Chef Char-

lie’s experience, in addition to computer systems examples. One networking example is also

described for each principle, though details are deferred to later chapters.

3.3.1 Systems Principles
The ﬁrst ﬁve principles exploit the fact that we are building systems.

P1: AVOID OBVIOUS WASTE IN COMMON SITUATIONS
In a system, there may be wasted resources in special sequences of operations. If these patterns

occur commonly, it may be worth eliminating the waste. This reﬂects an attitude of thriftiness

toward system costs.

3.3 Fifteen Implementation Principles — Categorization and Description


57
For example, Chef Charlie has to make a trip to the pantry to get the ice cream maker

to make ice cream and to the pantry for a pie plate when he makes pies. But when he makes

pie а la mode, he has learned to eliminate the obvious waste of two separate trips to the

pantry.

Similarly, optimizing compilers look for obvious waste in terms of repeated subexpres-

sions. For example, if a statement calculates i = 5.1 ∗ n + 2 and a later statement calculates

j
:= (5.1 ∗ n + 2) ∗ 4, the calculation of the common subexpression 5.1 ∗ n + 2 is wasteful

and can be avoided by computing the subexpression once, assigning it to a temporary variable

t, and then calculating i
:=
t
and j
:=
t ∗ 4. A classic networking example, described in

Chapter 5, is avoiding making multiple copies of a packet between operating system and user

buffers.

Notice that each operation (e.g., walk to pantry, line of code, single packet copy) consid-

ered by itself has no obvious waste. It is the sequence of operations (two trips to the pantry,

two statements that recompute a subexpression, two copies) that have obvious waste. Clearly,

the larger the exposed context, the greater the scope for optimization. While the identiﬁcation

of certain operation patterns as being worth optimizing is often a matter of designer intuition,

optimizations can be tested in practice using benchmarks.

P2: SHIFT COMPUTATION IN TIME
Systems have an aspect in space and time. The space aspect is represented by the subsystems,

possibly geographically distributed, into which the system is decomposed. The time aspect is

represented by the fact that a system is instantiated at various time scales, from fabrication

time, to compile time, to parameter-setting times, to run time. Many efﬁciencies can be gained

by shifting computation in time. Here are three generic methods that fall under time-shifting.

•
P2a: Precompute. This refers to computing quantities before they are actually used, to

save time at the point of use. For example, Chef Charlie prepares crushed garlic in advance

to save time during the dinner rush. A common systems example is table-lookup methods,

where the computation of an expensive function f
in run time is replaced by the lookup of

a table that contains the value of f for every element in the domain of f . A networking

example is the precomputation of IP and TCP headers for packets in a connection; because

only a few header ﬁelds change for each packet, this reduces the work to write packet

headers (Chapter 9).

•
P2b: Evaluate Lazily. This refers to postponing expensive operations at critical times,

hoping that either the operation will not be needed later or a less busy time will be found to

perform the operation. For example, Chef Charlie postpones dishwashing to the end of the

day. While precomputation is computing before the need, lazy evaluation is computing

only when needed.

A famous example of lazy evaluation in systems is copy-on-write in the Mach

operating system. Suppose we have to copy a virtual address space A to another space, B,

for process migration. A general solution is to copy all pages in A to B to allow for pages in

B to be written independently. Instead, copy-on-write makes page table entries in B’s

virtual address space point to the corresponding page in A. When a process using B writes

to a location, then a separate copy of the corresponding page in A is made for B, and the

write is performed. Since we expect the number of pages that are written in B to be small

compared to the total number of pages, this avoids unnecessary copying.


58


C H A P T E R 3
Fifteen Implementation Principles
(property P)

Subsystem 2

Spec S

Subsystem 1



(property Q)

Subsystem 2

Weaker Spec W

Subsystem 1

F I G U R E 3.8
Easing the implementation of Subsystem 1 by weakening its speciﬁcation from S to,

say, W, at the cost of making Subsystem 2 do more work.

A simple networking example occurs when a network packet arrives to an endnode

X in a different byte order than X’s native byte order. Rather than swap all bytes

immediately, it can be more efﬁcient to wait to swap the bytes that are actually read.

•
P2c: Share Expenses. This refers to taking advantage of expensive operations done by

other parts of the system. An important example of expense sharing is batching, where

several expensive operations can be done together more cheaply than doing each

separately. For example, Charlie bakes several pies in one batch. Computer systems have

used batch processing for years, especially in the early days of mainframes, before time

sharing. Batching trades latency for throughput. A simple networking example of expense

sharing is timing wheels (Chapter 7), where the timer data structure shares expensive

per-clock-tick processing with the routine that updates the time-of-day clock.

P3: RELAX SYSTEM REQUIREMENTS
When a system is ﬁrst designed top-down, functions are partitioned among subsystems. After

ﬁxing subsystem requirements and interfaces, individual subsystems are designed. When

implementation difﬁculties arise, the basic system structure may have to be redone, as shown

in Figure 3.8.

As shown in Chapter 1, implementation difﬁculties (e.g., implementing a Divide) can

sometimes be solved by relaxing the speciﬁcation requirements for, say, Subsystem 1. This is

shown in the ﬁgure by weakening the speciﬁcation of Subsystem 1 from, say, S to W , but at the

cost of making Subsystem 2 obey a stronger property, Q, compared to the previous property, P.

Three techniques that arise from this principle are distinguished by how they relax the

original subsystem speciﬁcation.

•
P3a: Trade Certainty for Time. Systems designers can fool themselves into believing that

their systems offer deterministic guarantees, when in fact we all depend on probabilities.

For example, quantum mechanics tells us there is some probability that the atoms in your

body will rearrange themselves to form a hockey puck, but this is clearly improbable.2
This opens the door to consider randomized strategies when deterministic algorithms are

too slow.

In systems, randomization is used by millions of Ethernets worldwide to sort

out packet-sending instants after collisions occur. A simple networking example of

2Quote due to Tony Lauck.

3.3 Fifteen Implementation Principles — Categorization and Description


59
randomization is Cisco’s NetFlow trafﬁc measurement software: If a router does not have

enough processing power to count all arriving packets, it can count random samples and

still be able to statistically identify large ﬂows. A second networking example is stochastic

fair queuing (Chapter 14), where, rather than keep track exactly of the networking

conversations going through a router, conversations are tracked probabilistically using

hashing.

•
P3b: Trade Accuracy for Time. Similarly, numerical analysis cures us of the illusion that

computers are perfectly accurate. Thus it can pay to relax accuracy requirements for speed.

In systems, many image compression techniques, such as MPEG, rely on lossy

compression using interpolation. Chapter 1 used approximate thresholds to replace divides

by shifts. In networking, some packet-scheduling algorithms at routers (Chapter 14)

require sorting packets by their departure deadlines; some proposals to reduce sorting

overhead at high speeds suggest approximate sorting, which can slightly reduce

quality-of-service bounds but reduce processing.

•
P3c: Shift Computation in Space. Notice that all the examples given for this principle

relaxed requirements: Sampling may miss some packets, and the transferred image may

not be identical to the original image. However, other parts of the system (e.g., Subsystem

2 in Figure 3.8) have to adapt to these looser requirements. Thus we prefer to call the

general idea of moving computation from one subsystem to another (“robbing Peter to pay

Paul”) shifting computation in space. In networking, for example, the need for routers to

fragment packets has recently been avoided by having end systems calculate a packet size

that will pass all routers.

P4: LEVERAGE OFF SYSTEM COMPONENTS
A black-box view of system design is to decompose the system into subsystems and then to

design each subsystem in isolation. While this top-down approach has a pleasing modularity,

in practice performance-critical components are often constructed partially bottom-up. For

example, algorithms are designed to ﬁt the features offered by the hardware. Here are some

techniques that fall under this principle.

•
P4a: Exploit Locality. Chapter 2 showed that memory hardware offers efﬁciencies if

related data is laid out contiguously — e.g., same sector for disks, or same DRAM page

for DRAMs. Disk-search algorithms exploit this fact by using search trees of high radix,

such as B-trees. IP-lookup algorithms (Chapter 11) use the same trick to reduce lookup

times by placing several keys in a wide word, as did the example in Chapter 1.

•
P4b: Trade Memory for Speed. The obvious technique is to use more memory, such as

lookup tables, to save processing time. A less obvious technique is to compress a data

structure to make it more likely to ﬁt into cache, because cache accesses are cheaper than

memory accesses. The Lulea IP-lookup algorithm described in Chapter 11 uses this idea

by using sparse arrays that can still be looked up efﬁciently using space-efﬁcient bitmaps.

•
P4c: Exploit Hardware Features. Compilers use strength reduction to optimize away

multiplications in loops; for example, in a loop where addresses are 4 bytes and the index i
increases by 1 each time, instead of computing 4 ∗ i, the compiler calculates the new array

index as being 4 higher than its previous value. This exploits the fact that multiplies are

more expensive than additions on many modern processors. Similarly, it pays to


60


C H A P T E R 3
Fifteen Implementation Principles
manipulate data in multiples of the machine word size, as we will see in the fast

IP-checksum algorithms described in Chapter 9.

If this principle is carried too far, the modularity of the system will be in jeopardy. Two

techniques alleviate this problem. First, if we exploit other system features only to improve

performance, then changes to those system features can only affect performance and not

correctness. Second, we use this technique only for system components that proﬁling has

shown to be a bottleneck.

P5: ADD HARDWARE TO IMPROVE PERFORMANCE
When all else fails, goes the aphorism, use brute force. Adding new hardware,3such as buying

a faster processor, can be simpler and more cost effective than using clever techniques. Besides

the brute-force approach of using faster infrastructure (e.g., faster processors, memory, buses,

links), there are cleverer hardware–software trade-offs. Since hardware is less ﬂexible and has

higher design costs, it pays to add the minimum amount of hardware needed.

Thus, baking at the Greasy Spoon was sped up using microwave ovens. In computer

systems, dramatic improvements each year in processor speeds and memory densities suggest

doing key algorithms in software and upgrading to faster processors for speed increases. But

computer systems abound with cleverer hardware–software trade-offs.

For example, in a multiprocessor system, if a processor wishes to write data, it must inform

any “owners” of cached versions of the data. This interaction can be avoided if each processor

has a piece of hardware that watches the bus for write transactions by other processors and

automatically invalidates the cached location when necessary. This simple hardware snoopy

cache controller allows the remainder of the cache-consistency algorithm to be efﬁciently

performed in software.

Decomposing functions between hardware and software is an art in itself. Hardware offers

several beneﬁts. First, there is no time required to fetch instructions: Instructions are effec-

tively hardcoded. Second, common computational sequences (which would require several

instructions in software) can be done in a single hardware clock cycle. For example, ﬁnding

the ﬁrst bit set in, say, a 32-bit word may take several instructions on a RISC machine but can

be computed by a simple priority encoder, as shown in the previous chapter.

Third, hardware allows you to explicitly take advantage of parallelism inherent in the

problem. Finally, hardware manufactured in volume may be cheaper than a general-purpose

processor. For example, a Pentium may cost $100 while an ASIC in volume with similar speeds

may cost $10.

On the other hand, a software design is easily transported to the next generation of faster

chips. Hardware, despite the use of programmable chips, is still less ﬂexible. Despite this,

with the advent of design tools such as VHDL synthesis packages, hardware design times have

decreased considerably. Thus in the last few years chips performing fairly complex functions,

such as image compression and IP lookups, have been designed.

Besides speciﬁc performance improvements, new technology can result in a complete

paradigm shift. A visionary designer may completely redesign a system in anticipation of

3By contrast, Principle P4 talks about exploiting existing system features, such as the existing hardware. Of

course, the distinction between principles tends to blur and must be taken with a grain of salt.

3.3 Fifteen Implementation Principles — Categorization and Description


61
such trends. For example, the invention of the transistor and fast digital memories certainly

enabled the use of digitized voice in the telephone network.

Increases in chip density have led computer architects to ponder what computational

features to add to memories to alleviate the processor-memory bottleneck. In networks, the

availability of high-speed links in the 1980s led to use of large addresses and large headers.

Ironically, the emergence of laptops in the 1990s led to the use of low-bandwidth wireless

links and to a renewed concern for header compression. Technology trends can seesaw!

The following speciﬁc hardware techniques are often used in networking ASICs and are

worth mentioning. They were ﬁrst described in Chapter 2 and are repeated here for convenience.

•
P5a: Use Memory Interleaving and Pipelining. Similar techniques are used in IP

lookup, in classiﬁcation, and in scheduling algorithms that implement QoS. The multiple

banks can be implemented using several external memories, a single external memory

such as a RAMBUS, or on-chip SRAM within a chip that also contains processing logic.

•
P5b: Use Wide Word Parallelism. A common theme in many networking designs, such

as the Lucent bit vector scheme (Chapter 12), is to use wide memory words that can be

processed in parallel. This can be implemented using DRAM and exploiting page mode or

by using SRAM and making each memory word wider.

•
P5c: Combine DRAM and SRAM. Given that SRAM is expensive and fast and that

DRAM is cheap and slow, it makes sense to combine the two technologies to attempt to

obtain the best of both worlds. While the use of SRAM as a cache for DRAM databases is

classical, there are many more creative applications of the idea of a memory hierarchy. For

instance, the exercises explore the effect of a small amount of SRAM on the design of the

ﬂow ID lookup chip. Chapter 16 describes a more unusual application of this technique to

implement a large number of counters, where the low-order bits of each counter are stored

in SRAM.

3.3.2 Principles for Modularity with Efﬁciency
An engineer who had read Dave Clark’s classic papers (e.g., Ref. Cla85) on the inefﬁciences

of layered implementations once complained to a researcher about modularity. The researcher

(Radia Perlman) replied, “But that’s how we got to the stage where we could complain about

something.” Her point, of course, was that complex systems like network protocols could only

have been engineered using layering and modularity. The following principles, culled from

work by Clark and others, show how to regain efﬁciencies while retaining modularity.

P6: CREATE EFFICIENT SPECIALIZED ROUTINES BY REPLACING
INEFFICIENT GENERAL-PURPOSE ROUTINES
As in mathematics, the use of abstraction in computer system design can make systems

compact, orthogonal, and modular. However, at times the one-size-ﬁts-all aspect of a general-

purpose routine leads to inefﬁciencies. In important cases, it can pay to design an optimized

and specialized routine.

A systems example can be found in database caches. Most general-purpose caching strate-

gies would replace the least recently used record to disk. However, consider a query-processing

routine processing a sequence of database tuples in a loop. In such a case, it is the most recently

used record that will be used furthest in the future so it is the ideal candidate for replacement.


62


C H A P T E R 3
Fifteen Implementation Principles
Thus many database applications replace the operating system caching routines with more

specialized routines. It is best to do such specialization only for key routines, to avoid code

bloat. A networking example is the fast UDP processing routines that we describe in Chapter 9.

P7: AVOID UNNECESSARY GENERALITY
The tendency to design abstract and general subsystems can also lead to unnecessary or rarely

used features. Thus, rather than building several specialized routines (e.g., P6) to replace the

general-purpose routine, we might remove features to gain performance.4
Of course, as in the case of P3, removing features requires users of the routine to live

with restrictions. For example, in RISC processors, the elimination of complex instructions

such as multiplies required multiplication to be emulated by ﬁrmware. A networking example

is provided by Fbufs (Chapter 5), which provide a specialized virtual memory service that

allows efﬁcient copying between virtual address spaces.

P8: DON’T BE TIED TO REFERENCE IMPLEMENTATIONS
Speciﬁcations are written for clarity, not to suggest efﬁcient implementations. Because abstract

speciﬁcation languages are unpopular, many speciﬁcations use imperative languages such as

C. Rather than precisely describe what function is to be computed, one gets code that prescribes

how to compute the function. This has two side effects.

First, there is a strong tendency to overspecify. Second, many implementors copy the

reference implementation in the speciﬁcation, which is a problem when the reference imple-

mentation was chosen for conceptual clarity and not efﬁciency. As Clark [Cla85] points out,

implementors are free to change the reference implementation as long as the two implemen-

tations have the same external effects. In fact, there may be other structured implementations

that are efﬁcient as well as modular.

For example, Charlie knows that when a recipe tells him to cut beans and then to cut

carrots, he can interchange the two steps. In the systems world, Clark originally suggested the

use of upcalls [Cla85] for operating systems. In an upcall, a lower layer can call an upper layer

for data or advice, seemingly violating the rules of hierarchical decomposition introduced

in the design of operating systems. Upcalls are commonly used today in network protocol

implementations.

P9: PASS HINTS IN MODULE INTERFACES
A hint is information passed from a client to a service that, if correct, can avoid expensive

computation by the service. The two key phrases are passed and if correct. By passing the

hint in its request, a service can avoid the need for the associative lookup needed to access

a cache. For example, a hint can be used to supply a direct index into the processing state at

the receiver. Also, unlike caches, the hint is not guaranteed to be correct and hence must be

checked against other certiﬁably correct information. Hints improve performance if the hint

is correct most of the time.

This deﬁnition of a hint suggests a variant in which information is passed that is guaranteed

to be correct and hence requires no checking. For want of an established term, we will call such

information a tip. Tips are harder to use because of the need to ensure correctness of the tip.

4Butler Lampson, a computer scientist and Turing Award winner, provides two quotes: When in doubt, get rid
of it (anonymous) and Exterminate Features (Thacker).

3.3 Fifteen Implementation Principles — Categorization and Description


63
As a systems example, the Alto File system [Lam89] has every ﬁle block on disk carry a

pointer to the next ﬁle block. This pointer is treated as only a hint and is checked against the

ﬁle name and block number stored in the block itself. If the hint is incorrect, the information

can be reconstructed from disk. Incorrect hints must not jeopardize system correctness but

result only in performance degradation.

P10: PASS HINTS IN PROTOCOL HEADERS
For distributed systems, the logical extension to Principle P9 is to pass information such as

hints in message headers. Since this book deals with distributed systems, we will make this a

separate principle. For example, computer architects have applied this principle to circumvent

inefﬁciencies in message-passing parallel systems such as the Connection Machine.

One of the ideas in active messages (Chapter 5) is to have a message carry the address of

the interrupt handler for fast dispatching. Another example is tag switching (Chapter 11), where

packets carry additional indices besides the destination address to help the destination address

to be looked up quickly. Tags are used as hints because tag consistency is not guaranteed;

packets can be routed to the wrong destination, where they must be checked.

3.3.3 Principles for Speeding Up Routines
While the previous principles exploited system structure, we now consider principles for

speeding up system routines considered in isolation.

P11: OPTIMIZE THE EXPECTED CASE
While systems can exhibit a range of behaviors, the behaviors often fall into a smaller set called

the “expected case” [HP96]. For example, well-designed systems should mostly operate in a

fault- and exception-free regime. A second example is a program that exhibits spatial locality
by mostly accessing a small set of memory locations. Thus it pays to make common behaviors

efﬁcient, even at the cost of making uncommon behaviors more expensive.

Heuristics such as optimizing the expected case are often unsatisfying for theoreticians,

who (naturally) prefer mechanisms whose beneﬁt can be precisely quantiﬁed in an average or

worst-case sense. In defense of this heuristic, note that every computer in existence optimizes

the expected case (see Chapter 2) at least a million times a second.

For example, with the use of paging, the worst-case number of memory references to

resolve a PC instruction that accesses memory can be as bad as four (read instruction from

memory, read ﬁrst-level page table, read second-level page table, fetch operand from memory).

However, the number of memory accesses can be reduced to 0 using caches. In general, caches

allow designers to use modular structures and indirection, with gains in ﬂexibility, and yet

regain performance in the expected case. Thus it is worth highlighting caching.

P11a: USE CACHES
Besides caching, there are subtler uses of the expected-case principle. For example, when

you wish to change buffers in the EMACS editor, the editor offers you a default buffer name,

which is the last buffer you examined. This saves typing time in the expected case when you

keep moving between two buffers. The use of header prediction (Chapter 9) in networks is

another example of optimizing the expected case: The cost of processing a packet can be greatly

reduced by assuming that the next packet received is closely related to the last packet processed

(for example, by being the next packet in sequence) and requires no exception processing.

64


C H A P T E R 3
Fifteen Implementation Principles
Note that determining the common case is best done by measurements and by schemes that

automatically learn the common case. However, it is often based on the designer’s intuition.

Note that the expected case may be incorrect in special situations or may change with time.

P12: ADD OR EXPLOIT STATE TO GAIN SPEED
If an operation is expensive, consider maintaining additional but redundant state to speed up

the operation. For example, Charlie keeps track of the tables that are busy so that he can

optimize waiter assignments. This is not absolutely necessary, for he can always compute this

information when needed by walking around the restaurant.

In database systems, a classic example is the use of secondary indices. Bank records

may be stored and searched using a primary key, say, the customer Social Security number.

However, if there are several queries that reference the customer name (e.g., “Find the balance

of all Cleopatra’s accounts in the Thebes branch”), it may pay to maintain an additional index

(e.g., a hash table or B-tree) on the customer name. Note that maintaining additional state

implies the need to potentially modify this state whenever changes occur.

However, sometimes this principle can be used without adding state by exploiting existing

state. We call this out as Principle P12a.

P12a: COMPUTE INCREMENTALLY
When a new customer comes in or leaves, Charlie increments the board on which he notes

waiter assignments. As a second example, strength reduction in compilers (see example in

P4c) incrementally computes the new loop index from the old using additions instead of

computing the absolute index using multiplication. An example of incremental computation

in networking is the incremental computation of IP checksums (Chapter 9) when only a few

ﬁelds in the packet change.

P13: OPTIMIZE DEGREES OF FREEDOM
It helps to be aware of the variables that are under one’s control and the evaluation criteria used

to determine good performance. Then the game becomes one of optimizing these variables

to maximize performance. For example, Charlie ﬁrst used to assign waiters to tables as they

became free, but he realized he could improve waiter efﬁciency by assigning each waiter to a

set of contiguous tables.

Similarly, compilers use coloring algorithms to do register assignment while minimizing

register spills. A networking example of optimizing degrees of freedom is multibit trie IP

lookup algorithms (Chapter 11). In this example, a degree of freedom that can be overlooked

is that the number of bits used to index into a trie node can vary, depending on the path through

the trie, as opposed to being ﬁxed at each level. The number of bits used can also be optimized

via dynamic programming (Chapter 11) to demand the smallest amount of memory for a given

speed requirement.

P14: USE SPECIAL TECHNIQUES FOR FINITE UNIVERSES SUCH AS
INTEGERS
When dealing with small universes, such as moderately sized integers, techniques like bucket

sorting, array lookup, and bitmaps are often more efﬁcient than general-purpose sorting and

searching algorithms.


3.4 Design versus Implementation Principles



65
To translate a virtual address into a physical address, a processor ﬁrst tries a cache called

the TLB. If this fails, the processor must look up the page table. A preﬁx of the address bits

is used to index into the page table directly. The use of table lookup avoids the use of hash

tables or binary search, but it requires large page table sizes. A networking example of this

technique is timing wheels (Chapter 7), where an efﬁcient algorithm for a ﬁxed timer range is

constructed using a circular array.

P15: USE ALGORITHMIC TECHNIQUES TO CREATE EFFICIENT DATA
STRUCTURES
Even where there are major bottlenecks, such as virtual address translation, systems designers

ﬁnesse the need for clever algorithms by passing hints, using caches, and performing table

lookup. Thus a major system designer is reported to have told an eager theoretician: “I don’t

use algorithms, son.”
This book does not take this somewhat anti-intellectual position. Instead it contends that,

in context, efﬁcient algorithms can greatly improve system performance. In fact, a fair portion

of the book will be spent describing such examples. However, there is a solid kernel of truth

to the “I don’t use algorithms” putdown. In many cases, Principles P1 through P14 need to be

applied before any algorithmic issues become bottlenecks.

Algorithmic approaches include the use of standard data structures as well as generic algo-

rithmic techniques, such as divide-and-conquer and randomization. The algorithm designer

must, however, be prepared to see his clever algorithm become obsolete because of changes in

system structure and technology. As described in the introduction, the real breakthroughs may

arise from applying algorithmic thinking as opposed to merely reusing existing algorithms.

Examples of the successful use of algorithms in computer systems are the Lempel–Ziv

compression algorithm employed in the UNIX utilitygzip, the Rabin–Miller primality test algo-

rithm found in public key systems, and the common use of B-trees (due to Bayer–McCreight)

in databases [CLR90]. Networking examples studied in this text include the Lulea IP-lookup

algorithm (Chapter 11) and the RFC scheme for packet classiﬁcation (Chapter 12).

3.4 DESIGN VERSUS IMPLEMENTATION PRINCIPLES
Now that we have listed the principles used in this book, three clariﬁcations are needed. First,

conscious use of general principles does not eliminate creativity and effort but instead channels

them more efﬁciently. Second, the list of principles is necessarily incomplete and can probably

be categorized in a different way; however, it is a good place to start.

Third, it is important to clarify the difference between system design and implementation
principles. Systems designers have articulated principles for system design. Design principles

include, for example, the use of hierarchies and aggregation for scaling (e.g., IP preﬁxes),

adding a level of indirection for increased ﬂexibility (e.g., mapping from domain names to IP

addresses allows DNS servers to balance load between instances of a server), and virtualization

of resources for increased user productivity (e.g., virtual memory).5
A nice compilation of design principles can be found in Lampson’s article [Lam89] and

Keshav’s book [Kes97]. Besides design principles, both Lampson and Keshav include a few

5The previous chapter brieﬂy explains these terms (IP preﬁxes, DNS, and virtual memory).


66


C H A P T E R 3
Fifteen Implementation Principles
Get Web page

Get images 1. . . n

Web client



Web page

Image 1
Image n

Web server

F I G U R E 3.9
Retrieval of a Web page with images typically requires one request to get the page that

speciﬁes the needed images and more requests to retrieve each speciﬁed image. Why not have the Web

server download the images directly?

implementation principles (e.g., “use hints” and “optimize the expected case”). This book,

by contrast, assumes that much of the network design is already given, and so we focus on

principles for efﬁcient protocol
implementation. This book also adds several principles for

efﬁcient implementation not found in Keshav [Kes91] or Lampson [Lam89].

On the other hand, Bentley’s book on “efﬁcient program design” [Ben82] is more about

optimizing small code segments than the large systems that are our focus; thus many of

Bentley’s principles (e.g., fuse loops, unroll loops, reorder tests) are meant to speed up critical

loops rather than speed up systems as a whole.

3.5 CAVEATS
Performance problems cannot be solved only through the use of Zen meditation.
— Paraphrased from Jeff Mogul, a computer scientist at HP Labs

The best of principles must be balanced with wisdom to understand the important metrics,

with proﬁling to determine bottlenecks, and with experimental measurements to conﬁrm that

the changes are really improvements. We start with two case studies to illustrate the need for

caution.

Case Study 1: Reducing Page Download Times
Figure 3.9 shows that in order for a Web client to retrieve a Web page containing

images, it must typically send a GET request for the page. If the page speciﬁes inline

images, then the client must send separate requests to retrieve the images before it can

display the page. A natural application of principle P1 is to ask why separate requests are

needed. Why can’t the Web server automatically download the images when the page is

requested instead of waiting for a separate request? This should reduce page download

latency by at least half a round-trip delay.

To test our hypothesis, we modiﬁed the server software to do so and measured the

resulting performance. To our surprise, we found only minimal latency improvement.


3.5 Caveats
Using a network analyzer based on tcpdump, we found two reasons why this seeming

improvement was a bad idea.

•
Interaction with TCP: Web transfer is orchestrated by TCP as described in

Chapter 2. To avoid network congestion, TCP increases its rate slowly, starting with

one packet per round-trip, then to two packets per round-trip delay, increasing its

rate when it gets acks. Since TCP had to wait for acks anyway to increase its rate,

waiting for additional requests for images did not add latency.

•
Interaction with Client Caching: Many clients already cache common images,

such as .gif ﬁles. It is a waste of bandwidth to have the Web server unilaterally

download images that the client already has in its cache. Note that having the client

request the images avoids this problem because the client will only request images it

does not already have.

A useful lesson from this case study is the difﬁculty of improving part of a system

(e.g., image downloading) because of interactions with other parts of the system (e.g.,

TCP congestion control.)

Case Study 2: Speeding Up Signature-Based Intrusion Detection
As a second example, many network sites ﬁeld an intrusion detection system, such

as Snort [Sno], that looks for suspicious strings in packet payloads that are characteristic

of hacker attacks. An example is the string “perl.exe”, which may signify an attempt

to execute perl and then to execute arbitrary commands on a Web server. For every

potentially matching rule that contains a string, Snort searches for each such string

separately using the Boyer–Moore algorithm [CLR90]. The worst case happens to be

a Web packet that matches 310 rules. Simple proﬁling using gprof reveals [FV01] that

30% of the overhead in Snort arises from string searching.

An obvious application of
P1 seemed to be the following: Instead of separate

searches for each string, use an integrated search algorithm that searches for all possible

strings in a single pass over the packet. We modiﬁed Boyer–Moore to a set Boyer–
Moore algorithm that could search for all speciﬁed strings in one pass. Implemented

in a library, the new algorithm performed better than the Snort algorithm by a fac-

tor of 50 for the full Snort database. Unfortunately, when we integrated it into Snort,

we found almost no improvement on packet traces [FV01]. We found two reasons

for this.

•
Multiple string matching is not a bottleneck for the trace: For the given trace,

very few packets matched multiple rules, each of which contained separate strings.

When we used a trace containing only Web trafﬁc (i.e., trafﬁc with destination port

80), a substantial improvement was found.

•
Cache Effects: Integrated string searching requires a data structure, such as a trie,

whose size grows with the number of strings being searched. The simplest way to do

integrated set searching is to place the strings contained in all rules in a single trie.

However, when the number of strings went over 100, the trie did not ﬁt in cache,



67

68


C H A P T E R 3
Fifteen Implementation Principles
and performance suffered. Thus the system had to be reimplemented to use

collections of smaller sets that took into account the hardware (P4).

A useful lesson from this case study is that purported improvements may not really

target the bottleneck (which in the trace appears to be single-string matching) and can

also interact with other parts of the system (the data cache).

3.5.1 Eight Cautionary Questions
In the spirit of the two case studies, here are eight cautionary questions that warn against

injudicious use of the principles.

Q1: IS IT WORTH IMPROVING PERFORMANCE?
If one were to sell the system as a product, is performance a major selling strength? People

interested in performance improvement would like to think so, but other aspects of a system,

such as ease of use, functionality, and robustness, may be more important. For example, a user

of a network management product cares more about features than performance. Thus, given

limited resources and implementation complexity, we may choose to defer optimizations until

needed. Even if performance is important, which performance metric (e.g., latency throughput,

memory) is important?

Other things being equal, simplicity is best. Simple systems are easier to understand,

debug, and maintain. On the other hand, the deﬁnition of simplicity changes with technology

and time. Some amount of complexity is worthwhile for large performance gains. For example,

years ago image compression algorithms such as MPEG were considered too complex to

implement in software or hardware. However, with increasing chip densities, many MPEG

chips have come to market.

Q2: IS THIS REALLY A BOTTLENECK?
The 80–20 rule suggests that a large percentage of the performance improvements comes from

optimizing a small fraction of the system. A simple way to start is to identify key bottlenecks

for the performance metrics we wish to optimize. One way to do so is to use proﬁling tools,

as we did in Case Study 2.

Q3: WHAT IMPACT DOES THE CHANGE HAVE ON THE REST OF THE
SYSTEM?
A simple change may speed up a portion of the system but may have complex and unforeseen

effects on the rest of the system. This is illustrated by Case Study 1. A change that improves

performance but has too many interactions should be reconsidered.

Q4: DOES THE INITIAL ANALYSIS INDICATE SIGNIFICANT IMPROVEMENT?
Before doing a complete implementation, a quick analysis can indicate how much gain is

possible. Standard complexity analysis is useful. However, when nanoseconds are at stake,

constant factors are important. For software and hardware, because memory accesses are a

bottleneck, a reasonable ﬁrst-pass estimate is the number of memory accesses.

For example, suppose analysis indicates that address lookup in a router is a bottleneck

(e.g., because there are fast switches to make data transfer not a bottleneck). Suppose the

3.5 Caveats



69
standard algorithm takes an average of 15 memory accesses while a new algorithm indicates

a worst case of 3 memory accesses. This suggests a factor of 5 improvement, which makes it

interesting to proceed further.

Q5: IS IT WORTH ADDING CUSTOM HARDWARE?
With the continued improvement in the price–performance of general-purpose processors, it

is tempting to implement algorithms in software and ride the price–performance curve. Thus

if we are considering a piece of custom hardware that takes a year to design, and the resulting

price–performance improvement is only a factor of 2, it may not be worth the effort. On the

other hand, hardware design times are shrinking with the advent of effective synthesis tools.

Volume manufacturing can also result in extremely small costs (compared to general-purpose

processors) for a custom-designed chip. Having an edge for even a small period such as a year

in a competitive market is attractive. This has led companies to increasingly place networking

functions in silicon.

Q6: CAN PROTOCOL CHANGES BE AVOIDED?
Through the years there have been several proposals denouncing particular protocols as being

inefﬁcient and proposing alternative protocols designed for performance. For example, in the

1980s, the transport protocol TCP was considered “slow” and a protocol called XTP [Che89]

was explicitly designed to be implemented in hardware. This stimulated research into making

TCP fast, which culminated in Van Jacobson’s fast implementation of TCP [CJRS89] in the

standard BSD release. More recently, proposals for protocol changes (e.g., tag and ﬂow

switching) to ﬁnesse the need for IP lookups have stimulated research into fast IP lookups.

Q7: DO PROTOTYPES CONFIRM THE INITIAL PROMISE?
Once we have successfully answered all the preceding questions, it is still a good idea to

build a prototype or simulation and actually test to see if the improvement is real. This is

because we are dealing with complex systems; the initial analysis rarely captures all effects

encountered in practice. For example, understanding that the Web-image-dumping idea does

not improve latency (see Case Study 1) might come only after a real implementation and tests

with a network analyzer.

A major problem is ﬁnding a standard set of benchmarks to compare the standard and new

implementations. For example, in the general systems world, despite some disagreement, there

are standard benchmarks for ﬂoating point performance (e.g., Whetstone) or database perfor-

mance (e.g., debit–credit). If one claims to reduce Web transfer latencies using differential

encoding, what set of Web pages provides a reasonable benchmark to prove this contention?

If one claims to have an IP lookup scheme with small storage, which benchmark databases

can be used to support this assertion?

Q8: WILL PERFORMANCE GAINS BE LOST IF THE ENVIRONMENT
CHANGES?
Sadly, the job is not quite over even if a prototype implementation is built and a benchmark

shows that performance improvements are close to initial projections. The difﬁculty is that

the improvement may be speciﬁc to the particular platform used (which can change) and may

take advantage of properties of a certain benchmark (which may not reﬂect all environments

70


C H A P T E R 3
Fifteen Implementation Principles
in which the system will be used). The improvements may still be worthwhile, but some form

of sensitivity analysis is still useful for the future.

For example, Van Jacobson performed a major optimization of the BSD networking code

that allowed ordinary workstations to saturate 100-Mbps FDDI rings. The optimization, which

we will study in detail in Chapter 9, assumes that in the normal case the next packet is from

the same connection as the previous packet, P, and has sequence number one higher than

P. Will this assumption hold for servers that have thousands of simultaneous connections to

clients? Will it hold if packets get sent over parallel links in the network, resulting in packet

reordering? Fortunately, the code has worked well in practice for a number of years. Despite

this, such questions alert us to possible future dangers.

3.6 SUMMARY
This chapter introduced a set of principles for efﬁcient system implementation. A summary

can be found in Figures 3.1, 3.2, and 3.3. The principles were illustrated with examples drawn

from compilers, architecture, databases, algorithms, and networks to show broad applicability

to computer systems. Chef Charlie’s examples, while somewhat tongue in cheek, show that

these principles also extend to general systems, from restaurants to state governments. While

the broad focus is on performance, cost is an equally important metric. One can cast problems

in the form of ﬁnding the fastest solution for a given cost. Optimization of other metrics, such

as bandwidth, storage, and computation, can be subsumed under the cost metric.

A preview of well-known networking applications of the 15 principles can be found in

Figures 3.1, 3.2, and 3.3. These applications will be explained in detail in later chapters. The

ﬁrst ﬁve principles encourage systems thinking. The next ﬁve principles encourage a fresh

look at system modularity. The last ﬁve principles point to useful ways to speed up individual

subsystems.

Just as chess strategies are boring until one plays a game of chess, implementation prin-

ciples are lifeless without concrete examples. The reader is encouraged to try the following

exercises, which provide more examples drawn from computer systems. The principles will

be applied to networks in the rest of the book. In particular, the next chapter seeks to engage

the reader by providing a set of 15 self-contained networking problems to play with.

3.7 EXERCISES
1. Batching, Disk Locality, and Logs: Most serious databases use log ﬁles for perfor-

mance. Because writes to disk are expensive, it is cheaper to update only a memory image

of a record. However, because a crash can occur any time, the update must also be

recorded on disk. This can be done by directly updating the record location on disk, but

random writes to disk are expensive (see P4a). Instead, information on the update is

written to a sequential log ﬁle. The log entry contains the record location, the old value

(undo information), and the new value (redo information).

• Suppose a disk page of 4000 bytes can be written using one disk I/0 and that a log

record is 50 bytes. If we apply batching (2c), what is a reasonable strategy for updating

the log? What fraction of a disk I/O should be charged to a log update?

3.7 Exercises
• Before a transaction that does the update can commit (i.e., tell the user it is done), it

must be sure the log is written. Why? Explain why this leads to another form of

batching, group commit, where multiple transactions are committed together.



71
• If the database represented by the log gets too far ahead of the database represented on

disk, crash recovery can take too long. Describe a strategy to bound crash recovery

times.

2. Relaxing Consistency Requirements in a Name Service: The Grapevine system [Be82]

offers a combination of a name service (to translate user names to inboxes) and a mail

service. To improve availability, Grapevine name servers are replicated. Thus any update

to a registration record (e.g., Joe → MailSlot3) must be performed on all servers

implementing replicas of that record. Standard database techniques for distributed

databases require that each update be atomic; that is, the effect should be as if updates

were done simultaneously on all replicas. Because atomic updates require that all servers

be available, and registration information is not as important as, say, bank accounts,

Grapevine provides only the following loose semantics (P3): All replicas will eventually
agree if updates stop. Each update is timestamped and passed from one replica to the

other in arbitrary order. The highest timestamped update wins.

• Give an example of how a user could detect inconsistency in Joe’s registration during

the convergence process.

• If Joe’s record is deleted, it should eventually be purged from the database to save

storage. Suppose a server purges Joe’s record immediately after receiving a Delete

update. Why might Add updates possibly cause a problem? Suggest a solution.

• The rule that the latest timestamp wins does not work well when two administrators try

to create an entry with the same name. Because a later creation could be trapped in a

crashed server, the administrator of the earlier creation can never know for sure that his

creation has won. The Grapevine designers did not introduce mechanisms to solve this

problem but relied on “some human-level centralization of name creation.” Explain

their assumption clearly.

3. Replacing General-Purpose Routines with Special-Purpose Routines and Efﬁcient
Storage Allocators: Consider the design of a general storage allocator that is given

control of a large contiguous piece of memory and may be asked by applications for

smaller, variable-size chunks. A general allocator is quite complex: As time goes by, the

available memory fragments and time must be spent ﬁnding a piece of the requested size

and coalescing adjacent released pieces into larger free blocks.

• Brieﬂy sketch the design of a general-purpose allocator. Consult a textbook such as

Horwitz and Sahni [HS78] for example allocators.

• Suppose a proﬁle has shown that a large fraction of the applications ask for 64 bytes of

storage. Describe a more efﬁcient allocator that works for the special case (P6) of

allocating just 64-byte quantities.

• How would you optimize the expected case (P11) and yet handle requests for storage

other than 64 bytes?

72


C H A P T E R 3
Fifteen Implementation Principles
4. Passing Information in Interfaces: Consider a ﬁle system that is reading or writing ﬁles

from disk. Each random disk Read/Write involves positioning the disk over the correct

track (seeking). If we have a sequence of say three Reads to Tracks 1, 15, and 7, it may

pay to reorder the second and third Reads to reduce waste in terms of seek times. Clearly,

as in P1, the larger the context of the optimization (e.g., the number of Reads or Writes

considered for reordering), the greater the potential beneﬁts of such seek optimization.

A normal ﬁle system only has an interface to open, read, and write a single ﬁle.

However, suppose an application is reading multiple ﬁles and can pass that information

(P9) in the ﬁle system call.

• What information about the pattern of ﬁle accesses would be useful for the ﬁle system

to perform seek optimization? What should the interface look like?

• Give examples of applications that process multiple ﬁles and could beneﬁt from this

optimization. For more details, see the paper by H. Patterson et al. [Pe95]. They call

this form of tip a disclosure.

5. Optimizing the Expected Case, Using Algorithmic Ideas, and Scavenging Files: The

Alto computer used a scavenging system [Lam89] that scans the disk after a crash to

reconstruct ﬁle system indexes that map from ﬁle names and blocks to disk sectors. This

can be done because each disk sector that contains a ﬁle block also contains the

corresponding ﬁle identiﬁer. What complicates matters is that main memory is not large

enough to hold information for every disk sector. Thus a single scan that builds a list in

memory for each ﬁle will not work. Assume that the information for a single ﬁle will ﬁt

into memory. Thus a way that will work is to make a single scan of the disk for each ﬁle;

but that would be obvious waste (P1) and too slow.

Instead, observe that in the expected case, most ﬁles are allocated contiguously. Thus

suppose File X has pages 1–1000 located on disk sectors 301–1301. Thus the information

about 1000 sectors can be compactly represented by three integers and a ﬁle name. Call

this a run node.

• Assume the expected case holds and that all run nodes can ﬁt in memory. Assume also

that the ﬁle index for each ﬁle is an array (stored on disk) that maps from ﬁle block

number to disk sector number. Show how to rebuild all the ﬁle indexes.

• Now suppose the expected case does not hold and that the run nodes do not all ﬁt into

memory. Describe a technique, based on the algorithmic idea of divide-and-conquer

(P15), that is guaranteed to work (without reverting to the naive idea of building the

index for one ﬁle at a time unless strictly necessary).


C H A P T E R 4
Principles in Action
System architecture and design, like any art, can only be learned by doing. . . . The
space of possibilities unfolds only as the medium is worked.
— Carver Mead and Lynn Conway

Having rounded up my horses, I now set myself to put them through their paces.
— Arnold Toynbee

The previous chapter outlined 15 principles for efﬁcient network protocol implementation.

Part II of the book begins a detailed look at speciﬁc network bottlenecks such as data copying

and control transfer. While the principles are used in these later chapters, the focus of these

later chapters is on the speciﬁc bottleneck being examined. Given that network algorithmics

is as much a way of thinking as it is a set of techniques, it seems useful to round out Part I by

seeing the principles in action on small, self-contained, but nontrivial network problems.

Thus this chapter provides examples of applying the principles in solving speciﬁc net-

working problems. The examples are drawn from real problems, and some of the solutions

are used in real products. Unlike subsequent chapters, this chapter is not a collection of new

material followed by a set of exercises. Instead, this chapter can be thought of as an extended

set of exercises.

In Section 4.1 to Section 4.15, 15 problems are motivated and described. Each problem

is followed by a hint that suggests speciﬁc principles, which is then followed by a solution

sketch. There are also a few exercises after each solution. In classes and seminars on the topic

of this chapter, the audience enjoyed inventing solutions by themselves (after a few hints were

provided), rather than directly seeing the ﬁnal solutions.

Q u i c k R e f e r e n c e G u i d e
In an ideal world, each problem should have something interesting for every reader. For those readers

pressed for time, however, here is some guidance. Hardware designers looking to sample a few problems

may wish to try their hand at designing an Ethernet monitor (Section 4.4) or doing a binary search on

long identiﬁers (Section 4.14). Systems people looking for examples of how systems thinking can ﬁnesse

algorithmic expertise may wish to tackle a problem on application device channels (Section 4.1) or a

73

74


C H A P T E R 4
Principles in Action
problem on compressing the connection table (Section 4.11). Algorithm designers may be interested in

the problem of identifying a resource hog (Section 4.10) and a problem on the use of protocol design

changes to simplify an implementation problem in link state routing (Section 4.8).

4.1 BUFFER VALIDATION OF APPLICATION DEVICE CHANNELS
Usually, application programs can only send network data through the operating system kernel,

and only the kernel is allowed to talk to the network adaptor. This restriction prevents different

applications from (maliciously or accidentally) writing or reading each other’s data. However,

communication through the kernel adds overhead in the form of system calls (see Chapter 2).

In application device channels (ADCs), the idea is to allow an application to send data to

and from the network by directly
writing to the memory of the network adaptor. Refer to

Chapter 5 for more details. One mechanism to ensure protection, in lieu of kernel mediation,

is to have the kernel set up the adaptor with a set of valid memory pages for each application.

The network adaptor must then ensure that the application’s data can only be sent and received

from memory in the valid set.

In Figure 4.1, for example, application P is allowed to send and receive data from a set

of valid pages X , Y , . . . , L, A. Suppose application P queues a request to the adaptor to receive

the next packet for P into a buffer in page A. Since this request is sent directly to the adaptor,

the kernel cannot check that this is a valid buffer for P. Instead, the adaptor must validate this

request by ensuring that A is in the set of valid pages. If the adaptor does not perform this

check, application P could supply an invalid page belonging to some other application, and the

adaptor would write P’s data into the wrong page. The need for a check leads to the following

problem.

Memory
CPU
Application P

Kernel



Valid list

for P



Receive next

packet into

Page A

X, Y,...L, A


Page X

Page A

ADAPTOR

NETWORK

F I G U R E 4.1
In application device channels, the network adaptor is given a set of valid pages

(X, Y , L, A, etc.) for a given application P. When application P makes a request to receive data into

page A, the adaptor must check if A is in the valid list before allowing the receive.


PROBLEM


4.1 Buffer Validation of Application Device Channels


75
When application P does a Receive, the adaptor must validate whether the page belongs to

the valid page set for P. If the set of pages is organized as a linear list [DDP94], then validation

can cost O(n), where n is the number of pages in the set. For instance, in Figure 4.1, since A is

at the end of the list of valid pages, the adaptor must traverse the entire list before it ﬁnds A. If

n is large, this can be expensive and can slow down the rate at which the adaptor can send and

receive packets. How can the validation process be sped up? Try thinking through the solution

before reading the hint and solutions that follow.

Hint:
A good approach to reduce the complexity of validation is to use a better data structure than a

list (P15). Which data structure would you choose? However, one can improve worst-case behavior

even further and get smaller constant factors by using system thinking and by passing hints in

interfaces (P9).

An algorithmic thinker will immediately consider implementing the set of valid pages as a hash
table
instead of a
list. This provides an
O(1)
average search time. Hashing has two disadvan-

tages: (1) good hash functions that have small collision probabilities are expensive computationally;

(2) hashing does not provide a good worst-case bound. Binary search does provide logarithmic

worst-case search times, but this is expensive (it also requires keeping the set sorted) if the set of

pages is large and packet transmission rates are high. Instead, we replace the hash table lookup by

an indexed array lookup, as follows (try using P9 before you read on).

SOLUTION
The adaptor stores the set of valid pages for each application in an array, as shown in

Figure 4.2. This array is updated only when the kernel updates the set of valid pages for the

application. When the application does a Receive into page A, it also passes to the adaptor a

handle (P9). The handle is the index of the array position where A is stored. The adaptor can

use this to quickly conﬁrm whether the page in the Receive request matches the page stored

in the handle. The cost of validation is a bounds check (to see if the handle is a valid index),

one array lookup, and one compare.

Application

Receive (A, val, handle)

X

Y

.

.

.

A

L


ADAPTOR

F I G U R E 4.2
Finessing the need for a hash table lookup by passing a handle across the interface

between the application and adaptor.


76


C H A P T E R 4
Principles in Action
EXERCISES
• Is the handle a hint or a tip? Let’s invoke principle P1: If this is a handle, why pass the

page number (e.g., A) in the interface? Why does removing the page number speed up the

conﬁrmation task slightly?

• To ﬁnd the array corresponding to application P normally requires a hash table search

using P as the key. This weakens the argument for getting rid of the hash table search to

check if the page is valid — unless, of course, the hash search of P can be ﬁnessed as well.

How can this be done?

4.2 SCHEDULER FOR ASYNCHRONOUS TRANSFER MODE FLOW CONTROL
In asynchronous transfer mode (ATM), an ATM adaptor may have hundreds of simultaneous

virtual circuits (VCs) that can send data (called cells). Each VC is often ﬂow controlled in

some way to limit the rate at which it can send. For example, in rate-based ﬂow control, a VC

may receive credits to send cells at ﬁxed time intervals. On the other hand, in credit-based

ﬂow control [KCB94, OSV94], credits may be sent by the next node in the path when buffers

free up.

Thus, in Figure 4.3 the adaptor has a table that holds the VC state. There are four VCs that

have been set up (1, 3, 5, 7). Of these, only VCs 1, 5, and 7 have any cells to send. Finally,

only VCs 1 and 7 have credits to send cells. Thus the next cell to be sent by the adaptor should

be from either one of the eligible VCs: 1 or 7. The selection from the eligible VCs should be

done fairly, for example, in round-robin fashion. If the adaptor chooses to send a cell from

VC 7, the adaptor would decrement the credits of VC 7 to 1. Since there are no more cells to

be sent, VC 7 now becomes ineligible. Choosing the next eligible VC leads to the following

problem.

PROBLEM
A naive scheduler may cycle through the VC array looking for a VC that is eligible. If

many of the VCs are ineligible, this can be quite inefﬁcient, for the scheduler may have to

Active

has credits

VC

1



Inactive

VC

3



Active

no credits

VC

5



Active

has credits

VC

7

F I G U R E 4.3
An ATM virtual circuit is eligible to send data if it is active (has some outstanding cells

to send in the queue shown below the VC) and has credits (shown by black dots above the VC). The

problem is to select the next eligible VC in some fair manner without stepping through VCs that are

ineligible.


List of active

VCs with credits



4.3 Route Computation Using Dijkstra’s Algorithm
Head
Tail

VC
VC

1
7



77
F I G U R E 4.4
Maintaining a list of eligible VCs to speed up the scheduler main loop.

step through several VCs that are ineligible to send one cell from an eligible VC. How can this

inefﬁciency be avoided?

Hint: Consider invoking P12 to add some extra state to speed up the scheduler main loop. What state

can you add to avoid stepping through ineligible VCs? How would you maintain this state efﬁciently?

SOLUTION
Maintain a list (Figure 4.4) of eligible VCs in addition to the VC table of Figure 4.3. The

only problem is to efﬁciently maintain this state. This is the major difﬁculty in using P12. If

the state is too expensive to maintain, the added state is a liability and not an asset. Recall that

a VC is eligible if it has both cells to send and has credits. Thus a VC is removed from the list

after service if VC becomes inactive or has no more credits; if not, the VC is added to the tail

of the list to ensure fairness. A VC is added to the tail of the list either when a cell arrives to

an empty VC cell queue or when the VC has no credits and receives a credit update.

EXERCISES
• How can you be sure that a VC is not added multiple times to the eligible list?

• Can this scheme be generalized to allow some VCs to get more opportunities to send than

other VCs based on a weight assigned by a manager?

4.3 ROUTE COMPUTATION USING DIJKSTRA’S ALGORITHM
How does a router S
decide how to route a packet to a given destination D? Every link in a

network is labeled with a cost, and routers like S often compute the shortest (i.e., lowest-cost)

paths to destinations within a local domain. Assume the cost is a small integer. Recall from

Chapter 2 that the most commonly used routing protocol within a domain is OSPF based on

link state routing.

In link state routing, every router in a subnet sends a link state packet (LSP) that lists its

links to all of its neighbors. Each LSP is sent to every other router in the subnet. Each router

sends its LSP to other routers using a primitive ﬂooding protocol [Per92]. Once every router

receives an LSP from every router, then every router has a complete map of the network.

Assuming the topology remains stable, each router can now calculate its shortest path to every

other node in the network using a standard shortest-path algorithm, such as Dijkstra’s algorithm

[CLR90].

In Figure 4.5, source S wishes to calculate a shortest-path tree to all other nodes (A, B, C, D)

in the network. The network is shown on the left frame in Figure 4.5 with links numbered

with their cost. In Dijkstra’s algorithm, S begins by placing only itself in the shortest-cost tree.


78


C H A P T E R 4
Principles in Action
3

A

2



C

71


2

A



5

C

Pick D next

S

Source



1



B



2



D



S



B

1



D

3

F I G U R E 4.5
In Dijkstra’s algorithm, the source S builds a shortest-path tree rooted at S. At each

stage, the closest node not in the tree is added to the tree.

S also updates the cost to reach all its direct neighbors (e.g., B, A). At each iteration, Dijkstra’s

algorithm adds to the current tree the node that is closest to the current tree. The costs of the

neighbors of this newly added node are updated. The process repeats until all nodes in the

network belong to the tree.

For instance, in Figure 4.5, after adding S, the algorithm picks B and then picks A. At

this iteration, the tree is as shown on the right in Figure 4.5. The solid lines show the existing

tree, and the dotted lines show the best current connections to nodes that are not already in

the tree. Thus since A has a cost of 2 and there is a link of cost 3 from A to C, C is labeled

with 5. Similarly, D is labeled with a cost of 2 for the path through B. At the next iteration, the

algorithm picks D as the least-cost node not already in the tree. The cost to C is then updated

using the route through D. Finally, C is added to the tree in the last iteration.

This textbook solution requires determining the node with the shortest cost that is not

already in the tree at each iteration. The standard data structure to keep track of the minimum-

value element in a dynamically changing set is a priority queue. This leads to the following

problem.

PROBLEM
Dijkstra’s algorithm requires a priority queue at each of
N
iterations, where N
is the

number of network nodes. The best general-purpose priority queues, such as heaps [CLR90],

take O(log N) cost to ﬁnd the minimum element. This implies a total running time of O(N log N)

time. For a large network, this can result in slow response to failures and other network topology

changes. How can route computation be speeded up?

Hint:
Consider exploiting the fact that the link costs are small integers (P14) by using an array to

represent the current costs of nodes. How can you efﬁciently, at least in an amortized sense, ﬁnd the

next minimum-cost node to include in the shortest-path tree?

SOLUTION
The fact that the link costs are small integers can be exploited to construct a priority

queue based on bucket sorting (P14). Assume that the largest link cost is MaxLinkCost. Thus

the maximum cost of a path can be no more than Diam ∗ MaxLinkCost, where Diam is the

diameter of the network. Assume Diam is also a small integer. Thus one could imagine using

an array with a location for every possible cost c in the range 1 . . . Diam ∗ MaxLinkCost. If

during the course of Dijkstra’s algorithm the current cost of a node X is c, then node X can be

placed in a list pointed to by element c of the array (Figure 4.6). This leads to the following

algorithm.


Costs

0
1



4.3 Route Computation Using Dijkstra’s Algorithm
CurrentMin

Diam * MaxLinkCost

2
3
5



79
B
A
D



C

F I G U R E 4.6
Using a priority queue based on bucket sorting to speed up Dijkstra’s algorithm.

Whenever a node X changes its cost from c to c , node X is removed from the list for c
and added to the list for c . But how is the minimum element to be found? This can be done by

initializing a pointer called CurrentMin to 0 (which corresponds to the cost of S). Each time

the algorithm wishes to ﬁnd the minimum-cost node not in the tree, CurrentMin is incremented

by 1 until an array location is reached that contains a nonempty list. Any node in this list can

then be added to the tree. The algorithm costs O(N + Diam ∗ MaxLinkCost) because the work

done in advancing CurrentMin can at most be the size of the array. This can be signiﬁcantly

better than N log N for large N and small values of Diam and MaxLinkCost.

A crucial factor in being able to efﬁciently use a bucket sort priority queue of the kind

described earlier is that the node costs are always ahead of the value of CurrentMin. This is a

monotonicity condition. If it were not true, the algorithm would start checking for the minimum

from 1 at each iteration, instead of starting from the last value of CurrentMin and never backing

up. The monotonicity condition is fairly obvious for Dijktra’s algorithm because the costs of

nodes not already in the tree have to be larger than the costs of nodes that are already in

the tree.

Figure 4.6 shows the state of the bucket sort priority queue after A has been added to the

tree. This corresponds to the right frame of Figure 4.5. At this stage, CurrentMin = 2, which

is the cost of A. At the next iteration, CurrentMin will advance to 3, and D will be added to

the tree. This will result in the C’s cost being reduced to 4. We thus remove C from the list in

position 5 and add it to the empty list in position 4. CurrentMin is then advanced to 4, and C
is added to the tree.

EXERCISES
• The algorithm requires a node to be removed from a list and added to another, earlier list.

How can this be done efﬁciently?

• In Figure 4.6, how can the algorithm know that it can terminate after adding C to the tree

instead of advancing to the end of the long array?

• In networks that have failures, the concept of diameter is a highly suspect one because the

diameter could change considerably after a failure. Consider a wheel topology where all N
nodes have diameter 2 through a central spoke node; if the central spoke node fails, the

diameter goes up to N/2. In actual practice the diameter is often small. Can this cause

problems in sizing the array?


80


C H A P T E R 4
Principles in Action
• Can you circumvent the problem of the diameter completely by replacing the linear array

of Figure 4.6 with a circular array of size MaxLinkCost? Explain. The resulting solution is

known as Dial’s algorithm [AMO93].

4.4 ETHERNET MONITOR USING BRIDGE HARDWARE
Alyssa P. Hacker is working for Acme Networks and knows of the Ethernet bridge invented at

Acme. A bridge (see Chapter 10) is a device that can connect together Ethernets. To forward

packets from one Ethernet to another, the bridge must look up the 48-bit destination address

in an Ethernet packet at high speeds.

Alyssa decides to convert the bridge into an Ethernet trafﬁc monitor that will passively

listen to an Ethernet and produce statistics about trafﬁc patterns. The marketing person tells

her that she needs to monitor trafﬁc between arbitrary source–destination pairs. Thus for every

active source–destination pair, such as A, B, Alyssa must keep a variable PA,B
that measures

the number of packets sent from A to B since the monitor was started. When a packet is sent

from A to B, the monitor (which is listening to all packets sent on the cable) will pick up a

copy of the packet. If the source is A and the destination is B, the monitor should increment

PA,B. The problem is to do this in 64 µsec, the minimum interpacket time on the Ethernet.

The bottleneck is the lookup of the state PA,B associated with a pair of 48-bit addresses A, B.

Fortunately, the bridge hardware has a spiffy lookup hardware engine that can look up

the state associated with a single 48-bit address in 1.4 µsec. A call to the hardware can be

expressed as Lookup(X , D), where X
is the 48-bit key and D is the database to be searched.

The call returns the state associated with X in 1.4 µsec for databases of less than 64,000 keys.

What Alyssa must solve is the following problem.

PROBLEM
The monitor needs to update state for AB when a packet from A to B arrives. The monitor

has a lookup engine that can look up only single addresses and not address pairs. How can

Alyssa use the existing engine to look up address pairs? The problem is illustrated in Figure 4.7.

Hint:
The problem requires using P4c to exploit the existing bridge hardware. Since 1.4 µsec is

much smaller than 64 µsec, the design can afford to use more than one hardware lookup. How can

a 96-bit lookup be reduced to a 48-bit lookup using three lookups?

A naive solution is to use two lookups to convert source A and destination B into smaller (<24-bit)

indices IA
and IB. The indices IA
and IB can then be used to look up a two-dimensional array that

A

(48 bits)



HAVE



State

for A



AB

(96 bits)



WANT



State

for AB

F I G U R E 4.7
Adapting an engine that does destination lookup to doing destination-source lookups.


B



A



IA


IB


4.5 Demultiplexing in the X-Kernel
IAIBState

(48 bits)
for AB



81
GET INDICES



(24 bits)



GET STATE

F I G U R E 4.8
Converting a 96-bit lookup into a 48-bit lookup by ﬁrst converting each 48-bit address

into a 24-bit index and concatenating the indices.

stores the state for AB. This requires only two hardware lookups plus one more memory access,

but it can require large amounts of memory. If there are 1000 possible sources and 1000 possible

destinations, the array must contain a million entries. In practice, there may be only 20,000 active

source–destination pairs. How could you make the required amount of memory proportional to the

number of actual source–destination pairs?

SOLUTION
As before, ﬁrst use one lookup each to convert source A and destination B into smaller

(<24-bit) indices IAand IB. Then use a third lookup to map from IAIBto AB state. The solution

is illustrated in Figure 4.8. The third lookup effectively compresses the two-dimensional array

of the naive solution. This solution is due to Mark Kempf and Mike Soha.

EXERCISES
• Can this problem be solved using only two bridge hardware lookups without requiring

extra memory?

• The set of active source–destination pairs may change with time, because some pairs of

addresses stop communicating for long periods. How can this be handled without keeping

the state for every possible address pair that has communicated since the monitor was

powered on?

4.5 DEMULTIPLEXING IN THE X-KERNEL
The x-kernel [HP91] provides a software infrastructure for protocol implementation in hosts.

The x-kernel system provides support for a number of required protocol functions. One com-

monly required function is protocol demultiplexing. For example, when the Internet routing

layer IP receives a packet, it must use the protocol ﬁeld to determine whether the packet should

be subsequently sent to TCP or UDP.

Most protocols do demultiplexing based on some identiﬁer in the protocol header. These

identiﬁers can vary in length in different protocols. For example, Ethernet-type ﬁelds can be

5 bytes while TCP port numbers are 2 bytes long. Thus the x-kernel allows demultiplexing based

on variable-length protocol identiﬁers. When the system is initialized, the protocol routine can

register the mapping between the identiﬁer and the destination protocol with the x-kernel.


82


C H A P T E R 4
Principles in Action
(variable length)

Key K

hash (K)



Hash

Table



Key L, State

Hit if K = L

(byte by byte compare)

F I G U R E 4.9
Demultiplexing in the x-kernel is done by hashing the protocol identiﬁer
K
and

(potentially) using a byte-by-byte comparison with the key L stored at the hash table entry.

At run time, when a packet arrives the protocol routine can extract the protocol identiﬁer from

the packet and query the x-kernel demultiplexing routine for the destination protocol. Since

packets can arrive at high speeds, the demultiplexing routine should be fast. This leads to the

following problem.

PROBLEM
On average, the fastest way to do a lookup is to use a hash table. As shown in Figure 4.9,

this requires computing some hash function on the identiﬁer K to generate a hash index, using

this index to access the hash table, and comparing the key L
stored in the hash table entry

with K . If there is a match, the demultiplexing routine can retrieve the destination protocol

associated with key
L. Assume that the hash function has been chosen to make collisions

infrequent.

However, since the identiﬁer length is an arbitrary number of bytes, the comparison

routine that compares the two keys must, in general, do byte-by-byte comparisons. However,

suppose the most common case is 4-byte identiﬁers, which is the machine word size. In this

case, it is much more efﬁcient to do a word comparison. Thus the goal is to exploit efﬁcient

word comparisons (P4c) to optimize the expected case (P11). How can this be done while still

handling arbitrary protocols?

Hint:
Notice that if the x-kernel has to demultiplex a 3-byte identiﬁer, it has to use a byte-by-byte

comparison routine; if the x-kernel has to demultiplex a 4-byte identiﬁer and 4 bytes is the machine

word size, it can use a word compare. The ﬁrst degree of freedom that can be exploited is to

have different comparison routines for the most common cases (e.g., word compares, long-word

compares) and a default comparison routine that uses byte comparisons. Doing so trades some extra

space for time (P4b). For correctness, however, it is important to know which comparison routine

to use for each protocol. Consider invoking principles P9 to pass hints in interfaces and P2a to do

some precomputation.

SOLUTION
Each protocol has to declare its identiﬁer and destination protocol to the x-kernel when

the system initializes. When this happens, each protocol can predeclare its identiﬁer length,

so the x-kernel can use a specialized comparison routines for each protocol. Effectively,

information is being passed between the client protocol and the x-kernel (P9) at an earlier

time (P2a). Assume that the x-kernel has a separate hash table for each client protocol and

that the x-kernel knows the context for each client in order to use code specialized for that

client.


EXERCISES


4.6 Tries with Node Compression



83
• Code up byte-by-byte and word comparisons on your machine and do a large number

of both types of comparisons and compare the overall time taken for each.

• In the earlier ADC solution, the hash table lookup was ﬁnessed by passing an index

(instead of the identiﬁer length as earlier). Why might that solution be difﬁcult in this case?

4.6 TRIES WITH NODE COMPRESSION
A trie is a data structure that is a tree of nodes, where each node is an array of M
elements.

Figure 4.10 shows a simple example with M = 8. Each array can hold either a key (e.g., KEY

1, KEY 2, or KEY 3 in Figure 4.11) or a pointer to another trie node (e.g., the ﬁrst element

in the topmost trie node of Figure 4.10, which is the root). The trie is used to search for

exact matches (and longest-preﬁx matches) with an input string. Tries are useful in networking

for such varied tasks as IP address lookup (Chapter 11), bridge lookups (Chapter 10), and

demultiplexing ﬁlters (Chapter 8).

The exact trie algorithms do not concern us here. All one needs to know is how a trie is

searched. Let c = log2M be the chunk size of a trie. To search the trie, search ﬁrst breaks

the input string into chunks of size c. Search uses successive chunks, starting from the most

signiﬁcant, to index into nodes of the trie, starting with the root node. When search uses chunk

j to index into position i of the current trie node, position i could contain either a pointer or

a key. If position i contains a nonnull pointer to node N, the search continues at node N with

chunk j + 1; otherwise, the search terminates.

To summarize, each node is an array of pointers or keys, and the search process needs to

index into these arrays. However, if many trie nodes are sparse, there is considerable wasted

space (P1). For example, in Figure 4.10, only 4 out of 16 locations contain useful information.

In the worst case, each trie node could contain 1 pointer or key and there could be a factor of

M
in wasted memory. Assume M
≤
32 in what follows. Even if M
is this small, a 32-fold

increase in memory can greatly increase the cost of the design.

An obvious approach is to replace each trie node by a linear list of pairs of the form (i, val),

where val is the nonempty value (either pointer or key) in position i of the node. For example,

Trie Node (space not used by pointers is wasted)

Key 1

Key 2



Key 3

F I G U R E 4.10
Trie storing three keys. Notice the wasted space in the trie nodes.


84


C H A P T E R 4
Principles in Action
1

10000010


Uncompressed Trie Node

1
2



7

(Key 3)

(bitmap)


(Key 3)


Compressed Trie Node

F I G U R E 4.11
Compressing a trie node using a bitmap and bit counting to efﬁciently translate from

an uncompressed index to a compressed index.

the root trie node in Figure 4.10 could be replaced by the list (1, ptr ); (7 , KEY1), where ptr1 is

the pointer to the bottom trie node. Unfortunately, this can slow down trie search by a factor of

M , because the search of each trie node may now have to search through a list of M locations,

instead of a single indexing operation. This leads to the following problem.

PROBLEM
How can trie nodes be compressed to remove null pointers without slowing down search

by more than a small factor?

Hint:
Despite compressing the nodes, array indexing needs to be efﬁcient. If the nodes are com-

pressed, how might information about which array elements are removed be represented? Consider

leveraging off the fact that M is small by following P14 (exploit the small integer size) and P4a (exploit

locality).

SOLUTION
Since M
< 32, a bitmap of size 32 can easily ﬁt into a computer word (P14 and P4a).

Thus null pointers are removed after adding a bitmap with zero bits indicating the original

positions of null pointers. This is shown in Figure 4.11. The trie node can now be replaced

with a bitmap and a compressed trie node. A compressed trie node is an array that consists

only of the nonnull values in the original node. Thus in Figure 4.11, the original root trie node

(on the top) has been replaced with the compressed trie node (on the bottom). The bitmap

contains a 1 in the ﬁrst and seventh positions, where the root node contains nonnull values.

The compressed array now contains only two elements, the ﬁrst pointer and KEY 3. This still

begs the question: How should a trie node be searched?

Since both uncompressed and compressed nodes are arrays and the search process starts

with an index I
into the uncompressed node, the search process must consult the bitmap to

convert the uncompressed index I
into a compressed index C into the compressed node. For

example, if I is 1 in Figure 4.11, C should be 1; if I is 7, C should be 2. If I is any other value,

C should be 0, indicating that there is only a null pointer.

Fortunately, the conversion from I to C can be accomplished easily by noting the following.

If position I in the bitmap contains a 0, then C
= 0. Otherwise, C is the number of 1’s in the


4.7 Packet Filtering in Routers


85
ﬁrst I bits of the bitmap. Thus if I
= 7, then C
= 2, since there are two bits set in the ﬁrst

seven bits of the bitmap.

This computation requires at most two memory references: one to access the bitmap

(because the bitmap is small (P4a)) and one to access the compressed array. The calculation

of the number of bits set in a bitmap can be done using internal registers (in software) or

combinatorial logic (in hardware). Thus the effective slowdown is slightly more than a factor

of 2 in software and exactly 2 in hardware.

EXERCISES
• How could you use table lookup (P14, P2a) to speed up counting the number of bits set in

software? Would this necessarily require a third memory reference?

• Suppose the bitmap is large (say, M = 64 K). It would appear that counting the number of

bits set in such a large bitmap is impossibly slow in hardware or software. Can you ﬁnd a

way to speed up counting bits in a large bitmap (principles P12 and P2a) using only one

extra memory access? This will be extremely useful in Chapter 11.

4.7 PACKET FILTERING IN ROUTERS
Chapter 12 describes protocols that set up resources at routers for trafﬁc, such as video, that

needs performance guarantees. Such protocols use the concept of packet ﬁlters, sometimes

called classiﬁers. Thus, in Figure 4.12 each receiver attached to a router may specify a packet

ﬁlter describing the packets it wishes to receive. For example, in Figure 4.12 Receiver 1 may be

interested in receiving NBC, which is speciﬁed by Filter 4. Each ﬁlter is some speciﬁcation of

the ﬁelds that describe the video packets that NBC sends. For example, NBC may be speciﬁed

by packets that use the source address of the NBC transmitter in Germany and use a speciﬁed

TCP destination and source port number.

Similarly, in Figure 4.12 Receiver m may be interested in receiving ABC Sports and CNN,

which are described by Filters 1 and 7, respectively. Packets arrive at the router at high speeds

and must be sent to all receivers that request the packet. For example, Receivers 1 and 2 may

both wish to receive NBC. This leads to the following problem.

Receiver 1

(Filter 4)

Filter 1

Filter 2

Arriving

Packet


.

.

.

Filter n

Router


.

.

.

Receiver m

(Filters 1, 7)

F I G U R E 4.12
Packet ﬁltering in a router may require a slow linear scan of all ﬁlters followed by

making a copy of the packet for all ﬁlters that match.

86


C H A P T E R 4
Principles in Action
PROBLEM
Each receiving packet must be matched against all ﬁlters and sent to all receivers that

match. A simple linear scan of all ﬁlters is expensive if the number of ﬁlters is large. Assume

the number of ﬁlters is over a thousand. How can this expensive process be sped up?

Hint:
One might think of optimizing the expected case by caching (P11a). However, why is caching

difﬁcult in this case? Consider adding a ﬁeld (P10) to the packet header to make caching easier. Ideally,

which protocol layer should this be added to? Adding a ﬁxed well-known ﬁeld for each possible video

type is not a panacea because it requires global standardization, and ﬁlters can be based on other

ﬁelds, such as the source address. Assume the ﬁeld you add does not require globally standardized

identiﬁers. What properties of this ﬁeld must the source ensure?

SOLUTION
Caching (P11a), the old workhorse of system designers, is not very straightforward in

this problem. In general, a cache stores a mapping between an input a and some output f (a).

The cache then consists of a set of pairs of the form (a, f (a)). This set of pairs is stored as a

database keyed by values of a. The database can be implemented as a hash table (in software)

or a content-addressable memory (in hardware). Given input a and the need to calculate f (a),

the database is ﬁrst checked to see if a is already in the database. If so, the fast path exits

with the existing value of f (a). If not, f (a) is computed using some other (possibly expensive)

computation and the pair (a, f (a)) is then inserted into the cache database. Subsequent inputs

with value a can then be calculated very fast.

In the packet ﬁltering problem, the goal is to calculate the set of receivers associated with

a packet P. The problem is that the output is a function of a (potentially) large number of

packet header ﬁelds of P. Thus to use caching, one has to store a large portion of the headers

of P associated with the set of receivers for P. Storing a mapping between 64 bytes of packet

header and an output set of receivers is an expensive proposition. It is expensive in time, since

searching the cache can take longer because the keys are wide. It is also clearly expensive in

storage. The large storage needs in turn imply that fewer mappings can be cached for a given

cache size, which leads to a poorer cache hit rate.

The ideal is to cache a mapping between one or two packet ﬁelds and the output receiver

set. This would speed up cache search time and improve the cache hit rate. These ﬁelds should

also preferably be in the routing header, which routers examine anyway. The problem is that

there may be no such ﬁeld that uniquely ﬁngerprints packet P.

However, suppose we are system designers designing the routing protocol. We can add a

ﬁeld to the routing header. The problem might seem trivial if we could assign each possible

stream of packets a unique global identiﬁer. For example, if we could assign NBC identiﬁer

1, ABC identiﬁer 2, and CNN identiﬁer 3, then we could cache using the identiﬁer as the

key. Such a solution would require some form of global standards committee responsible for

naming every application stream. Even if that could be done, the receiver ﬁlter might ask for

all NBC packets from a given source, and the ﬁlter could depend on other packet ﬁelds. This

leads to the following ﬁnal idea.

Change the routing header to add a ﬂow identiﬁer F (Figure 4.13), whose meaning depends

on the source. In other words, different sources can use the same ﬂow identiﬁer because it

is the combination of the source and the ﬂow identiﬁer that is unique. Thus there is no need

for global standardization (or other global coordination) of ﬂow identiﬁers. A ﬂow identiﬁer

is only a local counter maintained by the source. The idea is that a sending application at the


4.8 Avoiding Fragmentation of Link State Packets
F, S
R1, R5



87
Flow ID

Cache


..
.

G, S'


..
.


..
.

Rm



R1

Filter 1

..
S F

Arriving

Packet


.

Filter n

Router


..
.

Rm

F I G U R E 4.13
Adding a ﬂow identiﬁer (which is unique only with respect to a source) can speed up

packet ﬁltering.

sender can ask the routing layer for a ﬂow identiﬁer. This identiﬁer is added to the routing

header of all the packets for this application.

As usual, when the application packet ﬁrst arrives, the router does a (slow) linear search

to determine the set of receivers associated with the packet header. Because identiﬁers are

not unique across sources, the router caches the mapping using the concatenation of the

packet source address and the ﬂow identiﬁer as the key. Clearly, correctness depends on

the sender application’s not changing ﬁelds that could affect a ﬁlter without also changing the

ﬂow identiﬁer in the packet.

EXERCISES
• What can go wrong if the source crashes and comes up again without remembering which

identiﬁers it has assigned to different applications? What can go wrong when a receiver

adds a new ﬁlter? How can these problems be solved?

• In the current solution, the ﬂow identiﬁer is used as a tip (Chapter 3) and not as a hint.

What additional costs would be incurred if the ﬂow identiﬁer-source address pair is treated

as a hint and not as a tip?

4.8 AVOIDING FRAGMENTATION OF LINK STATE PACKETS
The following problem actually arose during the design of the OSI and OSPF [Per92] link

state routing protocols. This problem is about protocol design, as opposed to protocol imple-

mentation once the design is ﬁxed. Despite this, it illustrates how design choices can greatly

affect implementation performance.

Chapter 2 and Section 4.3 described link state routing. Recall that in link state routing,

a router must send a link state packet (LSP) listing all its neighbors. The link state protocol

consists of two separate processes. The ﬁrst is the update process that sends link state packets

reliably from router to router using a ﬂooding protocol that relies on a unique sequence number


88


C H A P T E R 4
Principles in Action
E1

E2

E500



R1



R2

R3



R4

F I G U R E 4.14
The link state packet of router R1 (with even 500 endnode neighbors) may be too

large to ﬁt into a data link frame. Without a clever idea, this would require inefﬁcient fragmentation and

reassembly of the router at every hop.

per link state packet. The sequence number is used to reject duplicate copies of an LSP.

Whenever a router receives a new LSP numbered x from source S, the router will remember

number x
and will reject any subsequent LSPs received from
S
with sequence number
x.

After the update process does its work, the decision process at every router applies Dijkstra’s

algorithm to the network map formed by the link state packets.

While a router may have a small number of router neighbors, a router may have a large

number of host computers (endnodes) that are connected directly to the router on the same

LAN. For example, in Figure 4.14, router R1 has 500 endnode neighbors E1 . . . E500. Large

LANs may even have a larger number of endnodes. This leads to the following problem.

PROBLEM
At 8 bytes per endnode (6 bytes to identify the endnode and 2 bytes of cost information),

the LSP can be very large (40,000 bytes for 5000 endnodes). This is much too huge for the

link state packet to ﬁt into a maximum-size frame on many commonly used data links. For

example, Ethernet has a maximum size of 1500 bytes and FDDI speciﬁes a maximum of

4500 bytes. This implies that the large LSP must be fragmented into many data link frames

on each hop and reassembled at each router before it can be sent onward. This requires an

expensive reassembly process at each hop to determine whether all the pieces of a LSP have

been received.

It also increases the latency of link state propagation. Suppose that each LSP can ﬁt in M
data link frames, that the diameter of the network is D, and that the time to send a data link

frame over a link is 1 time unit. Then with hop-by-hop reassembly, the propagation time of

an LSP can be D · M . If a router did not have to wait to reassemble each LSP at each hop, the

propagation delay would be only M
+ D. When the link state protocol was being designed,

these problems were discovered by implementors reviewing the initial speciﬁcation.

On the other hand, it seems impossible to propagate the fragments independently because

the LSP carries a single sequence number that is crucial to the update process. Simply copy-

ing the sequence number into each fragment will not help, because that will cause the later

fragments to be rejected, since they have the same sequence number as the ﬁrst fragment.

The problem is to make the impossible possible by shifting computation around in space

to avoid the need for hop-by-hop fragmentation. Changes to the LSP routing protocol are

allowed.

Hint:
Does the information about all 5000 endnodes have to be in the same LSP? Consider invoking

P3c to shift computation in space.


E1–E175

E175–E350

E350–E500



4.8 Avoiding Fragmentation of Link State Packets
R1aR2

R1bR4

R1cR3



89
F I G U R E 4.15
Avoiding hop-by-hop fragmentation by dividing a large router into pseudo-routers.

SOLUTION
If the individual fragments of the original LSP of R1 are to be propagated independently

without hop-by-hop reassembly, then each fragment must be a separate LSP by itself, with a

separate sequence number. This crucial observation leads to the following elegant idea.

Modify the link state routing protocol to allow any router R1 to be multiple pseudo-routers

R1a, R1b, R1c(see Figure 4.15). The original set of endnodes are divided among these pseudo-

routers, so the LSP of each pseudo-router can ﬁt into most data link frames without the need for

fragmentation. For example, if most data link sizes are at least 576 bytes, roughly 72 endnodes

can ﬁt within a data link frame.

How is this concept of a pseudo-router actually realized? In the original LSP propagation,

each router had a 6-byte ID that is placed in all LSPs sent by the router. To allow for pseudo-

routers, we change the protocol to have LSPs carry a 7-byte ID (6-byte router ID + 1-byte

pseudo-router ID). The pseudo-router ID can be assigned by the actual router that houses all

the pseudo-routers. By allowing 256 pseudo-routers per router, roughly 18,000 endnodes can

be supported per router.

While the LSP propagation treats pseudo-routers separately, it is crucial that route com-

putation treat the separate pseudo-routers as one router. After all, the endnodes are all directly

connected to R1 in our example. But this is easily done, because all the LSPs with the same

ﬁrst 6 bytes can be recognized as being from the same router.

In summary, the main idea is to shift computation in space (P3c) by having the source

fragment the original LSP into independent LSPs instead of having each data link do the

fragmentation. This is a good example of systems thinking. Needless to say, the implementors

liked this solution (invented by Radia Perlman) much better than the original approach.

EXERCISES
• How can a router assign endnodes to pseudo-routers? What happens if a router initially has

a lot of endnodes (and hence a lot of pseudo-routers) and then most of the endnodes die?

This can leave a lot of pseudo-routers, each of which has only a few endnodes. Why is this

bad, and how can it be ﬁxed?

• As in the relaxed-consistency examples described in Chapter 3, this solution can lead to

some unexpected (but not very serious) temporary inconsistencies. Assuming a solution to

the previous exercise, describe a scenario in which a given router, say, R2, can ﬁnd (at

some instant) that its LSP database shows the same endnode (say, E1) belonging to two

pseudo-routers, R1aand R1c. Why is this no worse than ordinary LSP routing?


90


C H A P T E R 4
Principles in Action
4.9 POLICING TRAFFIC PATTERNS
Some network protocols require that sources never send data faster than a certain rate. Instead

of merely specifying the average rate over long periods of time, the protocol may also specify

the maximum amount of trafﬁc, B, in bits a source can send in any period of T
seconds. This

does limit the source to an average rate of B/T
bits per second. However, it also limits the

“burstiness” of the users’ trafﬁc to at most one burst of size B
every
T
units of time. For

example, choosing a small value of the parameter T limits the trafﬁc burstiness considerably.

Burstiness causes problems for networks because periods of high trafﬁc and packet loss are

followed by idle periods.

If every source meets its contract (i.e., sends no more than the speciﬁed amount in the

speciﬁed period), the network can often guarantee performance and ensure that no trafﬁc is

dropped and that all trafﬁc is delivered in timely fashion. Unfortunately, this is like saying that

if everyone follows the rules of the road, trafﬁc will ﬂow smoothly. Most people do follow

the rules: some because they feel it is the right thing to do, and many because they are aware

of penalties that they have to pay when caught by trafﬁc police. Thus policing is an important

part of an ordered society.

For the same reason, many designers advocate that the network should periodically police

trafﬁc to look for offenders that do not meet their contracts. Without policing, the offenders

can get an unfair share of network bandwidth.

Assume that a trafﬁc ﬂow is identiﬁed by the source and destination address and the trafﬁc

type. Thus each router needs to ensure that a particular trafﬁc ﬂow sends no more than B bits

in any period of T
seconds. The simplest solution is for the router to use a single timer that

ticks every T
seconds and to count the number of bits sent in each period using a counter per

ﬂow. At the end of each period, if the counter exceeds B, the router has detected a violation.

Unfortunately, the single timer can police only some periods. For example, assume without

loss of generality that the timer starts at time 0. Then the only periods checked are the periods

[0, T ], [T , 2T ], [2T , 3T ], . . . . This does not ensure that the source ﬂow does not violate its

contract in a period like [T /2, 3T /2], which overlaps the periods that are policed. For example,

in the left side of Figure 4.16, the ﬂow sends a burst of size B just before the timer ticks at time

T and sends a second burst of size B just after the timer ticks at time T .

B



T



T



B

T/2
T/2



T/2 T T/2

Time

ONE TIMER


Time

TWO TIMERS

F I G U R E 4.16
The naive use of a single or multiple timers (to check whether a ﬂow sends no more

than B every T
seconds) does not catch all violations.




T



Random



B



T



4.9 Policing Trafﬁc Patterns
Violation
Random



91
Time

F I G U R E 4.17
Picking a random gap of T
seconds between policing intervals allows the router to

catch a violating ﬂow with high probability.

One attempt to ﬁx this problem is for the router to use multiple timers and counters. For

example, as shown on the right of Figure 4.16, the router could use one timer that starts at 0

and a second timer that starts at time T /2. Unfortunately, the ﬂow can still violate its contract

by sending no more than B in each policed period but sending more than B in some overlapping

period.

For instance, in the right frame of Figure 4.16 an offending ﬂow sends a ﬁrst burst of B
at the end of the ﬁrst period and a second burst of B at the start of the third period, sending 2B
within a period slightly greater than T /2. Unfortunately, neither of the timers will detect the

ﬂow as being a violator. This leads to the following problem.

PROBLEM
Multiple timers are expensive and do not guarantee that the ﬂow will not violate its trafﬁc

contract. It is easy to see that with even a single timer, the ﬂow can send no more than 2B in

any period of T seconds. One approach is simply to assume that a factor-of-2 violation is not

worth the effort to police. However, suppose that bandwidth is precious on a transcontinental

link and that a factor-of-2 violation is serious. How could a violating ﬂow still be caught using

only a single timer?

Hint:
Consider exploiting a degree of freedom (P13) that has been assumed to be ﬁxed in the naive

solution. Do the policing intervals have to start at ﬁxed intervals? Also consider using P3a.

SOLUTION
As suggested in the hints, the policing intervals need not be ﬁxed. Thus, there can be an

arbitrary gap between policing intervals. How should the gap be picked? Since a violating

ﬂow can pick its violating period of T
to start at any instant, a simple idea is to invoke P3a to

yield the following idea (Figure 4.17).

The router uses a single timer of T units and a single counter, as before. A policing interval

ends with a timer tick; if the counter is greater than B, a violation is detected. Then a ﬂag is

set indicating that the timer is now used only for inserting a random gap. Then the timer is

restarted for a random time interval between 0 and T . When the timer ticks, the ﬂag is cleared

and the counter is initialized, and the timer is reset for a period of T to start policing again.

EXERCISES
• Suppose the counter is initialized and maintained during the gap period as well as during

policing periods. Can the router make any valid inference during such a period, even if the

gap period is less than T units?




92


C H A P T E R 4
Principles in Action
S1
1

S2
9

S3
30

S4
24

S5
7



Priority queue

(e.g., heap)



ExtractMax

S3, 30

F I G U R E 4.18
Finding the source that is a resource hog.

• (Open Problem): Suppose the ﬂow is adversarial. What is a good strategy for the ﬂow to

consistently violate the contract by as high a margin as possible and still elude the

randomized detector described earlier? The ﬂow strategy can be randomized as well. A

good answer should be supported by a probabilistic analysis.

4.10 IDENTIFYING A RESOURCE HOG
Suppose a device wishes to keep track of resources, like the packet memory allocated to

various sources in a router. The device wants a cheap way to ﬁnd the source consuming the

most memory so that the device can grab memory back from such a resource hog. Figure 4.18

shows ﬁve sources with their present resource consumption of 1, 9, 30, 24, and 7 units,

respectively. The resource hog is S3.

A simple solution to identify the resource hog is to use a heap. However, if the number

of sources is a thousand or more, this may be too expensive at high speeds. Assume that the

numbers that describe resource usage are integers in the range from 1 to 8000. Thus bucket

sort techniques won’t work well because we may have to search 8000 entries to ﬁnd the

resource hog.

Suppose, instead, that the device does not care about the exact maximum as long as the

result comes within a factor of 2 (perfect fairness is unimportant as in P3b). For example, in

the ﬁgure, assume it is ﬁne to get an answer of 24 instead of 30. This leads to the following

problem.

PROBLEM
A software or hardware module needs to keep track of resources required by various users.

The module needs a cheap way to ﬁnd the user consuming the most resources. Since ordinary

heaps are too slow, the device designers are willing to relax the system requirements (P3b) to

be off by a factor of 2. Can this relaxation in accuracy requirements be translated into a more

efﬁcient algorithm?

Hint:
Consider using three principles: trading accuracy for computation (P3b), using bucket sorting

(P14), and using table lookups (P4b, P2a).

SOLUTION
Since the answer can be off by a factor of 2, it makes sense to aggregate users whose

resources are within a factor of 2 into the same “resource usage group.” This can be a win if

the resulting number of groups is much smaller than the original number of users; ﬁnding the

largest group then will be faster than ﬁnding the largest user. This is roughly the same idea

behind aggregation in hierarchical routing, where a number of destinations are aggregated


S1

S2

S3



1

9

30



4.11 Getting Rid of the TCP Open Connection List
1–1
2–3
4–7 8–15 16–31

1
0
1
1
1
ExtractMax

S4, 24



93
S4

S5


24

7


S1
S5
S2
S4

S3


(off by 2!)

F I G U R E 4.19
Aggregating users with resource consumption within a factor of 2 leads to a small

number of aggregates whose membership can be represented using a bitmap.

behind a common preﬁx; this can make routing less accurate but reduces the number of

routing entries. This leads to the following idea (try to work out the details before you read

further).

Binomial bucketing can be used, as shown in Figure 4.19, where all users are grouped into

buckets according to resource consumption, where bucket i contains all users whose resource

consumption lies between 2iand 2i+1 − 1. In Figure 4.19, for instance, users S3 and S4 are

both in the range [16, 31] and hence are in the same bucket.

Each bucket contains an unsorted list of the resource records of all the users that fall within

that bucket range. Thus in Figure 4.19, S3 and S4 are in the same list. The data structure also

contains a bitmap, with one bit for every bucket, that is set if the corresponding bucket list is

nonempty (Figure 4.19). Thus in Figure 4.19, the bits corresponding to buckets [1,1], [4,7],

[8,15], and [16,31] are set, while the bit corresponding to [2,3] is clear.

Thus to ﬁnd the resource hog, the algorithm simply looks for the bit position i correspond-

ing to the rightmost bit set in the bitmap. The algorithm then returns the user at the head of

the bucket list corresponding to position i. Thus in Figure 4.19, the algorithm would return S4

instead of the more accurate S3.

EXERCISES
• How is this data structure maintained? What happens if the resources in a user (e.g., S3)

are reduced from 30 to 16? What kind of lists are needed for efﬁcient maintenance?

• How large is each bitmap? How can ﬁnding the rightmost bit set be done efﬁciently?

4.11 GETTING RID OF THE TCP OPEN CONNECTION LIST
A transport protocol such as TCP [Ste94] in computer X
keeps state for every concurrent

conversation that X has with other computers. Recall from Chapter 2 that the technical name

for the shared state between the two endpoints of a conversation is a connection. Thus if a

user wishes to send mail from X to another workstation, Y , the mail program in X must ﬁrst

establish a connection (shared state) to the mail program in Y . A busy server like a Web server

may have lots of concurrent connections.

The state in a connection consists of things like the numbers of packets sent by X that

have not been acknowledged by Y . Any packets that have not been acknowledged for a long

time must be retransmitted by X . To do retransmission, transport protocols typically have a


94


C H A P T E R 4
Principles in Action
Conn 1

Conn 1



Conn 2



. . .



Conn N
..

Connection list
.

Conn 2

..

Hash table
.

Conn N
F I G U R E 4.20
The x-kernel implementation uses a hash table mapping connections to state (for

packet dispatching) as well as a linked list of connections (for timer processing). The redundant state

causes dilution of the data cache.

periodic timer that triggers the retransmission of any packets whose acknowledgments have

been outstanding for a while.

The freely available Berkeley (BSD) TCP code [Ste94] keeps a list of open connections

(Figure 4.20) to examine on timer ticks in order to perform any needed retransmissions. How-

ever, when a packet arrives at X, TCP at X must also quickly determine which connection the

packet belongs to in order to update the state for the connection. Each connection is identiﬁed

by a connection identiﬁer that is carried in every packet.

Relying on the list to determine the connection for a packet would require searching the

entire list, in the worst case; this could be slow for servers with large numbers of connections.

Thus the x-kernel implementation [HP91] added a hash table to the BSD implementation

(P15) to efﬁciently map from connection identiﬁers in packets to the corresponding state for

the connection. The hash table is an array of pointers indexed by hash value that points to lists of

connections that hash to the same value. In addition, the original linked list of connections was

retained for timer processing, while the hash table was supposed to speed up packet processing.

Oddly enough, measurements of the new implementation actually showed a slowdown!

Careful measurements traced the problem to the fact that information about connections was

stored redundantly, and this reduced the efﬁciency of the data cache when implemented on

modern processors (see Chapter 2 for a model of a modern processor). This illustrates question

Q3 in Chapter 3, where an obvious improvement to one part of the system can affect other

parts of the system. Note that while main memory may be cheap, fast memory such as the data

cache is often limited. Commonly used structures such as the connection list should ﬂoat into

the data cache as long as they are small enough to ﬁt.

The obvious solution is to avoid redundancy. The hash table is needed for fast lookups.

The timer routine must also periodically and efﬁciently scan through all connections. This

leads to the following problem.

PROBLEM
Can you get rid of the waste caused by the explicit connection list while retaining the hash

table? It is reasonable to add a small amount of extra information to the hash table. When doing

so, observe that the original connection list was made doubly linked to allow easy deletion

when connections terminate. But this adds storage and dilutes the data cache. How can a singly

linked list be used without slowing down deletion?

Hint:
The ﬁrst part is easy to ﬁx by linking the valid hash table entries in a list. The second part

(avoiding the doubly linked list, which would require two pointers per hash table entry) is a bit harder.


4.11 Getting Rid of the TCP Open Connection List
Connection table replaced

by a singly linked list



95
C1



C4

Hash table for



C5

C3

C2


connection lookup

with lazy deletion

C6

F I G U R E 4.21
Linking the valid hash table entries using forward pointers and lazy deletion. The

dashed lines imply connection records that have been marked as deleted but that will be processed only

in the next iteration.

A connection list consists of nodes, each of which contains a connection ID (96 bits for IP)

plus two pointers (say, 32 bits each) for easy deletion. Since the hash table is needed for fast

demultiplexing, the connection list can be removed if the valid hash table entries are linked together

as shown in Figure 4.21 and a pointer is kept to the head of the list. On a timer tick, the retransmit

routine will periodically scan this list. Scanning the complete hash table is less efﬁcient because the

hash table may have many empty locations.

The naive solution would add two pointers to each valid hash table entry to implement a doubly

linked list. Since these pointers can be hash table indexes instead of arbitrary pointers to memory,

the indexes need not be larger than the size of the hash table: Even the largest hash table storing

connections should require no more than 16 bits, often much less. The naive solution does well,

adding at most 32 bits per entry instead of 160 bits per entry, a savings of 128 bits. However, it

is possible to do better and to add only 16 bits per entry. Consider using lazy evaluation (P2b) and

relaxing the speciﬁcation (P3).

SOLUTION
A doubly linked list is useful only for efﬁcient deletions. When a connection (say, Connec-

tion C3 in Figure 4.21) is terminated, the delete routine would ideally like to ﬁnd the previous

valid entry (i.e., the list containing Connection C1 in Figure 4.20) in order to link the previous

list to the next list (i.e., the list containing C2). This would require each hash table entry to

store a pointer to the previous valid entry in the list.

Instead, consider principleP3, which asks whether the system requirements can be relaxed.

Normally, one assumes that when a connection terminates, its storage must be reclaimed

immediately. To reclaim storage, the hash table entry should be placed in a free list, where it can

be used by another connection. However, if the hash table is a little larger than strictly necessary,

it is not essential that the storage used by a terminated connection be reused immediately.


96


C H A P T E R 4
Principles in Action
Given this relaxation of requirements, the implementation can lazily delete the connection

state. When a connection is terminated, the entry must be marked as unused. This requires an

extra bit of state, as in P12, but is cheap. The actual deletion of unused hash table entry E
involves linking the entry before E to the entry after E and also requires returning E to a free

list. However, this deletion can be done on the next list traversal when the traversal encounters

an unused entry.

EXERCISES
• Write pseudocode for the addition of a new connection, the termination of a connection,

and the timer-based traversal.

• How can we get away with singly linked lists for the lists of connections in each hash table

list?

• Hugh Hopeful is always interested in clever tricks that he never thinks through completely.

He suggests a way to avoid back pointers in any doubly linked list. Suppose a node X
needs to be deleted. Normally, the deletion routine is passed a handle to retrieve X , which

is typically a pointer to node X . Instead, Hugh suggests that the handle be a pointer to the

node before X in the linked list (except when X is the head of the list when the handle is a

null pointer). Hugh claims that this allows his implementation to efﬁciently locate both the

node prior to X and the node after X using only forward pointers. Present a counter-

example to stop Hugh before he writes some buggy code.

4.12 ACKNOWLEDGMENT WITHHOLDING
Transport protocols such as TCP ensure that data is delivered to the destination by requiring

that the destination send an acknowledgment (ack) for every piece of received data. This is

analogous to certiﬁed mail. Packets and acks are numbered. Acks are often cumulative; an

ack for a packet numbered N
implicitly acknowledges all packets with numbers less than or

equal to N.

Cumulative acks allow the receiver the ﬂexibility of not sending an ack for every received

packet. Instead, acks can be batched (P2c). For example, in Figure 4.22 a ﬁle transfer program

is sending ﬁle blocks, one in every packet. Blocks 1 and 2 are individually acknowledged, but

blocks 3 and 4 are acknowledged with a single ack for block 4.

Reducing acks is a good thing for the sender and receiver. Although acks are small, they

contain headers that must be processed by every router and the source and the destination. Fur-

ther, each received packet, however small, can cause an interrupt at the destination computer,

and interrupts are expensive. Thus ideally, a receiver should batch as many acks as possible.

But what should the receiver batching policy be? This leads to the following problem.

PROBLEM
Ack withholding is difﬁcult at a receiver that is not clairvoyant. In Figure 4.22, for

example, if block 3 arrives ﬁrst and is processed quickly, how long should the receiver wait

for block 4 before sending the ack for block 3? If block 4 never arrives (because the sender has

no more data to send), then withholding the ack for block 3 would cause incorrect behavior.

The classical solution is to set an ack-withholding timer; when the timer expires, a cumulative

ack is sent. This limits the time that an ack can be withheld.


File



SENDER

Block 2



4.12 Acknowledgment Withholding
RECEIVER

Block 1



97
transfer


Block 3


Ack 1

Ack 2

Block 4

Ack 4

F I G U R E 4.22
The use of cumulative acks allows the receiver to acknowledge several packets

with one ack (e.g., Blocks 3 and 4) but introduces the problem of determining a good receiver ack

policy.

However, the withholding timer also causes problems. Some applications are sensitive to

latency. Adding an ack-withholding timer can increase latency in cases where the sender has

no more data to send. If the transport protocol could be modiﬁed, what information could be

added to avoid unnecessary latency and yet allow acks to be effectively batched?

Hint:
In an application such as FTP, which software module “knows” that there is more data to be

sent? For ack withholding, which software module would ideally like to know that there is more data

to be sent? Now consider using P9 and P10.

SOLUTION
In an application such as ﬁle transfer, the sender application knows that there is more

data to be sent (e.g., there will be a block 4 after block 3). The sending application may

also be willing to tolerate the latency due to batching of acks. However, it is the transport

module at the receiver that needs to know this information. This observation leads to a simple

proposal.

The sender application passes a bit to the sender transport (in the application–transport

interface) that is set when the application has more data to send. Assume that the transport

protocol can be modiﬁed to carry a withhold bit. The sending transport can use the information

passed by the application to set a withhold bit w in every packet that it sends; w is cleared when

the sender wants an immediate ack. The moral, of course, is that it is better for the sender to

telegraph his intentions than for the receiver to make guesses about the future!

For example, in Figure 4.23 the sender transport is informed by the sending ﬁle transfer

application that there are four blocks to be sent. Thus the sender transport sets the withhold

bit on the ﬁrst three packets and clears the bit in the fourth packet. The receiver acts on this

information to send one ack instead of four. On the other hand, an application that is latency

sensitive can choose not to pass any information about data to be sent. Note also that the

withhold bit is a hint; the receiver can choose to ignore this information and send an ack

anyway. Despite its apparent cleverness, this solution is a bad idea in today’s TCP. See the

exercises for details.


98


C H A P T E R 4
Principles in Action
SENDER

Block 1, w = 1

Block 2, w = 1

Block 3, w = 1

Block 4, w = 0



Ack 4



RECEIVER

F I G U R E 4.23
Telegraphing the sender’s intentions using a withhold bit w.

EXERCISES
• Another technique for reducing acks is to piggyback acks on data ﬂowing from the

receiver to the sender. To support this, most transport protocols, such as TCP, have extra

ﬁelds in data packets to convey reverse ack information. However, piggybacking has the

same classical trade-off between latency and piggybacking efﬁciency. How long should

the receiver transport wait for reverse data? On the other hand, there are common

applications where the sender application knows this information. How could the solution

outlined earlier be extended to support piggybacking as well as ack batching?

• Recall that Chapter 3 outlined a set of cautionary questions for evaluating purported

improvements. For example, Q3 asks whether a change can affect the rest of the system.

Why might aggressive ack withholding interact with other aspects of the transport

protocol, such as ﬂow and congestion control [Ste94]?

4.13 INCREMENTALLY READING A LARGE DATABASE
Suppose a user continuously reads a large database stored on a Web site. The Web page can

change and the reader only wants the incremental (P12a) updates since the last read of the

database. Thus, in Figure 4.24 there is a database of highly popular food items that is being read

constantly by readers around the world who wish to keep up with culinary fashion. Fortunately,

food fashions change slowly.

Thus a reader that last read at 2 pm and reads again at 6 pm only wants the differences:

Coke to Pepsi, and Wheaties to Cheerios. If, on the other hand, a different user reads at 3 pm

and then at 6 pm, she, too, only wants the difference: Wheaties to Cheerios. This leads to the

following problem.

PROBLEM
Find a way for the database to efﬁciently perform such incremental queries. One solution is

to have the database remember what each user has previously read. However, it is unreasonable


Last update

2 pm

Coke

Apples

Pies

Wheaties



4.13 Incrementally Reading a Large Database
Last update
Last update

3 pm
6 pm

Pepsi
Pepsi

Apples
Apples

Pies
Pies

Wheaties
Cheerios



99
F I G U R E 4.24
A slowly changing database of food items shown at three different times: 2 pm, 3

pm, and 6 pm. Notice that only the soft drink has changed from 2 to 3 pm and that only the cereal has

changed from 3 to 6 pm. Thus a reader who is constantly monitoring the database wishes to ﬁnd only the

differences from the last time the database was read.

for the database to remember what each user has previously read, since there may be millions

of users. Find another solution that is less burdensome for the database program.

Hint:
If the database does not store any information about the last Read performed by a user, then

it follows that user Read requests must pass some information (P10) about the last Read request

made by the same user. Passing the entire details of the last Read would be overkill and inefﬁcient.

What simple piece of information can succinctly characterize the user’s last request? Now consider

adding redundant state (P12) at the database that can easily be indexed using the information passed

by the user to facilitate efﬁcient incremental query processing.

SOLUTION
As said earlier, user Read requests must pass some information (P10) about the last Read

request made by the same user. The most succinct and relevant piece of information about the

last user request is the time at which it was made. If user requests pass the time of the last Read,

then the database needs to be organized to efﬁciently compute all updates after any given time.

This can be done by storing copies of the database at all possible earlier times. This is clearly

inefﬁcient and can be avoided by storing only the incremental changes (P12a). This leads to

the following algorithm.

Add an update history list to the database, with most recent updates closer to the head of

the list. Read requests carry the time T of the last Read, so a Read request can be processed

by scanning the update list from the head to ﬁnd all updates after T .

For example, in Figure 4.25 the head of the update history list has the latest change

(compare with Figure 4.24) at 6 pm from Wheaties to Cheerios and the next earliest change at

3 pm from Coke to Pepsi. Consider a Read request that has a last Read time of 5 pm. In this

case, when scanning the list from the head, the request processing will ﬁnd the 6 pm update

and stop when it reaches the 3 pm update because 3 < 5. Thus the Read request will return

only the ﬁrst update.

EXERCISES
• If a single entry changes multiple times, a single entry change can be stored redundantly in

the list, which costs space and time. What principle can you use to avoid this redundancy?


100


C H A P T E R 4
Principles in Action


Last update

6 pm

Wheaties



6 pm


Cheerios


Coke



3 pm


Pepsi



Pepsi

Apples

Update history list


Pies

Cheerios

F I G U R E 4.25
Solving the incremental-update problem using an update history list.

Assume the database is just a collection of records and that you want each record to appear

at most once in the incremental list.

• If the number of records is large or the foregoing trick is not adopted, the incremental list

size will grow very big. Suggest a sensible policy for periodically reducing the size of the

incremental list.

4.14 BINARY SEARCH OF LONG IDENTIFIERS
The next-generation Internet (IPv6) plans to use larger, 128-bit addresses to accommodate more

Internet endpoints. Suppose the goal is to look up 128-bit addresses. Assume the algorithm

works on a machine whose natural word size is 32 bits. Then each comparison of two 128-bit

numbers will take 128/32
=
4 operations to compare each word individually. In general,

suppose each identiﬁer in the table is W
words long. In our example, W
= 4. Naive binary

search will take W ·log N comparisons, which is expensive. Yet this seems obviously wasteful.

If all the identiﬁers have the same ﬁrst
W
− 1 words, then clearly log N
comparisons are

sufﬁcient. The problem is to modify binary search to take log N
+ W
comparisons. The

strategy is to work in columns, starting with the most signiﬁcant word and doing binary search

in that column until equality is obtained in that column. At that point, the algorithm moves to

the next word to the right and continues the binary search where it left off.

Thus in Figure 4.26, which has W
= 3, consider a search for the three-word identiﬁer

BMW . Pretend each character is a word. Start by comparing in the leftmost column in the

middle element, as shown by the arrow labeled 1.1Since the B in the search string matches the

B at the arrow labeled 1, the search moves to the right (not shown) to compare the M in BMW
with the N in the middle location of the second column. Since N
< M, the search performs the

second probe at the quarter position of the second column. This time the two M ’s match and

the search moves rightward and ﬁnds W , but (oops!) the search has found AMW , not BMW as

desired. This leads to the following problem.

1Many implementors implement binary search to pick the 4th element from the top (i.e., the ﬁrst B) as the

middle and not the 5th element as we have done. Keep this somewhat unusual convention in mind while following

the example.


Probe 1



A

A

A

B

B

B

B

C



3

2



C

D

M

M

N

N

N

N



4.14 Binary Search of Long Identiﬁers
W words wide

E

C

W

4

W

X

Y

Z

D



101
F I G U R E 4.26
Binary search of long identiﬁers can result in a multiplicative factor of W, the number

of words in an identiﬁer. The naive method of reducing this to an additive factor by moving to the right

on equality fails.

PROBLEM
Find some state that can be added to each element in each column that can ﬁx this algorithm

to work correctly in log N + W comparisons.

Hint: The problem is caused by the fact that when the search moved to the quarter position in column

2, it assumed that all elements in the quarter of the second column begin with B. This assumption

is false in general. What state can be added to avoid making this false assumption, and how can the

search be modiﬁed to use this state?

SOLUTION
The trick is to add state to each element in each column, which can constrain the binary

search to stay within a guard range. This is shown in Figure 4.27. In the ﬁgure, for each word

like B in the leftmost (most signiﬁcant) column, add a pointer to the range of all other words

that also contain B in this position. Thus the ﬁrst probe of the binary search for BMW
starts

with the B in BNX. On equality, the search moves to the second column, as before. However,

search also keeps track of the guard range corresponding to the B’s in the ﬁrst column. The

ﬁgure shows that the guard range includes only rows 4 through 7. This guard range is stored

with the ﬁrst B compared (see arrows in Figure 4.27).

Thus when the search moves to column 2 and ﬁnds that M
in BMW is less than the N in

BNX, it attempts to halve the range as before and to try a second probe at the third entry (the

M in AMT ). However, the third entry is lower than the high point of the current guard range (4

through 6, assuming the ﬁrst element is numbered 1). So without doing a compare, the search

Probe 1



A

A

A

B

B

B

B

C



3

4

2



C

D

M

M

N

N

N

N



5



E

C

W

W

X

Y

Z

D

F I G U R E 4.27
Adding a guard range to every element in a column to allow binary search to work

correctly when switching columns.


102


C H A P T E R 4
Principles in Action
tries to halve the binary search range again. This time the search tries entry 4, which is in the

guard range. The search ﬁnds equality, moves to the right, and ﬁnds BMW , as desired.

In general, every multiword entry W1, W2, . . . , Wnwill store a precomputed guard range.

The range for Wipoints to the range of entries that have W1, W2, . . . , Wiin the ﬁrst i words.

This ensures that on a match with Wi
in the ith column, the binary search in column i + 1 will

search only in this guard range. For example, the N entry in BNY (second column) has a guard

range of 5–7, because these entries all have BN in the ﬁrst two words.

The resulting search strategy takes log2N + W
probes if there are N identiﬁers. The cost

is the addition of two 16-bit pointers to each word. Since most word sizes are at least 32 bits,

this results in adding 32 bits of pointer space for each word, which can at most double memory

usage. Besides adding state, a second dominant idea is to use precomputation (P2a) to trade a

slower insertion time for a faster search. The idea is due to Butler Lampson.

EXERCISE
• (This is harder than the usual exercises.) The naive method of updating the binary search

data structure requires rebuilding the entire structure (especially because of the

precomputed ranges) when a new entry is added or deleted. However, the whole scheme

can be elegantly represented by a binary search tree, with each node having the usual >

and < pointers but also an = pointer, which corresponds to moving to the next column to

the right, as shown earlier. The subtree corresponding to the = pointer naturally represents

the guard range. The structure now looks like a trie of binary search trees. Use this

observation and standard update techniques for balanced binary trees and tries to obtain

logarithmic update times.

4.15 VIDEO CONFERENCING VIA ASYNCHRONOUS TRANSFER MODE
In asynchronous transfer mode (ATM), the network ﬁrst sets up a virtual circuit through a

series of switches before data can be sent. Standard ATM allows one-to-many virtual circuits,

where a virtual circuit (VC) can connect a single source to multiple receivers. Any data sent

by the source is replicated and sent to every receiver in the one-to-many virtual circuit.

Although it is not standardized, it is also easy to have many-to-many VCs, where every

endpoint can be both a source and a receiver. The idea is that when any source sends data, the

switches replicate the data to every receiver. Of course, the main problem in many-to-many

VCs is that if two sources talk at the same time, then the data from the two sources can be

arbitrarily interleaved at the receivers and cause confusion. This is possibly why many-to-many

VCs are not supported by standards, though it is often easy for switch hardware to support

many-to-many VCs.

Figure 4.28 shows a simple topology consisting of an ATM switch that connects N work-

stations. To showcase the bandwidth of the switch, the system designers have designed a

videoconferencing application. The conferencing application can allow users at any of the N
workstations to have a videoconference with each other. The application should bring up a

screen (on every workstation in the conference) that displays at least the current speaker and

also plays the speech of the current speaker. In addition, in the event of a conversation, it is

desirable to see the expressions of the participants. The designers soon run into the following

problem.


4.15 Video Conferencing via Asynchronous Transfer Mode
N 1-to-many VCs

ATM

switch



103
F I G U R E 4.28
A videoconferencing system that uses an ATM switch with the ability to support

many-to-many virtual circuits.

PROBLEM
The naivest solution would use up to N2point-to-point connections between every pair

of participating workstations. A better solution is shown in Figure 4.28. It uses up to N many-

to-many VCs between each participating workstation and the other workstations. The video

and speech of each workstation is connected by a one-to-many virtual circuit to every other

participating workstation. Thus every participating workstation gets the video output of all

participants and the application can choose which one (or ones) to display. Unfortunately, the

ATM switch requires that bandwidth on the switch be statically divided among the N
one-to-

many VCs. Given a minimum bandwidth for video quality of Bmin and a total switch bandwidth

of B, this limits the number of participating workstations to be less than B/Bmin. Is there a more

scalable solution?

Hint: Consider exploiting the switch hardware’s ability to support many-to-many VCs (P4c). However,

to prevent confusion, only one source should transmit at a time in any many-to-many VC. Instead

of developing a complex protocol to ensure such a constraint, what hardware can be added (P5) to

ensure this constraint?

SOLUTION
As suggested in the hint, the designers chose to exploit the many-to-many VC capability

of the switch to replace N
one-to-many VCs with a constant number of many-to-many VCs.

This allowed the ﬁxed switch bandwidth to scale to a large number of participants. However,

this generic idea requires elaboration. How many many-to-many VCs should be used? How

is the potential confusion caused by many-to-many VCs resolved? Here are the details of a

solution worked out by Jon Turner at Washington University.

First, consider the use of a single many-to-many VC named C. A naive solution to the

confusion problem entails a protocol (say, a round-robin protocol) that ensures that only one

workstation at a time connects its video output to C. Such protocols require coordination,

and the coordination adds latency and expense. Instead, as systems thinkers, the designers

observed that, at a minimum, only the current speaker needs to be displayed.

Thus the designers added extra hardware (P5) in the form of a speech detector to the input

at each workstation. If the detector detects signiﬁcant speech activity at a workstation X , then


104


C H A P T E R 4
Principles in Action
Current

speaker

Current

speaker



ATM

switch



2 many-to-many VCs

Previous

speaker

F I G U R E 4.29
Replacing N
one-to-many VCs with two many-to-many VCs through the use of a

speech detector and a simple hardware state machine at each input.

the detector connects the video input of X to C; otherwise, the video input of X is not connected

to C. Since this hardware was quite cheap, the extra scalability came at a reasonable price.

Next, the designers observed that keeping a video image of the last speaker provides visual

continuity in the expected case when there is a dialog between two participants. Thus instead

of one many-to-many VC, they used two many-to-many VCs, C
and L, one for the current

speaker and one for the last speaker, as shown in Figure 4.29.

EXERCISES
• Write pseudocode (using some state variables) for the hardware at each workstation to

update its connections to C and L. Assume the speech detector output is a function.

• What happens if more than one user speaks at one time? What could you add to the

hardware state machine so that the application displays something reasonable? For

instance, it would be unreasonable for the images of the two speakers to be morphed

together in this case.


P A R T II
Playing with Endnodes
The supreme accomplishment is to blur the line between work and play.
— Arnold Toynbee

The second part of the book deals with endnode algorithmics. This is the applica-

tion of network algorithmics to building fast protocol implementations at endnodes,

especially at servers. If you like, you can think of it as a systematic collection of

techniques for building fast servers. The techniques are applied mostly in a software

setting. Much of it has to do with getting around operating system structure to enable

high-speed data transfers. We study how to reduce the overhead incurred by copying,

control transfer, demultiplexing, timers, and other generic protocol-processing tasks.


Copying Data


C H A P T E R 5
Copy from one, it’s plagiarism; copy from two, it’s research.



— Wilson Mizner

Imagine an ofﬁce where every letter received is ﬁrst sent to shipping and receiving. Shipping

and receiving opens the letter, ﬁgures out which department it’s meant for, and makes a

photocopy for their records. They then hand it to the security department, which pores over

every line of the letter, looking for signs of industrial esponiage. To maintain an audit trail

for possible later use, the security department also makes a photocopy of the letter, for good

measure. Finally, the letter, somewhat the worse for wear, reaches the intended recipient in

personnel.

You would probably think this a pretty ludicrous state of affairs, worthy to be featured in

a Charlie Chaplin movie. But then you might be surprised to learn that most Web servers, and

computers in general, routinely make a number of extra copies of received and sent messages.

Unlike photocopies, which take up only a small amount of paper, power, and time, extra

copying in a computer consumes two precious resources: memory bandwidth and memory

itself. Ultimately, if there are k copies involved in processing a message in a Web server, the

throughput of the Web server can be k times slower.

Thus this chapter will focus on removing the obvious waste (P1) involved in such unnec-

essary copies. A copy is unnecessary if it is not imposed by the hardware. For example, the

hardware does require copying bits received by an adaptor to the computer memory. However,

as we shall see, there is no essential reason (other than those imposed by conventional operating

system structuring) for copying between application and operating system buffers. Eliminating

redundant copies allows the software to come closer to realizing the potential of the hardware,

one of the goals of network algorithmics.

This chapter will also brieﬂy talk about other operations (such as checksumming and

encryption) that touch all the data in the packet and other techniques to more closely align

protocol software to hardware constraints, such as bus bandwidths and caches. While we will

brieﬂy repeat some of the relevant operating systems and architectural facts, it will help the

reader to be familiar with endnode architecture and operating system models of Chapter 2.

In summary, this chapter surveys techniques for reducing the costs of data manipulation without

sacriﬁcing modularity and without major changes to operating system design.

This chapter is organized as follows. Section 5.1 describes why and how extra data copies

occur. Section 5.2 describes a series of techniques to avoid copies by local restructuring of the

operating system and network code at an endnode. Section 5.3 shows how to avoid both copy

107

108


C H A P T E R 5
Copying Data
and control overhead for large transfers, using remote DMA techniques that involve protocol

changes.

Section 5.4 broadens the discussion to consider the ﬁle system in, say, a Web server, and

it shows how to avoid wasteful copies between the ﬁle cache and the application. Section 5.5

broadens the discussion to consider other operations that touch all the data, such as check-

summing and encryption, and introduces a well-known technique called integrated layer
processing. Section 5.6 broadens the discussion beyond copying to show that without careful

consideration of cache effects, instruction cache effects can swamp the effects of copying for

small messages.

Although this is the ﬁrst chapter of the book that is devoted to techniques for overcoming

a speciﬁc bottleneck, the techniques are based on the principles described in Part I of the book.

The techniques and the corresponding principles are summarized in Figure 5.1.

Q u i c k R e f e r e n c e G u i d e
The most useful sections for an implementor today are as follows. Section 5.3.1 on remote direct

memory access (RDMA) describes techniques to avoid memory copying overheads in computing and

storage clusters. Section 5.4.2 describes a fairly radical way, called IO-lite (involving some operating

system surgery), to improve the performance of a server by consistently passing buffers by reference,

even between the ﬁle and networking systems. IO-lite builds on an idea called fbufs that is introduced in

Section 5.2.3. Section 5.4.3 describes a less radical but effective method called I/O splicing to directly

connect I/O subsystems. Finally, Section 5.6.1 describes techniques to improve I-cache performance.

Number
P13
P2b
P11a
P7
P10
P4


Principle
Memory location (on adaptor) as degree of freedom

Lazy copying using copy-on-write

Cache VM mappings per path

Uniform fbuf space across processes

Pass buffer name and offset in packet

VM mapping to avoid copies in cache

and application



Used In
Afterburner

Mach

Solaris fbufs

RDMA systems

Flash

P11a
Cache VM mappings per path

Buffer sequence numbers enable checksum caching

P6
New system call that splices I/O

P1
Avoid repeated memory access across

manipulations

P13
Layout code to minimize i-cache misses



Flash-lite

Sendfile()

ILP

x-kernel

P13

Layer processing order as degree of freedom


LDRP

F I G U R E 5.1
Techniques for copy avoidance and cache efﬁciency that are discussed in this chapter,

together with the corresponding principles.


CPU

Web server application



Copy 3



MEMORY



5.1 Why Data Copies



109
Kernel


↓write()
TCP/IP


read()↓
File system

Copy 4


Server buffer

Socket buffer

File cache buffer



Copy 2

MEMORY BUS

Copy 1

DISK

I/O BUS

NETWORK ADAPTOR

Network

F I G U R E 5.2
Redundant copies involved in handling a GET request at a server.

5.1 WHY DATA COPIES
In Figure A.1 in the Appendix, we describe how TCP works in the context of a Web server.

Figure A.1 only shows the sending of the GET request for a ﬁle, followed by the ﬁle data itself

in two TCP segments. What Figure A.1 does not show is how the Web server processes the GET

request. In this chapter, we ignore the control transfer required to transfer the request to some

application server process. Instead, Figure 5.2 shows the sequence of data transfers involved in

reading ﬁle data from the disk (in the worst case) to the sending of the corresponding segments

via the network adaptor.

The main hardware players in Figure 5.2 are the CPU, the memory bus, the I/O bus, the

disk, and the network adaptor. The main software players are the Web server application and

the kernel. There are two main kernel subsystems involved, the ﬁle system and the networking

system. For simplicity, the picture shows only one CPU in the server (many servers are

multiprocessors) and focuses only on requests for static content (many requests are for dynamic

content that is served by a computer-generated imagery (CGI) process).1
Intuitively, the story is simple. The ﬁle is read from disk into the application buffer via,

say, a read() system call. The combination of the HTTP response and the application buffer

is then sent to the network over the TCP connection to the client by, say, a write() system

call. The TCP code in the network subsystem of the kernel breaks up the response data into

1The picture makes it appear that the code for the ﬁle system and the TCP/IP code is on the processor. In reality,

the code is also stored in memory and is fetched by the processor. However, the portion of the code that ﬁts into the

processor instruction cache indeed can be considered to be in the processor.

110


C H A P T E R 5
Copying Data
bite-size segments and transmits them to the network adaptor after adding a TCP checksum to

each segment.

In practice, the story is often more messy in the details. First, the ﬁle is typically read

into a piece of kernel memory, called the ﬁle cache, in what we call Copy 1. This is a good

idea because subsequent requests to a popular ﬁle can be served from main memory without

slow disk I/O. The ﬁle is then copied from the ﬁle cache into the Web server application buffer

in Copy 2 shown in Figure 5.2. Since the application buffer and the ﬁle cache buffer are in

different parts of main memory, this copy can only be done by the CPU’s reading the data from

the ﬁrst memory location and writing into the second location across the memory bus.

The Web server then does a write() to the corresponding socket. Since the application

can freely reuse its buffer (or even deallocate it) at any time after the write(), the network

subsystem in the kernel cannot simply transmit out of the application buffer. In particular, the

TCP software may need to retransmit part of the ﬁle after an unpredictable amount of time, by

which time the application may wish to use the buffer for other purposes.

Thus UNIX (and many other operating systems) provides what is known as copy semantics.

The application buffer speciﬁed in the write() call is copied to a socket buffer (another buffer

within the kernel, at a different address in memory than either the ﬁle cache or the application

buffer). This is called Copy 3 in Figure 5.2. Finally, each segment is sent out to the network

(after IP and link headers have been pasted) by copying the data from the socket buffer to

memory within the network adaptor. This is called Copy 4.

In between, before transmission to the network, the TCP software in the kernel must make

a pass over the data to compute the TCP checksum. Techniques for efﬁciently implementing

the TCP checksum are described in Chapter 9, but for now it sufﬁces to think of the TCP

checksum as essentially computing the sum of 16-bit words in each TCP segment’s data.

Each of the four copies and the checksum consume resources. All four copies and the

checksum calculation consume bandwidth on the memory bus. The copies between memory

locations (Copies 2 and 3) are actually worse than the others because they require one Read and

one Write across the bus for every word of memory transferred. The TCP checksum requires

only one Read for every word and a single Write to append the ﬁnal checksum. Finally, Copies

1 and 4 can be as expensive as Copies 2 and 3 if the CPU does the heavy lifting for the copy

(so-called programmed I/O); however, if the devices themselves do the copy (so-called DMA),

the cost is only a single Read or Write per word across the bus.

The copies also consume I/O bus bandwidth and ultimately memory bandwidth itself.

A memory that supplies a word of size W bits every x nanoseconds has a fundamental limit

on throughput of W /x bits per nanosecond. For example, even assuming DMA, these copies

ensure that the memory bus is used seven times for each word in the ﬁle sent out by the server.

Thus the Web server throughput cannot exceed T /7, where T is the smaller of the speed of the

memory and the memory bus.

Second, and more basically, the extra copies consume memory. The same ﬁle (Figure 5.2)

could be stored in the ﬁle cache, the application buffer, and the socket buffer. While memory

seems to be cheap and plentiful (especially when buying a PC!), it does have some limits, and

Web servers would like to use as much as possible for the ﬁle cache to avoid slow disk I/O.

Thus triply replicating a ﬁle can reduce the ﬁle cache by a factor of 3, which in turn can

dramatically reduce the cache hit rate and, hence, overall server performance.

In summary, redundant copies hurt performance in two fundamental and orthogonal ways.

First, by using more bus and memory bandwidth than strictly necessary, the Web server runs

5.2 Reducing Copying via Local Restructuring


111
slower than bus speeds, even when serving documents that are in memory. Second, by using

more memory than it should, the Web server will have to read an unduly large fraction of ﬁles

from disk instead of from the ﬁle cache.

Note also that we have only described the scenario in which static content is served.

In reality the SPECweb benchmarks assume that 30% of the requests are for dynamic content.

Dynamic content is often served by a separate CGI process (other than the server application)

that communicates this content to the server via some interprocess communication mechanism,

such as a UNIX pipe, which often involves another copy.

Ideally, all these pesky extra bus traversals should be removed. Clearly, Copy 1 is not

required if the data is in cache and so we can ignore it (if it’s not in cache, the server runs

at disk speed, which is too slow anyway). Copy 2 seems unnecessary. Why can’t the data be

sent directly from the ﬁle cache memory location to the network? Similarly, Copy 3 seems

unnecessary. Copy 4 is unavoidable.

5.2 REDUCING COPYING VIA LOCAL RESTRUCTURING
Before tackling the full complexity of eliminating all redundant copies in Figure 5.2, this

section starts by concentrating on Copy 3, the fundamental copy made from the application to

kernel buffers (or vice versa) when a network message is sent (received). This is a fundamental

issue for networking, independent of ﬁle system issues. It also turns out that general solutions

that eliminate all redundant I/O copies (Section 5.4) build on the techniques developed in this

section.

This section assumes that the protocol is ﬁxed but the local implementation (at least

the kernel) can be restructured. The goal, of course, is to perform minimal restructuring in

order to continue to leverage the vast amount of investment in existing kernel and application

software. Section 5.2.1 describes techniques based on exploiting adaptor memory. Section 5.2.2

describes the core idea behind copy avoidance (by remapping shared physical pages) and its

pitfalls. Section 5.2.3 shows how to optimize page remapping using precomputation and

caching based on I/O streams; however, this technique involves changing the application

programming interface (API). Finally, Section 5.2.4 describes another technique, one that

uses virtual memory but does not change the API.

5.2.1 Exploiting Adaptor Memory
The simple idea here is to exploit a degree of freedom (P13) by realizing that memory can be

located anywhere on the bus in a memory-mapped architecture. Recall from Chapter 2 that

memory mapping means that the CPU talks to all devices, such as the adaptor and the disk, by

reading and writing to a portion of the physical memory space that is located on the device.

Thus while kernel memory is often resident on the memory subsystem, there is no reason

why part of the kernel memory cannot be on the adaptor itself, which typically contains some

memory. By leveraging off the existing adaptor memory (P4) and utilizing this degree of

freedom in terms of placement of kernel memory, we can place kernel memory on the adaptor.

The net result is that once the data is copied from application to kernel memory it is already

in the adaptor and so does not need to be copied again for transmission to the network. This is

shown in Figure 5.3.


112


C H A P T E R 5
Copying Data
CPU

Application

↓write()
Kernel
TCP/IP



Single copy



MEMORY

Server buffer



MEMORY BUS

(piggyback checksum in software

or use checksum hardware)

Socket buffer

NETWORK ADAPTOR

Network



I/O BUS

F I G U R E 5.3
The Witless (afterburner) approach eliminates the need for the kernel-to-adaptor copy

by placing kernel buffers in the adaptor.

Compare Figure 5.3 to Figure 5.2. Notice that Figure 5.3 ignores any disk-to-memory

transfer. Essentially, the useless Copy 3 in Figure 5.2 is now combined with the essential Copy

4 in Figure 5.2 to form a single copy in Figure 5.3.

What about the checksum? We will see this in more general form in Section 5.5, but

the main idea is to use principle
P2c, expense sharing. When data is being moved from

the application buffer to the adaptor resident kernel memory by the processor (using so-called

programmed I/O, or PIO, which is I/O under processor control), the CPU is reading every word

of the packet anyway. Since such bus reads are expensive, the CPU might as well piggyback

the checksum computation with the copy process by keeping a register that accumulates the

running sum of words that are transferred.

This idea, ﬁrst espoused by Van Jacobson and called the Witless (or simple-minded)

approach, was never built. Later this approach was used by Banks and Prudence [BP93] at

Hewlett-Packard labs and called the Afterburner adaptor. In the Afterburner approach, the

CPU did not transfer data from memory to the adaptor. Instead, the adaptor did so, using

so-called direct memory access, or DMA. Thus since the CPU is no longer involved in the

copy process, the adaptor should do the checksum. The Afterburner adaptor had special (but

simple) checksum hardware that checksummed words as the DMA transfer takes place.

While the idea is a good one, it has three basic ﬂaws. First, it implies that the network

adaptor needs lots of memory to provide support for many high-throughput TCP connections

(which require large window sizes); the memory required may make the adaptor more expen-

sive than one wishes. Second, in the Witless approach, where the checksum is calculated by

the CPU, doing the checksum while copying a received packet to the application buffer can


5.2 Reducing Copying via Local Restructuring


113
imply that corrupted data can be written to application buffers. Though this can be discovered

at the end, when the checksum does not compute, it does cause some awkwardness to prevent

applications from reading incorrect data. A third problem with delayed acknowledgments is

explored in the exercises.

5.2.2 Using Copy-on-Write
While the basic idea in the Witless approach can be considered to be eliminating the kernel-

to-adaptor copy, the alternate idea pursued in the next three subsections is to eliminate the

application-to-kernel copy (in most cases) using virtual memory remappings. Recall that one

reason for the separate copy was the possibility that the application would modify the buffer and

hence violate TCP semantics. A second reason is that the application and kernel use different

virtual address spaces.

Some operating systems (notably Mach) offer a facility called copy-on-write (COW) that

allows a process to replicate a virtual page in memory at low cost. The idea is to make the copy

point to the original physical page P from which it was copied. This only involves updating a

few descriptors (a few words of memory) instead of copying a whole packet (say, 1500 bytes

of data). However, the nice thing about copy-on-write is that if the original owner of the data

modiﬁes the data, the OS will detect this condition automatically and generate two separate

physical copies, P and P . The original owner now points to P and can make modiﬁcations

on P; the owner of the copied page points to the old copy, P . This works ﬁne if the vast majority

of times pages are not modiﬁed (or only a few pages are modiﬁed) by the original owner.

Thus in a copy-on-write system, the application could make a copy-on-write copy for the

kernel. In the hopefully rare event that the application modiﬁes its buffer, the kernel makes

an (expensive) physical copy. However, that should be uncommon. Clearly, we are using lazy

evaluation (P2b) to minimize overhead in the expected case (P11). Finally, in Figure 5.4 the

checksum can be piggybacked either with the copy to or from adaptor memory or by using

CRC hardware on the adaptor.

Unfortunately, many operating systems, such as UNIX2and Windows, do not offer copy-

on-write. However, much of the same effect can be obtained by understanding the basis behind

the copy-on-write service, which is the use of virtual memory.

IMPLEMENTING COPY-ON-WRITE
Recall from Chapter 2 that most modern computers use virtual memory. Recall that the pro-

grammer works with an abstraction of inﬁnite memory that is a linear array into which she (or

more accurately her compiler) assigns variable locations, so, say, location X would be location

1010 in this imaginary (or virtual) array. These virtual addresses are then mapped into physical

memory (which can reside on disk or in main memory) using a page table (Chapter 2).

For any virtual address, the high-order bits (e.g., 20 bits) form the page number, and the

low-order bits (e.g., 12 bits) form the location within a page. Main memory is also divided into

physical pages such that (say) every group of 212memory words is a physical page. Recall

that a virtual address is mapped to a physical address by mapping the corresponding virtual

page to a physical page number by looking up a page table indexed by the virtual page number.

If the desired page is not memory resident, the hardware generates an exception that causes the

2System V UNIX does implement copy-on-write when a process is forked. The pages shared between the child

and the parent process are shared with the copy-on-write bit set.


114


C H A P T E R 5
Copying Data
CPU

Application

↓write()
Kernel
TCP/IP



Single copy



MEMORY

Server plus

socket buffer



Copy to a spare page

only if application writes

MEMORY BUS

(piggyback checksum in software

or use checksum hardware)

NETWORK ADAPTOR

Network

F I G U R E 5.4
Using copy-on-write.




I/O BUS

operating system to read the page from disk into main memory. Recall also that the overhead of

reading page tables from memory can be avoided in the common case using a TLB (translation

look-aside buffer), which is a processor resident cache.

Looking under the hood, virtual memory is the basis for the copy-on-write scheme. Sup-

pose virtual page
X
is pointing to a physical memory–resident page
P. Suppose that the

operating system wishes to replicate the contents of X
onto a new virtual page, Y. The hard

way to do this would be to allocate a new physical page, P , to copy the contents of P to P ,

and then to point Y
to P
in the page table. The simpler way, embodied in copy-on-write, is

to map the new virtual page, Y , back to the old physical page, P, by changing a page table

entry. Since most modern operating systems use large page sizes, changing a page table entry

is more efﬁcient than copying from one physical page to another.

In addition, the kernel also sets a COW protection bit as part of the page table entry for the

original virtual page, X. If the application tries to write to page X , the hardware will access the

page table for X , notice the bit set, and generate an exception that calls the operating system.

At this point the operating system will copy the physical page, P, to another location, P , and

then make X point to P , after clearing the COW bit. Y
continues to point to the old physical

page, P. While this is every bit as expensive as physical page copying, the point is that this

expense is incurred only in the (hopefully) rare case when an application writes to a COW page.

The explanation of how COW works should present the following opportunity. While

operating systems such as UNIX and Windows do not offer COW, they still offer virtual

memory. Virtual memory (VM) presents a level of indirection that can be exploited by changing

page table entries to ﬁnesse physical copying. Thus much of the core idea behind Figure 5.4

can be reused in most operating systems. All that remains is to ﬁnd an alternate way to protect

against application Writes in place of COW protection.


Process 1

Page Table

VP 10



5.2 Reducing Copying via Local Restructuring
Packet
data
Write
Process 2

Page Table

VP 8



115
F I G U R E 5.5
Basic operations involved in making a copy of a page using virtual memory.

5.2.3 Fbufs: Optimizing Page Remapping
Even ignoring the aspect of protecting against application writes, Figure 5.5 implies that a

large buffer can be transferred from application to kernel (or vice versa) with a Write to the

page table. This simplistic view of page remapping is somewhat naive and misleading.

Figure 5.5 shows a concrete example of page remapping. Suppose the operating system

wishes to make a fast copy of data of Process 1 (say, the application) in Virtual Page (VP) 10

to some virtual page (e.g., VP 8) in the page table of Process 23’s (say, the kernel). Naively,

this seems to require only changing the page table entry corresponding to Virtual Page 8 in

Process 2 to point to the packet data to which that Virtual Page table entry 10 in Process 1

already points. However, there are several additional pieces of overhead that are glossed over

by this simple description.

•
Multiple-level page tables: Most modern systems use multiple levels of page table

mappings because it takes too much page table memory to map from, say, 20 bits of a

virtual page. Thus the real mapping may require changing mappings in at least a ﬁrst- and

a second-level page table. For portability, there are also both machine-independent and

machine-dependent tables. Thus there are several Writes involved, not just one.

•
Acquiring locks and modifying page table entries: Page tables are shared resources

and thus must be protected using locks that must be acquired and released.

•
Flushing translation look-aside buffers (TLBs): As we said earlier, to save translation time,

commonly used page table mappings are cached in the TLB. When a new virtual page

location for VP 8 is written, any TLB entries for VP 8 must be found and ﬂushed (i.e.,

removed) or corrected.

•
Allocating VM in destination domain: While we have assumed that virtual memory

location 8 was the location for the destination page, some computation must be done to

ﬁnd a free page table entry in the destination process before the copy can take place.

•
Locking the corresponding pages: Physical pages can be swapped out to disk to make

room for other virtual pages currently on disk. To prevent pages from being swapped out,

pages have to be locked, which is additional overhead.

All these overheads are exacerbated in multiprocessor systems. The net result is that while

the page table mapping can seem very good (the mapping seems to take a constant time,

independent of the size of the packet data), the constant factors (see Q4 in the discussion of

caveats) are actually a big overhead. This was experimentally demonstrated by experiments


116


C H A P T E R 5
Copying Data
performed by Druschel and Peterson [DP93] in the early 1990s. In the decade that followed,

if anything, page mapping overheads have only increased.

Druschel and Peterson, however, did not stop with the experiments but invented an oper-

ating system facility called fbufs (short for “fast buffers”), which actually removes most or

all of the four sources of page remapping overhead. Their idea can be described as follows in

terms of the principles used in this book.

FBUFS
The main idea in fbufs is to realize that if an application is sending a lot of data packets to

the network through the kernel, then a buffer will probably be reused multiple times, and

thus the operating system can precompute (P2a) all the page mapping information for the

buffer ahead of time and then avoid much of the page mapping overhead during the actual

data transfer. Alternatively, the mappings can be computed lazily (P2b) when the data transfer

is ﬁrst started (causing high overhead for the ﬁrst few received packets) but can be cached

(P11a) for the subsequent packets. In this version, page remapping overheads are eliminated

in the common case.

The simplest way to do this would be to use what is called shared memory. Map a number of

pages P1, . . . , Pn into the virtual memory tables of the kernel as well as all sending applications

A1, . . . , Ak. However, this is a bad idea, because we now can have (say) application A1reading

the packets sent by application A2.3This would violate security and fault-isolation goals.

A more secure notion would be to reserve (or lazily establish) mapped shared pages for

each application-to-kernel transfer, and vice versa. For example, there could be one set of

buffers (pages) for FTP, one set for HTTP, and so on. More generally, some operating systems

deﬁne multiple security subsystems besides kernel and application. Thus the fbuf designers call

a path a sequence of security domains. For our simple examples described earlier, it sufﬁces to

think of a path as either kernel, application or application, kernel (e.g., FTP, kernel or kernel,

HTTP). We will see why paths are unidirectional — that is, why each application needs two

paths in both directions — in a minute.

Figure 5.6 shows a more complex example of paths, where the Ethernet software is imple-

mented as a kernel-level driver, the TCP/IP stack is implemented as a user-level security

domain, and, ﬁnally, the Web application is implemented at the application layer. Each security

domain has its own set of page tables. The receiving paths are Ethernet, TCP/IP, Web and

Ethernet, OSI, FTP.

To implement the fbuf idea the operating system could take some number of physical

pages P1, . . . , Pkand premap them onto the page tables of the Ethernet driver, the TCP/IP

code, and the Web application. The same operation could be performed with a different set

of physical pages for Ethernet, OSI, and FTP. Thus we are using Principle 2a to precompute

mappings. Reserving physical pages for each path could be wasteful, because trafﬁc is bursty;

instead, a better idea is to lazily establish (P2b) such mappings when a path becomes busy.

Lazy establishment avoids the overheads of updating multiple levels of page tables, acquir-

ing locks, ﬂushing TLBs, and allocating destination virtual memory after the ﬁrst few data

packets arrive and are sent. Instead, all this work is done once, when the transfer ﬁrst starts.

To make fbufs work, it is crucial that when a packet arrives, the lowest-level driver (or even the

3It is worth knowing that the virtual memory hardware normally enforces this security constraint by making

sure that any accesses by A2can access only physical pages mapped into the page tables of A2.


(Domain 2)

Path 1
(Domain 1)

(Domain 0)



Web



IP



5.2 Reducing Copying via Local Restructuring
FTP

Path 2
OSI?

Path 1 Cached buffers

Ethernet



117
Path 2 Cached buffers

F I G U R E 5.6
Premapping or lazily establishing buffer pages into the page tables of each domain in

a path avoids the expense of page remapping in the real-time path, after the initial setup.

adaptor itself) be able to quickly ﬁgure out what the complete path the packet will be mapped

to when receiving a packet from the network. This function, called early demultiplexing, is

described in detail in Chapter 8. Intuitively, in Figure 5.6 this is done by examining all the

packet headers to determine (for instance) that a packet with an Ethernet, IP, and HTTP header

belongs to Path 1.

The driver (or the adaptor) will then have a list of free buffers for that path, which will

be used by the adaptor to write the packet to; when the adaptor is done it will pass the buffer

descriptor to the next application in the path. Note that a buffer descriptor is only a pointer to

a shared page, not the page itself. When the last application in the path ﬁnishes with the page,

it passes it back to the ﬁrst application in the path, where it again becomes a free buffer, and

so on.

At this point, the reader may wonder why paths are unidirectional. Paths are made unidi-

rectional because the ﬁrst process on each path is assumed to be a writer and the remaining

processes are assumed to be readers. This can be enforced during the premapping by setting

a write-allowed bit for the ﬁrst application in its page table entry, and a read-only bit in the

page table entries of all the other applications. Clearly, this is asymmetric in both directions

and requires unidirectional paths. But this does ensure some level of protection.

This is shown in Figure 5.7 with just two domains in a path. Note that the writer writes

packets into buffers described by a queue of free fbufs and then puts the written descriptor on to

a queue of written fbufs that are read by the next application (only one is shown in Figure 5.7).

So far, it is possible that premapped page 8 in the ﬁrst application on a path is mapped to

page 10 in the second application. This is painful because when the second application reads

a descriptor for page 8, it must somehow know that it corresponds to its own virtual page 10.

Instead, the designers used the principle of avoiding unnecessary generality (P7) and insisted

that the fbuf get mapped to the same virtual page in all applications on the path. This can be

done by reserving some number of initial pages in the virtual memory of all processes to be

fbuf pages.

At this point, we may feel that we are ﬁnished, but there are still a few thorny problems.

To achieve protection, we allowed only a single writer and had multiple readers. However,

that means that pages are immutable; only the writer can touch them. But what about adding

headers when one goes down the stack. The solution to this problem is shown in Figure 5.8,

where a packet is really an aggregate data structure with pointers to individual fbufs so that

headers can be added by adding an ordinary buffer or an fbuf to the aggregate.


118


C H A P T E R 5
Copying Data
Process 1

Page Table

VP 10



Writer

W



Packet
data
Written

once

initially

Written fbufs

Free fbufs



Reader

R



Process 2

Page Table

VP 10

(preallocated)

F I G U R E 5.7
The single writer optimization.

AGGREGATE OBJECT

Prepend header



Strip header

F I G U R E 5.8
Using aggregate objects to allow adding layers to add headers while allowing only a

single writer.

This is not as big a deal as it sounds because the commonly used UNIX mbufs (see

Chapter 9) are also composites of buffers strung together.4
So far, the fbuf scheme has used the underlying VM mapping ideas in Figure 5.4 except

that it has made them more efﬁcient by amortizing the mapping costs over (hopefully) a large

number of packet transfers. Page table updates are removed in the common case. This can be

done in ordinary operating systems. In fact, after the fbufs paper, Thadani and Khalidi [TK95]

extended the idea and implemented it in Sun’s Solaris operating system. But this begs the

question: How are standard copy semantics preserved? What if the application does a Write?

A standard operating system such as UNIX cannot depend on copy-on-write as in Figure 5.4.

The ultimate answer in fbufs is that standard copy semantics are not preserved. The API

is changed. Application writers must be careful not to write to an fbuf when it has been handed

to the kernel until the fbuf is returned by the kernel in a free list. To protect against buggy or

malicious code, the kernel can brieﬂy toggle the write-enable bit when an fbuf is transferred

4To be precise, UNIX mbufs are strung together in a linear topology, while buffer aggregates form a more

general tree topology, but the performance costs due to chaining and indexing are similar.

5.2 Reducing Copying via Local Restructuring


119
from the application to the kernel; the bit is set again when the fbuf is given back. If the

application does a Write when it does not have write permission, an exception is generated

and the application crashes, leaving other processes unaffected.

Since the toggling of the write-enable bits requires some of the overhead that fbufs worked

hard to avoid, the fbuf facility also allows another form of fbufs, called volatile. Observe that

if the writer is a trusted entity (such as the kernel), then there is no point enforcing write

protection. If the kernel has a bug that causes it to make unexpected writes, the whole system

will crash anyway.

Changing the API in this way sounds dramatic. Does this mean that the huge amount

of existing UNIX application software (which uses the networking stack) must be rewritten?

Since this is infeasible, there are several ways out. First, the existing API can be augmented

with new system calls. For example, the Solaris extensions in Thadani and Khalidi [TK95] add

a uf_write() call in addition to the standard write() call. Applications interested in performance

can be rewritten using these new calls.

Second, the extensions can be used in implementing common I/O substrates (such as the

UNIX stdio library) that are a part of several applications. Applications that are linked to this

library do not need to be changed and yet can potentially beneﬁt in performance.

Eventually, the pragmatic consideration is not whether the API changes but how hard it is

to modify applications to beneﬁt from the API changes. The experiences described in Thadani

and Khalidi [TK95] and Pai et al. [PDZ99b] for a number of applications indicate that the

changes required in an application to migrate to an fbuf-like API are small and localized.

5.2.4 Transparently Emulating Copy Semantics
One reaction to the new fbuf API is simply to modify applications to gain performance. It is

worth pointing out that while the changes may be simple and localized, the mental model that

a programmer has of a buffer changes in a fairly drastic way. In the standard UNIX API, the

application assigns buffer addresses; in fbufs, the buffers are assigned by the kernel from the

fbuf address space. In the standard UNIX API, the programmer can design the buffer layout

anyway he pleases, including the use of contiguous buffers. In fbufs, data received from

the network can be arbitrarily scattered into pieces linked together by a buffer aggregate, and

the application programmer must deal with this new buffer model chosen by the kernel.

Thus a reasonable question is whether many of the beneﬁts of fbufs can be realized

without modifying the UNIX API. Theoretically, application software will continue to run, and

one might get performance without recoding applications.

In a series of papers, Brustoloni and Steenkiste (e.g., Ref. BS96) showed that there

is a clever mechanism, which they call TCOW (for transient copy-on-write), that makes this

possible. While preserving the API theoretically allows unmodiﬁed applications to enjoy better

performance, there is no experimental conﬁrmation of this possibility. Thus in practice, it is

likely that applications have to be modiﬁed (perhaps in more intuitive ways) to take advantage

of the underlying kernel implementation changes. Nevertheless, the idea is simple and clever

and worth pointing out.

Recall that the standard API requires allowing an application to write or deallocate a

buffer passed to the kernel at any time. The fbuf design changes the API by making it illegal

for an application to do this. Instead, to preserve the API while doing only virtual memory

mappings, the operating system must deal with these two potential threats, application writes

and application deallocates, during the period the buffer is being used by the kernel to send or


120


C H A P T E R 5
Copying Data
retransmit a packet. In the Genie system [BS96], VM mapping is used, as in fbufs, but these

two threats are dealt with as follows.

Countering Write Threats by Modifying the VM Fault Manager: First, when an application

does a Write, the buffer is marked specially, as Read Only. Thus if the application does a Write,

the VM fault manager is invoked. Normally, this should cause an exception. But, of course,

if the OS is preserving copy semantics, this should not be an error. Thus Genie modiﬁes the

exception handler as follows. First, for each such page/buffer, Genie keeps track of whether

there are outstanding sends (sends to the network) using a simple counter that is incremented

when the Send starts and decremented when the Send completes. Second, the fault handler is

modiﬁed to make a separate copy of the page for the application (which incorporates the new

Write) if there is an outstanding Send. Of course, this makes performance suffer, but it does

preserve the standard copy semantics of APIs such as UNIX. This technique, called transient

copy-on-write protection, is invoked only when needed — when the buffer is also being read

out by the network subsystem.

Countering Deallocate Threats by Modifying the Pageout Daemon: In a standard virtual

memory system, there is a process that is responsible for putting deallocated pages into a free

list from which pages may be written to disk. This pageout daemon can be modiﬁed not to

deallocate a page when the page is being used to send or receive packets.

Interestingly these two ideas are both instances of Principle P3c, shifting computation in

space. The work of checking for unexpected writes is moved to the VM fault handler, and the

work of dealing with deallocates is moved to the page deallocation routine.

These two ideas are sufﬁcient for sending a packet but not for receiving. On receiving,

Genie needs to depend, like fbufs, on hardware support5in the adaptor to split a packet’s

headers into one buffer and the remaining data into a page-size buffer that can be swapped to

the application’s buffer.

To do so without a physical copy, the kernel’s data buffer must start at the same offset within

the page as the application’s receive buffer. For a large buffer, the ﬁrst and last pages (which

can be partially ﬁlled) are probably most efﬁciently handled by a physical copy; however,

the intermediate pages that are full can simply be swapped from the kernel to the application

by the right page table mappings. There is a cute optimization called reverse copyout that is

explored in the exercises.

Given the complexity that underlies page table remapping, it is unclear how page remap-

ping is done efﬁciently in Genie. One possibility is that Genie uses the same fbuf idea of

caching VM mappings on a path basis6to avoid the overhead of TLB ﬂushing, dealing with

multiple page tables, and so on.

When all is said and done, can the TCOW idea beneﬁt legacy applications? There is no

experimental conﬁrmation of this in Brustaloni and Steenkiste [BS96] and Brustoloni [Bru99]

because the experiments use a simple copy benchmark and not an existing application such as

5Hardware support for parsing in the adaptor is the simplest alternative proposed by the Genie system; there are

a number of more baroque mechanisms proposed as part of the Genie system to get around this hardware requirement,

but they seem too complicated and full of side effects to be useful in practice.

6The Genie experiments were done on an ATM network, where the virtual circuit identiﬁer can provide a quick

mapping to the path.

5.3 Avoiding Copying Using Remote DMA


121
a Web server. Fundamentally, it seems hard for an existing legacy application to beneﬁt from

the new kernel implementation of the existing API.

Consider an application running over TCP that supplies a buffer to TCP. Since there is no

feedback to the application (unlike fbufs), the application does not know when it can safely

reuse the buffer. If the application overwrites the buffer too early while TCP is holding the buffer

for retransmission, then safety is not compromised, but performance is compromised because

of the physical copy involved in copy-on-write. It appears improbable that an unmodiﬁed

application could choose the times to modify buffers in accordance with TCP sending times

and would have aligned its buffers well enough to allow page swapping to work well.

Thus applications do need to be modiﬁed to take full advantage of the Genie system. Even

if they do, there is still the hard problem of knowing when to reuse a buffer, because of the

lack of feedback. The application could monitor TCOW faults and accordingly modify its

reuse pattern. But if applications need to be modiﬁed in subtle ways to take full advantage of

the new kernel, it is unclear what beneﬁt was gained from preserving the API. Nevertheless,

the ideas in Genie are fun to study, and they fall nicely within the general area of network

algorithmics.

5.3 AVOIDING COPYING USING REMOTE DMA
While fbufs provide a reasonable solution to the problem of avoiding redundant application-to-

kernel copies, there is a more direct solution that also removes an enormous amount of control

overhead. Normally, if a 1-MB ﬁle is transferred between two workstations on an Ethernet,

the ﬁle is chopped up into 1500-byte pieces. The CPU is involved in processing each of these

1500-byte pieces to do TCP processing and copying each packet (possibly via a zero-copy

interface such as fbufs) to application memory.

On the other hand, recall from Chapter 2 how a CPU orchestrates a direct memory access

(DMA) operation between, say, disk and memory for, say, a 1-MB transfer. The CPU sets

up the DMA, tells the disk the range of addresses into which the data must be written, and

goes about its business. One megabyte of data later, the disk interrupts the CPU to essentially

say, “Master, your job is done.” Note that the CPU does not micromanage every piece of this

transfer, unlike in the earlier case of the corresponding network transfer.

This analogy suggests the vision of doing DMA across the network, or RDMA as it is

sometimes called. In fact, it is hardly surprising that this networking feature was ﬁrst proposed

in VAX Clusters by a group of computer architects [KLS86]. It is said that breakthroughs often

come via outsiders to an area. There is an apocryphal story about how one of the inventors of

VAX Clusters came to the networking people at DEC and asked to learn about networking.

They laughed at him and gave him a copy of the standard undergraduate text at that time.

He came back 6 months later with the RDMA design.

The intent is that data should be transferred between two memories in two computers

across the network without per-packet mediation by the two CPUs. Instead, the two adaptors

conspire to read from one memory and to write to the other: DMA across the network. To realize

this vision two problems must be solved: (1) how the receiving adaptor knows where to place

the data — it cannot ask the host for help without defeating the intent; (2) how security is

maintained. The possibility of rogue packets coming over the network and overwriting key

pieces of memory should make one pause.


122


C H A P T E R 5
Copying Data
This section starts by describing this very early idea and then moves on to describe modern

incarnations of this idea in the Fiber Channel and RDMA [Cona] proposals.

5.3.1 Avoiding Copying in a Cluster
In the last few years, clusters of workstations have become accepted as a cheaper and more

effective substitute for large computers. Thus many Web servers are really server farms. While

this appears to be recent technology, 20 years ago Digital Equipment Corporation (DEC)

introduced a successful commercial product called VAX Clusters to provide a platform for

scalable computing for, say, database applications. The heart of the system was a 140-Mbit

network called the computer interconnect, or CI, which used an Ethernet-style protocol. To this

interconnect, customers could connect a number of VAX computers and network-attached

disks. The issue of efﬁcient copying was motivated by the need to transfer large amounts of

data between the remote disk and the memory of a VAX. RDMA was born from this need.

RDMA requires that packet data containing part of a large ﬁle go into its ﬁnal destination

when it gets to the destination adaptor. This is trickier than it sounds. In traditional networking,

when the packet arrives the processor is involved in at least examining the packet and deciding

where the packet is to go. Even if the CPU looks at headers, it can only tell based on the

destination application which queue of receive buffers to use.

Suppose the receiving application queues Pages 1, 2, and 3 to the receiving adaptor for

Application 1. Suppose the ﬁrst packet arrives and is sent to Page 1, the third packet arrives

out of order and is put in Page 2 instead of Page 3. Assume that Pages 1, 2, and 3 should store

the receiving ﬁle. The CPU can always remap pages at the end, but remapping all the pages at

the end of the transfer for a large ﬁle can be painful. Out-of-order arrival can always happen,

even on a FIFO link, because of packet loss.

Instead, the idea in VAX Clusters is ﬁrst to have the destination application lock a number

of physical pages (such as Pages 11 and 16 in Figure 5.9) that comprise the destination memory

for the ﬁle transfer. The logical view presented, however, is a buffer of consecutive logical

pages (e.g., Pages 1 and 2 in Figure 5.9) called, say, B. This buffer name B is passed to the

sending application.

The source now passes (P10, pass information in protocol headers) the buffer name and

offset with each packet it sends. Thus when sending Packet 3 out of order in our last example,

Buffer name B

page 11

B, 1

B, 2



B1

B2



page 16

DESTINATION

ADAPTOR

F I G U R E 5.9
Doing DMA across the network.

5.3 Avoiding Copying Using Remote DMA


123
Packet 3 will contain B and Page 3 and so can get stored in Page 3 of the buffer even though

it arrives before Packet 2. Thus after all packets arrive there is no need for any further page

remapping. This is an example of P10: passing information, such as a buffer name, in message

headers.

To realize the ideal of not bothering the processor on every packet arrival, there are several

additional requirements. First, the adaptor must implement the transport protocol (and do all

the checking for duplicates, etc.), as in TCP processing. Second, the adaptor must be able to

determine where the data begins and where the headers stop so as only to copy the data into

the destination buffer.

Finally, it is somewhat cavalier to allow any packet carrying a buffer ID from the network

to be written directly into memory. This could be a security hole. To mitigate against this, the

buffer IDs contain a random string that is hard to guess. More importantly, VAX Clusters are

used only between trusted hosts in a cluster. It is more difﬁcult to imagine scaling this approach

to Internet data transfers.

5.3.2 Modern-Day Incarnations of RDMA
VAX Clusters introduced a very early storage area network. Storage area networks (SANs)

are back-end networks that connect many computers to shared storage, in terms of network-

attached disks. There are several recent successors to VAX Clusters that provide SAN

technology. These range from the venerable Fiber Channel [Ben95] technology to modern

upstarts such as InﬁniBand [Assa] and iSCSI [SSMe01].

FIBER CHANNEL
In 1988, the American National Standards Institute (ANSI) Task Group X3T11 began work

on a standard called Fiber Channel [Ben95]. One of the goals of Fiber Channel was to take the

standard SCSI (small computer system interface) between a workstation and a local disk and

extend it over larger distances. Thus in many Fiber Channel installations, SCSI is still used as

the protocol that runs over Fiber Channel.

Fiber Channel goes further than VAX Clusters in the underlying network, using modern

network technology such as point-to-point ﬁber links connected with switches. This allows

speeds of up to 1 Gbps and allows a larger distance span than in the Vax Cluster network.

Switches can even be remotely connected, allowing a trading ﬁrm to have backup storage of

all trades at a remote site. The use of switches requires attention to such issues as ﬂow control,

which is done very carefully to avoid dropping packets where possible.

Finally, Fiber Channel makes slightly more concession to security than VAX Clusters.

In VAX Clusters, any device with the right name can overwrite the memory of any other

device. Fiber Channel allows the network to be virtualized into zones. Nodes in a zone cannot

access the memory of nodes in other zones. Some recent products go even further and propose

techniques based on authentication.

However, other than these differences in the underlying technology, the underlying ideas

are the same. RDMA via named buffers is still a key enabling idea.

INFINIBAND
Inﬁniband starts with the observation that the internal I/O bus used within many workstations

and PCs, the PCI bus, is showing its age and needs replacement. With a maximum bandwidth

of 533 MB/sec, the PCI bus is being overwhelmed by modern high-speed peripherals, such

124


C H A P T E R 5
Copying Data
as Gigabit Ethernet interface cards. While there are some temporary alternatives, such as the

PCI-X bus, the internal computer interconnect needs to scale in the same way as the external

Internet has scaled from, say, 10-Mbit Ethernet to Gigabit Ethernet.

Also, observe that there are three separate networking technologies within a computer:

the network interface (e.g., Ethernet), the disk interface (e.g., SCSI over Fiber Channel), and

the PCI bus. Occam’s razor suggests substituting these three with one network technology.

Accordingly, Compaq, Dell, HP, IBM, and Sun banded together to form the Inﬁniband Trade

Association.

The Inﬁniband speciﬁcations use many of the ideas in Fiber Channel’s underlying network

technology. The interconnect is also based on switches and point-to-point links. Inﬁniband has

a few additional twists. It uses the proposal for 128-bit IP addresses in the next-generation

Internet as a basis for addressing. It allows individual physical links to be virtualized into

separate virtual links called lanes. It has features for quality of service and even multicast.

Once again, RDMA is the key technology to avoid copies.

ISCSI
At the time of writing, Fiber Channel parts appear to be priced higher than equivalent-speed

Gigabit Ethernet parts. Given that IP has invaded various other networking spaces, such as

voice, TV, and radio, a natural consequence is to invade the storage space. This, the argument

goes, should drive down prices (while also opening up new markets for network vendors).

Further, Fiber Channel and Inﬁniband are being extended to connect remote data centers over

the Internet. This involves using transport protocols that are not necessarily compatible with

TCP in terms of reacting to congestion. Why not just adapt TCP for this purpose instead of

trying to modify these other protocols to be TCP-friendly?

For the purposes of this chapter, the most interesting thing about iSCSI is the way it must

emulate RDMA over standard IP protocols. In particular, recall that in all RDMA implemen-

tations, the host adaptor implements the transport protocol in hardware. In the Internet world,

the transport protocol is TCP. Thus adaptors must implement TCP in hardware. This is not too

hard, and chips that perform TCP ofﬂoad are becoming widely available.

The harder parts are as follows. First, as we saw in Case Study 1 of Chapter 2, TCP is

a streaming protocol. The application writes bytes to a queue, and these bytes are arbitrarily

segmented into packets. The RDMA idea, on the other hand, is based on messages, each of

which has a named buffer ﬁeld. Second, RDMA over TCP requires a header to hold named

buffers.

The RDMA [Cona] proposal solves both these problems by logically layering three pro-

tocols over TCP. The ﬁrst protocol, MPA, adds a header that deﬁnes message boundaries in

the byte stream. The second and third protocols implement the RDMA header ﬁelds but are

separated as follows. Notice that when a packet carries data, all that is needed is a buffer name

and offset. Thus this header is abstracted out into a so-called DDA (for direct data access)

header together with a command verb (such as READ or WRITE).

The RDMA protocol that is layered over DDA adds a header with a few more ﬁelds. For

example, for an RDMA remote READ, the initial request must specify the remote buffer name

(to be read) and the local name (to be written to). One of these two buffer names can be placed

in the DDA header, but the other must be placed in the RDMA header. Thus, except for control

messages such as initiating a READ, all data carries only a DDA header and not an RDMA

header.

5.4 Broadening to File Systems



125
During the evolution from VAX Clusters to the RDMA proposal, one interesting general-

ization was to replace a named buffer with an anonymous buffer. In this case, the DDA header

contains a queue name, and the packet is placed in a buffer corresponding to the buffer at the

head of the free queue at the receiver.

5.4 BROADENING TO FILE SYSTEMS
So far this chapter has concentrated only on avoiding redundant copies that occur while sending

data between an application (such as a Web server) and the network. However, Figure 5.2

shows that even after removing all redundant overhead due to network copying, there are still

redundant copies involving the ﬁle system. Thus in this section, we will cast our net more

widely. We leverage our intellectual investment by extending the copy-avoidance techniques

discussed so far to the ﬁle system.

Recall from Figure 5.2 that to process a request for File X , the server may have to read X
from disk (Copy 1) into a kernel buffer (representing the ﬁle cache) and then make a copy from

the ﬁle cache to the application buffer (Copy 2). Copy 1 goes out of the picture if the ﬁle is

already in cache, a reasonable assumption for popular ﬁles in a server with sufﬁcient memory.

The main goal is to remove Copy 2. Note that in a Web server, unnecessarily doubling the

number of copies not only halves the effective bus bandwidth but potentially halves the size of

the server cache. This in turn reduces server performance by causing a larger miss rate, which

implies that a larger fraction of documents is served at disk speeds and not bus speeds.

This section surveys three techniques for removing the redundant ﬁle system copy

(Copy 2). Section 5.4.1 describes a technique called shared memory mapping that can reduce

Copy 2 but is not well integrated with the network subsystem. Section 5.4.2 describes IO-Lite,

essentially a generalization of fbufs to include the ﬁle system. Finally, Section 5.4.3 describes

a technique called I/O splicing that is used by many commercial Web servers.

5.4.1 Shared Memory
Modern UNIX variants [Ste98] provide a convenient system call known as mmap() to allow

an application such as a server to map a ﬁle into its virtual memory address space. Other

operating systems provide equivalent functions. Conceptually, when a ﬁle is mapped into an

application’s address space, it is as if the application has cached a copy of the ﬁle in its memory.

This seems redundant because the ﬁle system also maintains cached ﬁles. However, using the

magic of virtual memory (P4, leverage off system components), the cached ﬁle is really only

a set of mappings, so other applications and the ﬁle server cache can gain common access to

one set of physical pages for the ﬁle.

The Flash Web server [PDZ99a] avoids Copy 1 and Copy 2 in Figure 5.2 by having the

server application map frequently used ﬁles into memory. Given that there are limits on the

number of physical pages that can be allocated to ﬁle pages and limits on page table mappings,

the Flash Web server has to treat these mapped ﬁles as a cache. Instead of caching whole ﬁles,

it caches segments of ﬁles and uses an LRU (least recently used) policy to unmap ﬁles that

have not been used for a while.

Note that such cache maintenance functions are duplicated by the ﬁle system cache (which

has a more precise view of resources such as free pages because it is kernel resident). However,

this can be looked on as a necessary evil to avoid Copies 1 and 2 in Figure 5.2. While Flash uses


126


C H A P T E R 5
Copying Data
mmap() to avoid ﬁle system copying, it runs over the UNIX API. Hence, Flash is constrained

to make an extra copy in the network subsystem (Copy 3 in Figure 5.2). Just when progress is

being made to eliminate Copy 2, pesky Copy 3 reappears again!

Copy 3 can be avoided by combining emulated copying using TCOW [BS96] with mmap().

However, this has some of the disadvantages of TCOW mentioned earlier. It is also not a

complete solution that generalizes to avoid copying for interaction with a CGI process via a

UNIX pipe.

5.4.2 IO-Lite: A Uniﬁed View of Buffering
While combining emulated copy with mmap() does away with all redundant copying, it still

has some missing optimizations. First, it does nothing to avoid the copying between any CGI

application generating dynamic content and the Web server. Such an application is typically

implemented as a separate process7that sends dynamic content to the server process via a UNIX

pipe. But pipes and other similar interprocess communication typically involve copying the

content between two address spaces.

Second, notice that none of our schemes so far has done anything about the TCP checksum,

an expensive operation. But if the same ﬁle keeps hitting in the cache, other than the ﬁrst

response containing the HTTP header, all subsequent packets that return the ﬁle contents stay

the same for every request. Why can’t the TCP checksums be cached? However, that requires

a cache that can somehow map from packet contents to checksums. This is inefﬁcient in a

conventional buffering scheme.

This section describes a buffering scheme called IO-Lite that generalizes the fbuf ideas

to include the ﬁle system. IO-Lite not only eliminates all redundant copies in Figure 5.2,

but also eliminates redundant copying between the CGI process and the server. It also has a

specialized buffer-numbering scheme that lets a subsystem (such as TCP) efﬁciently realize

that it is resending an earlier packet.

IO-Lite is the intellectual descendant of fbufs, though integration with the ﬁle system

adds signiﬁcantly more complexity. It is ﬁrst worth noting that fbufs cannot be combined with

mmap, unlike TCOW, which is combined with mmap in Brustoloni [Bru99]. This is because

in mmap the application picks the address and format of an application buffer, while in fbufs

the kernel picks the address and format of a fast buffer. Thus if the application has mapped a

ﬁle using a buffer in the application virtual address space, the buffer cannot be sent using an

fbuf (kernel address space) without a physical copy.

Since fbufs cannot be combined with
mmap, IO-Lite generalizes fbufs to include the

ﬁle system, making mmap unnecessary. Also, IO-Lite is implemented in a a general-purpose

operating system (UNIX), as opposed to fbufs. But setting aside these two differences, IO-Lite

borrows all the main ideas from fbufs: the notion of read-only sharing via immutable buffers

(called slices in IO lite), the use of composite buffers (called buffer aggregates), and the notion

of a lazily created cache of buffers for a path (called an I/O stream in IO-Lite).

7Because of the overhead of copying data between a CGI process generating dynamic content and the server

process, some vendors have proposed merging the CGI code within the server process. However, that makes the

system more brittle because faulty third-party content-generation software can crash the server. Better solutions, such

as Windows ASP, propose incorporating safe languages into Web pages such that the server executes the code and

puts the result in the page it serves. Thus, despite the references to CGI processes in this chapter, CGI may well be

obsolete.


CPU



5.4 Broadening to File Systems
MEMORY

Server buffer



127
Kernel


Web server application

↓write()
read()↓
TCP/IP
File system

Copy 2

NETWORK ADAPTOR

Network


Socket buffer

File cache

buffer

IO-Lite buffer


Cached response header

Cached checksum

MEMORY BUS

Copy 1

DISK

I/O BUS

F I G U R E 5.10
IO-Lite removes all the redundant copying in Figure 5.2 by effectively passing around

pointers (via VM mappings) to a single IO-Lite buffer. Assuming the ﬁle, the TCP checksum, and the

HTTP response are all cached, the Web server only has to transmit these cached values in a single copy

to the network interface.

Despite the core similarities, IO-Lite requires solving difﬁcult problems to integrate with

the ﬁle system. First, IO-Lite must deal with complex sharing patterns, where several applica-

tions may have buffers pointing to the IO-Lite buffer together with the TCP code and the ﬁle

server. Second, an IO-Lite page can be both a virtual memory page (backed up by the paging

backup ﬁle on disk) and at the same time a ﬁle page (backed up by the actual disk copy of

the ﬁle). Thus IO-Lite has to implement a complex replacement policy that integrates both

the standard page replacement rules together with ﬁle cache replacement policies [PDZ99b].

Third, the goal of running over UNIX requires careful thought to ﬁnd a clean way to integrate

IO-Lite without major surgery throughout UNIX.

Figure 5.10 shows the steps in responding to the same GET request pictured in Figure 5.2.

When the ﬁle is ﬁrst read from disk into the ﬁle system cache, the ﬁle pages are stored as

IO-Lite buffers. When the application makes a call to read the ﬁle, no physical copy is made,

but a buffer aggregate is created with a pointer to the IO-Lite buffer. Next, when the application

sends the ﬁle to TCP for transmission, the network system gets a pointer to the same IO-Lite

pages. To prevent errors, the IO-Lite system keeps a reference count for each buffer and

reallocates a buffer only when all users are done.

Figure 5.10 also shows two more optimizations. The application keeps a cache of HTTP

responses for common ﬁles and can often simply append the standard response with minimal

modiﬁcations. Second, every buffer is given a unique number (P12, add redundant state) by

IO-Lite, and the TCP module keeps a cache of checksums indexed by buffer number. Thus

when a ﬁle is transmitted multiple times, the TCP module can avoid calculating the checksum

128


C H A P T E R 5
Copying Data
after the ﬁrst time. Notice that these changes eliminate all the redundancy in Figure 5.2, which

speeds up the processing of a response.

IO-Lite can also be used to implement a modiﬁed pipe program that eliminates copying.

When this IPC mechanism is used between the CGI process and the server process, all copying

is eliminated without compromising the safety and fault isolation provided by implementing

the two programs as separate processes. IO-Lite can also allow applications to customize their

buffer-caching strategy, allowing fancier caching strategies for Web servers based on both size

and access frequency.

It is important to note that IO-Lite manages these performance feats without com-

pletely eliminating the UNIX kernel and without closely tying the application with the

kernel. The Cheetah Web server [EKO95] built over the Exokernel operating system takes

a more extreme position, allowing each application (including the Web server) to com-

pletely customize its network and ﬁle system. The Exokernel mechanisms allow such extreme

customization from each application without compromising safety. By dint of these customiza-

tions, the Cheetah Web server can eliminate all the copies in Figure 5.2 and also eliminate the

TCP checksum calculation using a cache.

While Cheetah does allow some further tricks (see the Exercises), the enormous soft-

ware engineering challenge of designing and maintaining custom kernels for each application

makes approaches such as IO-Lite more attractive. IO-Lite comes close to the perfor-

mance of customized kernels like Cheetah with a much smaller set of software engineering

challenges.

5.4.3 Avoiding File System Copies via I/O Splicing
In the commercial world, Web servers are measured by commercial tests such as the SPECweb

tests [Conb] for Web servers and the Web polygraph tests [Assb] for Web proxies. In the proxy

space, there is an annual cache-off, in which all devices are measured together to calculate

the highest cache hit rate, normalized to the price of the device. The SPECweb benchmarks

use a different system, in which manufacturers submit their own experimental results to the

benchmark system, though these results are audited. In the Web polygraph tests at the time of

writing, a Web server technology based on I/O-Lite ideas was among the leaders.

However, in the SPECweb benchmarks, a number of other Web servers also show impres-

sive performance. Part of the reason for this is just faster (and more expensive) hardware.

However, there are two simple ideas that can avoid the need for complete model shifts as is

the case in IO-Lite.

The ﬁrst idea is to push the Web server application completely into the kernel. Thus in

Figure 5.2, all copies can be eliminated because the application and the kernel are part of the

same entity. The major problem with this approach is that such in-kernel Web servers have to

deal with the idiosyncrasies of operating system implementation changes. For example, for

a popular high-performance server that runs over Linux, every internal change to Linux can

invalidate assumptions made by the server software and cause a crash. Note that a conventional

user-space server does not have this problem because all changes to the UNIX implementation

still preserve the API.

The second idea keeps the server application in user space but relies on a simple idea called

I/O splicing to eliminate all the copying in Figure 5.2. I/O splicing, shown in Figure 5.11, was

ﬁrst introduced in Fall and Pasquale [FP93]. The idea is to introduce a new system call that

combines the old call to read a ﬁle with the old call (P6, efﬁcient specialized routines) to send


CPU

Web server application

sendfile()
↓
Kernel

Copy 2

NETWORK ADAPTOR

Network



5.5 Broadening beyond Copies
MEMORY

File cache buffer

MEMORY BUS

Copy 1

DISK

I/O BUS



129
F I G U R E 5.11
In I/O splicing, all the indirection caused by copying to and from user-space buffers is

removed by a single system call that “splices” together the I/O stream from the disk with the I/O stream

to the network. As always, Copy 1 can be removed for ﬁles in the cache.

a message to the network. By allowing the kernel to splice together these two hitherto-separate

system calls, we can avoid all redundant copies. Many systems have system calls such as

sendﬁle(), which are now used by several commercial vendors. Despite the success of this

mechanism, mechanisms based on sendﬁle do not generalize well to communication with CGI

processes.

5.5 BROADENING BEYOND COPIES
Clark and Tennehouse, in a landmark paper, suggested generalizing Van Jacobson’s idea

(described earlier) of integrating checksums and copying. In more detail, the Jacobson idea is

based on the following observation. When copying a packet word from a location (say, W 10 in

adaptor memory in Figure 5.12) to a location in memory (say, M 9 in memory in Figure 5.12),

the processor has to load W 10 into a register and then store that register to M9. Typically, most

RISC processors require that, between a load and a store, the compiler insert a so-called delay
slot, or empty cycle, to keep the pipeline working correctly (never mind why!). That empty

cycle can be used for other computation. For example, it can be used to add the word just read

to a register that holds the current checksum. Thus with no extra cost the copy loop can often

be augmented to be the checksum loop as well.

But there are other data-intensive manipulations, such as encrypting data and doing format

conversions. Why not, Clark and Tennehouse [CT90] argued, integrate all such manipulations

into the copy loop? For example, in Figure 5.12 the CPU could read W 10 and then decrypt


130


C H A P T E R 5
Copying Data


CPU

Store M9, R0



M9

(add R0 to Csum)

Load W10, R0

W10

Adaptor Memory

F I G U R E 5.12
Integrating checksumming and copying.

W 10 and write the decrypted word to M 9 rather than have that done in another loop. They

called this idea integrated layer processing, or ILP. The essential idea is to avoid obvious waste

(P1), in terms of reading (and possibly) writing the bytes of a packet several times for multiple

data-manipulation operations on the same packet.

Thus ILP is a generalization of copy-checksum integration to other manipulations (e.g.,

encryption, presentation formatting). However, it has several challenges.

•
Challenge 1: Information needed for manipulations is typically at different layers (e.g.,

encryption is at the application layer, and checksumming is done at the TCP layer).

Integrating the code from different layers without sacriﬁcing modularity is hard.

•
Challenge 2: Each manipulation may operate on different-size chunks and different

portions of the packet. For example, TCP works in 16-bit quantities for a 16-bit checksum,

while the popular DES encryption works in 64-bit quantities. Thus while working with one

32-bit word, the ILP loop has to deal with two TCP checksum words and half a DES word.

•
Challenge 3: Some manipulations may be dependent on each other. For example, one

should probably not decrypt a packet if the TCP checksum fails.

•
Challenge 4: ILP can increase cache miss rate because it can reduce locality within a

single manipulation. If we did TCP separately and DES separately instead of in a single

loop, the code we’d use at each instant is smaller for the two single loops as opposed to the

single loop. This makes it more likely that the code will be found in the instruction cache

in the more naive implementation. Increasing integration beyond a certain point can

destroy code locality so much that it may even have adverse effects. Some studies have

shown this to be a major issue.

The ﬁrst three challenges show that ILP is hard to do. The fourth challenge suggests

that integrating more than a few operations can possibly even reduce performance. Finally, if

the packet data is used multiple times, it could well reside in the data cache (even in a naive

implementation), making all the bother about integrating loops unnecessary. Possibly for these

reasons, ILP has remained a tantalizing idea. Beyond the copy–checksum combination, there

has been little follow-up work in integrating other manipulations in academic or commercial

systems.

5.6 Broadening beyond Data Manipulations
5.6 BROADENING BEYOND DATA MANIPULATIONS



131
So far this chapter has concentrated on reducing the memory (and bus) bandwidth caused

by data-manipulation operations. First, we concentrated on removing redundant data copying

between the network and the application. Second, we addressed redundant copying between

the ﬁle system, the application, and the network. Third, we looked at removing redundant

memory reads and writes using integrated layer processing when several data-manipulation

operations operate over the same packet. What is common to all these techniques is an attempt

to reduce pressure on the memory and the I/O bus by avoiding redundant reads and writes.

But once this is done, there are still other sources of pressure that appear within an endnode

architecture as shown in Figure 5.2. This is alluded to in the following excerpt from e-mail

sent after the alpha release of a fast user-level Linux Web server [Ric01]:

With zero-copy sendﬁle, data movement is not an issue anymore, asynchronous net-
work IO allows for really inexpensive thread scheduling, and system call invocation
adds a very negligible overhead in Linux. What we are left with now is purely wait
cycles, the CPUs and the NICs are contending for memory and bus bandwidth.
In essence, once the ﬁrst-order effects (such as eliminating copies) are taken care of,

performance can be improved only by paying attention to what might be thought of as second-

order effects. The next two subsections discuss two such architectural effects that greatly

impact the use of bus and memory bandwidth: the effective use of caches and the choice of

DMA versus PIO.

5.6.1 Using Caches Effectively
The architectural model of Figure 5.2 avoids two important details that were described in

Chapter 2. Recall that the processor keeps one or more data caches (d-caches), and one or

more instruction caches (I-caches). The data cache is a table that maps from memory addresses

to data contents; if there are repeated reads and writes to the same location L in memory and

L is cached, then these reads and writes can be served directly out of the data cache without

incurring bus or memory bandwidth. Similarly, recall that programs are stored in memory;

every line of code executed by the CPU has to be fetched from main memory unless it is cached

in the instruction cache.

Now, packet data beneﬁts little from a data cache, for there is little reuse of the data and

copying involves writing to a new memory address, as opposed to repeated reads and writes

from the same memory address. Thus the techniques already discussed to reduce copies are

useful, despite the presence of a large processor data cache. However, there are two other items

stored in memory that can beneﬁt from caches. First, the program executing the protocol code

to process a packet must be fetched from memory, unless it is stored in the I-cache. Second,

the state required to process a packet (e.g., TCP connection state tables) must be fetched from

memory, unless it is stored in the d-cache.

Of these two other possible contenders for memory bandwidth, the code to be executed

is potentially a more serious threat. This is because the state, in bytes, required to process a

packet (say, one connection table entry, one routing table entry) is generally small. However,

for a small, 40-byte packet, even this can be signiﬁcant. Thus avoiding the use of redundant

state (which tends to pollute the d-cache) wherever possible can improve performance, as was

described in Problem 11 of Chapter 4.

132


C H A P T E R 5
Copying Data
However, the code required to execute all of the networking stack (Data Link, TCP, IP,

socket layer, and kernel entry and exit) can be much larger. For example, measurements in

Blackwell [Bla96] show a total code size of 34 KB using a 1995 NetBSD TCP implementation.

Given that even large packets on an Ethernet are at most 1.5 KB, the effort to load the code

from memory can easily dwarf the effort to copy the packet multiple times.

In particular, if the I-cache is 8 KB (typical for older machines, such as the early Alpha

machines used in Blackwell [Bla96]), this means that at most a quarter of the networking stack

can ﬁt in the cache. This in turn could imply that all or most of the code has to be fetched from

memory every time a packet needs to be processed. Modern machines have not improved their

I-cache sizes signiﬁcantly. The Pentium III uses 16 KB. Thus effective use of the I-cache could

be a key to improved performance, especially for small packets.

We now describe two techniques that can be used to improve I-cache effectiveness: code

arrangement and locality-driven-layer processing.

CODE ARRANGEMENT
It is hard to realize when one is writing networking code that the actual layout of code in

memory (and hence in the I-cache) is a degree of freedom that can be exploited (P13) with

some effort. The key idea in code arrangement [MPBM96] is to lay out code in memory to

optimize the common case (P11) such that commonly used code ﬁts in the I-cache and the

effort of loading the I-cache is not wasted.

At ﬁrst glance, this seems to require no extra work. Since a cache should favor frequently

used code over infrequently used code, this should happen automatically. Unfortunately, this

is incorrect because of the following two aspects of the way I-caches are implemented.

•
Direct mapping: An I-cache is a mapping of memory addresses to contents; the mapping is

usually implemented by a simple hash function that optimizes for the case of sequential

access. Thus most processors use direct-mapped I-caches, where the low-order bits of a

memory address are used to index the I-cache array. If the high-order bits match, the

contents are returned directly from cache; otherwise, a Read to memory is done across the

bus, and the new data value and high-order bits are stored in the same location.

Figure 5.13 shows the effect of this implementation artifact. The ﬁgure on the left

shows the memory layout of code for two networking functions, with black code denoting

infrequently used code. Since the I-cache size is only half the total size of the code, it is

possible for two frequently accessed lines of code (such as X and Y , with addresses that

are the same modulo the I-cache size) to map to the same location in the I-cache. Thus if

both X and Y are used to process every packet, they will keep evicting each other from the

cache even though they are both frequently used.

•
Multiple instructions per block: Many I-caches can be thought of as an array of blocks,

where multiple instructions (say, eight) are stored in a block. Thus when an instruction is

fetched, all eight instructions in the same block are also fetched on the assumption of

spatial locality: With sequential access, it seems probable that the other seven instructions

will also be fetched, and it is cheaper to read multiple instructions from memory at the

same time.

Unfortunately, much of networking code contains error checks such as “If error E do

X, else do Z .” Z is hardly ever executed, but a compiler will often arrange the code for Z
immediately after X. For example, in Figure 5.13 imagine that code for Z immediately


F1's code

F2's code



X

Y



5.6 Broadening beyond Data Manipulations
I-cache

size

F1 and F2's

frequently used code

F1 and F2's

infrequently used code

Relocate



133
F I G U R E 5.13
The ﬁgure on the left shows networking code that is laid out in memory so that

frequently used (white) and infrequently used (black) code are arbitrarily intermixed. Using a direct-

mapped cache of half the size of the total code can lead two frequently used instructions, such as X and

Y , to collide. This problem can be avoided by relocating all frequently used code to be contiguous, as

shown on the right.

follows X . If X and Z fall in the same block of eight instructions, then fetching frequently

accessed X also results in fetching infrequently used Z . This makes loading the cache less

efﬁcient (more useless work) and makes the cache less useful after loading (less useful

code in cache).

Note that both of these effects are caused by the fact that real caches imperfectly reﬂect

temporal locality. The ﬁrst is caused by an imperfect hash function that can cause collisions

between two frequently used addresses. The second is caused by the fact that the cache also

optimizes for spatial locality.

Both effects can be mitigated by reorganizing networking code [MPBM96] so that all

frequently used code is contiguous (see right of Figure 5.13). For example, in the case “If error

E do X, else do Z,” the code for Z can be moved far away from X. This does require an extra

jump instruction to be added to the code for Z so that it can jump back to the code that followed

Z in the unoptimized version. However, this extra jump is taken only in the error case, and so

it is not much of a cost.

This is an example of realizing that the memory location of code is a degree of freedom

that can be optimized (P13) and an example of optimizing the expected case (P11) despite

increasing the code path for infrequently used code.

LOCALITY-DRIVEN LAYER PROCESSING
Code reorganization can help up to a point but fails if the working set (i.e., the set of instruc-

tions actually accessed for almost every packet) exceeds the I-cache size. For example, in

Figure 5.13, if the size of the white, frequently used instructions is larger than the I-cache,

code reorganization will still help (fewer loads from memory are required because each load


134


C H A P T E R 5
Copying Data
P1
P2

arrival

P1
P1

Data link
Network

P1
P2

Data link
Data link



P1

Transport

P1

Network



P2

Data link

P2

Network



P2

Network

P1

Transport



P2

Transport

P2

Transport



TIME

Conventional

processing

Locality-driven

processing

F I G U R E 5.14
In a conventional processing timeline (shown from left to right), all the networking

layers of packet P1 are processed before those of packet P2. In locality-driven receiver processing, each

layer code is executed multiple times for multiple received packets (two in the picture) before moving

on to the next layer.

loads only useful instructions). However, every instruction will still have to be fetched from

memory.

While the working set of the networking stack may ﬁt into a modern I-cache (which is

getting bigger), it is possible that more complicated protocols (that run over TCP/IP) may

not. The idea behind locality-driven layer processing [Bla96] is to be able to use the I-cache

effectively as long as the code for each layer of the networking stack ﬁts into the I-cache.

By repeatedly processing the code for the same layer across multiple packets, the expense of

loading the I-cache is shared (P2c) over multiple packets.

Consider the top timeline in Figure 5.14. In a conventional processing timeline (shown

from left to right in the ﬁgure), all the networking layers of packet P1 are processed before

those of packet P2. Imagine that two packets P1 and P2 arrive at a server. In a conventional

implementation, all the processing of P1 is ﬁnished, starting with the data link layer (e.g.,

Ethernet driver) and ending with the transport (e.g., TCP) layer. Only then is the processing

of packet P2 started.

The main idea in locality-driven processing is to exploit another degree of freedom (P13)

and to process all the layer code for as many received packets as possible before moving on

to the next layer. Thus in the bottom timeline, after the data link layer code for P1 is ﬁnished,

the CPU moves on to execute the data link layer code for P2, not the network layer code for

P1. This should not affect correctness because code for a layer should not depend on the state

of lower layers. By contrast, integrated layer processing has more subtle dependencies and

failure cases.

Thus if the code for each layer (e.g., the data link layer) ﬁts into the I-cache while the code

for all layers does not, then this optimization amortizes the cost of loading the I-cache over

multiple packets. This is effectively using batch processing (P2c, expense sharing). The larger

the size of the batch, the more effective the use of the I-cache.

The implementation can be made to tune the size of the batch dynamically [Bla96].

The code can batch-process up to, say, k packets from the queue of arrived packets, where k
is a parameter that limits the latency. If the system is lightly loaded, then only one message

at a time will be processed. On the other hand, if the system is heavily loaded, the batch size

increases to make more effective use of memory bandwidth when it is most needed.

SOFTWARE ENGINEERING CONSIDERATIONS


5.7 Conclusions



135
Optimizations such as code restructuring (Figure 5.13) and locality-driven processing

(Figure 5.14) also need to be evaluated by their effects on code modularity and maintenance.

After all, one could rewrite the kernel and all applications using assembly language to more

perfectly optimize for memory bandwidth. But it would be difﬁcult to get the code to work or

be maintainable.

Code restructuring is best done by a compiler. For example, error-handling code can be

annotated with hints [MPBM96] suggesting which branches are more frequently taken (gener-

ally obvious to the programmer), and a specially augmented compiler can restructure the code

for I-cache locality. Algorithms for this purpose are described in Mosberger et al. [MPBM96].

On the other hand, locality-driven processing preserves modularity within layers. Com-

munication between layers must be changed as follows. If each layer code passes a packet to

the code for a higher layer with a procedure call, this code must be modiﬁed to add packets to

a queue for the higher layer. Similarly, when a layer is called, it removes packets from its read

queue until the queue is exhausted; after processing each packet, it places it on the queue for

its next-higher layer. This strategy works well when each layer can reuse buffers from other

layers, as is the case for UNIX mbufs. Overall, the code changes may not be severe.

5.6.2 Direct Memory Access versus Programmed I/O
Earlier sections stated that the Witless scheme uses programmed I/O, or PIO (i.e., the pro-

cessor or CPU is involved on every word transferred between memory and adaptor), while

other schemes, such as VAX Clusters, use DMA (where the adaptor copies data directly to

memory). It may seem that DMA is always better than PIO. However, comparisons between

DMA and PIO are tricky because each method has subtle implications for the overall memory

bandwidth used.

For instance, PIO has one advantage in that the data ﬂows through the processor and thus

ends up in the processor cache. This can be useful to prevent loss of memory bandwidth for

subsequent access. Also, with PIO it is easy to integrate other functions, such as checksums,

without requiring adaptor hardware to do the same function.

However, some studies have shown that if data arrives and is used much later (e.g., one

scheduling quantum later) by the application, then placing data in the d-cache too early is

wasteful of the d-cache and lowers rather than raises d-cache hit rate. On the other hand, DMA

can steal cycles from the CPU and also requires some careful cache invalidation when data is

written into a memory location (that could also be cached). So the jury is still out. The choice

between the two is best decided on a case-by-case basis, taking into account architectural

considerations and the application at hand. A more detailed study of the issues involved can

be found in Mogul and Ramakrishnan [MR97].

5.7 CONCLUSIONS
As networks get faster, links today, such as Gigabit Ethernet, are often faster than the buses

and memories within desktop computers and servers. Thus memory and bus bandwidth are

crucial resources. This chapter describes techniques to optimize the use of memory and bus

bandwidth for processing IP and Web packets, the dominant trafﬁc streams found today in the

Internet.

136


C H A P T E R 5
Copying Data
To this end, the chapter started by showing how to remove redundant copies involved

in processing an IP packet using adaptor memory or virtual memory remapping. We then

showed how to remove redundant copies involved in processing Web requests at a server

by generalizing virtual memory remapping to include the ﬁle system or by combining ﬁle

system and network I/O in a single system call. We then showed how to combine various data

manipulations in one fell swoop. All of these techniques require changes to the application

and kernel, but the changes are fairly localized and mostly preserve modularity.

We ﬁnally showed that, without care, protocol processing can dwarf copy overhead, and we

described techniques to optimize the instruction cache. Comments such as Riccardi’s [Ric01]

indicate that modern Web servers may already be optimized for zero-copy implementations

using sendﬁle()-style system calls. However, Riccardi [Ric01] indicates that such servers still

burn processor cycles waiting for memory. Thus, techniques to improve I-cache efﬁciency

may provide the next round of optimizations for Web servers. Figure 5.1 presents a summary

of the techniques used in this chapter, together with the major principles involved.

It is important to state that all the performance problems involved in building a modern

Web server have not been eliminated. Complex Web sites, such as amazon.com, often use

several tiers of processing to respond to Web requests, including an application server, a Web

server, and a database server. Such database-driven Web servers introduce new bottlenecks that

may require new techniques beyond those described in this chapter. However, the underlying

principles should hopefully remain the same.

In terms of principles, this chapter is about the repeated use of P1, avoiding obvious

waste, where the waste is unnecessary reads and writes that consume precious memory and

bus bandwidth. At ﬁrst glance, principle P1 seems vacuous or at best a clichй. What makes

this principle deeper is that the waste is not apparent unless one broadens one’s vision to see

as much of the system as possible.

Within each local subsystem (e.g., application to kernel, kernel to network, disk to ﬁle

system) there is no wasted memory bandwidth. It is only when one follows the adventures of a

received packet that one discovers the redundancy between application-to-kernel and kernel-

to-network copies. It is only when one broadens one’s view even further to see the contortions

involved in responding to a Web request that one notices the further redundancies involving the

ﬁle system. Only when one broadens one’s view further still does one see all the manipulations

involved in processing a packet and the wasted reads to memory. Finally, it is only when one

examines the loading of instructions that one sees the alarming possibility that the protocol

code can be several times larger than the packet size.

Thus the use of the ﬁrst principle of network algorithmics requires a synoptic eye, one

that sees the whole system, from HTTP and its headers, to the ﬁle system, and down to the

instruction caches. While this seems daunting in complexity, Chapter 2 has already argued that

simple models of hardware, architecture, operating systems, and protocols can make such a

holistic viewpoint possible. For example, I-caches have a number of complex variants, but a

simple model of a direct-mapped I-cache with multiple instructions per block is not hard for

an operating system designer to keep in mind.

Finally, compared to the beauty and complexity of theoretical techniques such as the

ellipsoid algorithm for linear programming and the theory of rapidly mixing Markov chains,

techniques in systems such as copy avoidance seem drab and shallow. However, one can argue

that the complexity of systems is not in depth (i.e., the complexity of each component by itself)

but in breadth (i.e., the complex relationships between components). Perhaps the breadth

5.8 Exercises



137
of understanding (HTTP, ﬁle system, networking code, instruction cache implementation)

required to optimize memory bandwidth in a Web server provides some evidence for this

thesis.

5.8 EXERCISES
1. Data caches and copies: A normal data cache is a mapping from a memory location

address to a piece of content. If the content is frequently accessed, then the content can be

accessed directly from the fast cache instead of making a memory access. Assuming the

cache is a write-back cache, even writes can be written to the cache instead of memory

and only written to memory when the cache is overwritten. A modern cache block is fairly

large (128 bits), with a mapping from a 32-bit address to 128 bits of data starting at that

address.

We want to address the copying problem where various modules (including the

network and ﬁle system) copy data via intermediate buffers that are soon overwritten

(e.g., socket buffer, application buffer). The chapter did so with software changes. Here

we consider whether changing the hardware architecture can help without software
changes such as IO-Lite, fbufs, and mmap.

• Even an ordinary data cache may help remove some of the overhead when copying data

from location L to location M . Explain why. (Assume that location M is a temporary

buffer that is soon overwritten, as in a socket buffer. Assume that if only a single word

is written in a large cache block, the remaining words can be marked invalid.)

Intuitively, this problem is asking whether there is an equivalent of copy-on-write

(used to reduce copying between virtual address spaces) in the world of data caches.

• Now assume a different data cache design, where a cache is a mapping from one or
more addresses to the same content. Thus a cache has changed from a one-to-one

mapping to a many-to-one mapping. For example, assume a cache where two locations

can point to the same content. Thus a cache entry may be (L, M, C), where L and M are

addresses and C is the common contents of L and M . A memory access to either L or M
will return C. What is the advantage over the previous scheme in the previous item?

• This is all very speculative and wild. Comment on the disadvantages of the idea in the

previous item. In particular, many caches use a technique called set associativity,

where a simple hash function (e.g., low-order bits) is used to select a small set of cache

entries that the hardware searches in parallel. Why might the multiple address per

cache entry interact poorly with the set associative search?

2. Application-level optimizations for Web servers: Operating systems such as the

Exokernel [EKO95] take an even more extreme viewpoint and allow the application to

customize kernel features for its beneﬁt without compromising safety for other

applications. One interesting optimization is to combine the ﬁnal TCP FIN with the read

of the last data segment (an optimization allowed by TCP).

• Why does this optimization help small Web transfers (which are quite common)?

• Why is this optimization hard to do in a regular Web server, and why is it easier if the

application is integrated with the kernel, as in the Exokernel?

138


C H A P T E R 5
Copying Data
• Explain how this optimization can be migrated to an ordinary Web server by passing

information across the interface (P9) without compromising safety.

3. Reverse copyout: The emulated copy-on-write paper [BS96] describes an interesting

degree of freedom (P13) for copying page-aligned data between two modules (say,

system and application). Imagine that you wish to copy a partial page from an application

page, X, to a system page, Y . If the page is full, assume that you can swap the two pages

efﬁciently. Assume the partial page has useful data D and some remainder R.

• If the amount of data D is small compared to R, it is simpler to copy D to the destination

page in Y . On the other hand, if D is large (say, almost all of the page) compared to R,

devise a simple strategy to minimize copying. Note that if the destination page, Y , has

some other data in the remainder of the page, that data must remain after the copy.

• What is a simple threshold you would use to choose between these two strategies?


C H A P T E R 6
Transferring Control
Control thy passions, lest they take vengeance on thee.



— Epicetus

In a Scott Adams cartoon, Dilbert complains to Dogbert that he is embarassed to work at a

company where even paying a simple invoice takes 6 months. The invoice ﬁrst comes into

the mail room for aging, spends some time at the secretary’s desk, goes to the desk of the

main decision maker, and ﬁnally ends up in accounts payable. When processing an invoice

in Dilbert’s company, the ﬂow of control works its way through layers of command, each of

which incurs signiﬁcant overhead.

A management consultant might suggest that Dilbert’s company streamline the processing

of an invoice by eliminating mediating layers wherever possible and by making each layer

as responsive as possible. However, each layer has some reason for existence. The mailroom

aggregates mail delivery service for all departments in the company. The secretary protects

the busy boss from interrupts and weeds out inappropriate requests. The boss must eventually

decide whether the invoice is worth paying. Finally, the mundane details of disbursing cash

are best left to accounts payable.

A modern CPU processing a network message also goes through similar layers of medi-

ation. The device, for example, an Ethernet adaptor, interrupts the CPU, asking somewhat

stridently for attention. Control is passed to the kernel. The kernel batches interrupts wherever

possible, does the network layer processing for the packet, and ﬁnally schedules the applica-

tion process (say, a Web server) to run. As always, the reception of a single packet provides

too limited a picture of the overall processing context. For instance, a Web server will parse

the request (such as a GET) in the network packet, look for the ﬁle, and institute proceedings

to retrieve the ﬁle from disk. When the ﬁle gets read into memory, a response containing the

requested ﬁle is sent back, prepended with an HTTP header.

While Chapter 5 concentrated on reducing the overhead of operations that touch the data
in a packet (e.g., copying, checksumming), this chapter concentrates on reducing the control
overheads involved in processing a packet. As in Chapter 5, we start by examining the control

overheads involved in sending or receiving a packet. We then broaden to our canonical network

application, a Web server.

This chapter is organized as follows. Section 6.1 starts by describing the control ﬂow costs

involved in a computer: interrupt overheads (involved when a device asks asynchronously for

attention), system calls (involved when a user asks the kernel for service, thus moving the

ﬂow of control across a protection boundary), and process-context switching (allowing a new

139

140


C H A P T E R 6
Transferring Control
Number


Principle


Used In
P8
P8
P13
P13
P13


Go beyond downcalls used in specifications

Process per message, not per layer

Link protocol implementation with user code

Process per disk access

Modularize by task, not clients



Upcalls

x-Kernel

Mach variants

Flash

Haboob Web server

P4
VM mapping to avoid copies in cache and application Flash

P15
Bitmap tree


Fast ufalloc()

P12a
P9
P12
P3c
P2
P13

Incrementally compute interest vector

Pass hints from protocol to select ()

Remember interest across calls

Move protection from kernel to adaptor

Have kernel authorize adaptor on initialization

Batch process interrupts


Fast select()

ADCs

P2b

Execute protocol in the context of the receive process LRP (Lazy Receiver

Processing)

F I G U R E 6.1
Techniques for reducing control overhead that are discussed in this chapter, together

with the corresponding principles.

process to run when the current process is stymied waiting for some resource or has run too

long). Thus the rest of this chapter is organized around reducing these control overhead costs,

from the largest (context switching) to the smallest (interrupt overhead).

Accordingly, Section 6.2 concentrates on reducing process-context switching by describ-

ing how to structure networking code (e.g., TCP/IP) to avoid context switching. Section 6.3 then

describes how to structure application code (e.g, a Web server) to reduce context-switching

costs. Sections 6.4 and 6.5 focus on reducing or eliminating system call overhead. Section 6.4

shows how to reduce overhead in the implementation of a crucial system call used by event-

driven Web servers to decide which of the connections they are handling are ready to be

serviced. Section 6.5 goes further and describes user-level networking that bypasses the kernel

in the common case of sending and receiving a packet. Finally, Section 6.6 brieﬂy describes

simple ideas to avoid interrupt overhead.

The techniques described in this chapter (and the corresponding principles invoked) are

summarized in Figure 6.1.

Q u i c k R e f e r e n c e G u i d e
The most useful sections for an implementor today are as follows. Section 6.3 describes how to

structure application code (e.g, a Web server) to reduce context-switching costs, presenting alternatives

to event-driven Web servers. Section 6.4 focuses on reducing the overhead of the select() system call




6.1 Why Control Overhead?



141
(or similar calls in other operating systems) used by event-driven servers to decide which client to service

next. Section 6.5 shows how to eliminate system call overhead using techniques such as VIA (virtual

interface adaptor).

6.1 WHY CONTROL OVERHEAD?
Chapter 5 started with a review of the copying overhead involved in a Web server by showing the

potential copies (Figure 5.2) involved in responding to a GET request at a server. By contrast,

Figure 6.2 shows the potential control overhead involved in a large Web server that handles

many clients. Note that in comparison with Figure 5.2 for Web copies, Figure 6.2 ignores all

aspects of data transfer. Thus Figure 6.2 uses a simpliﬁed architectural picture that concentrates

on the control interplay between the network adaptor and the CPU (via interrupts), between the

application and the kernel (via system calls), and between various application-level processes

or threads (via scheduler invocations). The reader unfamiliar with operating systems may wish

to consult the review of operating systems in Chapter 2. For simplicity, the picture shows only

one CPU in the server (many servers are multiprocessors) and a single disk (some servers

use multiple disks and disks with multiple heads). Assume that the server can handle a large

number (say, thousands) of concurrent clients.

For the purposes of understanding the possible control overhead involved in serving a

GET request, the relevant aspects of the story are slightly different from that in Chapter 5.

First, assume the client has sent a TCP SYN request to the server that arrives at the adaptor

from which it is placed in memory. The kernel is then informed of this arrival via an interrupt.

The kernel notiﬁes the Web server via the unblocking of an earlier system call; the Web server

application will accept this connection if it has sufﬁcient resources.

Process per group; groups defined by application structure

Scheduling overhead

vs. loss of currency

System call overhead


Client 1... Client 50
Client 51...   Client 74
Client 75

↓write()
read()↓
FindActive()↓
Tracking active files


Web server

application

Scheduling overhead

Interrupt overhead


TCP/IP
File system

Packet



CPU


and connections


Kernel

BUS


received

NETWORK ADAPTOR

Network


MEMORY
DISK

F I G U R E 6.2
Control overhead involved in handling a GET request at a server.

142


C H A P T E R 6
Transferring Control
In the second step of processing, some server process parses the Web request. For example,

assume the request is GET File 1. In the third step, the server needs to locate where the ﬁle

is on disk, for example, by navigating directory structures that may also be stored on disk.

Once the ﬁle is located, in the fourth step, the server process initiates a Read to the ﬁle system

(another system call). If the ﬁle is in the ﬁle cache, the read request can be satisﬁed quickly;

failing a cache hit, the ﬁle subsystem initiates a disk seek to read the data from disk. Finally,

after the ﬁle is in an application buffer, the server sends out the HTTP response by writing to

the corresponding connection (another system call).

So far the only control overhead appears to be that of system calls and interrupts. How-

ever, that is because we have not examined closely the structure of the networking and

application code.

First, if the networking code is structured naively, with a single process per layer in the

stack, then the process scheduling overhead (on the order of hundreds of microseconds) for

processing a packet can easily be much larger than a single packet arrival time. This potential

scheduling overhead is shown in Figure 6.2 with a dashed line to the TCP/IP code in the kernel.

Fortunately, most networking code is structured more monolithically, with minimal control

overhead, although there are some clever techniques that can do even better.

Second, our description of Web processing has focused on a single client. Since we are

assuming a large Web server that is working concurrently on behalf of thousands of clients, it

is unclear how the Web server should be structured. At one extreme, if each client is a separate

process (or thread) running the Web server code, concurrency is maximized (because when

client 1 is waiting for a disk read, client 2 could be sending out network packets) at the cost of

high process scheduling overhead.

On the other hand, if all clients are handled by a single event-driven process, then context-

switching overhead is minimized, but the single process must internally schedule the clients to

maximize concurrency. In particular, it must know when ﬁle reads have completed and when

network data has arrived.

Many operating systems provide a system call for this purpose that we have generically

called FindActive() in Figure 6.2. For example, in UNIX the speciﬁc name for this generic

routine is the select() system call. While even an empty system call is expensive because of the

kernel-to-application boundary crossing, an inefﬁcient select() implementation can be even

more expensive.

Thus there are challenging questions as to how to structure both the networking and

server code in order to minimize scheduling overhead and maximize concurrency. For this

reason, Figure 6.2 shows the clients partitioned into groups, each of which is implemented

in a single process or thread. Note that placing all clients in a single group yields the event-

driven approach, while placing each client in a separate group yields the process- (or thread-)

per-client approach.

Thus an unoptimized implementation can incur considerable process-switching overhead

(hundreds of microseconds) if the application and networking code is poorly structured. Even

if process-structuring overhead is removed, system calls can cost tens of microseconds, and

interrupts can cost microseconds. To put these numbers in perspective, observe that on a 10-GB

Ethernet link, a 40-byte packet can arrive at a PC every 3.2 µsec.

Given that 10-Gbps links are already arriving, it is clear that careful attention has to be paid

to control overhead. Note that, as we have seen in Chapter 2, as CPUs get faster, historically

the control overheads associated with context switching, system calls, and interrupts have


6.2 Avoiding Scheduling Overhead in Networking Code


143
not improved at the same rate. Some progress has been made with more efﬁcient operating

systems such as Linux, but the progress will not be sufﬁcient to keep up with increasing link

speeds.

We now begin attacking the bottlenecks described in Figure 6.2.

6.2 AVOIDING SCHEDULING OVERHEAD IN NETWORKING CODE
One of the major difﬁculties with implementing a protocol is to balance modularity (so you

implement a big system in pieces and get each piece right, independent of the others) and

performance (so you can get the overall system to perform well). As a simple example, con-

sider how one might implement a networking stack. The “obvious modularity” would be to

implement the transport protocol (e.g., TCP) as a process, the routing protocol (e.g., IP) as

a process, and the applications as a separate process. If that were the case, however, every

received packet would take at least two process-context switches, which are expensive. There

are, however, a number of creative alternatives that allow modularity as well as efﬁciency.

These were ﬁrst pointed out by Dave Clark in a series of papers.

Figure 6.3 provides an example that Clark [Cla85] used to illustrate his ideas. It consists

of a simple application that reads data from a keyboard and sends it to the network using a

reliable transport protocol. When the data is received by some receiver on the network, the

data is displayed on the screen. The vertical slices show the various protocol layers, with

the topmost slice (routines such as display-get-data and display-receive) being the application

protocol, the second slice (routines such as transport-receive and transport-send) being the

transport protocol, and the bottom slice (routines such as net-receive and net-dispatch) being

the network protocol. The naive way to implement this protocol would be to have a process per

slice, which would involve three processes and two full-scale context switches per received

or sent packet.

Instead, Clark suggests using only two processes each at the sender and two processes

at the receiver (shown as boxed vertical sections) to implement the network protocol stack.

In Figure 6.3 the leftmost two sections correspond to receiver processes and the rightmost

two sections correspond to sender processes. Thus the sender has a Keyboard Handler process

RECEIVE

PROCESS

display–
receive

transport–
receive

net–
receive



RECEIVE

INTERRUPT

HANDLER

transport–
get–port

net–
dispatch



SEND

PROCESS

display–
get–data

transport–
send

net–
send



KEYBOARD

HANDLER

keyboard–
handler

transport–
arm–to–send

Wake



Interrupt

F I G U R E 6.3
Implementing a protocol using upcalls.

144


C H A P T E R 6
Transferring Control
that gathers data coming in from the keyboard and calls transport-arm-to-send
when it has

got some data. Notice that transport-arm-to-send is a transport-layer function that is exported

to the Keyboard Handler process and is executed by the Keyboard Handler process. At this

point the Keyboard Handler can suspend itself (a context switch). Transport-arm-to-send only

tells the transport protocol that this connection wished to send data; it does not transfer data.

However, the transport-send process may not send data immediately because of ﬂow

control limitations. When the ﬂow control limits are removed (because of acks arriving), the

Send Process will execute the transport-send routine for this connection. The send call will ﬁrst

upcall the application protocol, which exports a routine called display-get-data that actually

provides the transport protocol with the data for the application. This is advantageous because

the application may have received more keyboard data by the time the transport protocol is

ready to send, and one might as well send as much data as possible in a packet. Finally, within

the context of the same process, transport adds a transport-layer header and makes a call to the

network protocol to actually send the packet.

At the receiving end, the packet is received by the receive interrupt handler using a

network-layer routine called net-dispatch that needs to ﬁnd which process to dispatch the

received packet to. To ﬁnd out, net-dispatch makes an upcall to transport-get-port. This is

a routine exported by the transport layer that looks at port numbers in the header to ﬁgure

out which application (e.g., FTP) must handle the packet. Then a context switch is made and

the Receive Handler relinquishes control and wakes up the Receive Process, which executes

network-layer functions, transport-layer functions, and ﬁnally the application-level code to

display the data. Note that a single process is executing all the layers of protocol.

The idea was a bit unusual at the time because the conventional dogma until that point was

that layers should only use services of layers below; thus calls between layers had, historically,

been “downcalls.” However, Clark pointed out that downcalls were perhaps required for

protocol speciﬁcations but were not the only alternative for protocol implementations. In our

example in particular, upcalls are used to obtain data (e.g., the upcall to display-get-data) and

for advice from upper layers (upcall to transport-get-port).

While upcalls are commonly used in real implementations, there is probably no difference

between an upcall and a standard procedure call except for its possible novelty in the context

of a networking layered implementation. However, the more important idea, which is perhaps

more lasting, is the idea of using only one or two processes to process a message, each process

consisting of routines from two or more protocol layers. This idea found its way into systems

like the x-kernel [HP91] and into user-level networking, which is described in the next section.

More generally, the idea of considering alternative implementation structures that pre-

serve modularity without sacriﬁcing performance is a classic example of Principle P8, which

says that implementors should consider alternatives to reference implementations described

in speciﬁcations. Notice that each protocol layer can still be implemented modularly but the

upcalled routines can be registered by upper layers when the system starts up.

6.2.1 Making User-Level Protocol Implementations Real
Most modern machines certainly do not implement each protocol layer in a separate process.

Instead, in UNIX all the protocol code (transport, network, and data link) is handled as part of

a single kernel “process.” When a packet arrives via an interrupt, the interrupt handler notes

the arrival of the packet, possibly queues it to memory, and then schedules a kernel process

(via what is sometimes called a software interrupt) to actually process the packet.


Demux

process



6.2 Avoiding Scheduling Overhead in Networking Code
Process 1
Process 2

KERNEL

(driver)



145
F I G U R E 6.4
Demultiplexing a packet to the ﬁnal destination process using an intermediate

demultiplexing process is expensive.

The kernel process does the data link, network, and transport-layer code (using upcalls);

by looking at the transport port numbers, the kernel process knows the application. It then

wakes up the application. Thus every packet is processed using at least two context switches:

one from the interrupt context to the kernel process doing protocol handling, and one from the

kernel process to the process running the application code (e.g., the Web, FTP).

The idea behind user-level protocol implementation is to realize the aspect of Clark’s idea

shown in the receive process of Figure 6.3, where the protocol handlers execute in the same

process as the application and can communicate using upcalls. User-level implementations

have two possible advantages: We can potentially bypass the kernel and go directly from the

interrupt handler to the application, as in the Clark model, saving a context switch. Also, the

protocol code can be written and debugged in user space, which is a far friendlier place to

implement protocols (debugging tools work in user space and do not work well at all in the

kernel).

One extreme way to do this was advocated in Mach, where all protocols were implemented

in user space. Also, protocols were allowed to be signiﬁcantly more general than in Clark’s

example of Figure 6.3. Thus when a receiving interrupt handler received a packet, it had no

way of easily telling to which process it should dispatch the packet (since the network-layer

implementations done in the ﬁnal process contained the demultiplexing code). In particular,

one can’t just call transport to examine the port number (as in Clark’s example) since we can

have lots of possible transport protocols and lots of possible network protocols.

A naive method was initially used, as shown in Figure 6.4. This involved a separate

demultiplexing process that received all packets and examined them to determine the ﬁnal

destination process, which is then dispatched to. This is quite sad, because our efforts so far

have been to reduce context switches, but the new demultiplexing process is actually adding

back the missing context switch.

The simple idea used to remedy this situation is to pass extra information (P9) across the

application–kernel interface so that each application can pass information about what kinds of

packets it wants to process. This is shown in Figure 6.5. For example, a mail application may

wish for all packets whose Ethernet-type ﬁeld is IP, whose IP protocol number speciﬁes TCP,

and whose TCP destination port number is 25.

Recall that we are talking about the mail application implementing all of IP, TCP, and

mail. To do so, the kernel deﬁnes an interface, which is typically some form of program-

ming language. For example, the earliest one was the CSPF (CMU Stanford packet ﬁlter),

which speciﬁes the ﬁelds for packets using a stack-based programming language. A more

commonly used language is BPF (Berkeley packet ﬁlter), which uses a stack-based language;

a more efﬁcient language is PathFinder. These demultiplexing algorithms are described in

Chapter 8.


146


C H A P T E R 6
Transferring Control
Process 1

Filter for
Process 1


KERNEL

F1
F3



Process 2

Filter for
Process 2
Arriving

Packet

F I G U R E 6.5
The packet ﬁlter approach to demultiplexing.

Note that one has to be careful about passing information from an application to a ker-

nel; any such information should be checked so that malicious or wrong applications cannot

destroy the kernel. In particular, one has to prevent applications from providing arbitrary code

to kernels, which then causes havoc. Fortunately, there are software technologies that can

“sandbox” foreign code so it can do damage only within its own allotted space of memory

(its sandbox). For example, a stack-based language can be made to work on a speciﬁed size

of stack that can be bounds checked at every point. This form of technology has culminated

recently in execution of arbitrary Java applets received from the network.

Clearly, if packets are dispatched from the kernel interrupt handler (using the collection

of packet ﬁlters) to the receiving process, the receiving process should implement the protocol

stack. However, replicating the TCP/IP code in every application would cause a lot of code

redundancy. Thus TCP/IP is generally (in such systems) implemented as a shared library that

is linked in (a single copy is used to which the application has a pointer, but with the code

written in a so-called reentrant way, to allow reuse).

This is not as easy as it looks because there is some TCP state that is common to all connec-

tions, though most are TCP state connection speciﬁc. There are other problems because the last

write done by an application should be retransmitted by TCP, but the application may exit its

process after its last write. However, these problems can be ﬁxed. User-level implementations

have been written [TNML93, MB93] to provide excellent performance. Fundamentally, they

exploit a degree of freedom (P13) in observing that protocols do not have to be implemented

in the kernel.

6.3 AVOIDING CONTEXT-SWITCHING OVERHEAD IN APPLICATIONS
The last section concentrated on removing process-scheduling overhead for processing a single

packet received by the network by effectively limiting the processing to ﬁelding one interrupt

(which, as we discuss in Section 6.6, can also be removed or amortized over several packets)

and dispatching the packet to the ﬁnal process in which the application (that processes the

packet) resides. If the destination process is currently running, then there is even no process-

scheduling overhead. Thus after all optimizations there can be close to no control overhead

for processing a packet.

This is analogous to Chapter 5, in which the ﬁrst few sections showed how to process a

received packet with zero copies. However, in that chapter after broadening one’s viewpoint to


6.3 Avoiding Context-Switching Overhead in Applications


147
see the complete application processing, it became apparent that there were further redundant

copies caused by interactions with the ﬁle system.

In a similar fashion, this section broadens beyond the processing of a single packet to

consider how an application processes packets. Once again, as in Chapter 5, we consider a

Web server (Figure 6.2) because it is a canonical example of a server that needs to be made

more efﬁcient and because of its importance in practice.

In what follows, we will use a Web server as an example of a canonical server that may

require the handling of a large number of connections. In another example, Barile [Bar04]

describes a TCP-to-UDP proxy server for a telephony server that can handle 100,000 concurrent

connections.

How should a Web server be structured? Before tackling this question, it helps to under-

stand the potential concurrency within a single Web server. Readers familiar with operating

systems may wish to skim over the next three paragraphs. These are included for readers not

as familiar with the secret life of a workstation.1
Even with a single CPU and a single disk head, there are opportunities for concurrency.

For example, assume that in processing a read for File 1, File 1 is not in cache. Thus the CPU

initiates a disk read. Since this may take a few milliseconds to complete, and the CPU can do

an instruction almost every nanosecond, it is obvious waste to idle the CPU during this read.

Thus a more sensible strategy is to have the CPU switch to processing another client while

Client 1’s disk read is in progress. This allows processing by the disk on behalf of Client 1 to

be overlapped with processing by the CPU for Client 2.

A second example of concurrency between the CPU and a device (that is relevant to a

Web server) is overlapping between network I/O (as performed by the adaptor) and the CPU.

For example, after a server accepts a connection, it may do a Read to an accepted connection

for Client 1. If the CPU waits for the Read to complete it may wait a long time, potentially also

several milliseconds. This is because the remote client has to send a packet that has to make

its way through the network and ﬁnally be written by the adaptor to the socket corresponding

to Client 1 at the server.

By switching to another client, processing by the network on behalf of Client 1 is over-

lapped with processing by the CPU on behalf of some other client. Similarly, when doing a

Write to the network, the Write may be blocked because of the lack of buffer space in the socket

buffer. This buffer space may be released much later when acknowledgments arrive from the

destination.

The last three paragraphs show that for a Web server to be efﬁcient, every opportunity for

concurrency must be exploited to increase effective throughput. Thus a CPU in a Web server

must switch between clients when one client is blocked waiting for I/O. We now consider

various ways to structure a server application and their effects on concurrency and scheduling

overhead.

6.3.1 Process per Client
In terms of programming, the simplest way to implement a Web server is to structure the

processing of each client as a separate process. In other words, every client is in a separate

group by itself in Figure 6.2. In Chapter 2, we saw that the operating system scheduler juggles

1Recall that the intent of network algorithmics and of this book is to allow all constituencies — for example,

hardware designers — to understand the relevant issues.


148


C H A P T E R 6
Transferring Control
between processes, assigning a new process to a CPU when a current process is blocked. Most

modern operating systems also can take into account multiple CPUs and schedule the CPUs

such that all CPUs are doing useful work wherever possible.

Thus the Web server application need not do the juggling between clients; the operating
system does this automatically on the application’s behalf. For example, when Client 1 is

blocked waiting for the disk controller, the operating system may save all the context for the

Client 1 process to memory and allow the Client 2 process to run by restoring its context from

memory.

This simplicity, however, comes at a cost. First, as we have seen, process-context switching

and restoring is expensive. It requires reads and writes from memory to registers to save and

restore context. Recall that the context includes changing the page tables being used (because

page tables are per process); thus any virtual memory translations cached within the TLB need

to be cached. Similarly, the contents of the data cache and the instruction cache are likely to

represent the tastes and preferences of the previously resident process; thus much of it may

be useless to the new process. When all caches fail, the initial performance of the switched-in

process can be very poor.

Further, spawning a new process when a new client comes in, as was done by some initial

Web servers, is also expensive.2Fortunately, the overhead to create and destroy processes

when clients come and go can be avoided by precomputation and/or lazy process deletion

(P2, shifting computation in time). When a client ﬁnishes its request processing and the

connection is terminated, rather than destroy the process, the process can be returned to a pool

of idle processes. The process can then be assigned to the next new client that needs a process

to shepherd its request through the server.

A second issue is the problem of matchmaking between new arriving clients and processes

in the process pool. A naive way to do this is as follows. Each new client is handed to a well-

known matchmaking process, which then hands off each new client to some available process in

the pool. However, operating system designers have realized the importance of matchmaking.

They have invented system calls (for instance, the Accept call in UNIX) to do matchmaking

at the cost of a system call invocation, as opposed to requiring a process-context switch.

When a process in the pool is done it makes an Accept call and waits in line in a kernel

data structure. When a new client comes in, its socket is handed off to the idle process that is

ﬁrst in line. Thus the kernel provides matchmaking services directly.

6.3.2 Thread per Client
Even after removing the overheads of creating a process on demand and the overhead of match-

making, processes are an expensive solution. Since slow wide-area connections to servers are

very common and the rate of arrivals to popular Web servers can easily exceed 2000 per second,

it is not unusual for a Web server to have 6000 concurrent clients being served at once.

As we have seen, even if the processes are already created, switching between processes

incurs TLB and cache misses and requires effort to save and restore context. Further, each

process requires memory to store context. This can take away from the memory needed by the

ﬁle cache.

2While some of these early schemes may seem primitive in terms of the techniques in this book, they were

probably very simple to program and maintain. It is difﬁcult to quantify the trade-off between efﬁciency and ease of

implementation and maintenance.


Accept



Parse



6.3 Avoiding Context-Switching Overhead in Applications
Locate
Send
Read file



149
Process
connection

Client 1

Accept

connection

Client N

request

Parse

request


file

Locate

file


header

Send

header


Send data

Read file

Send data


(or Thread)
1
Process
(or Thread)
N
Client 1

Accept



(1) MULTIPROCESS OR MULTITHREADED

Parse
Locate
Send



Read file



Single
connection

Client N

request


file


header


Send data


process
Event Dispatcher (i.e., kernel implementation of FindActive() or Select()

(2) PURE EVENT DRIVEN

F I G U R E 6.6
The two simplest alternatives for structuring a Web server: (1) the use of a single process (or thread)

per client; (2) a single process implementation that uses an event manager to tell the process of the status of I/O for

each client.

An intermediate stance is to use threads, or lightweight processes. Note that threads

generally trust each other, as is appropriate for all the threads processing different clients in a

Web server. Thus in Figure 6.6, we can replace the processing of each client with a separate

thread per client, all within the protection of a single process. Note that the threads share the

same virtual memory. Thus TLB entries do not have to be ﬂushed between threads.

Further, the fact that threads can share memory implies that all threads can use a common

cache to share ﬁle name translations and even ﬁles. Implementing a process per client, on

the other hand, implies that ﬁle caches can often not be shared efﬁciently across processes,

because each process uses a separate virtual memory space. Thus application caches for Web

servers, as described in Chapter 5, will suffer in performance because ﬁles common to many

clients are replicated.3Thus a popular Web server, the Apache Web server, is implemented

using a thread per client in Windows.

However, when all is said and done, the overhead for switching between threads, while

smaller than that for switching between processes, is still considerable. Fundamentally, the

operating system must still save and restore per-thread context such as stacks and registers.

3However, this replication will not cost much if a system such as I/O-Lite, described in Chapter 5, is used. The

problem is that many operating systems do not have such mechanisms to allow subsystems to share data.

150


C H A P T E R 6
Transferring Control
Also, the memory required to store per-thread or per-process state takes away from the ﬁle

cache, which then leads to potentially higher miss rates.

6.3.3 Event-Driven Scheduler
If a general-purpose operating system facility is too expensive, the simplest strategy is to avoid

it completely. Thus while thread scheduling provides a facility for juggling between clients

without further programming, if it is too expensive, the application may beneﬁt from doing
the juggling itself. Effectively, the application must implement its own internal scheduler that

juggles the state of each client.

For example, the application may have to implement a state machine that remembers that

Client 1 is in Stage 2 (HTTP processing) while Client 2 is in Stage 3 (waiting for disk I/O)

and Client 3 is in Stage 4 (waiting for a socket buffer to clear up to send the next part of the

response).

However, the kernel has an advantage over an application program because the kernel sees

all I/O completion events. For example, if Client 1 is blocked waiting for I/O, in a per-thread

implementation, when the disk controller interrupts the CPU to say that the data is now in

memory, the kernel can now attempt to schedule the Client 1 thread.

Thus if the Web server application is to do its own scheduling between clients, the kernel

must pass information (P9) across the API to allow a single threaded application to view the

completion of all I/O that it has initiated. Many operating systems provide such a facility,

which we generically called FindActive() in Figure 6.2. For example, Windows NT 3.5 has an

I/O completion port (IOCP) mechanism, and UNIX provides the select() system call.

The main idea is that the application stays in a loop invoking the FindActive() call. Assum-

ing there is always some work to do on behalf of some client, the call will return with a list

of I/O descriptors (e.g., ﬁle 1 data is now in memory, connection 5 has received data) with

pending work. When the Web server processes these active descriptors, it loops back to making

another FindActive() call.

If there is always some client that needs attention (typically true for a busy server), there

is no need to sleep and invoke the costs of context switching (e.g., scheduler overhead, TLB

misses) when juggling between clients. Of course, such juggling requires that the application

keep a state machine that allows it to do its own context switching among the many concurrent

requests. Such application-speciﬁc internal scheduling is more efﬁcient than invoking the

general-purpose, external scheduler. This is because the application knows the minimum set

of context that must be saved when moving from client to client.

The Zeus server and the original Harvest/Squid proxy cache server use the single-process

event-driven model. Figure 6.6 contrasts the multiprocess (and multithreaded) server architec-

tures with an event-driven architecture. The details of a generic event-driven implementation

using a single process can be found in Barile [Bar04], together with pointers to source code.

Barile [Bar04] describes generic code that is abstracted to work across platforms (a crucial

requirement for today’s server environments), including Windows and UNIX.

6.3.4 Event-Driven Server with Helper Processes
In principle, an event-driven server can extract as much concurrency from a stream of client

operations as a multiprocess or multithreaded server. Unfortunately, many operating systems,

such as UNIX, do not provide suitable support for nonblocking disk operations.


6.3 Avoiding Context-Switching Overhead in Applications


151
For example, if an event-driven server is not to waste opportunities to do useful work, then

when it issues a read() to a ﬁle that is not in cache, we wish the read() to return immediately

saying it is unavailable so that the read() is nonblocking. This allows the server to move on to

other clients. Later, when the disk I/O completes, the application can ﬁnd out using the next

invocation of the FindActive() call. On the other hand, if the read() call is blocking, then the

server main loop would be stuck waiting for the milliseconds required for disk I/O to complete.

The difﬁculty is that many operating systems, such as Solaris and UNIX, allow nonblock-

ing read() and write() operations on network connections but may block when used on disk

ﬁles. These operating systems do allow other asynchronous system calls for disk I/O, but these

are not integrated with the select() call (i.e., the UNIX equivalent of FindActive()). Thus in

such operating systems one must choose between the loss of concurrency incurred by blocking

on disk I/O and going beyond the single-process model.

The Flash Web server [PDZ99a] goes beyond the single-process model to maximize con-

currency. When a ﬁle is to be read, the main server process ﬁrst tests if the ﬁle is already in

memory using either a standard system call4or by locking down the ﬁle cache pages so that the

server process always knows which ﬁles are in the cache.5If the ﬁle is not in memory, the main

server process instructs a helper process to perform the potentially blocking disk read. When

the helper is done, it communicates to the main server process via some form of interprocess

communication such as a pipe.

Note that unlike the multiprocess model, helpers are needed only for each concurrent disk

operation and not for each concurrent client request. In some sense, this model exploits a

degree of freedom (P13) by observing that there are interesting alternatives between a single

process and a process per client.

Besides ﬁle reads, helper processes can also be used to do directory lookups to locate the ﬁle

on disk. While Flash maintains a cache that maps between directory path names and disk ﬁles,

if there is a cache miss, then there is a need to search through on-disk directory structures. Since

such directory lookups can also block, these are also relegated to helper processes. Increasing

the pathname cache does increase memory consumption, but the reduced cache miss rate may

reduce the number of helper processes required and so decrease memory overall.

Clearly, helper processes should be prespawned to avoid the latency of creating a process

each time a helper process is invoked. How many helper processes should be spawned? Too few

can cause concurrency loss, and too many results in wasted memory. The solution in Flash

[PDZ99a] is to dynamically spawn and destroy helper processes according to load.

6.3.5 Task-Based Structuring
The top of Figure 6.7 depicts the event-driven approach augmented with helper processes.

Notice the similarity to the simple event-handler approach shown at the bottom of Figure 6.6,

except for the addition of helper processes.

There are some problems with the event-driven architecture with helper processes.

•
Complexity: The application designer must manage the state machine for juggling client

requests without help.

4The original Flash Web server uses UNIX’s mincore() command.

5If the virtual memory system could swap out cached ﬁles under the nose of the server, the server may think a

ﬁle is in cache when it really is not.


152


C H A P T E R 6
Transferring Control
Client 1

Accept
Parse
Locate



Send



Read file



Single
connection

Client N

request


file


header


Send data


process
Helper process 1



Event Dispatcher (i.e., kernel implementation of FindActive() or Select()

Helper process K

(3) EVENT DRIVEN PLUS HELPER PROCESSES

Accept

connection

Client 1

Accept

connection

Client N
Stage 1
(one or more

processes)



Parse

request

Parse

request

Stage 2
(one or more

processes)



Locate

file

Locate

file

Stage 3
(one or more

processes)



Send

header

Send

header

Stage 4
(one or more

processes)



Read file

Send data

Read file

Send data

Stage 5
(one or more

processes)

(4) STAGED EVENT DRIVEN

F I G U R E 6.7
Two other proposals for Web architectures besides the two shown in Figure 6.6: (3) event-driven

plus helper processes; (4) staged event-driven architecture.

•
Modularity: The code for the server is written as one piece. While Web servers are

popular, there are many other Web services that may use some similar pieces of code

(e.g., for accepting connections). A more modular approach could allow code reuse.

•
Overload control: Production Web servers have to deal with wide variations of load from

huge client populations. Thus it is crucial to continue to make some progress during

overload (without thrashing) and to be as fair as possible across clients.

The main idea in the staged event-driven architecture [WCB01] is to exploit another degree

of freedom (P13) in decomposing code. Instead of decomposing into threads horizontally by

client, as in a multithreaded architecture, the server system is decomposed vertically by tasks

within each client request cycle, as shown on the bottom of Figure 6.6. Each stage can be

handled by one or more threads. Thus the staged model can be considered a reﬁnement of the

simple event-driven model. This is because it assigns a main thread and a potential thread to

each stage of server processing. Once that is done, the stages communicate via queues, and

more reﬁned overload control can be done at each stage.

6.4 FAST SELECT


6.4 Fast Select



153
To motivate the fast-selection problem, Section 6.4.1 presents a mysterious performance

problem found in the literature. Section 6.4.2 then describes the usage and implementa-

tion of the select() call in UNIX. Section 6.4.3 describes an analysis of the overheads, and

applies the implementation principles to suggest ideas for improvement. Based on the anal-

ysis, Section 6.4.4 describes an improvement, assuming that the API cannot change. Finally,

Section 6.4.5 proposes an even better solution that involves a more dramatic change to the API.

6.4.1 A Server Mystery
The previous section suggested that avoiding process-scheduling overheads was important in

a Web server. For example, an event-driven server completely reduces process scheduling

overhead by using a single thread for all clients and then using a FindActive() call such as

select(). Now, the CERN Web proxy used a process per client, and the Squid (formerly

Harvest) Web server [CDea96] used an event-driven implementation. Measurements done in

a LAN environment indeed showed [CDea96] that the Squid Web proxy performed an order

of magnitude better than the CERN server.

A year later another group repeated these tests in a WAN (i.e., wide area network) environ-

ment [MRG97] and found that in the WAN environment there was no difference in performance

between the CERN and Squid servers. The problem is to elucidate this mystery.

The mystery was ﬁnally solved by Banga and Mogul [BM98]. A key observation is that

given the same throughput (in terms of connections per second), the higher round-trip delays

in a WAN environment lead to a larger number of concurrent connections in a WAN setting.

For example, in a WAN environment with mean connection times of 2 seconds [BMD99] and

a Web server throughput of 3000 connections per second, Little’s law (from queuing theory)

predicts that the average number of concurrent connections is the product, or 6000.

On the other hand, in a LAN environment with a round-trip delay of 2 msec, the average

number of concurrent connections drops to six. Note that if the throughput stays the same, in

the wide area setting a large fraction of the connections must be idle (waiting for replies) at

any given time.

Given this, the two main causes of overhead were two system calls used by the event-

driven server. The standard UNIX implementation of both these calls scales poorly with a large

number of connections. The two calls were:

•
select(): Event-driven servers running on UNIX use the select() call for the FindActive()
call. Experiments by Banga and Mogul [BM98] show that more than half of the CPU is

used for kernel and user-level select() functions with 500 connections.

•
ufalloc(): The server also needs to allocate the lowest unallocated descriptor for new

sockets or ﬁles. This seemingly simple call took around a third of the CPU time.

ufalloc() performance can easily be explained and ﬁxed. Normally, ﬁnding a free descriptor

can be efﬁciently implemented using a free list of descriptors. Unfortunately, UNIX requires

choosing the
lowest unused
descriptor. For example, if the currently allocated descriptor

list has the elements (in unsorted order) 9, 1, 5, 4, 2, then one cannot determine that the lowest

unallocated number is 3 without traversing the entire unsorted list. Fortunately, a simple change


154


C H A P T E R 6
Transferring Control
to the kernel implementation (P15, use efﬁcient data structures) can reduce this overhead to

nearly zero.6
6.4.2 Existing Use and Implementation of select()
Assuming that ufalloc() overhead can easily be minimized by changing the kernel implementa-

tion, it is important to improve the remaining bottleneck caused by the select() implementation

in an event-driven server. Because the causes of the problem are more complex, this section

starts by reviewing the use and implementation of select() in order to understand the various

sources of overhead.

PARAMETERS
Select() is called as follows:

•
Input: An application calls select() with three bitmaps of descriptors (one for descriptors it

wishes to read from, one for those it wishes to write from, and one for those it wishes to

hear exceptions from) as well as a timeout value.

•
Interim: The application is blocked if there is no descriptor ready.

•
Output: When something of interest occurs, the call returns with number of ready

descriptors (passed by value as an integer) and the speciﬁc lists of descriptors of each

category (passed by reference, by overwriting input bitmaps).

USAGE IN A WEB SERVER
Having understood the parameters of the select() call, it is important to understand how select()
could be used by an event-driven Web server. A plausible use of select() is as follows [BM98].

The server application thread stays in a loop with three major components:

•
Initialize: The application ﬁrst zeroes out bitmaps and sets bits for descriptors of interest

for read and write. For example, the server application may be interested in reading from

ﬁle descriptors and writing and reading from network sockets open to clients.

•
Call: The application then calls select() with bitmaps it built in the previous step, and it

blocks if no descriptor is ready at the point of call; if a timeout occurs, the application does

exception processing.

•
Respond: After the call returns, the application linearly walks through returned bitmaps

and invokes appropriate read and write handlers for descriptors corresponding to set bit

positions.

Note that the costs of building the bitmaps in Step 1 and scanning the bitmaps in Step 3

are charged to the user, though they are directly attributable to the costs of preparing for and

responding to a select() call.

6While the reader familiar with algorithms will immediately think of a heap, a better solution, which exploits

typical computer architectures, is explored in Exercise 3.

IMPLEMENTATION


6.4 Fast Select



155
Having understood the parameters of the select() call, it is important to understand how select()
is implemented in the kernel of a typical UNIX variant [WS95]. The kernel does the following

(annotated with sources of overhead):

•
Prune: The kernel starts by using the bitmaps passed as parameters to build a summary of

descriptors marked in at least one bitmap (called the selected set).

This requires a linear search through bitmaps of size N regardless of how many descriptors

the application is currently interested in.

•
Check: Next, for each descriptor in the selected set, the kernel checks if the descriptor is

ready; if not, the kernel queues the application thread ID on the select queue of the

descriptor. The kernel puts the calling application thread to sleep if no descriptors are

ready.

This requires investigation of all selected descriptors, independent of how many are actually

ready. This step is more expensive than simply scanning a bitmap.

•
Resume: When I/O occurs to make a descriptor ready (i.e., a packet arrives to a socket that

the server is waiting for data from), the kernel I/O module checks its select queue and

wakes up all threads waiting for a descriptor.

This requires scheduler overhead, which seems fundamentally unavoidable without polling

or busy waiting.

•
Rediscover: Finally, select() rediscovers the list of ready descriptors by making a scan of

all selected descriptors to see which have become ready between the time select() was put

to sleep and was later awakened. This requires repeating the same expensive checks made

in Step 2.

They are repeated despite the fact that the I/O module knew which descriptors became ready

but did not inform the select() implementation.

6.4.3 Analysis of Select()
We start by describing opportunities for optimization in the existing select() implementation

and then use our principles to suggest strategies to improve performance.

OBVIOUS WASTE IN Select() IMPLEMENTATION
Principle P1 seeks to remove obvious waste. In order to apply Principle P1, it helps to catalog

the sources of “obvious waste” in the select() implementations. With each source of waste,

we also attach a scapegoat that can be blamed for the waste.

1.
Recreating interest on each call: The same bitmap is used for input and output. This

overloading causes the application to rebuild the bitmaps from scratch, though it may

be interested in most of the same descriptors across consecutive calls to select(). For

156


C H A P T E R 6
Transferring Control
example, if only 10 bits change in a bitmap of size 6000 on each call, the application still

has to walk through 6000 bits, to set each if needed.

Blame this on either the interface (API) or on the lack of incremental computing in the

application.

2.
Rechecking state after resume: No information is passed from a protocol module (that

wakes up a thread sleeping on a socket) to the select() call that is invoked when the thread

resumes. For example, if the TCP module receives data on socket 9, on which thread 1 is

sleeping, the TCP module will ensure that thread 1 is woken up. However, no information

is passed to thread 1 as to who woke up thread 1; thus thread 1 must again check all

selected sockets to determine that socket 9 indeed has data. Clearly, the TCP module

knew this when it woke up thread 1.

Blame the kernel implementation.

3.
Kernel rechecks readiness for descriptors known not to be ready: The Web server

application is typically interested in a socket until connection failure or termination.

In that case, why repeat tests for readiness if no change in state has been observed? For

example, assume that socket 9 is a connection to a remote client with a delay of 1 second

to send and receive network packets. Assume that at time t a request is sent to the client

on socket 9 and the server is waiting for a response, which arrives at t + 1 seconds.

Assume that in the interval from t to t + 1, the server thread calls select() 15,000 times.

Each time select() is called the kernel makes an expensive check of socket 9 to determine

that no data has arrived. Instead, the kernel can infer this from the fact that the socket was

checked at time t and no network packet has been received for this socket since time t.

Thus 15,000 expensive and useless checks can be avoided; when the packet ﬁnally arrives

at time t + 1, the TCP module can pass information to reinstate checking of this

socket.

Blame the kernel implementation.

4.
Bitmaps linear with descriptor size: Both kernel and user have to scan bitmaps

proportional to the size of possible descriptors, not to the amount of useful work returned.

For example, if there are 6000 possible descriptors a Web server may have to deal with at

peak load, the bitmaps are of length 6000. Suppose during some period there are 100

concurrent clients, of which only 10 are ready during each call to select(). Both kernel

and application are scanning and copying bitmaps of size 6000, though the application is

only interested in 200 bits and only 10 bits are set when each select() returns.

Blame the API.

STRATEGIES AND PRINCIPLES TO FIX SELECT
Given the sources of waste just listed, some simple strategies can be applied using our

algorithmic principles.

6.4 Fast Select



157
•
Recreate interest on each call: Consider changing the API (P9) to use separate bitmaps for

input and output. Alternatively, preserve the API and use incremental computation. (P12a)

•
Recheck state after resume: Pass information between protocol modules that know when a

descriptor is ready and the select module. (P9)

•
Have kernel recheck readiness for descriptors known not to be ready. Kernel keeps state

across calls so that it does not recheck readiness for descriptors known not to be ready.

(P12a, use incremental computation)

•
Use bitmaps linear with ready size, not descriptor size: Change the API in a fundamental

way to avoid the need for state-based queries about all descriptors represented by

bitmaps. (P9)

6.4.4 Speeding Up Select() without Changing the API
Banga and Mogul [BM98] show how to eliminate the ﬁrst three (of the four) elements of waste

listed earlier.

1.
Avoid rebuilding bitmaps from scratch: The application code is changed to use two bitmaps

of descriptors it is interested in. Bitmap A is used for long-term memory, and bitmap

B is used as the actual parameter passed by reference to select(). Thus between calls

to select(), only the (presumably few) descriptors that have changed have to be updated

in bitmap A. Before calling select(), bitmap A is copied to bitmap B. Because copy can

proceed a word at a time, the copy is more efﬁcient than a laborious bit-by-bit inspection

of the bitmap. In essence, the new bitmap is being computed incrementally. (P12a)

2.
Avoid rechecking all descriptors when select() wakes up: To avoid this overhead, the

kernel implementation is modiﬁed such that each thread keeps a hints set H that records

sockets that have become ready since the last time the thread called select(). The protocol

or I/O modules are modiﬁed such that when new data arrives (network packet, disk I/O

completes), the corresponding descriptor index is written to the hints set of all threads that

are on the select queue for that descriptor. Finally, after a thread wakes up in select(), only

the descriptors in H are checked. The essence of this optimization is passing hints

between layers. (P9)

3.
Avoid rechecking descriptors known not to be ready: The fundamental observation is that

a descriptor that is waiting for data need not be checked until asynchronous notiﬁcation

occurs (e.g., the descriptor is placed in hints set H described earlier). Clearly, however,

any newly arriving descriptors (e.g., newly opened sockets) must be checked. A third,

subtle point is that even after network data has arrived for a socket (e.g., 1500 bytes), the

application may read only 200 bytes. Thus a descriptor must be checked for readiness

even after data ﬁrst arrives, until there is no more data left (i.e., application reads all data)

to signify readiness.

To implement these ideas, besides the hints set H for each thread, the kernel

implementation keeps two more sets. The ﬁrst is an interested set I of all descriptors the

thread is interested in. The second is a set of descriptors R that are known to be ready.

The interested set I reﬂects long-term interest; for example, a socket is placed in I the ﬁrst

time it is mentioned in a select() call and is removed only when the socket is disconnected


158


C H A P T E R 6
Transferring Control
or reused. Let the set passed to select() be denoted by S. Then I is updated to

Inew= Iold∪ S. Note that this incorporates newly selected descriptors without losing

previously selected descriptors.7
Next, the kernel checks only those descriptors that are in Inewbut are either (i) in the

hints set H or (ii) not in Ioldor (iii) in the old ready set Rold. Note that these three

predicates reﬂect the three categories discussed two paragraphs back. They represent

either recent activity, newly declared interest, or unconsumed data resulting from prior

activity. The descriptors found by the check to be ready are recorded in Rnew. Finally, the

select() call returns to the user the elements in Rnew∩ S . This is because the user only

cares about the readiness of descriptors speciﬁed in the selecting set S.

As an example, socket 15 may be checked when it is ﬁrst mentioned in a select() call

and so enters I; socket 15 may be checked next when a network packet of 500 bytes

arrives, causing socket 15 to enter H; ﬁnally, socket 15 may be checked repeatedly as part

of R until the application consumes all 500 bytes, at which point socket 15 leaves R.

The basis of this optimization is P12, adding state for speed. The optimization maintains

state across calls (P12) to reduce redundant checks.

6.4.5 Speeding Up Select() by Changing the API
The technique described in Section 6.4.4 improves performance considerably by eliminating

the ﬁrst three (and chief) sources of overhead in select(). However, it does so by maintaining

extra state (P12) in the form of three more sets of descriptors (i.e., H, I, and R) that are also

maintained as bitmaps. This, taken together with the selection set S passed in each call, requires

the scanning and updating of four separate bitmaps.

In a situation where a large number of connections are present but only a few are active at

any instant, this fundamentally still requires paying some small overhead, proportional to the

total number of connections as opposed to the number of active connections. This is the fourth

source of “waste” enumerated earlier, and it appears unavoidable given the present API.

Further, as we saw earlier, even the modiﬁed fast select() potentially checks a descriptor

multiple times for each event such as a packet arrival (if the application does not consume all

the data at once). Such additional checks are unavoidable because select() provides the state

of each descriptor.

If one looks closely at the interface, what the application fundamentally requires is to be

notiﬁed of the stream of events (e.g., ﬁle I/O completed, network packet arrived) that causes

changes in state. Event-based notiﬁcations appear, on the surface, to have some obvious

drawbacks that may have prevented them from being used in the past.

•
Asynchronous Notiﬁcation: If the application is notiﬁed as soon as an event occurs, this

can take excessive overhead and be difﬁcult to program. For example, when an application

is servicing socket 5, a packet to socket 12 may arrive. Interrupting the application to

inform it of the new packet may be a bad idea.

•
Excessive Event Rate: The application is interested in the events that cause state change

and not in the raw event stream. For a large Web transfer, several packets may arrive to a

socket and the application may wish to get one notiﬁcation for a batch, and not one for

7The reader may wonder whether it sufﬁces to set I
= S. The exercises explore some of the issues with this

alternative implementation.


6.5 Avoiding System Calls



159
every packet. The overhead for each notiﬁcation is in terms of communication costs (CPU)

as well as storage for each notiﬁcation.

Principle P6 suggests designing efﬁcient specialized routines to overcome bottlenecks.

In this spirit, Banga, Mogul, and Druschel [BMD99] describe a new event-based API that

avoids both these problems.

•
Synchronous Inquiry: As in the original select() call, the application can inquire for

pending events. For example, in the previous example, the application continues to service

socket 5 and all other active sockets before asking for (and being told about) events such

as packet arrival on socket 5.

•
Coalescing of Events: If a second event occurs for a descriptor while a ﬁrst event has been

queued for notiﬁcation, the second notiﬁcation is omitted. Thus there can be at most one

outstanding event notiﬁcation per descriptor.

The use of this new API is straightforward and roughly follows the style in which appli-

cations use the old select() API. The application stays in a loop in which it asks synchronously

for the next set of events and goes to sleep if there are none. When the call returns, the applica-

tion goes through each event notiﬁcation and invokes the appropriate read or write handlers.

Implicitly, the setting up of a connection registers interest in the corresponding descriptor,

while disconnection removes the descriptor from the interest list.

The implementation is as follows. Associated with each thread is a set of descriptors in

which it is interested. Each descriptor (e.g., socket) keeps a reverse mapping list of all threads

interested in the descriptor. On I/O activity (e.g., data arrival on a socket), the I/O module

uses its reverse mapping list to identify all potentially interested threads. If the descriptor is in

the thread’s interested set, a notiﬁcation event is added to a queue of pending events for that

thread.

A simple per-thread bitmap, one bit per descriptor, is used to record the fact that an event

is pending in the queue and is used to avoid multiple event notiﬁcations per descriptor. Finally,

when the application asks for the next set of events, these are returned from the pending queue.8
6.5 AVOIDING SYSTEM CALLS
For now forget about the intervening discussion of select(), and recall the discussion of user-

level networking. We seem to have gotten the kernel out of the picture on the receipt or sending

of a packet, but sadly that is not quite the case. When an application wants to send data, it

must somehow tell the adaptor where the data is.

When the application wants to receive data, it must specify buffers where the received

packet data should be written to. Today, in UNIX this is typically done using system calls,

where the application tells the kernel about data it wishes to send and buffers it wishes to

receive to. Even if we implement the protocol in user space, the kernel must service these

system calls (which can be expensive; see Chapter 2) for every packet sent and received.

This appears to be required because there can be several applications sending and receiving

data from a common adaptor; since the adaptor is a shared resource, it seems unthinkable for

8This simple description glosses over some tricky race conditions and overﬂow conditions.


160


C H A P T E R 6
Transferring Control
Application

Kernel

TLB:


X: =10



Page 10

F I G U R E 6.8
Reading and writing to memory is not mediated by the kernel.

Application

Kernel

TLB: VP 10

VP 10:

Descriptors



Page 12

Page 18

18, 12
List of allowed

pages for ADC

F I G U R E 6.9
Application device channels.

an application to write directly to the device registers of a network adaptor without kernel

mediation to check for malicious or erroneous use. Or is it?

A simple analogy suggests that alternatives may be possible. In Figure 6.8 we see that

when an application wants to set the value of a variable X
equal to 10, it does not actually

make a call to the kernel. If this were the case, every read and write in a program would be

slowed down very badly. Instead, the hardware determines the virtual page of X, translates it to

a physical page (say, 10) via the TLB, and then allows direct access as long as the application

has Page 10 mapped into its virtual memory.

If Page 10 is not mapped into the application’s virtual memory, the hardware generates an

exception and causes the kernel to intervene to determine why there is a page access violation.

Notice that the kernel was involved in setting up the virtual memory for the application (only the

kernel should be allowed to do so, for reasons of security) and may be involved if the application

violates its page accesses that the kernel set up. However, the kernel is not involved in every

access. Could we hope for a similar approach for application access to adaptor memory to

avoid wasted system calls (P1)?

To see if this is possible we need to examine more carefully what information an appli-

cation sends and receives from an adaptor. Clearly, we must prevent incorrect or malicious

applications from damaging other applications or the kernel itself. Figure 6.9 shows an appli-

cation that wishes to receive data directly from the adaptor. Typically, an application that does

so must queue a descriptor. A descriptor is a small piece of information that describes the

buffer in main memory where the data for the next packet (for this application) should be

written to. Thus we should consider carefully and separately both descriptor memory as well

as the actual buffer memory.

We can deal with descriptor memory quite easily by recalling that the adaptor memory

is memory mapped. Suppose that the adaptor has 10,000 bytes of memory that is considered

6.5 Avoiding System Calls



161
memory on the bus and that the physical page size of the system is 1000 bytes. This means

that the adaptor has 10 physical pages. Suppose we allocate two physical pages to each of ﬁve

high-performance applications (e.g., Web, FTP) that want to use the adaptor to transfer data.

Suppose the Web application gets two physical pages, 9 and 10. Then the kernel maps the

physical pages 9 and 10 into the Web application’s page table and the physical pages 3 and 4

into the FTP application’s page table.

Now the Web application can write directly to physical pages 9 and 10 without any danger;

if it tries to write into pages 3 and 4, the virtual memory hardware will generate an exception.

Thus we are exploiting existing hardware (P4c) in the form of the TLB to protect access to

pages. So now let us assume that Page 10 is a sequence of free buffer descriptors written by

the Web application; each buffer descriptor describes a page of main memory (assume this can

be done using just 32 bits) that will be used to receive the next packet described for the Web

application.

For example, Page 10 could contain the sequence 18, 12 (see Figure 6.9). This means that

the Web application has currently queued physical pages 18 and 12 for the next incoming packet

and its successor. We assume that pages 18 and 12 are in main memory and are physically

locked pages that were assigned to the Web application by the kernel when the Web application

ﬁrst started.

When a new packet arrives for the Web application, the adaptor will demultiplex the

packet to the descriptor Page 10 using a packet ﬁlter, and then it will write the data of the

packet (using DMA) to Page 18. When it is done, the adaptor will write the descriptor 18 to

a page of written page descriptors (exactly as in fbufs), say, Page 9, that the Web application

is authorized to read. It is up to the Web application to ﬁnish processing written pages and

periodically to queue new free buffer descriptors to the adaptor.

This sounds ﬁne, but there is a serious security ﬂaw. Suppose the Web application, through

malice or error, writes the sequence 155, 120 to its descriptor page (which it can do). Suppose

further that Page 155 is in main memory and is where the kernel stores its data structures. When

the adaptor gets the next packet for the Web application it will write it to Page 155, overwriting

the kernel data structures. This causes a serious problem, at least causing the machine to crash.

Why, you may ask, can’t virtual memory hardware detect this problem? The reason is that

virtual memory hardware (observe the position of the TLB in Figure 6.8) only protects against

unauthorized access by processes running on the CPU. This is because the TLB intercepts

every READ (or WRITE) access done by the CPU and can do checks. However, devices like

adaptors that do DMA bypass the virtual memory system and access memory directly.

This is not a problem in practice because applications cannot program the devices (such

as disks, adaptors) to read or write to speciﬁc places at the application’s command. Instead,

access is always mediated by the kernel. If we are getting rid of the kernel, then we have to

ensure that everything the application can instruct the adaptor to do is carefully scrutinized.

The solution used in the application device channel (ADC) [DDP94] solution promoted

by Druschel, Davy, and Peterson is to have the kernel pass (P9, pass hints in interfaces)

the adaptor a list of valid physical pages that each application using the adaptor can access

directly. This can be done once when the application ﬁrst starts and before data transfer begins.

In other words, the time-consuming computation involved in authorizing pages is shifted in

time (P2) from the data transfer phase to application initialization. For example, when the Web

application ﬁrst starts, it can ask the kernel for two physical pages, say, 18 and 12, and then

ask the kernel to authorize the use of these pages to the adaptor.


162


C H A P T E R 6
Transferring Control
The kernel is then bypassed for normal data operation. However, if now the Web applica-

tion queues the descriptor 155 and a new packet arrives, the adaptor will ﬁrst check the number

155 against its authorized list for the application (i.e., 18, 12). Since 155 is not in the list, the

adaptor will not overwrite the kernel data structures (phew!).

In summary, ADCs are based on shifting protection functions in space (P3c) from the

kernel to the adaptor, using some precomputed information (list of allowed physical pages,

P2a) passed from the kernel to the adaptor (P9), and augmented with the normal virtual

memory hardware (P4c).

The architecture community has, in recent years, been promoting the use of active mes-
sages [vECea92], for similar reasons. An active message is a message that carries the address

of the user-level process that will handle the packet.9
An active message (such as the ADC approach) avoids kernel intervention and tempo-

rary buffering by using preallocated buffers or by using small messages that are responded to

directly by the application, thus providing low latency. Low latency, in turn, allows computa-

tion and communication to overlap in parallel machines. The active messages implementation

[vECea92] allowed only small messages or (large) block transfer. The fast messages implemen-

tation [PKC97] goes further to combine user-level scatter–gather interfaces and ﬂow control

to enable uniform high performance for a continuum from short to long messages.

WHAT ARE KERNELS GOOD FOR?
It is important to consider this question because the ADC and active message approaches

bypass the kernel. Kernels are good for protection (protecting the system and good users from

malice or errors) and for scheduling resources among different applications. Thus if we remove

the kernel from the run-time data path, it is up to the solution to provide these services in lieu

of the kernel. For example, ADCs do protection using the virtual memory hardware (to protect

descriptors) and adaptor enforcement (to protect buffer memory).

It also must multiplex the physical communication link (especially on the sending side)

among the different application device channels and provide some sort of fairness. To do this

in every device would require replicating traditional kernel code in every device; however,

it can be argued that some devices, such as the disk and the network adaptor, are special in

terms of their performance needs and are worth giving special treatment. There is a movement

afoot to make some of these ideas commercial based on the ADC idea and the UUNet solution

(similar to ADCs and proposed concurrently) advocated at Cornell [vEBea95]. We now brieﬂy

describe this proposal, known as virtual interface architecture (VIA).

6.5.1 The Virtual Interface Architecture (VIA) Proposal
Virtual interface architecture (VIA [CIC97]) is a commercial standard that advocates the ideas

in ADCs. The term virtual interface makes sense because one can think of an application device

channel as providing each application with its own virtual interface that it can manipulate

without kernel intervention. The virtual interfaces are, of course, multiplexed on a single

physical interface. VIA was proposed by an industry consortium that includes Microsoft,

Compaq, and Intel.

9This is a way of avoiding packet ﬁlters completely by passing more information in packets, but it is a bit

scary in a networking environment because of the security risks; however, it is typically used only within clusters of

machines that trust each other.

6.6 Reducing Interrupts



163
VIA uses the following terminology that can easily be understood based on the earlier

discussion.

•
Registered Memory: These are regions of memory that the application uses to send and

receive data. These regions are authorized for the application to read and write from; they

are also pinned down to avoid paging.

•
Descriptor: To send or receive a packet, the application uses a user-level library (libvia)

to construct a descriptor that is just a data structure with information about the buffer, such

as a pointer. VIA allows a descriptor to refer to multiple buffers in registered memory (for

scatter–gather) and allows different memory protection tags. Descriptors can be added to a

descriptor queue.

•
Doorbells: These represent an unspeciﬁed method to communicate descriptors to the

network interface. This can be done via writing part of the interface card’s memory or by

triggering an interrupt on the card; it varies from implementation to implementation.

Doorbells are pointers to descriptors, thus leading to a second level of indirection.

The VIA standard has a few problems that are partly addressed in Dittia et al. [DPJ97]

and Buonadonna et al. [BGC02]. These problems (with some sample solutions) are:

•
Small message performance: To actually send data requires following a doorbell to a

descriptor (quite large, around 45 bytes [BGC02]) to the data. For small messages, this can

be high overhead. (One way to ﬁx this problem suggested in Buonadonna et al. [BGC02]

is to combine the descriptor and the data for small messages.)

•
Doorbell memory: Just as registered memory is protected, so must doorbells be protected

(as in the ADC proposal). Thus the VIA speciﬁcation requires that each doorbell be

mapped to a separate user page, which is a waste of the virtual address space for small

descriptors. (One way to avoid this is to combine multiple descriptors into a single page,

as suggested in Dittia et al. [DPJ97]. However, this requires some additional machinery.)

The VIA speciﬁcations [CIC97] are somewhat vague. For more details the reader may

wish to consult more complete system implementations (such as Refs. BGC02 and DPJ97).

6.6 REDUCING INTERRUPTS
We have worked our way down the hierarchy of control overheads from process scheduling

to select call implementations to system calls. At the bottom of the list is interrupt overhead.

While involving less overhead than process scheduling or system calls, interrupt overhead can

be substantial. Each time a packet arrives, ﬁelding the corresponding interrupt from the device

disrupts processor pipelines and requires some context switching to service the interrupt. There

is no way to avoid interrupts completely. However, one can reduce interrupt overhead using

the following tricks.

•
Interrupt only for signiﬁcant events: For example, in the ADC solution, the adaptor does

not need to interrupt the processor on every packet reception but only for the ﬁrst packet

received in a stream of packets (we can assume the application will check for more packets

received) and when the queue of free buffer descriptors becomes empty. This can reduce


164


C H A P T E R 6
Transferring Control
interrupt overhead to 1 in N packets received, if N packets are received in a burst. This is

just an application of batching, or expense sharing (P2c).

•
Polling: The idea here is that the processor (CPU) keeps checking to see if packets have

arrived and the adaptor never interrupts. This can be more overhead than interrupt-driven

processing if the number of packets received is low, but it can become more efﬁcient for

high throughput data streams. Another variation is clocked interrupts [ST]: The CPU

periodically polls when a timer ﬁres.

•
Application controlled: An even more radical idea, once proposed by Dave Clark, is that

the sender be able to control when the receiver interrupts by passing a bit in the packet

header. For example, a sending FTP could set the interrupt bit only for the last data packet

in a ﬁle transfer. This is another example of P10, passing hints in protocol headers. It is

probably too radical for use. However, a more recent paper [DPJ97] proposes implemen-

ting a reﬁnement of this idea in an ATM chip that was indeed fabricated.

In general, the use of batching works quite well in practice. However, in some implemen-

tations, such as the ﬁrst bridge implementation (described in Chapter 10), the use of polling is

also very effective. Thus more radical ideas, such as clocked or application-controlled inter-

rupts, have become less useful. Note that the RDMA ideas described in Chapter 5 also have the

great potential advantage of removing the need for both per-packet system calls and per-packet

interrupts for a large data transfer.

6.6.1 Avoiding Receiver Livelock
Besides inefﬁciencies due to the cost of handling interrupts, interrupts can interact with oper-

ating system scheduling to drive end-system throughput to zero, a phenomenon known as

receiver livelock. Recall that in Example 8 of Chapter 2 we showed that in BSD UNIX the

arrival of a packet generates an interrupt. The processor then jumps to the interrupt handler

code, bypassing the scheduler, for speed. The interrupt handler copies the packet to a kernel

queue of IP packets waiting to be consumed, makes a request for an operating system thread

(called a software interrupt), and exits.

Recall also that under high network load, the computer can enter what is called receiver
livelock [MR97], in which the computer spends all its time processing incoming packets, only

to discard them later because the applications never run. If there is a series of back-to-back

packet arrivals, only the highest-priority interrupt handler will run, possibly leaving no time

for the software interrupt and certainly none for the browser process. Thus either the IP or

socket queues will ﬁll up, causing packets to be dropped after resources have been invested in

their processing.

One basic technique that seems necessary [MR97] is to turn off interrupts when too little

application processing is occurring. This can be done by keeping track of how much time is

spent in interrupt routines for a device and masking off that device if the fraction spent exceeds

a speciﬁed percentage of total time. However, merely doing so can drop all packets that arrive

during overload, including well-behaved and important packet ﬂows.

A very nice solution to this problem is described by Druschel and Banga [DB96],10who

suggest combating this problem via two mechanisms. First, they suggest using a separate

10This solution was also explored in the Exercises for Chapter 2.

6.7 Conclusions



165
queue per destination socket instead of a single shared queue. When a packet arrives, early

demultiplexing (Chapter 8) is used to place the packet in the appropriate per-socket queue.

Thus if a single socket’s queues ﬁll up because its application is not reading packets, other

sockets can still make progress.

The second mechanism is to implement the protocol processing at the priority of the

receiving process and as part of the context of the received process (and not a separate software

interrupt). First, this removes the unfair practice of charging protocol processing for application

X to the application, Y , that was running when the packet for X arrives. Second, it means that if

an application is running slowly, its per-socket queue ﬁlls up and its particular packets will be

dropped, allowing others to progress. Third, and most importantly, since protocol processing

is done at a lower priority (application processing), it greatly alleviates the livelock problem

caused by the partial processing (i.e., protocol processing only) of many packets without the

corresponding application processing required to remove these packets from the socket queue.

This mechanism, called lazy receiver processing (LRP), essentially uses lazy evaluation

(P2b), not so much for efﬁciency but for fairness and to avoid livelock. Solutions that require

less drastic changes are described in Mogul and Ramakrishnan [MR97].

6.7 CONCLUSIONS
After the basic restructuring to avoid copying, control overhead is probably the next most

important overhead to attack in a networking application. From reducing the overhead of

process scheduling to limiting system calls to reducing interrupt overhead, fast server imple-

mentations must reduce unnecessary overheads due to these causes. Newer operating systems,

such as Linux, are making giant strides in reducing the inherent control overhead costs. How-

ever, modern architectures are getting faster in the processing of instructions using cached data

without a commensurate speedup in context switching and interrupt processing.

This chapter started by surveying basic techniques for reducing process-scheduling

overhead for networking code. These lessons have been taken to heart by the networking

community. Hardly any implementor worth his or her salt will do something egregious, such

as structuring each layer as a separate process, and not resort freely to upcalls. However, the

deeper lesson of Figure 6.3 is not the seemingly arcane structure, but the implicit idea of

user-level networking. User-level networking was not developed at the time Clark presented

his paper, and it is still not very well known. Note that user-level networking, together with

application device channels, makes possible technologies such as VIA, which may become

part of real systems in order to avoid system calls when sending and receiving packets.

On the other hand, the art of structuring processing in the application context — for

example, a Web server — has received attention only more recently. While event-driven servers

(augmented with helper processes) satisfactorily balance the need to maximize concurrency

and minimize context-switching overhead, the software engineering aspects of such designs

still leave many questions unanswered. Will the event-driven approach sufﬁce in a production

environment with rapid changes and facilitate debugging? The staged event-driven approach is

a step in this direction, but the engineering of large Web servers will surely require more work.

The event-driven approach also relies on the fast implementation of equivalents of

the select()
call. While the UNIX approaches have fundamental scalability problems, it is

166


C H A P T E R 6
Transferring Control
reassuring that other popular operating systems, such as Windows [BMD99], have much more

efﬁcient APIs.

Allowing applications to communicate directly with network devices using a protected

virtual interface is an idea that seems to be gaining ground through the VIA standard. Ideally,

adaptors are designed to enable VIA or similar mechanisms. Finally, while interrupts are

fundamentally unavoidable, their nuisance value can be greatly mitigated by the use of batching

and the use of polling in appropriate environments.

Figure 6.1 shows a list of the techniques used in this chapter, with the corresponding

principles. In summary, while Epicetus urged his readers to control their passions, we feel it

is equally important for implementors of networking code to be passionate about control.

6.8 EXERCISES
1. Packet Filters and Upcalls: In the description on upcalls (Figure 6.3), we showed that

the system ﬁgured out which application the packet was for by upcalling a transport

routine. But if you can do that, who needs packet ﬁlters anyway? What hidden

assumption is being made here?

2. Comparing Web Server Structuring Models: In the text we compared various server

structuring mechanisms with respect to simple metrics such as scheduling efﬁciency and

CPU concurrency. Consider the following other metrics for comparison.

•
Disk Concurrency: Some systems employ multiple disks and do disk scheduling. Why

might the event-driven approach have problems in such an environment, compared to a

multithreaded approach? Does the event-driven approach with helper processes have

the same problems?

•
Gathering Statistics: Web servers need to keep statistics on usage patterns for

accounting. Why might gathering statistics be more complex in process-per-client and

thread-per-client architectures? Why is it simpler in an event-driven architecture?

3. Algorithms versus Algorithmics in ufalloc() Reimplementation: In this exercise we

will consider how to efﬁciently reimplement ufalloc() to ﬁnd the lowest unallocated

descriptor.

• First consider using a binary heap. For N identiﬁers, how many memory accesses are

required? How much space is required, in bits?

• Assume that the machine has a W -bit (e.g., for the Alpha, W = 64) word and that there

is an efﬁcient instruction (or set of instructions) to ﬁnd the rightmost zero in a W -bit

word. Suppose the allocated descriptors are represented as set bits in a large bitmap

(P14) of size N. Show how to augment this bitmap with some extra state (P12) to

efﬁciently compute the lowest unallocated descriptor.

• What are the space and time costs of this scheme compared to a simple heap? Can a

simple heap be made faster by the (standard) trick of increasing the radix of the heap

to have K > 1 elements in every heap node?

6.8 Exercises



167
4. Modiﬁed Implementation of Fast select(): The text explains how elements are added to

the sets I, H, and R but does not specify completely how they are removed. Explain how

elements are removed, especially with respect to the hints set H.

5. Modiﬁed Implementation of Fast select(): In the fast select implementation of Banga

and Mogul [BM98], consider changing the implementation as follows:

(a) First, Inewis set equal to S (and not to Iold∪ S as before).

(b)
Rnewis computed as before.

(c) What is returned to the user is Rnew
(and not Rnew
∩ S) as before.

Answer the following questions.

• Explain in words what is different from this implementation and the one proposed by

Banga and Mogul.

• Explain why this implementation may require one to be careful about how it removes

elements from the hints set H in order not to miss state changes due to newly arriving

packets.

• Explain how this scheme can be inferior to the existing implementation, assuming no

application changes. Find a worst-case scenario.

• Explain why this implementation can sometimes be better than the existing

implementation if the application is smart enough not to choose a socket in its selecting

set as long as it still has unread data. (In other words, if a socket has unconsumed data,

the application is smart enough not to select it until all data has been consumed.)

6. Comparing the APIC Approach to the ADC Approach: In the text we described the

ADC approach to application-level networking, thereby bypassing the kernel and

avoiding system calls. We want to compare this approach to an approach used in the APIC

chip. First use a search engine to locate and print out a paper called “The APIC Approach

to High-Performance Network Interface Design: Protected DMA and Other Techniques”
[DPJ97]. Read the paper carefully, and then answer the following questions about its

particular twists to the ADC design for a practical system.

• There are two types of memory the ADC approach protects: the device registers on

the adaptor, and the buffer memory containing the data. The ﬁrst is protected by

overloading the virtual memory scheme; the second is protected by having the kernel

hand the adaptor a list of pages that an application can read/write from. Contrast this to

the APIC approach to protecting the device registers. Why is an access mask helpful?

Why is each connection register mapped both into the application and kernel memory?

• In the APIC, the buffer memory is protected by having the APIC read (from memory) a

kernel descriptor that contains validation information about the buffer. In the ADC

approach, the validating information is already in the adaptor. Why add this extra

complexity?

• In the APIC, there is a third kind of memory that needs to be protected: Buffer

descriptors contain links to other other descriptors, and this link memory needs

to be validated. Why is this not needed in the ADC approach?

168


C H A P T E R 6
Transferring Control
• A different way to do link notarization is to have the kernel create an array of pointers

to real buffers, one for each application. Only the kernel can read or write this array.

The applications queue buffer descriptors as offsets into this array. This is a standard

approach in systems called using one level of indirection. Compare this approach to the

APIC link notarization approach.

• A disadvantage of the APIC approach is that the adaptor has to do a number of READs

to main memory to do all its checks. How many such READs are required in the worst

case for a received packet? Why might this be insigniﬁcant?

• The paper describes splitting a packet into two pieces. Why is this needed? What

assumption does this method make about protocols (that an approach based on packet

ﬁlters does not need)?


C H A P T E R 7
Maintaining Timers
That was, is, and shall be: Time’s wheel runs back or stops.
— Robert Browning

A timer module in a system is analogous to a secretary who keeps track of all the appointments

of a busy executive. The executive tells the secretary to schedule appointments and sometimes

to cancel appointments before they occur. It is the secretary’s job to interrupt the executive

with a warning just before the scheduled time of an appointment. Many secretaries actually

do this using a so-called tickler ﬁle, which is a moving window over the next N
days. When

the day’s appointments are done, the tickler ﬁle is rolled to bypass the current day. We will

ﬁnd a strong analogy between a tickler ﬁle and a timing wheel, the main data structure of this

chapter.

The chapter is organized as follows. Section 7.1 describes why timers are needed. Sec-

tion 7.2 describes a model of a timer routine and the relevant parameters that are critical for

performance. Section 7.3 describes the simplest techniques for maintaining timers, some of

which are still appropriate in some cases. Section 7.4 introduces the main data structure, called

timing wheels. This is followed by two speciﬁc instantiations of timing wheels called hashed
wheels (in Section 7.5) and hierarchical timing wheels (in Section 7.6). The chapter ends with

a technique called soft timers (Section 7.8) that reduces timer overhead by amortizing timer

maintenance across other system calls. Figure 7.1 summarizes the principles applied in the

various timer schemes.

Q u i c k R e f e r e n c e G u i d e
The most useful section for an implementor is Section 7.5 on hashed timing wheels, versions of

which have appeared in many operating systems, such as FreeBSD and Linux.

7.1 WHY TIMERS?
Why do systems need timers? Systems need timers for failure recovery and also to implement

algorithms in which the notion of time or relative time is integral. Several kinds of failures

cannot be detected asynchronously. Some can be detected by periodic checking (e.g., disk

watchdog timers), and such timers always expire. Other failures can be only be inferred by

169

170


C H A P T E R 7
Maintaining Timers
Number


Principle


Timer Technique
P14
P2c,4
P15
P10
P4
P3
P11


Use array to store bounded timers

Leverage off time-of-day update

Using hashing or hierarchies

Pass handle to delete timer

Leverage off system calls, etc.

Relax need for accurate timers

Optimize for fast timers



Basic timing

wheels

Hashed, hierarchical

timing wheels

Any timer scheme

Soft timers

F I G U R E 7.1
Principles used by the timer schemes described in this chapter.

the lack of some positive action (e.g., message acknowledgment) within a speciﬁed period.

If failures are infrequent, these timers rarely expire.

Many systems also implement algorithms that use time or relative time. Examples include

algorithms that control the rate of production of some entity (e.g., rate-based ﬂow control in

networks) and scheduling algorithms. These timers almost always expire.

The performance of algorithms to implement a timer module becomes an issue when any

of the following are true. First, performance becomes an issue if the algorithm is implemented

by a processor that is interrupted each time a hardware clock ticks and the interrupt overhead

is substantial. Second, it becomes an issue if ﬁne-granularity timers are required. Third, it

becomes an issue if the average number of active timers is large.

If the hardware clock interrupts the host every tick and the interval between ticks is on the

order of microseconds, then the interrupt overhead is substantial. Most host operating systems

offer timers of coarse granularity (milliseconds or seconds). Alternatively, in some systems

ﬁner-granularity timers reside in special-purpose hardware. In either case, the performance of

the timer algorithms will be an issue because they determine the latency incurred in starting

or stopping a timer and the number of timers that can be simultaneously outstanding.

As an example, consider communications between members of a distributed system. Since

messages can be lost in the underlying network, timers are needed at some level to trigger

retransmissions. A host in a distributed system can have several timers outstanding. Consider,

for example, a server with 200 connections and three timers per connection. Further, as

networks scale to gigabit speeds, both the required resolution and the rate at which timers are

started and stopped will increase.

Some network implementations (e.g., the BSD TCP implementation) do not use a timer

per packet; instead, only a few timers are used for the entire networking package. The BSD

TCP implementation gets away with two timers because the TCP implementation maintains

its own timers for all outstanding packets and uses a single kernel timer as a clock to run

its own timers. TCP maintains its packet timers in the simplest fashion: Whenever its single

kernel timer expires, it ticks away at all its outstanding packet timers. For example, many TCP

implementations use two timers: a 200-msec timer and a 500-msec timer.

The naive method works reasonably well if the granularity of timers is low and losses are

rare. However, it is desirable to improve the resolution of the retransmission timer to allow

7.2 Model and Performance Measures



171
speedier recovery. For example, the University of Arizona has a TCP implementation called

TCP Vegas [BMP94] that performs better than the commonly used TCP Reno. One of the

reasons TCP Reno has bad performance when experiencing losses is the coarse granularity of

the timeouts.

Besides faster error recovery, ﬁne-granularity timers also allow network protocols to more

accurately measure small intervals of time. For example, accurate estimates of round-trip

delay are important for the TCP congestion-control algorithm [Jac88] and the SRM (scalable

reliable multicast) framework [FJM+95] that is implemented in the Wb conferencing tool

[McC92]. Finally, many multimedia applications routinely use timers, and the number of

such applications is increasing. An example can be found in Siemens’ CHANNELS run-time

system for multimedia [BSV95], where each audio stream uses a timer with granularity that

lies between 10 and 20 msec. For multimedia and other real-time applications, it is important

to have worst-case bounds on the processing time to start and stop timers.

Besides networking applications, process control and other real-time applications will

beneﬁt from large numbers of ﬁne-granularity timers. Also, the number of users on a system

may grow large enough to lead to a large number of outstanding timers. This is the reason

cited for redesigning the timer facility by the developers of the IBM VM/XA SP1 operating

system [Dav89].

In the following sections, we will describe a family of schemes for efﬁcient timer imple-

mentations based on a data structure called a timing wheel. We will also describe performance

results based on a UNIX implementation and survey some of the systems that have implemented

timer packages based on the ideas in this chapter.

7.2 MODEL AND PERFORMANCE MEASURES
A timer module [VL87] has four component routines:

StartTimer (Interval, RequestId, ExpiryAction): The client calls this routine to start a timer

that will expire after “Interval” units of time. The client supplies a RequestId that is used

to distinguish this timer from other timers the client has outstanding. Finally, the client

can specify what action must be taken on expiry, for instance, calling a client-speciﬁed

routine or setting an event ﬂag.

StopTimer (RequestId): This routine uses its knowledge of the client and RequestId to locate

the timer and stop it.

PerTickBookkeeping: Let the granularity of the timer be T
units. Then every T
units this

routine checks whether any outstanding timers have expired; if so, it calls StopTimer,

which in turn calls the next routine.

ExpiryProcessing: This routine does the ExpiryAction speciﬁed in the StartTimer call.

The ﬁrst two routines are activated on client calls; the last two are invoked on timer ticks.

The timer is often an external hardware clock.

Two performance measures can be used to choose between algorithms described in the

rest of this chapter. Both are parameterized by
n, the average (or worst-case) number of

outstanding timers. They are the space (Space) required for the timer data structures and the

latency (Latency), or the time between the invoking of a routine in the timer module and its

completion. Assume that the caller of the routine blocks until the routine completes. Both the

average and worst-case latency are of interest.


172


C H A P T E R 7
Maintaining Timers
qhead
10:23:12



10:23:24



10:24:03

F I G U R E 7.2
Timer queue example used to illustrate Scheme 2.

7.3 SIMPLEST TIMER SCHEMES
The two simplest schemes for timer implementation are, in fact, commonly used. In the ﬁrst

scheme, StartTimer
ﬁnds a memory location and sets that location to the speciﬁed timer

interval. Every T units, PerTickBookkeeping will decrement each outstanding timer; if any

timer becomes zero, ExpiryProcessing is called.

This scheme is extremely fast for all but PerTickBookkeeping. It also uses one record

per outstanding timer, the minimum space possible. It is appropriate if there are only a

few outstanding timers, if most timers are stopped within a few ticks of the clock, and if

PerTickBookkeeping is done with suitable performance by special-purpose hardware.

Note that instead of doing a Decrement, we can store the absolute time at which timers

expire and do a Compare. This option is valid for all timer schemes we describe; the choice

between them will depend on the size of the time-of-day ﬁeld, the cost of each instruction, and

the hardware on the machine implementing these algorithms. In this chapter we will use the

Decrement option, except when describing Scheme 2.

In a second simple scheme, used in older versions of UNIX, PerTickBookkeeping latency

is reduced at the expense of StartTimer performance. Timers are stored in an ordered list.

Unlike Scheme 1, we will store the absolute time at which the timer expires, not the interval

before expiry. The timer that is due to expire at the earliest time is stored at the head of the

list. Subsequent timers are stored in increasing order, as shown in Figure 7.2. In Figure 7.2 the

lowest timer is due to expire at absolute time 10 hours, 23 minutes, and 12 seconds.

Because the list is sorted, PerTickBookkeeping need only increment the current clock

time and compare it with the head of the list. If they are equal or if the time of day is greater,

it deletes that list element and calls ExpiryProcessing. It continues to delete elements at the

head of the list until the expiry time of the head of the list is strictly less than the time of

day. StartTimer searches the list to ﬁnd the position to insert the new timer. In the example,

StartTimer will insert a new timer, due to expire at 10:24:01, between the second and third

elements.

The worst-case latency to start a timer is
O(n). The average latency depends on the

distribution of timer intervals (from time started to time stopped) and on the distribution of the

arrival process according to which calls to StartTimer are made.

StopTimer need not search the list if the list is doubly linked. When StartTimer inserts

a timer into the ordered list, it can store a pointer to the element. StopTimer can then use this

pointer to delete the element in O(1) time from the doubly linked list. This can be used by any

timer scheme. This is an application of P9, passing hints in layer interfaces. More precisely,

the user passes a handle to the timer in the StopTimer interface.

If this scheme is implemented by a host processor, the interrupt overhead on every

tick can be avoided if there is hardware support to maintain a single timer. The hardware

timer is set to expire at the time at which the timer at the head of the list is due to expire.

7.4 Timing Wheels



173
The hardware intercepts all clock ticks and interrupts the host only when a timer actually

expires. Unfortunately, some processor architectures do not offer this capability.

As for Space, Scheme 1 needs the minimum space possible; Scheme 2 needs O(n) extra

space for the forward and back pointers between queue elements.

A linked list is one way of implementing a priority queue. For large n, tree-based data

structures are better. These include unbalanced binary trees, heaps, post-order and end-order

trees, and leftist trees [CLR90, VD75]. They attempt to reduce the latency in Scheme 2 for

StartTimer from O(n) to O(log(n)). In Myhrhaug [Myh] it is reported that this difference is

signiﬁcant for large n and that unbalanced binary trees are less expensive than balanced binary

trees.

Unfortunately, unbalanced binary trees easily degenerate into a linear list; this can happen,

for instance, if a set of equal timer intervals is inserted. It would, however, be a good idea

to compare the performance of timing wheels against an implementation using simple binary

heaps. We will lump these algorithms together as Scheme 3: tree-based algorithms.

Thus the three simple schemes take time that is least logarithmic in the number of timers for

either StartTimer or PerTickBookkeeping. This a problem for high-speed implementations.

The next section shows how to do better.

7.4 TIMING WHEELS
The design of the ﬁrst scheme follows a common problem solving paradigm:

First solve a simpler problem, and then use the insight to solve the more complex problem.

The simpler problem we tackle ﬁrst is as follows. Suppose timers are all set for some small

interval, say, MaxInterval, and let the granularity of the timer be 1 unit. This suggests the

use of P4, bucket-sorting techniques, instead of the sorting techniques suggested by Schemes

2 and 3. However, bucket sorting is really used for static sorting of a set of numbers. Here,

new numbers keep being added and deleted, and we still want to maintain order. (In technical

algorithmic terms, the timer data structure must implement a priority queue that allows the

operations of addition, deletion, and ﬁnding the smallest element.) What is the bucket-sorting

equivalent of a priority queue?

Given this motivation, it is not hard to have the following picture (shown in Figure 7.3)

ﬂoat into the reader’s mind. Imagine that current time is represented by a pointer to an element

in a circular array with dimensions [0, MaxInterval
− 1]. On every timer tick (for per-tick

bookkeeping) we simply increment the pointer by 1 mod the size of the array.

To set a timer at j units past current time, we index (Figure 7.3) into Element i + j mod

MaxInterval and put the timer at the head of a list of timers that will expire at a time =

CurrentTime +
j units. Each tick we increment the current timer pointer ( mod MaxInterval)

and check the array element being pointed to. If the element is 0 (no list of timers waiting

to expire), then no more work is done on that timer tick. But if it is nonzero, then we do

ExpiryProcessing on all timers that are stored in that list. Thus the latency for StartTimer

is O(1); PerTickBookkeeping is O(1) except when timers expire, but this is the best possible.

If the timer lists are doubly linked and, as before, we store a pointer to each timer record, then

the latency of StopTimer is also O(1).


174


C H A P T E R 7
Maintaining Timers
Element 0

Element 1

Element i
Element i + j
Element

MAXINTERVAL – 1



Current time

List of timers to

expire at This Time

F I G U R E 7.3
Array of lists used by Scheme 4 for timer intervals up to MAXINTERVAL.

We can describe this array somewhat more picturesquely as a timing wheel, where the

wheel turns one array element every timer unit. For a secretary, this is similar to a tickler

ﬁle. For sorting experts, this is similar to a bucket sort that trades off memory for processing.

However, since the timers change value every time instant, intervals are entered as offsets

from the current time pointer. It is sufﬁcient if the current time pointer increases every time

instant.

A bucket sort sorts N elements in O(M ) time using M
buckets, since all buckets have to

be examined. This is inefﬁcient for large M
> N . In timer algorithms, however, the crucial

observation is that some entity needs to do O(1) work per tick to update the current time;

it costs only a few more instructions for the same entity to step through an empty bucket. This

is a nice example of using Principle P4 (leveraging system components) and P2c (expense

sharing).

The system is already doing some work per tick to increment time. Thus what matters when

ﬁguring out the cost of the algorithm is only the additional expense caused by the algorithm,

not the cost taken in isolation as is typically measured in algorithms classes. Note that this

assumption would be false if the system did not do some work on every clock tick and, instead,

relied on a piece of hardware to keep the time of day. What matters, unlike the sort, is not the

total amount of work to sort N elements, but the average (and worst-case) part of the work that

needs to be done per timer tick.

Still, memory is ﬁnite: It is difﬁcult to justify 232words of memory to implement 32-bit

timers. So how would you generalize this idea to larger timer values? If you haven’t seen it

before, try to come up with your own ideas before reading further.

One naive solution is to implement timers within some range using this scheme and

the allowed memory. Timers greater than this value are implemented using, say, Scheme

2. Alternatively, this scheme can be extended in two ways to allow larger values of the timer

interval with modest amounts of memory. The two techniques are motivated by two algorithmic

techniques (P15): hashing and radix sort.


Element 0

Element 1

Element 10

Element 30

Element 256



7.5 Hashed Wheels
Current time

List of timers that have

hashed into this bucket



175
F I G U R E 7.4
Array of lists used by Schemes 5 and 6 for arbitrary-size timers: basically a hash table.

7.5 HASHED WHEELS
The design of the ﬁrst extension follows a second common problem-solving paradigm:

Use analogies to derive techniques for the problem at hand from solutions to a different problem.

Many ideas ﬁrst occur by analogy, even if the analogy is not always exact. The previous

scheme has an obvious analogy to inserting an element in an array using the element value as

an index. If there is insufﬁcient memory, can we hash the element value to yield an index?

For example, if the table size is a power of 2, an arbitrary-size timer can easily be divided by

the table size; the remainder (low-order bits) is added to the current time pointer to yield the

index within the array. The result of the division (high-order bits) is stored in a list pointed to

by the index.

In Figure 7.4, let the table size be 256 and the timer be a 32-bit timer. The remainder on

division is the last 8 bits. Let the value of the last 8 bits be 20. Then the timer index is 10

(current time pointer) + 20 (remainder) = 30. The 24 high-order bits are then inserted into a

list that is pointed to by the 30th element.

Other methods of hashing are possible. For example, any function that maps a timer value

to an array index could be used. We will defend our choice at the end of Section 7.5. However,

we now come to a fork in the road for our design. Whatever hash function we use, there are

two ways to maintain each list.

The most straightforward way, which seems best until we look a little closer, is to do

Scheme 2 within each bucket. This clearly generalizes Scheme 2 while improving its perfor-

mance because each of the “little” lists should be smaller than a single list. Now for the details.

Unfortunately, its performance depends on the hash function because StartTimer can be slow

because the 24-bit quantity must be inserted into the correct place in the list. The worst-case

latency for StartTimer is still O(n).

176


C H A P T E R 7
Maintaining Timers
Assuming that a worst-case StartTimer latency of O(n) is unacceptable, we can maintain

each time list as an unordered list instead of an ordered list. At ﬁrst glance this seems like a

bad idea. We have certainly made StartTimer faster; but if lists are unordered, then it seems

that per tick we will have to do a lot more work, seemingly a bad trade-off. Let us look a little

closer, however.

Clearly, StartTimer
now has a worst-case and average latency of
O(1). PerTick-

Bookkeeping
now does take longer. Every timer tick, we increment the pointer (mod

TableSize); if there is a list there, we must decrement the high-order bits for every element in

the array, exactly as in Scheme 1. However, if the hash table has the property described earlier,

then the average size of the list will be O(1).

We can make a stronger statement about the average behavior regardless of how the

hash distributes. This is perhaps not quite so obvious. Notice that every TableSize ticks,

we decrement once all timers that are still living. Thus for n timers, we do n/TableSize work

on average per tick. If n < TableSize, then we do O(1) work on average per tick. If all n timers

hash into the same bucket, then every TableSize ticks we do O(n) work, but for intermediate

ticks we do O(1) work. What this means is that if we want to keep the per-tick work small

and bounded, we simply arrange that the number of buckets is some factor larger than the

maximum number of concurrent timers we support. We can even reduce this work as much as

we want by increasing the number of buckets. This is an example of a result about amortized
complexity, which is stronger than a result about average complexity.

Thus the hash distribution in Scheme 6 controls only the “burstiness” (variance) of the

latency of PerTickBookkeeping, not the average latency. Since the worst-case latency of

PerTickBookkeeping is always O(n) (all timers expire at the same time), we believe that the

choice of hash function for Scheme 6 is insigniﬁcant. Obtaining the remainder after dividing

by a power of 2 is cheap and, consequently, recommended. Further, using an arbitrary hash

function to map a timer value into an array index would require PerTickBookkeeping to

compute the hash on each timer tick, which would make it more expensive.

7.6 HIERARCHICAL WHEELS
The second extension of the basic scheme exploits the concept of hierarchy. To represent the

number 1000000 we need only 7 digits instead of 1000000 because we represent numbers

hierarchically in units of 1’s, 10’s, 100’s, etc. Similarly, to represent all possible timer values

within a 32-bit range, we do not need a 232-element array. Instead we can use a number of

arrays, each of different granularity. For instance, we can use four arrays as follows:

• A 100-element array in which each element represents a day

• A 24-element array in which each element represents an hour

• A 60-element array in which each element represents a minute

• A 60-element array in which each element represents a second

Thus instead of 100 * 24 * 60 * 60 = 8.64 million locations to store timers up to 100 days,

we need only 100 + 24 + 60 + 60 = 244 locations.

As an example, consider Figure 7.5. Let the current time be 11 days, 10 hours, 24 minutes,

30 seconds. Then to set a timer of 50 minutes and 45 seconds, we ﬁrst calculate the absolute


Current hour

pointer = 10



HOUR

ARRAY



Current minute

pointer = 24



MINUTE

ARRAY



7.6 Hierarchical Wheels
SECOND

ARRAY

Current second

pointer = 30



177
Timer record with remaining time = 15 minutes

and 15 seconds

F I G U R E 7.5
Hierarchical set of arrays of lists used by Scheme 7 to “map” time more efﬁciently.

time at which the timer will expire, which is 11 days, 11 hours, 15 minutes, 15 seconds. Then we

insert the timer into a list beginning 1 (11 − 10 hours) element ahead of the current hour pointer

in the hour array. We also store the remainder (15 minutes and 15 seconds) in this location.

We show this in Figure 7.5, ignoring the day array, which does not change during the example.

The seconds array works as usual: Every time the hardware clock ticks we increment the

second pointer. If the list pointed to by the element is nonempty, we do ExpiryProcessing for

elements in that list. However, the other three arrays work slightly differently.

Even if there are no timers requested by the user of the service, there will always be a

60-second timer that is used to update the minute array, a 60-minute timer to update the hour

array, and a 24-hour timer to update the day array. For instance, every time the 60-second

timer expires, we will increment the current minute timer, do any required ExpiryProcessing

for the minute timers, and reinsert another 60-second timer.

Returning to the example, if the timer is not stopped, eventually the hour timer will

reach 11. When the hour timer reaches 11, the list is examined; ExpiryProcessing will insert

the remainder of the seconds (15) in the minute array, 15 elements after the current minute

pointer(0). Of course, if the minutes remaining were zero, we could go directly to the second

array. At this point, the table will look like Figure 7.6.

Eventually, the minute array will reach the 15th element; as part of ExpiryProcessing we

will move the timer into the second array 15 seconds after the current value. Fifteen seconds

later, the timer will actually expire, at which point the user-speciﬁed ExpiryProcessing
is

performed.

The choice between Scheme 6 and Scheme 7 is tricky. For small values of
T
and

large values of
M , Scheme 6 can be better than Scheme 7 for both StartTimer
and

PerTickBookkeeping. However, for large values of T
and small values of M , Scheme 7 will

have a better average cost (latency) for PerTickBookkeeping but a greater cost for StartTimer

latency.

Observe that if the timer precision is allowed to decrease with increasing levels in the

hierarchy, then we need not migrate timers between levels. For instance, in our earlier example


178


C H A P T E R 7
Maintaining Timers
HOUR

ARRAY

Current minute

pointer = 0

Current hour

pointer = 11

Element 15



MINUTE

ARRAY



Current second

pointer = 0



SECOND

ARRAY

Timer record with remaining time = 15 seconds

F I G U R E 7.6
The previous example, but after the hour component of the timer expires (using

Scheme 7).

we would round off to the nearest hour and only set the timer in hours. When the hour

timer goes off, we do the user-speciﬁed ExpiryProcessing without migrating to the minute

array. Essentially, we now have different timer modes, one for hour timers, one for minute

timers, etc. This reduces PerTickBookkeeping
overhead further, at the cost of a loss in

precision of up to 50% (e.g., a timer for 1 minute and 30 seconds that is rounded to 1 minute).

Alternatively, we can improve the precision by allowing just one migration between adjacent

lists.

7.7 BSD IMPLEMENTATION
Adam Costello has implemented [CV98b] a new version of the BSD UNIX callout and timer

facilities. Current BSD kernels take time proportional to the number of outstanding timers to

set or cancel timers. The new implementation, which is based on Scheme 6, takes constant

time to start, stop, and maintain timers; this leads to a highly scalable design that can support

thousands of outstanding timers without much overhead.

In the existing BSD implementation, each callout is represented by a callout structure

containing a pointer to the function to be called (c_func), a pointer to the function’s argument

(c_arg), and a time (c_time) expressed in units of clock ticks. Outstanding callouts are kept

in a linked list, sorted by their expiration times. The c_time member of each callout structure

is differential, not absolute — the ﬁrst callout in the list stores the number of ticks from now

until expiration, and each subsequent callout in the list stores the number of ticks between its

own expiration and the expiration of its predecessor.

In BSD UNIX, callouts are set and canceled using timeout() and untimeout(), respec-

tively.
timeout(func,
arg,
time)
registers
func(arg)
to be called at the speciﬁed time.

untimeout(func, arg)
cancels the callout with matching function and argument. Because

the calltodo list must be searched linearly, both operations take time proportional to the

number of outstanding callouts. Interrupts are locked out for the duration of the search.

7.8 Obtaining Fine-Granularity Timers


179
The Costello implementation is based on Scheme 6. Unfortunately, the existing time-

out()/untimeout() interface in BSD does not allow the passing of handles, which was used

in all our schemes to quickly cancel a timer. The Costello implementation used two solutions

to this problem. For calls using the existing interface, a search for a callout given a function

pointer and argument is done using a hash table. A second solution was also implemented:

A new interface function was deﬁned for removing a callout (unsetcallout()) that takes a

handle as its only argument. This allows existing code to use the old interface and new appli-

cations to use the new interface. The performance difference between these two approaches

appears to be slight, so the hash table approach appears to be preferable.

In the new implementation, the timer routines are guaranteed to lock out interrupts only

for a small, bounded amount of time. The new implementation also extends the setitimer()

interface to allow a process to have multiple outstanding timers, thereby reducing the need

for users to maintain their own timer packages. The changes to the BSD kernel are small (548

lines of code added, 80 removed) and are available on the World Wide Web. The details of

this new implementation are described elsewhere [CV98b]; the written report contains several

important implementation details that are not given here.

7.8 OBTAINING FINE-GRANULARITY TIMERS
As networks grow faster, one might expect retransmission timers to grow smaller as round-

trip delays to destinations decrease. If round-trip delays fall to microseconds, it makes sense

to expect the retransmit timers to fall to microseconds as well. Unfortunately, with the BSD

approach, one is stuck with a 200-msec timer even when round-trip delays fall to microseconds.

The use of a timing wheel by TCP can allow ﬁner-granularity retransmission timers. But the

timers can still be no smaller than the granularity of the timer tick, which is typically 1 msec.

Thus timer granularity on most systems is rarely ﬁner than 1 msec.

Now many CPUs provide a programmable hardware interrupt chip that can be programmed

to interrupt the CPU at a desired frequency. For example, most Pentium CPUs come with an

Intel 8253 timer chip. Thus an apparently simple method to improve timer resolution is to

increase the frequency of the clock interrupt to, say, 100 kHz. Together with the use of a

timing wheel, this would appear to provide timer granularities in the order of 10 µsec.

Unfortunately, there is a ﬂaw in the argument. As we have argued in the model section,

modern CPUs tend to keep a lot of state to speed up processing. This includes pipeline state,

the use of a large number of registers, and caches and TLBs. An interrupt causes high overhead,

because it involves the saving and restoring of CPU state, and can cause changes to locality

patterns that result in cache and TLB misses after exiting the interrupt handler. Measurements

in Aron and Druschel [AD99] show that the cost of an interrupt on a 300- or 500-Mhz Pentium is

around 4.5 µsec. Worse, as processors get faster there is no indication that interrupt processing

times will improve.

Thus having a hardware interrupt every 100 kHz will result in roughly 45% overhead

merely for responding to interrupts! Since this is clearly infeasible, we must look for a better

idea. As the problem is deﬁned, considering the timer module as a black box leaves us no way

out. However, systems thinking provides a solution to our dilemma by considering principle

P4 again and leveraging off other system components. Observe that the life of a CPU is chock

full of other kinds of transition events that involve state saving and restoring and changes in

180


C H A P T E R 7
Maintaining Timers
locality patterns. Such transition events include system calls (e.g., a call to a device handler),

exceptions (e.g., a page fault), and hardware interrupts (e.g., an interrupt from the network

adaptor).

If we place a check for expired timers as part of the code for such transition events, the

overhead for state saving and locality changes is already part of the transition event and is not

increased signiﬁcantly by the timer handler. This is good. Unfortunately, unlike the hardware

clock interrupt, the frequency of transition events is unpredictable. This is bad.

Still, it is worthwhile experimenting with a real CPU and measuring the distribution of

the times between transition events. Experiments over a wide range of benchmarks in Aron

and Druschel [AD99] show that the mean delay between transition events varies from 5 to

30 µsec, depending on what the CPU is running, that delays over 100 µsec occur in only 6%

of the cases, and that the maximum delay never exceeded 1 msec.

The data suggests an interesting use of
P3, relaxing system requirements. Instead of

providing a “hard” timer facility that always provides microsecond timers, we provide a “soft”
timer [AD99] facility that often provides 10-µsec timers. We can also bound the error of the

soft timer facility by adding a hardware clock interrupt every 1 msec. Thus soft timers are

useful for applications that can beneﬁt from an expected case (P11) of tens of microseconds

and a worst case of 1 msec.

Fortunately, a large fraction of applications that use timers can beneﬁt from such

approximate timers. Consider failure recovery, for example, fast retransmission. If most

retransmissions are fast except for the occasional retransmission that takes 1 msec, failure

performance will improve. Also, consider algorithms where the rate of production of some

entity is being controlled. As long as the algorithm correctness can tolerate variability or jit-

ter in the rate, performance should improve in the expected case. For example, Aron and

Druschel [AD99] show how a TCP connection can be rate controlled to send packets roughly

every 12 µsec. The ﬁner rate control decreases the burstiness of the data, but deviations in the

rate do not affect correctness.

It is also tempting to speculate that the right way to handle microsecond, or even nanosec-

ond, timers is to add hardware (P5). Such hardware could be in the form of a timer chip that

completely handles all timers within the chip using timing wheels or a d-heap. Thus the chip has

an internal hardware clock, and the hardware clock interrupt is ﬁelded within the chip; the CPU

is interrupted only when a timer expires. However, if timers are frequently cancelled, there

can be considerable overhead for the CPU to cancel timers by communicating with the chip.

7.9 CONCLUSIONS
This chapter describes two techniques for efﬁcient timer implementation. The ﬁrst technique,

timing wheels, reduces the overhead of a timer implementation to constant time, regardless of

the number of outstanding timers. This allows a timer facility to provide a very large number

of timers, a useful feature for today’s Internet servers, which sometimes service thousands of

concurrent clients. The second technique, soft timers, reduces the operating system overhead

incurred by PerTickBookkeeping. This allows a timer facility to provide ﬁne-grained timers

in the expected case, a useful feature as Internet link speeds increase. The principles used

within these two schemes are summarized in Figure 7.1.

When timing wheels were ﬁrst described [VL87], they were generally considered as

solving a useless problem. As one system designer put it at the time, “If it ain’t broke, why

7.10 Exercises



181
ﬁx it?” — a valid question. It helps, however, to think of schemes for problems that you

project will appear in the future. The following information is taken from Justin Gibbs, a key

implementor of FreeBSD, though its references to actual product use may be dated.

The scalability of FreeBSD is tested daily on the Internet. Yahoo! serves all of its content

through 500 FreeBSD servers distributed throughout the world. Hotmail, the largest provider

of Web-based e-mail services, initially used FreeBSD for both e-mail routing and Web services.

Thousands of ISPs, including two of the largest ISPs in the nation, Best Internet and USWest,

rely on FreeBSD to provide Internet news services, packet routing, Web hosting, and shell

services for their users. Not only does FreeBSD perform well for its installed base of over a

million desktop users, but it has also proven itself in some of the most demanding applications

on the Internet.

FreeBSD has achieved its scalability through continuous attention to system performance.

In the latter half of 1997, it became apparent that the timer services used in the FreeBSD

kernel would soon became a bottleneck for system throughput. Timer events are employed

in several applications that require per-transaction, time-based, notiﬁcations. As the number

and/or frequency of transactions is scaled higher, the load on the timer interface increases

linearly. As an example, the FreeBSD kernel schedules a “watch dog” timer for every disk

transaction, which, if ﬁred, initiates error recovery actions. On a typical server machine,

over 15% of the CPU was consumed by timer event scheduling under a modest load of 250

concurrent disk transactions. Analysis of the algorithms employed by the old timer interfaces

showed that the CPU load would rise linearly with the number of concurrent transactions.

System scalability was compromised.

After ﬁnding a bug in the Costello implementation that he ﬁxed, Justin Gibbs implemented

Hashed Wheels in FreeBSD. Justin’s implementation reduced timer overhead in the FreeBSD

benchmarks to a fraction of a percent of total CPU usage. The new algorithm also ensures

near constant overhead regardless of the transactional load, guaranteeing that the timer facility

will scale to many thousands of transactions with ease. Many other operating systems, such

as Linux, now use the same idea, as do most real-time operating systems, including ones used

in routers. Attention to algorithmics can bear fruit in the long run.

7.10 EXERCISES
1. Better Hash Functions: Currently hashed wheels use a very simple and primitive hash

function (low-order bits). Find a way to use your favorite hash function to do hashed

wheels. (Hint: Consider working with absolute time and not relative time.) What

particular aspect of performance of a timer module would a better hash function improve?

(This idea is due to Travis Newhouse.)

2. Hierarchical Wheels versus Hashed Wheels and Heaps: Current implementations of

timing wheels use hashed wheels.

• What is one possible advantage of hierarchical wheels over hashed wheels? Can you

quantify the difference precisely?

• Suppose we do hierarchical wheels by dividing a 32-bit timer into four chunks of 8 bits

apiece. What is the difference between such a timing wheel and a 256-way d-heap?

When might the heap be a better solution?


C H A P T E R 8
Demultiplexing
Biologically the species is the accumulation of the experiments of all its successful
individuals since the beginning.
— H. G. Wells

A protocol, like a copy center or an ice cream parlor, should be able to serve multiple clients.

The clients of a protocol could be end users (as in the case of the ﬁle transfer protocol), software

programs (for example, when the tool traceroute uses the Internet protocol), or even other

protocols (as in the case of the email protocol SMTP, which uses TCP).

Thus when a message arrives, the receiving protocol must dispatch the received message

to the appropriate client. This function is called demultiplexing. Demultiplexing is an integral

part of data link, routing, and transport protocols. It is a fundamental part of the abstract

protocol model of Chapter 2.

Traditionally, demultiplexing is done layer by layer using a demultiplexing ﬁeld contained

in each layer header of the received message. Called layered demultiplexing, this is shown in

Figure 8.1. For example, working from bottom to top in the picture, a packet may arrive on

the Ethernet at a workstation. The packet is examined by the Ethernet driver, which looks at

a so-called protocol type ﬁeld to decide what routing protocol (e.g., IP, IPX) is being used.

Assuming the type ﬁeld speciﬁes IP, the Ethernet driver may upcall the IP software.

After IP processing, the IP software inspects the protocol ID ﬁeld in the IP header to

determine the transport protocol (e.g., TCP or UDP?). Assuming it is TCP, the packet will

be passed to the TCP software. After doing TCP processing, the TCP software will examine

the port numbers in the packet to demultiplex the packet to the right client, say, to a process

implementing HTTP.

Traditional demultiplexing is fairly straightforward because each layer essentially does

an exact match on some ﬁeld or ﬁelds in the layer header. This can be done easily, using, say,

hashing, as we describe in Chapter 10. Of course, the lookup costs add up at each layer.

By contrast, this chapter concentrates on early demultiplexing, which is a much more

challenging task at high speeds. Referring back to Figure 8.1, early demultiplexing deter-

mines the entire
path
of protocols taken by the received packet in one operation, when

the packet ﬁrst arrives. In the last example, early demultiplexing would determine in one

fell swoop that the path of the Web packet was Ethernet, IP, TCP, Web. A possibly better

term is delayered demultiplexing. However, this book uses the more accepted name of early

demultiplexing.

182

UDP



protocol ID

IP



port

TCP



C H A P T E R 8
Demultiplexing
OSI?



183
(type)

Ethernet

F I G U R E 8.1
Traditional layered demultiplexing has each layer demultiplex a packet to the next layer

software above using a ﬁeld in the layer header.

Number
P9
P1
P4c


Principle
Pass header specifications from user to kernel

Use CFG to avoid unnecessary tests

Use a register-based specification language



Used In
CSPF

BPF

P15


Factor common checks using a generalized trie
Pathfinder

P2

Specialize code when classifier is modified


DPF

F I G U R E 8.2
Principles used in the various demultiplexing techniques discussed in this chapter.

This chapter is organized as follows. Section 8.1 delineates the reasons for early demulti-

plexing, and Section 8.2 outlines the goals of an efﬁcient demultiplexing solution. The rest of

the chapter studies various implementations of early demultiplexing. The chapter starts with

the pioneering CMU/Stanford packet ﬁlter (Section 8.3), moves on to the commonly used

Berkeley packet ﬁlter (Section 8.4), and ends with more recent proposals, such as Pathﬁnder

(Section 8.5) and DPF (Section 8.6).

The demultiplexing techniques described in this chapter (and the corresponding principles

used) are summarized in Figure 8.2.

Q u i c k R e f e r e n c e G u i d e
The Berkeley packet ﬁlter (BPF) is freely available. However, other demultiplexing algorithms are more

efﬁcient. The implementor who wishes to design a demultiplexing routine should consider PathFinder,

described in Section 8.5. While dynamic packet ﬁlter (DPF, see Section 8.6) is even faster, many

implementors may ﬁnd the need for dynamic code generation in DPF to be an obstacle.

184


C H A P T E R 8
Demultiplexing
8.1 OPPORTUNITIES AND CHALLENGES OF EARLY DEMULTIPLEXING
Why is early demultiplexing a good idea? The following basic motivations were discussed in

Chapter 6.

•
Flexible User-Level Implementations: The original reason for early demultiplexing was to

allow ﬂexible user-level implementation of protocols without excessive context switching.

•
Efﬁcient User-Level Implementations: As time went on, implementors realized that early

demultiplexing could also allow efﬁcient user-level implementations by minimizing the

number of context switches. The main additional trick was to structure the protocol

implementation as a shared library that can be linked to application programs.

However, there are other advantages of early demultiplexing.

•
Prioritizing Packets: Early demultiplexing allows important packets to be prioritized and

unnecessary ones to be discarded quickly. For example, Chapter 6 shows that the problem

of receiver livelock can be mitigated by early demultiplexing of received packets to place

packets directly on a per-socket queue. This allows the system to discard messages for

slow processes during overload while allowing better behaved processes to continue

receiving messages. More generally, early demultiplexing is crucial in providing quality-

of-service guarantees for trafﬁc streams via service differentiation. If all trafﬁc is de-

multiplexed into a common kernel queue, then important packets can get lost when the

shared buffer ﬁlls up in periods of overload. Routers today do packet classiﬁcation for

similar reasons (Chapters 12 and 14). Early demultiplexing allows explicit scheduling

of the processing of data ﬂows; scheduling and accounting can be combined to prevent

anomalies such as priority inversion.

•
Specializing Paths: Once the path for a packet is known, the code can be specialized to

process the packet because the wider context is known. For example, rather than have each

layer protocol check for packet lengths, this can be done just once in the spirit of P1,

avoiding obvious waste. The philosophy of paths is taken to its logical conclusion in

Mosberger and Peterson [MP96], who describe an operating system in which paths are

ﬁrst-class objects.

•
Fast Dispatching: This chapter and Chapter 6 have already described an instance of this

idea using packet ﬁlters and user-level protocol implementations. Early demultiplexing

avoids per-layer multiplexing costs; more importantly, it avoids the control overhead that

can sometimes be incurred in delayered multiplexing.

8.2 GOALS
If early demultiplexing is a good idea, is it easy to implement? Early demultiplexing is partic-

ularly easy to implement if each packet carries some information in the outermost (e.g., data

link or network) header, which identiﬁes the ﬁnal endpoint. This is an example of P14, passing

information in layer headers. For example, if the network protocol is a virtual circuit protocol

such as ATM, the ATM virtual circuit identiﬁer (VCI) can directly identify the ﬁnal recipient

of the packet.

8.3 CMU/Stanford Packet Filter: Pioneering Packet Filters


185
However, protocols such as IP do not offer such a convenience. MPLS does offer this

convenience, but MPLS is generally used only between routers, as described in Chapter 11.

Even using a protocol such as ATM, the number of available VCIs may be limited. In lieu of a

single demultiplexing ﬁeld, more complex data structures are needed that we call packet ﬁlters
or packet classiﬁers.

Such data structures take as input a complete packet header and map the input to an end-

point or path. Intuitively, the endpoint of a packet represents the receiving application process,

while the path represents the sequence of protocols that need to be invoked in processing the

packet prior to consumption by the endpoint. Before describing how packet ﬁlters are built,

here are the goals of a good early-demultiplexing algorithm.

•
Safety: Many early-demultiplexing algorithms are implemented in the kernel based on

input from user-level programs. Each user program P speciﬁes the packets it wishes to

receive. As with Java programs, designers must ensure that incorrect or malicious users

cannot affect other users.

•
Speed: Since demultiplexing is done in real time, the early-demultiplexing code should

run quickly, particularly in the case where there is only a single ﬁlter speciﬁed.

•
Composability: If N user programs specify packet ﬁlters that describe the packets they

expect to receive, the implementation should ideally compose these N individual packet

ﬁlters into a single composite packet ﬁlter. The composite ﬁlter should have the property

that it is faster to search through the composite ﬁlter than to search each of the N ﬁlters

individually, especially for large N .

This chapter takes a mildly biological view, describing a series of packet ﬁlter species, with

each successive adaptation achieving more of the goals than the previous one. Not surprisingly,

the earliest species is nearly extinct, though it is noteworthy for its simplicity and historical

interest.

8.3 CMU/STANFORD PACKET FILTER: PIONEERING PACKET FILTERS
The CMU/Stanford packet ﬁlter (CSPF) [MRA87] was developed to allow user-level protocol

implementations in the Mach operating system. In the CSPF model, application programs

provide the kernel with a program describing the packets they wish to receive. The program

supplied by A operates on a packet header and returns true if the packet should be routed

to application A. Like the old Texas Instrument calculators, the programming language is a

stack-based implementation of an expression tree model.

As shown in Figure 8.3, the leaves of the tree represent simple test predicates on packet

headers. An example of a test predicate is equality comparison with a ﬁxed value; for example,

in Figure 8.3, ETHER.TYPE = ARP represents a check of whether the Ethernet type ﬁeld in

the received packet matches the constant value speciﬁed for ARP (address resolution protocol)

packets. The other nodes in the tree represent boolean operations such as AND and OR.

Thus the left subtree of the expression tree in Figure 8.3 represents any ARP packet sent

from source IP address X, while the right subtree represents any IP packet sent from source IP

address X. Since the root represents an OR operation, the overall tree asks for all IP or ARP

packets sent by a source X. Such an expression could be provided by a debugging tool to the

kernel on behalf of a user who wished to examine IP trafﬁc coming from source X.


186


C H A P T E R 8
Demultiplexing
4 Compares

4 Booleans

AND



OR



All IP and ARP

packets from X

AND

ARP.SRC

= X



ETHER.TYPE

= ARP



IP.SRC

= X



ETHER.TYPE

= IP

F I G U R E 8.3
The CMU/Stanford packet ﬁlter (CSPF) allows applications to provide programs that

specify an expression tree representing the packets they wish to receive. The tree shown here effectively

asks for all IP and ARP packets sent by IP source address X.

While the expression tree model provides a
declarative model of a ﬁlter, such ﬁlters

actually use an
imperative
stack-based language to describe expression trees. To provide

safety, CSPF provides stack instructions of limited power; to bound running times there are no

jumps or looping constructs. Safety is also achieved by checking program loads and stores in

real time to eliminate wild memory references. Thus stack references are monitored to ensure

compliance with the stack range, and references to packets are vetted to ensure they stay within

the length of the packet being demultiplexed.

8.4 BERKELEY PACKET FILTER: ENABLING HIGH-PERFORMANCE MONITORING
CSPF guarantees security by using instructions of limited power and by doing run-time bounds

checking on memory accesses. However, CSPF is not composable and has problems with

speed. The next mutation in the design of packet ﬁlters occurred with the introduction of the

Berkeley packet ﬁlter (BPF) [MJ93].

The BPF designers were particularly interested in using BPF as a basis for high-

performance network-monitoring tools such as
tcpdump, for which speed was crucial.

They noted two speed problems with the use of even a single CSPF expression tree of the

kind shown in Figure 8.3

•
Architectural Mismatch: The CSPF stack model was invented for the PDP-11 and hence is

a poor match to modern RISC architectures. First, the stack must be simulated at the price

of an extra memory reference for each Boolean operation to update the stack pointer.

Second, RISC architectures gain efﬁciency from storing variables in fast registers and

doing computation directly from registers. Thus to gain efﬁciency in a RISC architecture,

as many computations as possible should take place using a register value before it is

reused. For instance, in Figure 8.3, the CSPF model will result in two separate loads from

memory for each reference to the Ethernet type ﬁeld (to check equality with ARP and IP).

On modern machines, it would be better to reduce memory references by storing the type

ﬁeld in a register and ﬁnishing all comparisons with the type ﬁeld in one fell swoop.

8.4 Berkeley Packet Filter: Enabling High-Performance Monitoring
•
Inefﬁcient Model: Even ignoring the extra memory references required by CSPF, the

expression tree model often results in more operations than are strictly required. For



187
example, in Figure 8.3, notice that the CSPF expression takes four comparisons to evaluate

all the leaves. However, notice that once we know that the Ethernet type is equal to ARP

(if we are evaluating from left to right), then the extra check for whether the IP source

address is equal to X is redundant (Principle P1, seek to avoid waste). The main problem is

that in the expression tree model there is no way to “remember” packet parse state as the

computation progresses. This can be ﬁxed by a new model that builds a state machine.

CSPF had two other minor problems. It could only parse ﬁelds at ﬁxed offsets within

packet headers; thus it could not be used to access a TCP header encapsulated within an IP

header, because this requires ﬁrst parsing the IP header-length ﬁeld. CSPF also processes

headers using only 16-bit ﬁelds; this doubles the number of operations required for 32-bit

ﬁelds such as IP addresses.

The Berkeley packet ﬁlter (BPF) ﬁxes these problems as follows. First, it replaces the

stack-based language with a register-based language, with an indirection operator that can

help parse TCP headers. Fields at speciﬁed packet offsets are loaded into registers using a

command such as “LOAD [12]”, which loads the Ethernet type ﬁeld, which happens to start

at an offset of 12 bytes from the start of an Ethernet packet.

BPF can then do comparisons and jumps such as “JUMP_IF_EQUAL ETHERTYPE_IP,

TARGET1, TARGET2”. This instruction compares the accumulator register to the IP Ethernet

type ﬁeld; if the comparison is true, the program jumps to line number TARGET1; otherwise

it jumps to TARGET2. BPF allows working in 8-, 16-, and 32-bit chunks.

More fundamentally, BPF uses a control ﬂow graph
model of computation, as illus-

trated in Figure 8.4. This is basically a state machine starting with a root, whose state is

updated at each node, following which it transitions to other node states, shown as arcs to

other nodes. The state machine starts off by checking whether the Ethernet type ﬁeld is that

of IP; if true, it need only check whether the IP source ﬁeld is X
to return true. If false,

it needs to check whether the Ethernet type ﬁeld is ARP and whether the ARP source is X.

Notice that in the left branch of the state machine we do not check whether the IP source

address is X. Thus the worst-case number of comparisons is 3 in Figure 8.4, compared to 4 in

Figure 8.3.

The Berkeley packet ﬁlter is used as a basis for a number of tools, including the well-

known tcpdump tool by which users can obtain a readable transcript of TCP packets ﬂowing

on a link. BPF is embedded into the BSD kernel as shown in Figure 8.5.

When a packet arrives on a network link, such as an Ethernet, the packet is processed

by the appropriate link-level driver and is normally passed to the TCP/IP protocol stack for

processing. However, if BPF is active, BPF is ﬁrst called. BPF checks the packet against

each currently speciﬁed user ﬁlter. For each matching ﬁlter, BPF copies as many bytes as are

speciﬁed by the ﬁlter to a per-ﬁlter buffer. Notice that multiple BPF applications can cause

multiple copies of the same packet to be buffered. The ﬁgure also shows another common BPF

application besides tcpdump, the reverse ARP demon (rarpd).

There are two small features of BPF that are also important for high performance. First,

BPF ﬁlters packets before buffering, which avoids unnecessary waste (P1) when most of the

received packets are not wanted by BPF’s applications. The waste is not just memory for

buffers but also for the time required to do a copy (Chapter 5).


188


C H A P T E R 8
Demultiplexing


ETHER.TYPE

= IP

F
T
ETHER.TYPE

= ARP

T


3 Compares

IP.SRC

= X
ARP.SRC

= X
F I G U R E 8.4
The Berkeley packet ﬁlter uses a state machine or control ﬂow graph as its underlying

model, which enables it to avoid redundant comparisons when compared to Figure 8.3.

BPF



TCPDUMP

Buffer

Filter



rarpd

Buffer

Filter

Link-level

driver



TCP/IP

Protocol stack

Link-level

driver



USER

KERNEL

KERNEL

NETWORK

F I G U R E 8.5
Packets arriving on a link are sent to both BPF (for potential logging) and the protocol

stack (for normal protocol processing). BPF applies all currently speciﬁed ﬁlters and queues the packet

to the appropriate buffer if the ﬁlter indicates a match.

Second, since packets can arrive very fast and the read() system call is quite slow, BPF

allows batch processing (P2c) and allows multiple packets to be returned to the monitoring

application in one call. To handle this and yet allow packet boundaries to be distinguished, BPF

adds a header to each packet that includes a time stamp and length. Users of tcpdump do not

have to use this interface; instead, tcpdump offers a more user-friendly interface: Interface

commands are compiled to BPF instructions.

8.5 Pathﬁnder: Factoring out Common Checks
8.5 PATHFINDER: FACTORING OUT COMMON CHECKS



189
BPF is a more reﬁned adaptation than CSPF becauses it increases speed for a single ﬁlter.

However, every packet must still be compared with each ﬁlter in turn. Thus the processing

time grows with the number of ﬁlters. Fortunately, this is not a problem for typical BPF usage.

For example, a typical Tcpdump application may provide only a few ﬁlters to BPF.

However, this is not true if early demultiplexing is used to discriminate between a large

number of packet streams or paths. In particular, each TCP connection may provide a ﬁlter,

and the number of concurrent TCP connections in a busy server can be large. The need to

deal with this change in environment (user-level networking) led to another successful muta-

tion, called Pathﬁnder [BGP+94]. Pathﬁnder goes beyond BPF by providing composability.

This allows scaling to a large number of users.

To motivate the Pathﬁnder solution, imagine there are 500 ﬁlters, each of which is exactly

the same (Ethernet type ﬁeld is IP, IP protocol type is TCP) except that each speciﬁes a different

TCP port pair. Doing each ﬁlter sequentially would require comparing the Ethernet type of the

packet 500 times against the (same) IP Ethernet type ﬁeld and comparing the IP protocol ﬁeld

500 times against the (same) TCP protocol value. This is wasteful (P1).

Next, comparing the TCP port numbers in the packet to each of the 500 port pairs speciﬁed

in each of the 500 ﬁlters is not obvious waste. However, this is exactly analogous to a linear

search for exact matching. This suggests that integrating all the individual ﬁlters into a single

composite ﬁlter can considerably reduce unnecessary comparisons when the number of individ-

ual ﬁlters is large. Speciﬁcally, this can be done using hashing (P15, using efﬁcient data struc-

tures) to perform exact search; this can replace 500 comparisons with just a few comparisons.

A data structure for this purpose is shown in Figure 8.6. The basic idea is to superimpose

the CFGs for each ﬁlter in BPF so that all comparisons on the same ﬁeld are placed in a single

node. Finally, each node is implemented as a hash table containing all comparison values to

replace linear search with hashing.

Figure 8.6 shows an example with at least four ﬁlters, two of which specify TCP packets

with destination port numbers 2 and 5; for now ignore the dashed line to TCP port 17, which

will be used as an example of ﬁlter insertion in a moment. Besides the TCP ﬁlters, there are

one or more ﬁlters that specify ARP packets and one or more ﬁlters that specify packets that

use the OSI protocol.

The root node corresponds to the Ethernet type ﬁeld; the hash table contains values for

each possible Ethernet type ﬁeld value used in the ﬁlters. Each node entry has a value and

a pointer. Thus the ARP entry points to nodes that further specify what type of ARP packets

must be received; the OSI entry does likewise. Finally, the Ethernet type ﬁeld corresponding

to IP points to a node corresponding to the IP protocol ﬁeld.

In the IP protocol ﬁeld node, one of the values corresponding to TCP (which has value

6) will point to the TCP node. In the TCP node, there are three values pointing to the three

possible destination port values of 2 and 5 (recall that the 17 has not been inserted yet). When

a TCP packet arrives, demultiplexing proceeds as follows.

Search starts at the root, and the Ethernet type ﬁeld is hashed to ﬁnd a matching value

corresponding to IP. The pointer of this value leads to the IP node, where the IP protocol type

ﬁeld is hashed to ﬁnd a matching value corresponding to TCP. The value pointer leads to the

TCP node, where the destination port value in the packet is hashed to lead to the ﬁnal matching

ﬁlter.


190


C H A P T E R 8
Demultiplexing
IP cells

TCP cells

Port
Port
Port

2
5
17



Ethernet cells

ARP

OSI

Add branches after best matching

prefix when adding new filter.

F I G U R E 8.6
The Pathﬁnder data structure integrates several versions of the BPF control ﬂow graph

integrated into a composite structure. In the composite structure all the different ﬁeld values speciﬁed

in different ﬁlters for a given header ﬁeld are placed in a single node. Rather than search these values

linearly, the header ﬁeld values are placed in a hash table.

The Pathﬁnder data structure has a strong family resemblance to a common data structure

called a trie, which is more fully described in Chapter 11. Brieﬂy, a trie is a tree in which

each node contains an array of pointers to subtries; each array contains one pointer for each

possible value of a ﬁxed-character alphabet.

To search the trie for a keyword, the keyword is broken into characters, and the
ith

character is used to index into the ith node on the path, starting with the root. Searching in

this way at node i yields a pointer that leads to node i + 1, where search continues recursively.

One can think of the Pathﬁnder structure as generalizing a trie by using packet header ﬁelds

(e.g., Ethernet type ﬁeld) as the successive characters used for search and by using hash tables

to replace the arrays at each node.

It is well known that tries provide fast insertions of new keys. Given this analogy, it is

hardly surprising that Pathﬁnder has a fast algorithm to insert or delete a ﬁlter. For instance,

consider inserting a new ﬁlter corresponding to TCP port 17. As in a trie, the insert algorithm

starts with a search for the longest matching preﬁx (Chapter 11) of this new ﬁlter.

This longest match corresponds to the path Ethernet Type = IP and IP Protocol =

TCP. Since this path has already been created by the other two TCP ﬁlters, it need not be

replicated. The insertion algorithm only has to add branches (in this case, a single branch)

corresponding to the portion of the new ﬁlter beyond the longest match. Thus the hash table

in the TCP node need only be updated to add a new pointer to the port 17 ﬁlter.

More precisely, the basic atomic unit in Pathﬁnder is called a cell. A cell speciﬁes a ﬁeld

of bits in a packet header (using an offset, length, and a mask), a comparison value, and a

pointer. For example, ignoring the pointer, the cell that checks whether the IP protocol ﬁeld is

8.5 Pathﬁnder: Factoring out Common Checks



191
TCP is (9, 1, 0xff, 6) — the cell speciﬁes that the ninth byte of the IP header should be masked

with all 1’s and compared to the value 6, which speciﬁes TCP.

Cells of a given user are strung together to form a pattern for that user. Multiple patterns

are superimposed to form the Pathﬁnder trie by not recreating cells that already exist. Finally,

multiple cells that specify identical bit ﬁelds but different values are coalesced using a hash

table.

Besides using hash tables in place of arrays, Pathﬁnder also goes beyond tries by making

each node contain arbitrary code. In effect, Pathﬁnder recognizes that a trie is a specialized

state machine that can be generalized by performing arbitrary operations at each node in the

trie. For instance, Pathﬁnder can handle fragmented packets by allowing loadable cells in

addition to the comparison cells described earlier. This is required because for a fragmented

packet only the ﬁrst fragment speciﬁes the TCP headers; what links the fragments together is

a common packet ID described in the ﬁrst fragment.

Pathﬁnder handles fragmentation by placing an additional loadable cell (together with the

normal IP comparison cell specifying, say, a source address) that is loaded with the packet ID

after the ﬁrst fragment arrives. A cell is speciﬁed as loadable by not specifying the comparison

value in a cell.

The loadable cell is not initially part of the Pathﬁnder trie but is instead an attribute of the

IP cells. If the ﬁrst fragment matches, the loaded cell is inserted into the Pathﬁnder trie and

now matches subsequent fragments based on the newly loaded packet ID. After all fragments

have been removed, this newly added cell can be removed. Finally, Pathﬁnder handles the

case when the later fragments arrive before the ﬁrst fragment by postponing their processing

until the ﬁrst fragment arrives.

Although Pathﬁnder has been described so far as a tree, the data structure can be generalized

to a directed acyclic graph (DAG). A DAG allows two different ﬁlters to initially follow

different paths through the Pathﬁnder graph and yet come together to share a common path

sufﬁx. This can be useful, for instance, when providing a ﬁlter for TCP packets for destination

port 80 that can be fragmented or unfragmented. While one needs a separate path of cells to

specify fragmented and unfragmented IP packets, the two paths can point to a common set of

TCP cells.

Finally, Pathﬁnder also allows the use of OR links that lead from a cell. The idea is that

each of the OR links specify a value, and each of the OR links is checked to ﬁnd a value that

matches and then that link is followed.

In order to prioritize packets during periods of congestion, as in Chapter 6, the demul-

tiplexing routine must complete in the minimum time it takes to receive a packet. Software

implementations of Pathﬁnder are fast but are typically unable to keep up with line speeds. For-

tunately, the Pathﬁnder state machine can be implemented in hardware to run at line speeds.

This is analogous to the way IP lookups using tries can be made to work at line speeds

(Chapter 11).

The hardware prototype described in Bailey et al. [BGP+94] trades functionality for speed.

It works in 16-bit chunks and implements only the most basic cell functions; it does, however,

implement fragmentation in hardware. The limited functionality implies that the Pathﬁnder

hardware can only be used as a cache to speed up Pathﬁnder software that handles the less

common cases. A prototype design running at 100 MHz was projected to take 200 nsec to

process a 40-byte TCP message, which is sufﬁcient for 1.5 Gbps. The design can be scaled to

192


C H A P T E R 8
Demultiplexing
higher wire speeds using faster clock rates, faster memories, and a pipelined traversal of the

state machine.

8.6 DYNAMIC PACKET FILTER: COMPILERS TO THE RESCUE
The Pathﬁnder story ends with an appeal to hardware to handle demultiplexing at high speeds.

Since it is unlikely that most workstations and PCs today can afford dedicated demultiplexing

hardware, it appears that implementors must choose between the ﬂexibility afforded by early

demultiplexing and the limited performance of a software classiﬁer. Thus it is hardly surprising

that high-performance TCP [CJRS89], active messages [vCGS92], and Remote Procedure Call

(RPC) [TNML93] implementations use hand-crafted demultiplexing routines.

Dynamic packet ﬁlter [EK96] (DPF) attempts to have its cake (gain ﬂexibility) and eat it

(obtain performance) at the same time. DPF starts with the Pathﬁnder trie idea. However, it

goes on to eliminate indirections and extra checks inherent in cell processing by recompiling
the classiﬁer into machine code each time a ﬁlter is added or deleted. In effect, DPF produces

separate, optimized code for each cell in the trie, as opposed to generic, unoptimized code that

can parse any cell in the trie.

DPF is based on dynamic code generation technology [Eng96], which allows code to be

generated at run time instead of when the kernel is compiled. DPF is an application of Principle

P2, shifting computation in time. Note that by run time we mean classiﬁer update time and

not packet processing time.

This is fortunate because this implies that DPF must be able to recompile code fast enough

so as not to slow down a classiﬁer update. For example, it may take milliseconds to set up a

connection, which in turn requires adding a ﬁlter to identify the endpoint in the same time.

By contrast, it can take a few microseconds to receive a minimum-size packet at gigabit rates.

Despite this leeway, submillisecond compile times are still challenging.

To understand why using specialized code per cell is useful, it helps to understand two

generic causes of cell-processing inefﬁciency in Pathﬁnder:

•
Interpretation Overhead: Pathﬁnder code is indeed compiled into machine instructions

when kernel code is compiled. However, the code does, in some sense, “interpret” a

generic Pathﬁnder cell. To see this, consider a generic Pathﬁnder cell C that speciﬁes a

4-tuple: offset, length, mask, value. When a packet P arrives, idealized machine code

to check whether the cell matches the packet is as follows:

LOAD R1, C(Offset); (* load offset speciﬁed in cell into register R1 *)

LOAD R2, C(length); (* load length speciﬁed in cell into register R1 *)

LOAD R3, P(R1, R2); (* load packet ﬁeld speciﬁed by offset into R3 *)

LOAD R1, C(mask); (* load mask speciﬁed in cell into register R1 *)

AND R3, R1; (* mask packet ﬁeld as speciﬁed in cell *)

LOAD R2, C(value); (* load value speciﬁed in cell into register R5 *)

BNE R2, R3; (* branch if masked packet ﬁeld is not equal to value *)

Notice the extra instructions and extra memory references in Lines 1, 2, 4, and 6 that are

used to load parameters from a generic cell in order to be available for later comparison.

8.6 Dynamic Packet Filter: Compilers to the Rescue


193
•
Safety-Checking Overhead: Because packet ﬁlters written by users cannot be trusted, all

implementations must perform checks to guard against errors. For example, every

reference to a packet ﬁeld must be checked at run time to ensure that it stays within the

current packet being demultiplexed. Similarly, references need to be checked in real time

for memory alignment; on many machines, a memory reference that is not aligned to a

multiple of a word size can cause a trap. After these additional checks, the code fragment

shown earlier is more complicated and contains even more instructions.

By specializing code for each cell, DPF can eliminate these two sources of overhead by

exploiting information known when the cell is added to the Pathﬁnder graph.

•
Exterminating Interpretation Overhead: Since DPF knows all the cell parameters when the

cell is created, DPF can generate code in which the cell parameters are directly encoded

into the machine code as immediate operands. For example, the earlier code fragment to

parse a generic Pathﬁnder cell collapses to the more compact cell-speciﬁc code:

LOAD R3, P(offset, length); (* load packet ﬁeld into R3 *)

AND R3, mask; (* mask packet ﬁeld using mask in instruction *)

BNE R3, value; (* branch if ﬁeld not equal to value *)

Notice that the extra instructions and (more importantly) extra memory references to load

parameters have disappeared, because the parameters are directly placed as immediate

operands within the instructions.

•
Mitigating Safety-Checking Overhead: Alignment checking can be reduced in the

expected case (P11) by inferring at compile time that most references are word aligned.

This can be done by examining the complete ﬁlter. If the initial reference is word aligned

and the current reference (offset plus length of all previous headers) is a multiple of the

word length, then the reference is word aligned. Real-time alignment checks need only be

used when the compile time inference fails, for example, when indirect loads are

performed (e.g., a variable-size IP header). Similarly, at compile time the largest offset

used in any cell can be determined and a single check can be placed (before packet

processing) to ensure that the largest offset is within the length of the current packet.

Once one is onto a good thing, it pays to push it for all it is worth. DPF goes on to

exploit compile-time knowledge in DPF to perform further optimizations as follows. A ﬁrst

optimization is to combine small accesses to adjacent ﬁelds into a single large access. Other

optimizations are explored in the exercises.

DPF has the following potential disadvantages that are made manageable through careful

design.

•
Recompilation Time: Recall that when a ﬁlter is added to the Pathﬁnder trie (Figure 8.6),

only cells that were not present in the original trie need to be created. DPF optimizes this

expected case (P11) by caching the code for existing cells and copying this code directly

(without recreating them from scratch) to the new classiﬁer code block. New code must be

emitted only for the newly created cells. Similarly, when a new value is added to a hash

table (e.g., the new TCP port added in Figure 8.6), unless the hash function changes, the

code is reused and only the hash table is updated.


194


C H A P T E R 8
Demultiplexing
•
Code Bloat: One of the standard advantages of interpretation is more compact code.

Generating specialized code per cell appears to create excessive amounts of code,

especially for large numbers of ﬁlters. A large code footprint can, in turn, result in

degraded instruction cache performance. However, a careful examination shows that the

number of distinct code blocks generated by DPF is only proportional to the number of

distinct header ﬁelds examined by all ﬁlters. This should scale much better than the

number of ﬁlters. Consider, for example, 10,000 simultaneous TCP connections, for which

DPF may emit only three specialized code blocks: one for the Ethernet header, one for the

IP header, and one hash table for the TCP header.

The ﬁnal performance numbers for DPF are impressive. DPF demultiplexes messages

13–26 times faster than Pathﬁnder on a comparable platform [EK96]. The time to add a ﬁlter,

however, is only three times slower than Pathﬁnder. Dynamic code generation accounts for

only 40% of this increased insertion overhead.

In any case, the larger insertion costs appear to be a reasonable way to pay for faster

demultiplexing. Finally, DPF demultiplexing routines appear to rival or beat hand-crafted

demultiplexing routines; for instance, a DPF routine to demultiplex IP packets takes 18 instruc-

tions, compared to an earlier value, reported in Clark [Cla85], of 57 instructions. While the

two implementations were on different machines, the numbers provide some indication of

DPF quality.

The ﬁnal message of DPF is twofold. First, DPF indicates that one can obtain both perfor-

mance and ﬂexibility. Just as compiler-generated code is often faster than hand-crafted code,

DPF code appears to make hand-crafted demultiplexing no longer necessary. Second, DPF

indicates that hardware support for demultiplexing at line rates may not be necessary. In fact,

it may be difﬁcult to allow dynamic code generation on ﬁlter creation in a hardware implemen-

tation. Software demultiplexing allows cheaper workstations; it also allows demultiplexing

code to beneﬁt from processor speed improvements.

Technology Changes Can Invalidate Design Assumptions
There are several examples of innovations in architecture and operating systems

that were discarded after initial use and then returned to be used again. While this may

seem like the whims of fashion (“collars are frilled again in 1995”) or reinventing the

wheel (“there is nothing new under the sun”), it takes a careful understanding of current

technology to know when to dust off an old idea, possibly even in a new guise.

Take, for example, the core of the telephone network used to send voice calls via

analog signals. With the advent of ﬁber optics and the transistor, much of the core

telephone network now transmits voice signals in digital formats using the T1 and

SONET hierarchies. However, with the advent of wavelength-division multiplexing in

optical ﬁber, there is at least some talk of returning to analog transmission.

Thus the good system designer must constantly monitor available technology to

check whether the system design assumptions have been invalidated. The idea of using

dynamic compilation was mentioned by the CSPF designers in Mogul et al. [MRA87]

but was was not considered further. The CSPF designers assumed that tailoring code to

speciﬁc sets of ﬁlters (by recompiling the classiﬁer code whenever a ﬁlter was added)

was too “complicated.”

8.8 Exercises



195
Dynamic compilation at the time of the CSPF design was probably slow and also not

portable across systems; the gains at that time would have also been marginal because of

other bottlenecks. However, by the time DPF was being designed, a number of systems,

including VCODE [Eng96], had designed fairly fast and portable dynamic compilation

infrastructure. The other classiﬁer implementations in DPF’s lineage had also eliminated

other bottlenecks, which allowed the beneﬁts of dynamic compilation to stand out more

clearly.

8.7 CONCLUSIONS
While it may be trite to say that necessity is the mother of invention, it is also often true.

New needs drive new innovations; the lack of a need explains why innovations did not occur

earlier. The CSPF ﬁlter was implemented when the major need was to avoid a process context

switch; having achieved that, improved ﬁlter performance was only a second-order effect.

BPF was implemented when the major need was to implement a few ﬁlters very efﬁciently to

enable monitoring tools like tcpdump to run at close to wire speeds. Having achieved that,

scaling to a large number of ﬁlters seemed less important.

Pathﬁnder was implemented to support user-level networking in the x-kernel [HP91], and

to allow Scout [MP96] to use paths as a ﬁrst-class object that could be exploited in many

ways. Having found a plausible hardware implementation, perhaps improved software perfor-

mance seemed less important. DPF was implemented to provide high-performance networking

together with complete application-level ﬂexibility in the context of an extensible operating

system [EKO95]. Figure 8.2 presents a summary of the techniques used in this chapter, together

with the major principles involved.

As in the H. G. Wells quote at the start of the chapter, the DPF species does represent the

accumulation of the experiments of all its successful individuals. All ﬁlter implementations

borrow from CSPF the intellectual leap of separating demultiplexing from packet processing,

together with the notion that application demultiplexing speciﬁcations can be safely exported

to the kernel. DPF and Pathﬁnder in turn borrow from BPF the basic notion of exploiting

the underlying architecture using a register-based, state-machine model. DPF borrows from

Pathﬁnder the notion of using a generalized trie to factor out common checks.

8.8 EXERCISES
1. Other Uses of Early Demultiplexing: Besides the uses of early demultiplexing already

described, consider the following potential uses.

•
Quality of Service: Why might early demultiplexing help offer different qualities of

service to different packets in an end system? Give an example.

•
Integrated Layer Processing: Integrated layer processing (ILP) was studied in

Chapter 5. Discuss why early demultiplexing may be needed for ILP.

•
Specializing Code: Once the path of a protocol is known, one can possibly specialize

the code for the path, just as DPF specializes the code for each node. Give an example

of how path information could be exploited to create more efﬁcient code.

196


C H A P T E R 8
Demultiplexing
2. Further DPF Optimizations: Besides the optimizations already described consider the

following other optimizations that DPF exploits.

•
Atom Coalescing: It often happens that a node in the DPF tree checks for two smaller

ﬁeld values in the same word. For example, the TCP node may check for a source port

value and a destination port value. How can DPF do these checks more efﬁciently?

What crucial assumption does this depend on, and how can DPF validate this

assumption?

•
Optimizing Hash Tables: When DPF adds a classiﬁer, it may update the hash table at

the node. Unlike Pathﬁnder, the code can be specialized to the speciﬁc set of values in

each hash table. Explain why this can be used to provide a more efﬁcient

implementation for small tables and for collision handling in some cases.


C H A P T E R 9
Protocol Processing
Household tasks are easier and quicker when they are done by somebody else.
— James Thorpe

Our mental image of a musician is often associated with giving a recital, and our image of a

researcher may involve his mulling over a problem. However, musicians spend more time in

less glamorous tasks, such as practicing scales, and researchers spend more time than they wish

on mundane chores, such as writing grants. Mastery of a vocation requires paying attention to

many small tasks and not just to a few big jobs.

Similarly, tutorials on efﬁcient protocol implementation often emphasize methods of

avoiding data-touching overhead and structuring techniques to reduce control overhead. These,

of course, were the topics covered in Chapters 5 and 6. This is entirely appropriate because

the biggest improvements in endnode implementations often come from attention to such

overhead.

However, having created a zero-copy implementation with minimal context switching —
and there is strong evidence that modern implementations of network appliances have learned

these lessons well – new bottlenecks invite scrutiny. In fact, a measurement study by Kay and

Pasquale [KP93] shows that these other bottlenecks can be signiﬁcant.

There are a host of other protocol implementation tasks that can become new bottlenecks.

Chapters 7 and 8 have already dealt with efﬁcient timer and demultiplexing implementations.

This chapter deals brieﬂy with some of the common remaining tasks: buffer management,

checksums, sequence number bookkeeping, reassembly, and generic protocol processing.

The importance of these protocol-processing “chores” may be increasing, for the following

reasons. First, link speeds in the local network are already at gigabit levels and are going higher.

Second, market pressures are mounting to implement TCP, and even higher-level application

tasks, such as Web services and XML, in hardware. Third, there is a large number of small

packets in the Internet for which data manipulation overhead may not be the dominant factor.

This chapter is organized as follows. Section 9.1 delves into techniques for managing

buffer, that is, techniques for fast buffer allocation and buffer sharing. Section 9.2 presents

techniques for implementing CRCs (mostly at the link level) and checksums (mostly at the

transport level). Section 9.3 deals with the efﬁcient implementation of generic protocol process-

ing, as exempliﬁed by TCP and UDP. Finally, Section 9.4 covers the efﬁcient implementation

of packet reassembly.

The techniques presented in this chapter (and the corresponding principles) are summa-

rized in Figure 9.1.

197

198


C H A P T E R 9
Protocol Processing
Number


Principle


Used In
P4b
P4b
P2b
P14
P13

Use linear buffers, not mbuf chains

Buddy system without coalescing

Sequential chunk allocation, lazy chunk creation

Efficient buffer stealing

Dynamic buffer thresholds


Linux sk_buf

BSD 4.2 malloc()

J-machine

SFQ

P2a
CRC multiple bits at a time using table lookup

P2b
Lazy carry evaluation

P12a
Recompute header checksum

P4c
Compute data link and application CRC


Many CRC chips

Fast checksums

RFC 1624

Infiniband

P11
P3c

Predict next TCP header

Shift fragmentation from router to source


BSD TCP

Path MTU

P11
Fast fragment reassembly

F I G U R E 9.1
Principles used in the various protocol-processing techniques discussed in this chapter.

Q u i c k R e f e r e n c e G u i d e
The ﬁrst part of Section 9.1 describes a number of buffering strategies, including UNIX mbufs

and Linux sk_bufs, as well as a variety of efﬁcient memory allocators, such as the Kingsley allocator.

Implementors interested in fast cyclic redundancy check (CRC) algorithms should read Section 9.2.1;

those interested in fast IP checksums should read Section 9.2.2. The ﬁrst few pages of Section 9.3

describe the classic TCP processing optimization called header prediction.

9.1 BUFFER MANAGEMENT
All protocols have to manage buffers. In particular, packets travel up and down the protocol

stack in buffers. The operating system must provide services to allocate and deallocate buffers.

This requires managing free memory; ﬁnding memory of the appropriate size can be challeng-

ing, especially because buffer allocation must be done in real time. Section 9.1.1 describes a

simple systems solution for doing buffer allocation at high speeds, even for requests of variable

sizes.

If the free space must be shared between a number of connections or users, it may also be

important to provide some form of fairness so that one user cannot hog all the resources. While

static limits work, in some cases it may be preferable to allow dynamic buffer limits, where

a process in isolation can get as many buffers as it needs but relinquishes extra buffers when


9.1 Buffer Management



199
other processes arrive. Section 9.1.2 describes two dynamic buffer-limiting schemes that can

be implemented at high speeds.

9.1.1 Buffer Allocation
The classical BSD UNIX implementation, called mbufs, allowed a single packet to be stored as

a linear list of smaller buffers, where a buffer is a contiguous area of memory.1The motivation

for this technique is to allow the space allocated to the packet to grow and shrink (for example,

as it passes up and down the stack). For instance, it is easy to grow a packet by prepending a

new mbuf to the current chain of mbufs. For even more ﬂexibility, BSD mbufs come in three

ﬂavors: two small sizes (100 and 108 bytes) and one large size (2048 bytes, called a cluster).

Besides allowing dynamic expansion of a packet’s allocated memory, mbufs make efﬁcient

use of memory, something that was important around 1981, when mbufs were invented. For

example, a packet of 190 bytes would be allocated two mbufs (wasting around 20 bytes), while

a packet of 450 bytes would be allocated ﬁve mbufs (wasting around 50 bytes).

However, dynamic expansion of a packet’s size may be less important than it sounds

because the header sizes for important packet paths (e.g., Ethernet, IP, TCP) are well known

and can be preallocated. Similarly, saving memory may be less important in workstations today

than increasing the speed of packet processing. On the other hand, the mbuf implementation

makes accessing and copying data much harder because it may require traversing the list.

Thus very early on, Van Jacobson designed a prototype kernel that used what we called

pbufs. As Jacobson put it in an email note [Jac93]: “There is exactly one, contiguous, packet

per pbuf (none of that mbuf chain stupidity).”
While pbufs have sunk into oblivion, the Linux operating system currently uses a very

similar idea [Cox96] for network buffers called sk_buf. These buffers, like pbufs, are linear

buffers with space saved in advance for any packet headers that need to be added later. At times,

this will incur wasted space to handle the worst-case headers, but the simpler implementation

makes this worthwhile. Both sk_bufs and pbufs relax the speciﬁcation of a buffer to avoid

unnecessary generality (P7) and trade memory for time (P4b).

Given that the use of linear buffer sizes, as in Linux, is a good idea, how do we allocate

memory for packets of various sizes? Dynamic memory allocation is a hard problem in general

because users (e.g., TCP connections) deallocate at different times, and these deallocations

can fragment memory into a patchwork of holes of different sizes.

The standard textbook algorithms, such as First-Fit and Best-Fit [WJea95], effectively

stroll through memory looking for a hole of the appropriate size. Any implementor of a high-

speed networking implementation, say, TCP, should be ﬁlled with horror at the thought of

using such allocators. Instead, the following three allocators should be considered.

SEGREGATED POOL ALLOCATOR
One of the fastest allocators, due to Chris Kingsley, was distributed along with BSD 4.2

UNIX. Kingsley’s malloc() implementation splits all of memory into a set of segregated pools

of memory in powers of 2. Any request is rounded up to its closest power of 2, a table lookup

is done to ﬁnd the corresponding pool list, and a buffer is allocated from the head of that list

if available. The pools are said to be segregated because when a request of a certain size fails

1Craig Partridge attributes the invention of mbufs to Rob Gurwitz [PBW04].

200


C H A P T E R 9
Protocol Processing
there is no attempt made to carve up available larger buffers or to coalesce contiguous smaller

buffers.

Such carving up and coalescing is actually done by a more classical scheme called the

buddy system (see Wilson et al. [WJea95] for a thorough review of memory allocators). Refrain-

ing from doing so clearly wastes memory (P4b, trading memory for speed). If all the requests

are for exactly one pool size, then the other pools are wasted. However, this restraint is not as

bad as it seems because allocators using the buddy system have a far more horrible worst case.

Suppose, for example, that all requests are for size 1 and that every alternate buffer is than

deallocated. Then, using the buddy system, memory degenerates into a series of holes of size

1 followed by an allocation of size 1. Half of memory is unused, but no request of size greater

than 2 can be satisﬁed. Notice that this example cannot happen with the Kingsley allocator

because the size-1 requests will only deplete the size-1 pool and will not affect the other pools.

Thus trafﬁcking between pools may help improve the expected memory utilization but not the

worst-case utilization.

LINUX ALLOCATOR
The Linux allocator [Che01], originally written by Doug Lea, is sometimes referred to as

dlmalloc(). Like the Kingsley allocator, the memory is broken into pools of 128 sizes. The ﬁrst

64 pools contain memory buffers of exactly one size each, from 16 through 512 bytes in steps

of 8. Unlike the case of power-of-2 allocation, this prevents more than 8 bytes of waste for the

common case of small buffers. The remaining 64 pools cover the other, higher sizes, spaced

exponentially.

The Linux allocator [Che01] does merge adjacent free buffers and promotes the coalesced

buffer to the appropriate pool. This is similar to the buddy system and hence is subject to the

same fragmentation problem of any scheme in which the pools are not segregated. However,

the resulting memory utilization is very good in practice.

A useful trick to tuck away in your bag of tricks concerns how pools are linked together.

The naive way would be to create separate free lists for each pool using additional small nodes

that point to the corresponding free buffer. But since the buffer is free, this is obvious waste

(P1). Thus the simple trick, used in Linux and possibly in other allocators, is to store the link

pointers for the pool free lists in the corresponding free buffers themselves, thereby saving

storage.

The Lea allocator uses memory more efﬁciently than the Kingsley allocator but is more

complex to implement. This may not be the best choice for a wire-speed TCP implementation

that desires both speed and the efﬁcient use of memory.

BATCH ALLOCATOR
One alternative idea for memory allocation, which has an even simpler hardware implemen-

tation than Kingsley’s allocator, leverages batching (P2c). The idea, shown in Figure 9.2, is

for the allocator to work in large chunks of memory. Each chunk is allocated sequentially.

A pointer Curr is kept to the point where the last allocation terminated. A new request of size B
is allocated after Curr, and Curr increases to Curr + B. This is extremely fast, handles variable

sizes, and does not waste any memory — up to the point, that is, when the chunk is used up.

The idea is that when the chunk is used up, another chunk is immediately available.

Of course, there is no free lunch — while the second chunk is being used, some spare chunk

must be created in the background. The creation of this spare chunk can be done by software,


Curr



B



Replenish spare copy

in background using

page remapping



9.1 Buffer Management



201
F I G U R E 9.2
Sequentially allocating from a large chunk and using a spare chunk. The magic comes

from using the time it takes to completely allocate a chunk to create a new chunk.

while allocates can easily be done in hardware. Similar ideas were presented in the context of

the MIT J-machine [DCea87], which relied on an underlying fast messaging service.

Creating a spare chunk can be done in many ways. The problem, of course, is that

deallocates may not be done in the same order as allocates, thus creating a set of holes in

the chunks that need somehow to be coalesced. Three alternatives for coalescing present

themselves. If the application knows that eventually all allocated buffers will be freed, then

using some more spare chunks may sufﬁce to ensure that before any chunk runs out some

chunk will be completely scavenged. However, this is a dangerous game.

Second, if memory is accessed through a level of indirection, as in virtual memory, and

the buffers are allocated in virtual memory, it is possible to use page remapping to gather

together many scattered physical memory pages to appear as one contiguous virtual memory

chunk. Finally, it may be worth considering compaction. Compaction is clearly unacceptable

in a general-purpose allocator like UNIX, where any number of pieces of memory may point

to a memory node. However, in network applications using buffers or other treelike structures,

compaction may be feasible using simple local compaction schemes [SV00].

9.1.2 Sharing Buffers
If buffer allocation was not hard enough, consider making it harder by asking also for a fairness

constraint.2Imagine that an implementation wishes to fairly share a group of buffers among

a number of users, each of whom may wish to use all the buffers. The buffers should be

shared roughly equally among the active users that need these buffers. This is akin to what in

economics is called Pareto optimality and also to the requirements for fair queuing in routers

studied in Chapter 14. Thus it is not surprising that the following buffer-stealing algorithm

was invented [McK91] in the context of a stochastic fair queuing (SFQ) algorithm.

BUFFER STEALING
One way to provide roughly Pareto optimality among users is as follows. When all buffers are

used up and a new user (whose allocated buffers are smaller than the highest current allocation)

wishes one more buffer, steal the extra buffer from the highest buffer user. It is easy to see

that even if one user initially grabs all the buffers when other users become active, they can

get their fair share by stealing.

2However, to make things easier in return, this section assumes constant-size buffer allocation with all its

potential memory wastage.


202


C H A P T E R 9
Protocol Processing
30

Highest

P4

P1     28



28

P2

P1



26

P3

F I G U R E 9.3
The Mckenney algorithm for buffer stealing ﬁnesses the need for logarithmic heap

overhead by relying on the fact that buffer values change by at most 1 on any operation.

The problem is that a general solution to the problem of buffer stealing uses a heap.

A heap has O(log n) cost, where n is the number of users with current allocations. How can

this be made faster?

Once again, as is often the case in algorithmics versus algorithms, the problem is caused

by reading too much into the speciﬁcation. If allocations keep changing in arbitrary increments

and the algorithm wishes always to ﬁnd the highest allocation, a logarithmic heap implemen-

tation is required. However, if we can relax the speciﬁcation (and this seems reasonable in

practice) to assume that a user steals one buffer at a time, then the allocated amounts change

not in arbitrary amounts but only by +1 or −1. This observation results in a constant-time

algorithm (the Mckenney algorithm, Figure 9.3), which also assumes that buffer allocations

fall in a bounded set. For each allocation size i, the algorithm maintains a list of processes

that have size exactly i. The algorithm maintains a variable called Highest that points to the

highest amount allocated to any process.

When a process P wishes to steal a buffer, the algorithm ﬁnds a process Q with the highest

allocation at the head of the list pointed to by Highest . While doing so, process P gains a buffer

and Q loses a buffer. The books are updated as follows.

When process P gets buffer i + 1, P is removed from list i and added to list i +1, updating

Highest
if necessary. When process Q loses buffer i + 1,
Q is removed from list i + 1 and

added to list i, updating Highest = i if the Highest list becomes empty.

Notice this could become arbitrarily inefﬁcient if P and Q could change their allocations

by sizes larger than 1. If Q could reduce its allocation by, say, 100 and there are no other users

with the same original allocation, then the algorithm would require stepping through 100 lists,

looking for the next possible value of highest. Because the maximum amount an allocation

can change by is 1, the algorithm moves through only one list. In terms of algorithmics, this

is an example of the special opportunities created by the use of ﬁnite universes (P14 suggests

the use of bucket sorting and bitmaps for ﬁnite universes).

DYNAMIC THRESHOLDS
Limiting access by any one ﬂow to a shared buffer is also important in shared memory

switches (Chapter 13). In the context of shared memory switches, Choudhury and Hahne

describe an algorithm similar to buffer stealing that they call Pushout. However, even using

9.2 Cyclic Redundancy Checks and Checksums



203
the buffer-stealing algorithm due to McKenney [McK91], Pushout may be hard to implement

at high speeds.

Instead, Choudhury and Hahne [CH98] propose a useful alternative mechanism called

dynamic buffer limiting. They observe that maintaining a single threshold for every ﬂow is

either overly limiting (if the threshold is too small) or unduly dangerous (if the threshold is too

high). Using a static value of threshold is no different from using a ﬁxed window size for ﬂow

control. But TCP uses a dynamic window size that adapts to congestion. Similarly, it makes

sense to exploit a degree of freedom (P13) and use dynamic thresholds.

Intuitively, TCP window ﬂow control increases a connection’s window size if there appears

to be unused bandwidth, as measured by the lack of packet drops. Similarly, the simplest way

to adapt to congestion in a shared buffer is to monitor the free space remaining and to increase

the threshold proportional to the free space. Thus user i is limited to no more than cF bytes,

where c is a constant and F is the current amount of free space. If c is chosen to be a power of 2,

this scheme only requires the use of a shifter (to multiply by c) and a comparator (to compare

with cF). This is far simpler than even the buffer-stealing algorithm.

Choudhury and Hahne recommend a value of c = 1. This implies that a single user is

limited to taking no more than half the available bandwidth. This is because when the user

takes half, the free space is equal to the user allocation and the threshold check fails. Similarly,

if c = 2, any user is limited to no more than 2/3 of the available buffer space. Thus unlike

buffer stealing, this scheme always holds some free space in reserve for new arrivals, trading

slightly suboptimal use of memory for a simpler implementation.

Now suppose there are two users and that c = 1. One might naively think that since each

user is limited to no more than half, two active users are limited to a quarter. The scheme does

better, however. Each user now can take 1/3, leaving 1/3 free. Next, if two new users arrive

and the old users do not free their buffers, the two new users can get up to 1/9 of the buffer

space.

Thus, unlike buffer stealing, the scheme is not fair in a short-term sense. However, if the

same set of users is present for sufﬁciently long periods, the scheme should be fair in a long-

term sense. In the previous example, after the buffers allocated to the ﬁrst two users are

deallocated, a fairer allocation should result.

9.2 CYCLIC REDUNDANCY CHECKS AND CHECKSUMS
Once a TCP packet is buffered, typically a check is performed to see whether the packet

has been corrupted in ﬂight or in a router’s memory. Such checks are performed by either

checksums or cyclic redundancy checks (CRCs). In essence, both CRCs and checksums are

hash functions H on the packet contents. They are designed so that if errors convert a packet

P to corrupted packet P , then H(P) = H(P ) with high probability.

In practice, every time a packet is sent along a link, the data link header carries a link level

CRC. But in addition, TCP computes a checksum on the TCP data. Thus a typical TCP packet

on a wire carries both a CRC and a checksum. While this may appear to be obvious waste (P1),

it is a consequence of layering. The data link CRC covers the data link header, which changes

from hop to hop. Since the data link header must be recomputed at each router on the path,

the CRC does not catch errors caused within routers. While this may seem unlikely, routers do

occasionally corrupt packets [SP00] because of implementation bugs and hardware glitches.

204


C H A P T E R 9
Protocol Processing
Given this, the CRC is often calculated in hardware by the chip (e.g., Ethernet receiver)

that receives the packet, while the TCP checksum is calculated in software in BSD UNIX. This

division of labor explains why CRC and checksum implementations are so different. CRCs

are designed to be powerful error-detection codes, catching link errors such as burst errors.

Checksums, on the other hand, are less adept at catching errors; however, they tend to catch

common end-to-end errors and are much simpler to implement in software.

The rest of this section describes CRC and then checksum implementation. The section

ends with a clever way, used in Inﬁniband implementations, to ﬁnesse the need for software

checksums by using two CRCs in each packet, both of which can easily be calculated by the

same piece of hardware.

9.2.1 Cyclic Redundancy Checks
The CRC “hash” function is calculated by dividing the packet data, treated as a number, with

a ﬁxed generator G. G is just a binary string of predeﬁned length. For example, CRC-16 is the

string 11000000000000101, of length 17; it is called CRC-16 because the remainder added to

the packet turns out to be 16 bits long.

Generators are easier to remember when written in polynomial form. For example, the

same CRC-16 in polynomial form becomes x16+ x15+ x2+ 1. Notice that whenever xiis

present in the generator polynomial, position i is equal to 1 in the generator string. Whatever

CRC polynomial is picked (and CRC-32 is very common), the polynomial is published in the

data link implementation speciﬁcation and is known in advance to both receiver and sender.

A formal description of CRC calculation is as follows. Let r be the number of bits in the

generator string G. Let M be the message whose CRC is to be calculated. The CRC is simply

the remainder c of 2r−1M(i.e., M left-shifted by r − 1 bits) when divided by G. The only catch

is the division is mod-2 division, which is illustrated next.

Working out the mathematics slightly, 2r−1M=
k.G + c. Thus 2r−1M+ c
=
k.G
because addition is the same as subtraction in mod-2 arithmetic, a fact strange but true. Thus,

even ignoring the preceding math, the bottom line is that if we append the calculated CRC c
to the end of the message, the resulting number divides the generator G.
Any bit errors that cause the sent packet to change to some other packet will be caught as

long as the resulting packet is not divisible by G. CRCs, like good hash functions, are effective

because common errors based on ﬂipping a few bits (random errors) or changing any bit in

a group of contiguous bits (burst errors) are likely to create a packet that does not divide G.

Simple analytical properties of CRCs are derived in Tanenbaum [Tan81].

For the implementor, however, what matters is not why CRC works but how to implement

it. The main thing to learn is how to compute remainders using mod-2 division. The algorithm

uses a simple iteration in which the generator G is progressively “subtracted” from the message

M until the remainder is “smaller” than the generator G. This is exactly like ordinary division

except that “subtraction” is now exclusive-OR, and the deﬁnition of whether a number is

“smaller” depends on whether its most signiﬁcant bit (MSB) is 0.

More precisely, a register R is loaded with the ﬁrst r bits of the message. At each stage

of the iteration, the MSB of R is checked. If it is 1, R is “too large” and the CRC string G
is “subtracted” from R. Subtraction is done by exclusive-OR (EX-OR) in mod-2 arithmetic.

Assuming that the MSB of the generator is always 1, this zeroes out the MSB of R. Finally, if

the MSB of R is already 0, R is “small enough” and there is no need to EX-OR.


Generator

1
1
1



9.2 Cyclic Redundancy Checks and Checksums
Shifted message

1
1
0
0 0

1
1
1

0
1
0

0
0
0

1
0
0

1
1
1

0
1
1



205
F I G U R E 9.4
CRC is calculated by dividing the shifted message with the generator. The intent is to

shift in all the message bits and to zero out any most signiﬁcant bits that are set. Horizontal lines indicate

EX-OR operations. Vertical lines denote shifting in the next message bit. Dashed lines show where the

generator is brought down. The generator is used for the EX-OR when the MSB of the current result is

1; if not, zero is used.

A single iteration completes by left-shifting R so that the MSB of R is lost, and the next

message bit gets shifted in. The iterations continue until all messages are shifted in and the

MSB of register R is 0. At this point register R contains the required checksum.

For example, let M = 110 and G = 111. Then 2r−1M= 11000. Then the checksum c is

calculated as shown in Figure 9.4. In the ﬁrst step of Figure 9.4, the algorithm places the ﬁrst

3 bits (110) of the shifted message in R. Since the MSB of 110 is 1, the algorithm hammers

away at R by EX-ORing R with the generator G = 111 to get 001. The ﬁrst iteration completes

by shifting out the MSB and (Figure 9.4, topmost vertical arrow) shifting in the fourth message

bit, to get R = 010.

In the second iteration, the MSB of R is 0 and so the algorithm desists. This is represented

in Figure 9.4 by computing the EX-OR of R with 000 instead of the generator. As usual, the

MSB of the result is shifted in, and the last message bit, also a zero, is shifted in to get R = 100.

Finally, in the third iteration, because the MSB of R is 1, the algorithm once again EX-ORs

R with the generator. The algorithm terminates at this point because the MSB of R is 0. The

resulting checksum is R without the MSB, or 11.

NAIVE IMPLEMENTATION
Cyclic redundancy checks have to be implemented at a range of speeds from 1 Gbit/sec to slower

rates. Higher-speed implementations are typically done in hardware. The simplest hardware

implementation would mimic the foregoing description and use a shift register that shifts in

bits one at time. Each iteration requires three basic steps: checking the MSB, computing the

EX-OR, and then shifting.

The naive hardware implementation shown in Figure 9.5 would require three clock cycles

to shift in a bit; doing a comparison for the MSB in one cycle and the actual EX-OR in another

Current remainder

Message bits

shifted in

Divisor

F I G U R E 9.5
Naive hardware implementation requires three clock cycles per bit.


206


C H A P T E R 9
Protocol Processing
R4
R3
R2

Generator String
1 1 0 1 0 1



R1



R0



Message bits

F I G U R E 9.6
Linear feedback shift register (LFSR) implementation of a CRC remainder calculation. The EX-

ORs are combined with a shift by placing EX-OR gates (the circles) to the right of some registers. Speciﬁcally,

an EX-OR gate is placed to the right of register i if bit i in the generator string (see dashed lines) is set. The only

exception is (what would have been) register R5. Such a register need not be stored because it corresponds to the

MSB, which is always shifted out.

cycle and the shift in the third cycle. However, a cleverer implementation can be used to shift

in one bit every clock cycle by combining the test for MSB, the EX-OR, and the shift into a

single operation.

IMPLEMENTATION USING LINEAR FEEDBACK SHIFT REGISTERS
In Figure 9.6 the remainder R is stored as ﬁve separate 1-bit registers, R4 through R0, instead of

a single 5-bit register, assuming a 6-bit generator string. The idea makes use of the observation

that the EX-OR needs to be done only if the MSB is 1; thus in the process of shifting left the

MSB, we can feed back the MSB to the appropriate bits of the remainder register. The remaining

bits are EX-ORed during their shift to the left.

Notice that in Figure 9.6, an EX-OR gate is placed to the right of register i if bit i in the

generator string (see dashed lines) is set. The reason for this rule is as follows. Compared to

the simple iterative algorithm, the hardware of Figure 9.6 effectively combines the left shift of

iteration J together with the MSB check and EX-OR of iteration J + 1. Thus the bit that will

be in position i in iteration J + 1 is in position i − 1 in iteration J.

If this is grasped (and this requires shifting one’s mental pictures of iterations), the test

for the MSB (i.e., bit 5) in iteration J + 1 amounts to checking MSB − 1 (i.e., bit 4 in R4) in

iteration J. If bit 4 is 1, then an EX-OR must be performed with the generator. For example, the

generator string has a 1 in bit 2, so R2 must be EX-ORed with a 1 in iteration J + 1. But bit 2

in iteration J + 1 corresponds to bit 1 in iteration J. Thus the EX-OR corresponding to R2 in

iteration J + 1 can be achieved by placing an EX-OR gate to the right of R2: The bit that will

be placed in R2 is EX-ORed during its transit from R1.

Notice that the check for MSB has been ﬁnessed in Figure 9.6 by using the output of R4

as an input to all the EX-OR gates. The effect of this is that if the MSB of iteration J + 1 is

1 (recall that this is in R4 during iteration J), then all the EX-ORs are performed. If not, and

if the MSB is 0, no EX-ORs are done, as desired; this is the same as EX-ORing with zero in

Figure 9.4.

The implementation of Figure 9.6 is called a linear feedback shift register (LFSR), for

obvious reasons. This is a classical hardware building block, which is also useful for the

generation of random numbers for, say, QoS (Chapter 14). For example, random numbers

using, say, the Tausworth implementation can be generated using three LFSRs and an EX-OR.


FASTER IMPLEMENTATIONS


9.2 Cyclic Redundancy Checks and Checksums



207
The bottleneck in the implementation of Figure 9.6 is the shifting, which is done one bit at

a time. Even at one bit every clock cycle, this is very slow for fast links. Most logic on

packets occurs after the bit stream arriving from the link has been deserialized3into wider

words of, say, size W . Thus the packet-processing logic is able to operate on W bits in a single

clock cycle, which allows the hardware clock to run W times slower than the interarrival time

between bits.

Thus to gain speed, CRC implementations have to shift W
bits at a time, for W
> 1.

Suppose the current remainder is r
and we shift in W
more message bits whose value as a

number is, say, n. Then in essence the implementation needs to ﬁnd the remainder of (2W· r + n)

in one clock cycle.

If the number of bits in the current remainder register is small, the remainder of 2W· r can

be precomputed (P2a) for all r by table lookup. This is the basis of a number of software CRC

implementations that shift in, say, 8 bits at a time. In hardware, it is faster and more space

efﬁcient to use a matrix of XOR gates to do the same computation. The details of the parallel

implementation can be found in Albertengo and Riccardo [AR90], based on the original idea

described by Sarwate [Sar88].

9.2.2 Internet Checksums
Since CRC computation is done on every link in the Internet, it is done in hardware by link

chips. However, the software algorithm, even shifting 8 bits at a time, is slow. Thus TCP

chose to use a more efﬁcient error-detection hash function based on summing the message

bits. Just as accountants calculate sums of large sets of numbers by column and by row to

check for errors, a checksum can catch errors that change the resulting sum.

It is natural to calculate the sum in units of the checksum size (16 bits in TCP), and

some reasonable strategy must be followed when the sum of the 16-bit units in the message

overﬂows the checksum size. Simply losing the MSB will, intuitively, lose information about

16-bit chunks computed early in the summing process. Thus TCP follows the strategy of an

end-around carry. When the MSB overﬂows, the carry is added to the least signiﬁcant bit

(LSB). This is called one’s complement addition.

The computation is straightforward. The speciﬁed portion of each TCP packet is summed

in 16-bit chunks. Each time the sum overﬂows, the carry is added to the LSB. Thus the main

loop will naively consist of three steps: Add the next chunk; test for carry; if carry, add to LSB.

However, there are three problems with the naive implementation.

•
Byte Swapping: First, in some machines, the 16-bit chunks in the TCP message may be

stored byte-swapped. Thus it may appear that the implementation has to reverse each pair

of bytes before addition.

•
Masking: Second, many machines use word sizes of 32 bits or larger. Thus the naive

computation may require masking out 16-bit portions.

•
Check for Carry: Third, the check for carry after every 16-bit word is added can

potentially slow down the loop as compared to ordinary summation.

3This is done by what is often called a SERDES chip, for serializer–deserializer chip.


208


C H A P T E R 9
Protocol Processing
A



B



B



A

F I G U R E 9.7
The 1’s complement addition of two 16-bit quantities stays the same (except for byte

reversal) when the quantities are represented in byte-reversed form. This is because carries from any

bit position ﬂow to the same next-bit position in both original and byte-reversed formats. Consider, for

example, how the MSB of B ﬂows to the LSB of A in both formats.

All three problems can be solved by not being tied to the reference implementation (P8)

and, instead, by ﬁtting the computation to the underlying hardware (P4c). The following ideas

and Figure 9.7 are taken from Partridge [Par93].

•
Ignore byte order: Figure 9.7 shows that swapping every word before addition on a

byte-reversed machine is obvious waste (P1). The ﬁgure shows that whether or not AB is

stored byte reversed as BA, any carry from the MSB of byte B still ﬂows to the LSB of

byte A. Similarly, in both cases, any carry from the MSB of byte A ﬂows to the LSB of

byte B. Thus any 1’s-complement addition done on the byte-reversed representation will

have the same answer as in the original, except byte reversed. This in turn implies that it

sufﬁces to add in byte-reversed form and to do a ﬁnal byte reversal only at the end.

•
Use natural word length: If a machine has a 32- or 64-bit word, the most natural thing to

do is to maintain the running sum in the natural machine word size. All that happens is that

carries accumulate in the higher-order 16 bits of the machine word, which need to be

added back to the lower 16 bits in a ﬁnal operation.

•
Lazy carry evaluation: Using a larger word size has the nice side effect of allowing lazy

evaluation (P2b) of carry checking. For example, using a 32-bit word allows an unrolled

loop that checks for carries only after every 16 additions [Ste94], because it takes 16

additions in the worst case to have the carry overﬂow from bit 32.

In addition, as noted in Chapter 5, the overhead of reading in the checksum data into

machine registers can be avoided by piggybacking on the same requirement for copying data

from the network device into user buffers, and vice versa.

HEADER CHECKSUM
Finally, besides the TCP and UDP checksums on the data, IP computes an additional 1’s-

complement checksum on just the IP header. This is crucial for network routers and other

hardware devices that need to recompute Internet checksums.

Hardware implementations of header checksum can beneﬁt from parallel and incremental
computation. One strategy for parallelism is to break up the data being checksummed into W
16-bit words and to compute W different 1’s-complement sums in parallel, with a ﬁnal operation

to fold these W
sums into one 16-bit checksum. A complete hardware implementation of this

idea with W = 2 is described in Touch and Parham [TP96].

The strategy for incremental computation is deﬁned precisely in RFC 1624 [Rij94].

In essence, if a 16-bit ﬁeld m in the header changes to m , the header checksum can be recal-

culated by subtracting m and adding in m
to the older checksum value. There is one subtlety,


9.3 Generic Protocol Processing



209
having to do with the two representations of zero in 1’s-complement arithmetic [Rij94], that

is considered further in the exercises.

9.2.3 Finessing Checksums
The humble checksum’s reason for existence, compared to the more powerful CRC, is the

relative ease of checksum implementation in software. However, if there is hardware that

already computes a data link CRC on every data link frame, an obvious question is:
Why
not use the underlying hardware to compute another checksum on the data? Doing otherwise

results in extra computation by the receiving processor and appears to be obvious waste (P1).

Once again, it is only obvious waste when looking across layers; at each individual layer (data

link, transport) there is no waste.

Clearly, the CRC changes from hop to hop, while the TCP checksum should remain

unchanged to check for end-to-end integrity. Thus if a CRC is to be used for both purposes,

two CRCs have to be computed. The ﬁrst is the usual CRC, and the second should be on some

invariant portion of the packet that includes all the data and does not change from hop to hop.

One of the problems with exploiting the hardware (P4c) to compute the equivalent of the

TCP checksum is knowing which portion of the packet must be checksummed. For example,

TCP and UDP include some ﬁelds of the IP header4in order to compute the end-to-end

checksum. The TCP header ﬁelds may also not be at a ﬁxed offset because of potential TCP

and IP options. Having a data link hardware device understand details of higher-layer headers

seems to violate layering.

On the other hand, all the optimizations that avoid data copying and described in Chapter 5

also violate layering in a similar sense. Arguably, it does not matter what a single endnode

does internally as long as the protocol behavior, as viewed externally by a black-box tester,

meets conformance tests. Further, there are creative structuring techniques (P8, not being tied

to reference implementations) of the endnode software that can allow lower layers access to

this form of information.

The Inﬁniband architecture [AS00] does specify that end system hardware compute two

CRCs. The usual CRC is called the variant CRC; the CRC on the data, together with some

of the header, is called the invariant CRC. Inﬁniband transport and network layer headers are

simpler than those of TCP, and thus computing the invariant portion is fairly simple.

However, the same idea could be used even for a more complex protocol, such as TCP

or IP, while preserving endnode software structure. This can be achieved by having the upper

layers pass information about offsets and ﬁelds (P9) to the lower layers through layer interfaces.

A second option to avoid passing too many ﬁeld descriptions is to precompute the pseudoheader

checksum/CRC as part of the connection state [Jac93] and instead to pass the precomputed

value to the hardware.

9.3 GENERIC PROTOCOL PROCESSING
Section 9.1 described techniques for buffering a packet, and Section 9.2 described techniques

to efﬁciently compute packet checksums. The stage is now set to actually process such a packet.

The reader unfamiliar with TCP may wish ﬁrst to consult the models in Chapter 2.

4These portions form what is called the TCP and UDP pseudoheader [Ste94].


210


C H A P T E R 9
Protocol Processing
Since TCP accounts for 90% of trafﬁc [Bra98] in most sites, it is crucial to efﬁciently

process TCP packets at close to wire speeds. Unfortunately, a ﬁrst glance at TCP code is

daunting. While the TCP sender code is relatively simple, Stevens [Ste94] says:

TCP input processing is the largest piece of code that we examine in this text.
The function tcp_input is about 1100 lines of code. The processing of incoming
segments is not complicated, just long and detailed.
Since TCP appears to be complex, Greg Chesson and Larry Green formed Protocol

Engines, Inc., in 1987, which proposed an alternative protocol called XTP [Che89]. XTP

was carefully designed with packet headers that were easy to parse and streamlined processing

paths. With XTP threatening to replace TCP, Van Jacobson riposted with a carefully tuned

implementation of TCP in BSD UNIX that is well described in Stevens [Ste94]. This imple-

mentation was able to keep up with even 100-Mbps links. As a result, while XTP is still used

[Che89], TCP proved to be a runaway success.

Central to Jacobson’s optimized implementation is a mechanism called header prediction
[Jac93]. Much of the complexity of the 1100 lines of TCP receive processing comes when

handling rare cases. Header prediction provides a fast path through the thicket of exceptions

by optimizing the expected case (P11).

TCP HEADER PREDICTION
The ﬁrst operation on receiving a TCP packet is to ﬁnd the protocol control block (PCB) that

contains the state (e.g., receive and sent sequence numbers) for the connection of which the

packet is a part. Assuming the connection is set up and that most workstations have only a

few concurrent connections, the few active connection blocks can be cached. The BSD UNIX

code [Ste94] maintains a one-behind cache containing the PCB of the last segment received;

this works well in practice for workstation implementations.

After locating the PCB, the TCP header must be processed. A good way to motivate header

prediction, found in Partridge [Par93], comes from looking at the ﬁelds in the TCP header, as

shown in Figure 9.8.

After a connection is set up, the destination and source ports are ﬁxed. Since IP networks

work hard to send packets in order, the sequence number is likely to be the next in sequence

after the last packet received. The control bits, often called ﬂag bits, are typically off, with

the exception of the ack bit, which is always set after the initial packet is sent. Finally, most

of the time the receiver does not change its window size, and the urgent pointer is irrelevant.

Source port
Destination port

Sequence number

Ack number

High

info

fields


Offset control bits

Checksum


Window

Urgent pointer

F I G U R E 9.8
TCP header ﬁelds: The ﬁelds most likely to change are the checksum and the ack ﬁelds.

The other ﬁelds carry very little information and can often be predicted from past values.

9.3 Generic Protocol Processing



211
Thus the only two ﬁelds whose information content is high are the ack number and checksum

ﬁelds.

Motivated by this observation, header prediction identiﬁes the expected case as one of

two possibilities: receiving a pure acknowledgment (i.e., the received segment contains no

data) or receiving a pure data packet (i.e., the received segment contains an ack ﬁeld that

conveys no new information). In addition, the packet should also reﬂect business as usual

in the following precise sense: No unexpected TCP ﬂags should be set, and the ﬂow control

window advertised in the packet should be no different from what the receiver had previously

advertised. In pseudocode (simpliﬁed from Ref. Jac93):

IF (No unexpected ﬂags) AND (Window in packet is as before)

AND (Packet sequence number is the next expected) THEN

IF (Packet contains only headers and no data)

Do Ack Processing

/* Release acked bytes, stop timers, awaken process */

ELSE IF (Packet does not ack anything new) /* pure data */

Copy data to user buffer while checksumming;

Update next sequence number expected;

Send Acks if needed and release buffer;

ENDIF

ELSE /* header prediction failed -- take long path */

...

Clearly, this code is considerably shorter than the complete TCP receive processing code.

However, some of the checks can be made more efﬁcient by leveraging off the fact that most

machines can do efﬁcient comparisons in units of a machine word size (P4a, exploit locality).

For example, consider the TCP ﬂags contained in the control bits of Figure 9.8. There are

six ﬂags, each encoded as a bit: SYN, FIN, RESET, PUSH, URG, ACK. If it is business as

usual, all the ﬂags must be clear, with the exception of ACK, which must be set, and PUSH,

which is irrelevant. Checking for each of these conditions individually would require several

instructions to extract and compare each bit.

Instead, observe that the ﬂags ﬁeld is the fourth word of the TCP header and that the window

size is contained in the last 16 bits. In the header prediction code, the sender precomputes (P2a)

the expected value of this word by ﬁlling in all the expected values of the ﬂag and using the

last advertised value of the window size.

The expected value of the fourth TCP header word is stored in the PCB entry for the

connection. Given this setup, the ﬁrst two checks in the pseudocode shown earlier can be

accomplished in one stroke by comparing the fourth word of the TCP header in the incoming

packet with the expected value stored in the PCB. If all goes well, and tests indicate they often

do, the expected value of the fourth ﬁeld is computed only at the start of the connection. It is

this test that explains the origin of the name header prediction: A portion of the header is being

predicted and checked against an incoming segment.

The pseudocode described earlier is abstracted from the implementation by Jacobson in a

research kernel [Jac93] that claims to do TCP receiving processing in 30 Sun SPARC instruc-

tions! The BSD UNIX code given in Stevens [Ste94] is slightly more complicated, having to

deal with mbufs and with the need to eliminate other possibilities, such as the PAWS test [Ste94].

212


C H A P T E R 9
Protocol Processing
The discussion so far has been limited to TCP receive processing because it is more

complex than sending a TCP segment. However, a dual of header prediction exists for the

sender side. If only a few ﬁelds change between segments, the sender may beneﬁt from

keeping a template TCP (and IP) header in the connection block. When sending a segment,

the sender need only ﬁll in the few ﬁelds that change into the template. This is more efﬁcient if

copying the TCP header is more efﬁcient than ﬁlling in each ﬁeld. Caching of sending packet

headers is implemented in the Linux kernel.

Before ﬁnishing this topic, it is worth recalling Caveat Q8 and examining how sensitive

this optimization is to the system environment. Originally, header prediction was targeted at

workstations. The underlying assumption (that the next segment is for the same connection

and is one higher in sequence number than the last received segment) works well in this case.

Clearly, the assumption that the next segment is for the same connection works poorly

in a server environment. This was noted as early as Jacobson [Jac93], who suggested using a

hash of the port numbers to quickly locate the protocol control block. McKenney and Dove

conﬁrmed this by showing that using hashing to locate the PCB can speed up receive processing

by an order of magnitude in an OLTP (online transaction processing) environment

The FIFO assumption is much harder to work around. While some clever schemes can

be used to do sequence number processing for out-of-order packets, there are some more

fundamental protocol mechanisms in TCP that build on the FIFO assumption. For example, if

packets can be routinely misordered, TCP receivers will send duplicate acknowledgments. In

TCP’s fast retransmit algorithm [Ste94], TCP senders use three duplicate acknowledgments to

infer a loss (see Chapter 14).

Thus lack of FIFO behavior can cause spurious retransmissions, which will lower perfor-

mance more drastically as compared to the failure of header prediction. However, as TCP

receivers evolve to do selective acknowledgment [FMM+99], this could allow fast TCP

processing of out-of-order segments in the future.

9.3.1 UDP Processing
Recall that UDP is TCP without error recovery, congestion control, or connection management.

As with TCP, UDP allows multiplexing and demultiplexing using port numbers. Thus UDP

allows applications to send IP datagrams without the complexity of TCP. Although TCP is by

far the dominant protocol, many important applications, such as videoconferencing, use UDP.

Thus it is also important to optimize UDP implementations.

Because UDP is stateless, header prediction is not relevant: One cannot store past headers

that can be used to predict future headers. However, UDP shares with TCP two potentially

time-consuming tasks: demultiplexing to the right protocol control block, and checksumming,

both of which can beneﬁt from TCP-style optimizations [PP93].

Caching of PCB entries is more subtle in UDP than in TCP. This is because PCBs may need

to be looked up using wildcarded entries for, say, the remote (called foreign) IP address and

port. Thus there may be PCB 1 that speciﬁes local port L with all the other ﬁelds wildcarded,

and PCB 2 that speciﬁes local port L and remote IP address X. If PCB 1 is cached and a packet

arrives destined for PCB 2, then the cache can result in demultiplexing the packet for the wrong

PCB. Thus caching of wildcarded entries is not possible in general; address preﬁxes cannot be

cached for purposes of route lookup (Chapter 11), for similar reasons.

Partridge and Pink [PP93] suggest a simple strategy to get around this issue. A PCB entry,

such as PCB 1, that can “hide” or match another PCB entry is never allowed to be cached.

9.4 Reassembly



213
Subject to this restriction, the UDP implementation of Partridge and Pink [PP93] caches both

the PCB of the last packet received and the PCB of the last packet sent. The ﬁrst cache handles

the case of a train of received packets, while the second cache handles the common case of

receiving a response to the last packet sent. Despite the cache restrictions, these two caches

still have an 87% hit rate in the measurements of Partridge and Pink [PP93].

Finally, Partridge and Pink [PP93] also implemented a copy-and-checksum loop for UDP

as in TCP. In the BSD implementation, UDP’s sosend was treated as a special case of sending

over a connected socket. Instead, Partridge and Pink propose an efﬁcient special-purpose

routine that ﬁrst calculates the header checksum and then copies the data bytes to the network

buffer while updating the checksum. (Some of these ideas allowed Cray machines to vectorize

the checksum loop in the early 1990s.) With similar optimizations used for receive processing,

Partridge and Pink report that the checksum cost is essentially zero for CPUs that are limited

by memory access time and not processing.

9.4 REASSEMBLY
Both header prediction for TCP and even the UDP optimizations of Partridge and Pink [PP93]

assume that the received data stream has no unusual need for computation. For example,

TCP segments are assumed not to contain window size changes or to have ﬂags set that need

attention. Besides these, an unstated assumption so far is that the IP packets do not need to be

reassembled.

Brieﬂy, the original IP routing protocol dealt with diverse links with different maximum

packet sizes or Maximum Transmission Units (MTUs) by allowing routers to slice up IP packets

into fragments. Each fragment is identiﬁed by a packet ID, a start byte offset into the original

packet, and a fragment length. The last fragment has a bit set to indicate it is the last. Note

that an intermediate router can cause a fragment to be itself fragmented into multiple smaller

fragments. IP routing can also cause duplicates, loss, and out-of-order receipt of fragments.

At the receiver, Humpty Dumpty (i.e., the original packet) can be put together as follows.

The ﬁrst fragment to arrive at the receiver sets up the state that is indexed by the corresponding

packet ID. Subsequent fragments are steered to the same piece of state (e.g., a linked list of

fragments based on the packet ID). The receiver can tell when the packet is complete if the last

fragment has been received and if the remaining fragments cover all the bytes in the original

packets length, as indicated by each fragment’s offset. If the packet is not reassembled after a

speciﬁed time has elapsed, the state is timed out.

While fragmentation allows IP to deal with links of different MTU sizes, it has the fol-

lowing disadvantages [KM87]. First, it is expensive for a router to fragment a packet because

it involves adding a new IP header for fragment, which increases the processing and memory

bandwidth needs. Second, reassembly at endnodes is considered expensive because deter-

mining when a complete packet has been assembled potentially requires sorting the received

fragments. Third, the loss of a fragment leads to the loss of a packet; thus when a fragment is

lost, transmission of the remaining fragments is a waste of resources.

The current Internet strategy [KM87] is to shift the fragmentation computation in space

(P3c) from the router and the receiver to the sender. The idea behind the so-called path MTU
scheme is that the onus falls on the sender to compute a packet size that is small enough to

pass through all links in the path from sender to receiver. Routers can now refuse to fragment


214


C H A P T E R 9
Protocol Processing
a packet, sending back a control message to the receiver. The sender uses a list of common

packet sizes (P11, optimizing the expected case) and works its way down this list when it

receives a refusal.

The path MTU scheme nicely illustrates algorithmics in action by removing a problem

by moving to another part of the system. However, a misconception has arisen that path MTU

has completely removed fragmentation in the Internet. This is not so. Almost all core routers

support fragmentation in hardware, and a signiﬁcant amount of fragmented trafﬁc has been

observed [SMC01] on Internet backbone links many years after the path MTU protocol was

deployed.

Note that the path MTU protocol requires the sender to keep state as to the best current

packet size to use. This works well if the sender uses TCP, but not if the sender uses UDP,

which is stateless. In the case of UDP, path MTU can be implemented only if the application

above UDP keeps the necessary state and implements path MTU. This is harder to deploy

because it is harder to change many applications, unlike changing just TCP. Thus at the time

of writing, shared ﬁle system protocols such as NFS, IP within IP encapsulation protocols, and

many media player and game protocols run over UDP and do not support path MTU. Finally,

many attackers compromise security by splitting an attack payload across multiple fragments.

Thus intrusion detection devices must often reassemble IP fragments to check for suspicious

strings within the reassembled data.

Thus it is worth investigating fast reassembly algorithms because common programs such

as NFS do not support the path MTU protocol and because real-time intrusion detection systems

must reassemble packets at line speeds to detect attacks hidden across fragments. The next

section describes fast reassembly implementations at receivers.

9.4.1 Efﬁcient Reassembly
Figure 9.9 shows a simple data structure, akin to the one used in BSD UNIX, for reassem-

bling a data packet. Assume that three fragments for the packet with ID 1080 have arrived.

The fragments are sorted in a list by their starting offset number. Notice that there are over-

lapping bytes because the ﬁrst fragment contains bytes 1–10, while the second contains 2–21.

Thus if a new fragment with packet ID 1080 arrives containing offsets 25–30, the imple-

mentation will typically search through the list, starting from the head, to ﬁnd the correct

position. The correct position is between start offsets 2 and 40 and so is after the second

list item.

Each time a fragment is placed in the list, the implementation can check during list traversal

if all required bytes have been received up to this fragment. If so, it continues checking to

the end of the list to see if all bytes have been received and the last fragment has the last

fragment bit set. If these conditions are met, then all required fragments have arrived; the

Packet
1080


1–10



2–21



25–30



40–50

Paste here

F I G U R E 9.9
One data structure for reassembly is a linked list of fragments that is indexed by packet

ID and sorted by the start byte offset (ﬁrst ﬁeld). The second ﬁeld is the end offset. Thus the fragment

that starts at offset 25 is inserted after the second list element.


9.4 Reassembly



215
implementation then traverses the list again, copying the data of each fragment into another

buffer at the speciﬁed offset, potentially avoiding copying overlapping portions.

The resulting implementation is quite complex and slow and typically requires an extra

copy. Note that to insert a fragment, one has to locate the packet ID’s list and then search

within the list. This requires two linear searches. Is IP reassembly fundamentally hard?

Oddly enough, there exists a counterexample reassembly protocol that has been imple-

mented in hardware at gigabit speeds: the ATM AAL-5 cell reassembly protocol [Par93],

which basically describes how to chop up IP packets into 53-byte ATM cells while allowing

reassembly at the cells into packets at the receiver. What makes the AAL-5 reassembly algo-

rithm simple to implement in hardware is not the ﬁxed-length cell (the implementation can be

generalized to variable-length cells) but the fact that cells can only arrive in FIFO order.
If cells can arrive only in FIFO order, it is easy to paste each successive cell into a buffer

just after where the previous cell was placed. When the last cell arrives carrying a last cell bit

(just as in IP), the packet’s CRC is checked. If the CRC computes, the packet is successfully

reassembled. Note that ATM does not require any offset ﬁelds because packets arrive in order

on ATM virtual circuits.

Unlike ATM cells, IP datagrams can arrive (theoretically) in any order, because IP uses a

datagram (post ofﬁce) model as opposed to a virtual circuit (telephony) model. However, we

have just seen that header prediction, and in fact the fast retransmission algorithm, depends

crucially on the fact that in the expected case, IP segments arrive in order (P11, optimizing the

expected case). Combining this observation with that of the AAL-5 implementation suggests

that one can obtain an efﬁcient reassembly algorithm, even in hardware, by optimizing for the

case of FIFO arrival of fragments, as shown in Figure 9.10.

Figure 9.10 maintains the same sorted list as in Figure 9.9 but also keeps a pointer to the

end of the list. Optimizing for the case that fragments arrive in order and are nonoverlapping,

when a fragment containing bytes 22–30 arrives, the implementation checks the ending byte

number of the last received fragment (stored in a register, equal to 21) against the start offset of

the new fragment. Since 22 is 21 + 1, all is well. The new end byte is updated to the end byte

of the new fragment (30), and the pointer is updated to point to the newly arrived fragment

after linking it at the end of the list. Finally, if the newly arriving fragment is a last fragment,

reassembly is done.

Compared to the implementation in Figure 9.9, the check for completion as well as the

check to ﬁnd out where to place a fragment takes constant and not linear time. Similarly, one

can cache the expected packet ID (as in the TCP or UDP PCB lookup implementations) to

avoid a list traversal when searching for the fragment list. Finally, using data structures such

as pbufs instead of mbufs, even the need for an extra copy can be avoided by directly copying

a received fragment into the buffer at the appropriate offset.

Packet
1080


1–10



11–21



Expected
offset
Paste here

22–30

F I G U R E 9.10
This implementation is similar to that of Figure 9.9, except it optimizes for the case

that the fragments are nonoverlapping and arrive in order.

216


C H A P T E R 9
Protocol Processing
If the expected case fails, the implementation can revert to the standard BSD processing.

For example, Chandranmenon and Varghese [CV98a], which describe this expected-case

optimization in which the code keeps two lists and directly reuses the existing BSD code

(which is hard to get right!) when the expected case fails. The expected case is reported by

Chandranmenon and Varghese [CV98a] as taking 38 SPARC instructions, which is comparable

with Jacobson’s TCP estimates.

As with header prediction, it is worth applying Caveat Q8 and examining the sensitivity of

this optimization of this implementation to the assumptions. Actually, it turns out to be pretty

bad. This is because measurements indicate that many recent implementations, including

Linux, have senders send out fragments in reverse order! Thus fragments arrive in reverse

order 9% of the time [SMC01].

This seemingly eccentric behavior is justiﬁed by the fact that it is only the last fragment

that carries the length of the entire packet; by sending it ﬁrst the sender allows the receiver to

know what length buffer to allocate after the ﬁrst fragment is received, assuming the fragments

arrive in FIFO order. Note that the FIFO assumption still holds true. However, Figure 9.10

has a concealed but subtle additional assumption: that fragments will be sent in offset order.

Before reading further, think how you might modify the implementation of Figure 9.10 to

handle this case.

The solution, of course, is to use the ﬁrst fragment to decide which of two expected cases

to optimize for. If the ﬁrst fragment is the ﬁrst fragment (offset 0), then the implementation

uses the mode described in Figure 9.10. If the ﬁrst fragment is the last (last bit set), the

implementation jumps to a different state, where it expects fragments in reverse order. This is

just the dual of Figure 9.10, where the next fragment should have its last byte number to be 1

less (as opposed to 1 more) than the start offset of the previous fragment. Similarly, the next

fragment is expected to be pasted at the start of the list and not the end.

9.5 CONCLUSIONS
This chapter describes techniques for efﬁcient buffer allocation, CRC and checksum calcula-

tion, protocol processing such as TCP, and ﬁnally reassembly.

For buffer allocation, techniques such as the use of segregated pools and batch allocation

promise fast allocation with potential trade-offs: the lack of storage efﬁciency (for segregated

pools) versus the difﬁculty of coalescing noncontiguous holes (for batch allocation). Buffer

sharing is important to use memory efﬁciently and can be done by efﬁciently stealing buffers

from large users or by using dynamic thresholds.

For CRC calculation, efﬁcient multibit remainder calculation ﬁnesses the obvious waste

(P1) of calculating CRCs one bit at a time, even using LFSR implementations. For checksum

calculation, the main trick is to ﬁt the computation to the underlying machine architecture,

using large word lengths, lazy checks for carries, and even parallelism. The optimizations

for TCP, UDP, and reassembly are all based on optimizing simple expected cases (e.g., FIFO

receipt, no errors) that cut through a welter of corner cases that the protocol must check for

but rarely occur. Figure 9.1 presents a summary of the techniques used in this chapter together

with the major principles involved.

Beyond the speciﬁc techniques, there are some general lessons to be gleaned. First, when

considering the buffer-stealing algorithm, it is tempting to believe that ﬁnding the user with

9.6 Exercises



217
the largest buffer allocation requires a heap, which requires logarithmic time. However, as

with timing wheels in Chapter 7, Mckenney’s algorithm exploits the special case that buffer

sizes only increase and decrease by 1.

The general lesson is that for algorithmics, special cases matter. Theoreticians know this

well; for example, the general problem of ﬁnding a Hamiltonian cycle [CLR90] is hard for

general graphs but is trivial if the graph is a ring. In fact, the practitioner of algorithmics

should look for opportunities to change the system to permit special cases that permit efﬁcient

algorithms.

Second, the dynamic threshold scheme shows how important it is to optimize one’s degrees

of freedom (P13), especially when considering dynamic instead of static values for parameters.

This is a very common evolutionary path in many protocols: for example, collision-avoidance

protocols evolved from using ﬁxed backoff times to using dynamic backoff times in Ethernet;

transport protocols evolved from using ﬁxed window sizes to using dynamic window sizes to

adjust to congestion; ﬁnally, the dynamic threshold scheme of this chapter shows the power

of allowing dynamic buffer thresholds.

Third, the discussion of techniques for buffer sharing shows why algorithmics — at least in

terms of abstracting common networking tasks and understanding a wide spectrum of solutions

for these tasks — can be useful. For example, when writing this chapter it became clear that

buffer sharing is also part of many credit-based protocols, such as Ozveren et al. [OSV94] (see

the protocol in Chapter 15) — except that in such settings a sender is allocating buffer space at

a distant receiver. Isolating the abstract problem is helpful because it shows, for instance, that

the dynamic threshold scheme of Choudhury and Hahne can provide ﬁner grain buffer sharing

than the technique of Ozveren et al. [OSV94].

Finally, the last lesson from header prediction and fast reassembly is that attempts to design

new protocols for faster implementation can often be countered by simpler implementations.

In particular, arguing that a protocol is “complex” is often irrelevant if the complexities can

be ﬁnessed in the expected case.

As a second example, a transport protocol [SN89] was designed to allow efﬁcient sequence

number processing for protocols that used large windows and could handle out-of-order deliv-

ery. The protocol embedded concepts such as chunks of contiguous sequence numbers into

the protocol for this purpose. Simple implementation tricks described in the patent [TVHS92]

can achieve much the same effect, using large words to effectively represent chunks without

redesigning the protocol.

Thus history teaches that attempts to redesign protocols for efﬁciency (as opposed to more

functionality) should be viewed with some scepticism.

9.6 EXERCISES
1. Dynamic Buffer Thresholds and Credit-Based Flow Control: Read the credit-based

protocol described in Chapter 15. Consider how to modify the buffer-sharing protocol of

Chapter 15 to use dynamic thresholds. What are some of the possible beneﬁts? This last

question is ideally answered by a simulation, which would make it a longer-term class

project.

2. Incremental Checksum Computation: RFC 1141 states that when an IP header with

checksum H is modiﬁed by changing some 16-bit ﬁeld value (such as the TTL ﬁeld) m to

218


C H A P T E R 9
Protocol Processing
a new value m , then the new checksum should become H + m + m , where
X denotes

the 1’s complement of X. While this works most of the time, the right equation, described

in RFC 1624, is to compute (H + m + m ): This is slightly more inefﬁcient but correct.

This should show that tinkering with the computation can be tricky and requires proofs.

To see the difference between these two implementations, consider an example given

in RFC 1624 with an IP header in which a 16-bit ﬁeld m = 0x5555 changes to

m
= 0x3285. The 1’s-complement sum of all the remaining header bytes is 0xCD7A.

Compute the checksum both ways and show that they produce different results. Given

that these two results are really the same in 1’s complement notation (different

representations of zero), why might it cause trouble at the receiver?

3. Parallel Checksum Computation: Figure out how to modify checksum calculation in

hardware so as to work on W chunks of the packet in parallel and ﬁnally to fold all the

results.

4. Hardware Reassembly: Suppose the FIFO assumption is not true and fragments arrive

out of order. In this problem your assignment is to design an efﬁcient hardware reassembly

scheme for IP fragments subject to the restrictions stated in Chapter 2. One idea you could

exploit is to have the hardware DMA engine that writes the fragment to a buffer also write

a control bit for every word written to memory. This only adds a bit for every 32 bits.

When all the fragments have arrived, all the bits are set. You could determine

whether all bits are set by using a summary tree, in which all the bits are leaves and each

node has 32 children. A node’s bit is set if all its children’s bits are set. The summary tree

does not require any pointers because all node bit positions can be calculated from child

bit positions, as in a heap. Describe the algorithms to update the summary tree when a

new fragment arrives. Consider hardware alternatives in which packets are stored in

DRAM and bitmaps are stored in SRAM, as well as other creative possibilities.


P A R T III
Playing with Routers
My work is a game, a very serious game.
— M. C. Escher

Part I dealt with models and principles and Part II dealt with applying these models and

principles to endnodes. The third part of this book deals with router algorithmics. This

is the application of network algorithmics to building fast routers. However, many of

the techniques apply to bridges, gateways, measurement devices, and ﬁrewalls. The

techniques are applied mostly in a hardware setting, and much of it has to do with

processing packets at wire speeds as links get faster. We study exact lookups, preﬁx

lookups, packet classiﬁcation, switching, and QoS. We also study some other chores

within a router, such as striping and ﬂow control across chip-to-chip links within a

router.


C H A P T E R 10
Exact-Match Lookups
“Challenge-and-response” is a formula describing the free play of forces that pro-
vokes new departures in individual and social life. An effective challenge stimulates
men to creative action.
— Arnold Toynbee

In Part III, for simplicity of terminology, we will generically refer to interconnect devices

as routers. Each chapter in Part III addresses the efﬁcient implementation of a key function

for such routers. In the simplest model of a router forwarding path, the destination address

of a packet is ﬁrst looked up to determine a destination port; the packet is then switched to

the destination port; ﬁnally, the packet is scheduled at the destination port to provide QoS

guarantees. In addition, modern high-performance routers also subject packets to internal

striping (to gain throughput) and to internal credit-based ﬂow control (to prevent loss on chip-

to-chip links). The chapters are arranged to follow the same order, from lookups to switching

to QoS.

Thus the ﬁrst three chapters concentrate on the surprisingly difﬁcult problem of state

lookup in routers. The story begins with the simplest exact match lookups in this chapter,

progresses to longest-preﬁx lookups in Chapter 11, and culminates with the most complex

classiﬁcation lookups in Chapter 12.

What is an exact-match lookup? Exact-match lookups represent the simplest form of

database query. Assume a database with a set of tuples; each tuple consists of a unique ﬁxed-

length key together with some state information. A query speciﬁes a key K. The goal is to

return the state information associated with the tuple whose key is K.

Now, exact-match queries are easily implemented using well-studied techniques, such

as binary search and hash tables [CLR90]. However, they are still worth studying in this

book, for two reasons. First, in the networking context the models and metrics for lookups are

different from the usual algorithmic setting. Such differences include the fact that lookups must

complete in the time to receive a packet, the use of memory references rather than processing

as a measure of speed, and the potential use of hardware speedups. Exact-match lookups offer

the simplest opportunity to explore these differences. A second reason to study exact-match

lookups is that they are crucial for an important networking function, called bridging1, that is

often integrated within a router.

1A device commonly known as a LAN switch typically implements bridge functionality.

221

222


C H A P T E R 1 0
Exact-Match Lookups
Number
Principle
P15
Use efficient data structures: binary search table

P5
Hardware FPGA for lookup only

P15
Use efficient data structure: perfect hashing

P2a
Precompute hash function with bounded collisions

P5
Pipeline binary search



Used In
First bridge

Gigaswitch

FDDI bridge

F I G U R E 10.1
Principles used in the various exact-match lookup techniques discussed in this chapter.

This chapter is organized around a description of the history of bridges. This is done for

one chapter in the book, in the hope of introducing the reader to the process of algorithmics at

work in a real product that changed the face of networking. This chapter also describes some

of the stimuli that lead to innovation and introduces some of the people responsible for it.

Arnold Toynbee [TC72] describes history using a challenge–response theory, in which

civilizations either grow or fail in response to a series of challenges. Similarly, the history of

bridges can be described as a series of three challenges, which are described in the three sections

of this chapter: Ethernets Under Fire (Section 10.1), Wire Speed Forwarding (Section 10.2),

and Scaling Lookups to Higher Speeds (Section 10.3). The responses to these challenges led

to what is now known as 802.1 spanning tree bridges [IEE97].

The techniques described in this chapter (and the corresponding principles) are summa-

rized in Figure 10.1.

Q u i c k R e f e r e n c e G u i d e
The implementor interested in fast exact-match schemes should consider either parallel hashing

techniques inspired by perfect hashing (Section 10.3.1) or pipelined binary search (Section 10.3.2).

10.1 CHALLENGE 1: ETHERNET UNDER FIRE
The ﬁrst challenge arose in the late 1980s. Ethernet, invented in the 1970s as a low-cost,

high-bandwidth interconnect for personal computers, was attacked as behaving poorly at large

loads and being incapable of spanning large distances. Recall that if two or more nodes on

an Ethernet send data at the same time, a collision occurs on the shared wire. All senders

then compute a random retransmission time and retry, where the randomization is chosen to

minimize the probability of further collisions.

Theoretical analyses (e.g., Bux and Grillo [BG85]) claimed that as the utilization of an

Ethernet grew, the effective throughput of the Ethernet dropped to zero because the entire

bandwidth was wasted on retransmissions. A second charge against Ethernet was its small

distance limit of 1.5 km, much smaller than the limits imposed by, say, the IBM token ring.

While the limited-bandwidth charge turned out to be false in practice [BMK88], it

remained a potent marketing bullet for a long time. The limited-distance charge was, and


A



B



C↑
Bridge

A↓


10.1 Challenge 1: Ethernet under Fire
C



223
F I G U R E 10.2
Toward designing a bridge connecting two Ethernets.

remains, a true limitation of a single Ethernet. In this embattled position, network marketing

people at Digital Equipment Corporation (DEC) around 1980 pleaded with their technical

experts for a technical riposte to these attacks. Could not their bright engineers ﬁnd a clever

way to “extend” a single Ethernet such that it could become a longer Ethernet with a larger

effective bandwidth?

First, it was necessary to discard some unworkable alterntives. Physical layer bit repeaters

were unworkable because they did not avoid the distance and bandwidth limits of ordinary

Ethernets. Extending an Ethernet using a router did, in theory, solve both problems but intro-

duced two other problems. First, in those days, routers were extremely slow and could hardly

keep up with the speed of the Ethernet.

Second, there were at least six different routing protocols in use at that time, including

IBM’s SNA, Xerox’s SNS, DECNET, and Appletalk. Hard as it may be to believe now, the

Internet protocols were then only a small player in the marketplace. Thus a router would have

to be a complex beast capable of routing multiple protocols (as Cisco would do a few years

later), or one would have to incur the extra cost of placing multiple routers, one for each

protocol. Thus the router solution was considered a nonstarter.

Routers interconnect links using information in the routing header, while repeaters inter-

connect links based on physical-layer information, such as bits. However, in classical network

layering there is an intermediate layer called the data link layer. For an Ethernet, the data link

layer is quite simple and contains a 48-bit unique Ethernet destination address.2Why is it not

possible, the DEC group argued, to consider a new form of interconnection based only on the

data link layer? They christened this new beast a data link layer relay, or a bridge.

Let us take an imaginary journey into the mind of Mark Kempf, an engineer in the

Advanced Development Group at DEC, who invented bridges in Tewksbury, MA, around 1980.

Undoubtedly, he drew something like Figure 10.2, which shows two Ethernets connected by

a bridge; the lower Ethernet line contains stations A and B, while the upper Ethernet contains

station C.

The bridge should make the two Ethernets look like one big Ethernet so that when A sends

an Ethernet packet to C
it magically gets to C
without A’s having to even know there is a

bridge in the middle. Perhaps Mark reasoned as follows in his path to a ﬁnal solution.

Packet Repeater: Suppose A sends a packet to C (on the lower Ethernet) with destination

address C and source address A. Assume the bridge picks up the entire packet, buffers it, and

2Note that Ethernet 48-bit addresses have no relation to 32-bit Internet addresses.

224


C H A P T E R 1 0
Exact-Match Lookups
waits for a transmission opportunity to send it on the upper Ethernet. This avoids the physical

coupling between the collision-resolution processes on the two Ethernets that would be caused

by using a bit repeater. Thus the distance span increases to 3 km, but the effective bandwidth

is still that of one Ethernet, because every frame is sent on both Ethernets.

Filtering Repeater: The frame repeater idea in Figure 10.2 causes needless waste (P1)

when
A sends a packet to B
by sending the packet unnecessarily on the upper Ethernet.

This waste can be avoided if the bridge has a table that maps station addresses to Ethernets.

For example, suppose the bridge in Figure 10.2 has a table that maps A and B to the lower

Ethernet and C to the upper Ethernet. Then on receipt of a packet from A to B on the lower

Ethernet, the bridge need not forward the frame because the table indicates that destination B
is on the same Ethernet the packet was received on. If, say, a fraction p of trafﬁc on each Eth-

ernet is to destinations on the same Ethernet (locality assumption), then the overall bandwidth

of the two Ethernet systems becomes (1 + p) times the bandwidth of a single Ethernet. This

follows because the fraction p can be simultaneously sent on both Ethernets, increasing overall

bandwidth by this fraction. Hence both bandwidth and distance increase. The only difﬁculty

is ﬁguring out how the mapping table is built.

Filtering Repeater with Learning: It is infeasible to have a manager build a mapping

table for a large bridged network. Can the table be built automatically? One aspect of Principle

P13 (exploit degrees of freedom) is Polya’s [Pol57] problem-solving question: “Have you

used all the data?” So far, the bridge has looked only at destination addresses to forward the

data. Why not also look at source addresses? When receiving a frame from A to B, the bridge

can look at the source address ﬁeld to realize that A is on the lower Ethernet. Over time, the

bridge will learn the ports through which all active stations can be reached.

Perhaps Mark rushed out after his insight, shouting “Eureka!” But he still had to work out

a few more issues. First, because the table is initially empty, bridges must forward a packet,

perhaps unnecessarily, when the location of the destination has not been learned. Second, to

handle station movement, table entries must be timed out if the source address is not seen for

some time period T. Third, the entire idea generalizes to more than two Ethernets connected

together without cycles, to bridges with more than two Ethernet attachments, and to links other

than Ethernets that carry destination and source addresses. But there was a far more serious

challenge that needed to be resolved.

10.2 CHALLENGE 2: WIRE SPEED FORWARDING
When the idea was ﬁrst proposed, some doubting Thomas at DEC noticed a potential ﬂaw.

Suppose in Figure 10.2 that A sends 1000 packets to B and that A then follows this burst by

sending, say, 10 packets to C. The bridge receives the thousand packets, buffers them, and

begins to work on forwarding (actually discarding) them. Suppose the time that the bridge

takes to look up its forwarding table is twice as long as the time it takes to receive a packet.

Then after a burst of 1000 back-to-back packets arrive, a queue of 500 packets from A to B
will remain as a backlog of packets that the bridge has not even examined.

Since the bridge has a ﬁnite amount of buffer storage for, say, 500 packets, when the

burst from A to C arrives they may be dropped without examination because the bridge has

no more buffer storage. This is ironic because the packets from A to B that are in the buffer

will be dropped after examination, but the bridge has dropped packets from A to C that needed

to be forwarded. One can change the numbers used in this example but the bottom line is


Processor



Lookup

engine

Ethernet 2


10.2 Challenge 2: Wire Speed Forwarding
Ethernet 1
Ethernet chip

Packet memory

plus

lookup memory

Ethernet chip



225
F I G U R E 10.3
Implementation of the ﬁrst Ethernet-to-Ethernet bridge.

unchanged: If the bridge takes more time to forward a packet than the minimum packet arrival

time, there are always scenarios in which packets to be forwarded will be dropped, because

the buffers are ﬁlled with packets that will be discarded.

The critics were quick to point out that routers did not have this problem3because routers

dealt only with packets addressed to the router. Thus if a router were used, the router–Ethernet

interface would not even pick up packets destined for B, avoiding this scenario.

To ﬁnesse this issue and avoid interminable arguments, Mark proposed an implementation

that would do wire speed forwarding between two Ethernets. In other words, the bridge would

look up the destination address in the table (for forwarding) and the source address (for learning)

in the time it took a minimum-size packet to arrive on an Ethernet. Given a 64-byte minimum

packet, this left 51.2 µsec to forward a packet. Since a two-port bridge could receive a

minimum-size packet on each of its Ethernets every 51.2 µsec, this actually translated into

doing two lookups (destination and source) every 25.6 µsec.

It is hard to appreciate today, when wire speed forwarding has become commonplace,

how astonishing this goal was in the early 1980s. This is because in those days one would be

fortunate to ﬁnd an interconnect device (e.g., router, gateway) that worked at kilobit rates, let

alone at 10 Mbit/sec. Impossible, many thought. To prove them wrong, Mark built a prototype

as part of the Advanced Development Group in DEC. A schematic of his prototype, which

became the basis for the ﬁrst bridge, is shown in Figure 10.3.

The design in Figure 10.3 consists of a processor (the ﬁrst bridge used a Motorola 68000),

two Ethernet chips (the ﬁrst bridge used AMD Lance chips), a lookup chip (which is described

in more detail later), and a four-ported shared memory. The memory could be read and written

by the processor, the Ethernet chips, and the lookup engine.

The data ﬂow through the bridge was as follows. Imagine a packet P sent on Ethernet 1.

Both Ethernet chips were set in “promiscuous mode,” whereby they received all packets.

3Oddly enough even routers have the same problem of distinguishing important packets from less important

ones in times of congestion, but this was not taken seriously in the 1980s.

226


C H A P T E R 1 0
Exact-Match Lookups
Thus the bits of P are captured by the upper Ethernet chip and stored in the shared memory

in a receive queue. The processor eventually reads the header of P, extracts the destination

address D, and gives it to the lookup engine.

The lookup engine looks up D in a database also stored in the shared memory and returns

the port (upper or lower Ethernet) in around 1.3 µsec. If the destination is on the upper

Ethernet, then the packet buffer pointer is moved to a free queue, effectively discarding the

packet; otherwise, the buffer pointer is moved to the transmit queue of the lower Ethernet

chip. The processor also provides the source address S in packet P to the lookup engine for

learning.

His design paid careful attention to algorithmics in at least three areas to achieve wire

speed forwarding at a surprisingly small manufacturing cost of around $1000.

•
Architectural Design: To minimize cost, the memory was cheap DRAM with a cycle time

of 100 nsec that was used for packet buffers, scratch memory, and the lookup database.

The four-port memory (including the separate connection from the lookup engine to the

memory) and the buses were carefully designed to maximize parallelism and minimize

interference. For example, while the lookup engine worked on doing lookups to memory,

the processor continued to do useful work. Note that the processor has to examine the

receive queues of both Ethernet chips in dovetailed fashion to check for packets to be

forwarded from either the top or bottom Ethernets. Careful attention was paid to memory

bandwidth, including the use of page mode (Chapter 2).

•
Data Copying: The Lance chips used DMA (Chapter 5) to place packets in the memory

without processor control. When a packet was to be forwarded between the two Ethernets,

the processor only ﬂipped a pointer from the receive queue of one Ethernet chip to the

transmit queue of the other processor.

•
Control Overhead: As with most processors, the interrupt overhead of the 68000 was

substantial. To minimize this overhead, the processor used polling, staying in a loop after

a packet interrupt and servicing as many packets as arrive, in order to reduce context-

switching overhead (Chapter 6). When the receive queues are empty, the processor moves

to doing other chores, such as processing control trafﬁc. The ﬁrst data packet arrival after

such an idle period interrupts the processor, but this interrupt overhead is spread over the

entire batch of packets that arrive before another idle period begins.

•
Lookups: Very likely, Mark went through the eight cautionary questions found in

Chapter 3. First, to avoid any complaints, he decided to use binary search (P15, efﬁcient

data structures) for lookup because of its determinism. Second, having a great deal of

software experience before he began designing hardware, he wrote some sample 68000

code and determined that software binary search lookup was the bottleneck (Q2 in

Chapter 3) and would exceed his packet processing budget of 25.6 µsec. Eliminating the

destination and source lookup would allow him to achieve wire speed forwarding (Q3).

Recall that each iteration of binary search reads an address from the database in memory,

compares it with the address that must be looked up, and uses this comparison to

determine the next address to be read. With added hardware (P5), the comparison can be

implemented using combinatorial logic (Chapter 2), and so a ﬁrst-order approximation of

lookup time is the number of DRAM memory accesses. As the ﬁrst product aimed for a


10.2 Challenge 2: Wire Speed Forwarding


227
table size of 8000,4this required log28000 memory accesses of 100-nsec each, yielding a

lookup time of 1.3 µsec. Given that the processor does useful work during the lookup, two

lookups for source and destination easily ﬁt within a 25.6-µsec budget (Q4).

To answer Q5 in Chapter 3 as to whether custom hardware is worthwhile, Mark found that

the lookup chip could be cheaply and quickly implemented using a PAL (programmable array

logic; see Chapter 2). To answer Q7, his initial prototype met wire speed tests constructed

using logic analyzers. Finally, Q8, which asks about the sensitivity to environment changes,

was not relevant to a strictly worst-case design like this.

The 68000 software, written by Bob Shelley, also had to be carefully constructed to

maximize parallelism. After the prototype was built, Tony Lauck, then head of DECNET,

was worried that bridges would not work correctly if they were placed in cyclic topologies.

For example, if two bridges are placed between the same pair of Ethernets, messages sent on

one Ethernet will be forwarded at wire speed in the loop between bridges. In response, Radia

Perlman, then the DEC routing architect, invented her celebrated spanning tree algorithm.

The algorithm ensures that bridges compute a loop-free topology by having redundant bridges

turn off appropriate bridge ports.

While you can read up on the design of the spanning tree algorithm in Perlman’s book

[Per92], it is interesting to note that there was initial resistance to implementing her algorithm,

which appeared to be “complex” when compared to simple, fast bridge data forwarding.

However, the spanning tree algorithm used control messages, called Hellos, that are not

processed in real time.

A simple back-of-the-envelope calculation by Tony Lauck related the number of instruc-

tions used to process a hello (at most 1000), the rate of hello generation (speciﬁed at that time

to be once every second), and the number of instructions per second of the Motorola 68000

(around 1 million). Lauck’s vision and analysis carried the day, and the spanning tree algorithm

was implemented in the ﬁnal product.

Manufactured at a cost of $1000, the ﬁrst bridge was initially sold at a markup of around

eight, ensuring a handsome proﬁt for DEC when sales initially climbed. In 1986 Mark Kempf

was awarded U.S. Patent 4,597,07, titled “Bridge circuit for interconnecting networks.” DEC

made no money from patent licensing, choosing instead to promote the IEEE 802.1 bridge

interconnection standards process.

Together with the idea of self-learning bridges, the spanning tree algorithm has passed

into history. Ironically, one of the ﬁrst customers complained that the bridge did not work

correctly; ﬁeld service later determined that the customer had connected two bridge ports to

the same Ethernet, and the spanning tree had (rightly) turned the bridge off! While features

like autoconﬁgurability and provable fault tolerance have only recently been added to Internet

protocols, they were part of the bridge protocols in the 1980s.

The success of Ethernet bridges led to proposals for several other types of bridges con-

necting other local area networks and even wide area bridges. The author even remembers

working with John Hart (who went on to become CTO of 3Com) and Fred Baker (who went

on to become a Cisco Fellow) on building satellite bridges that could link geographically

distributed sites. While some of the initital enthusiasm to extend bridges to supplant routers

4This allows a bridged Ethernet to have only 8000 stations. While this is probably sufﬁcient for most customer

sites, later bridge implementations raised this ﬁgure to 16K and even 64K.

228


C H A P T E R 1 0
Exact-Match Lookups
was somewhat extreme, bridges found their most successful niche in cheaply interconnecting

similar local area networks at wire speeds.

However, after the initial success of 10-Mbps Ethernet bridges, enginers at DEC began

to worry about bridging higher-speed LANs. In particular, DEC decided, perhaps unwisely,

to concentrate their high-speed interconnect strategy around 100-Mbps FDDI token rings

[UNH01]. Thus in the early 1990s, engineers at DEC and other companies began to worry about

building a bridge to interconnect two 100-Mpbs FDDI rings. Could wire speed forwarding,

and especially exact-match lookups, be made 10 times faster?

10.3 CHALLENGE 3: SCALING LOOKUPS TO HIGHER SPEEDS
First, let’s understand why binary search forwarding does not scale to FDDI speeds. Binary

search takes log2N
memory accesses to look up a bridge database, where N
is the size of

the database. As bridges grew popular, marketing feedback indicated that the database size

needed to be increased from 8K to 64K. Thus using binary search, each search would take

16 memory accesses. Doing a search for the source and destination addresses using 100-nsec

DRAM would then take 3.2 µsec.

Unlike Ethernet, where small packets are padded to ensure a minimum size of 64 bytes,

a minimum-size packet consisting of FDDI, routing, and transport protocol headers could be

as small as 40 bytes. Given that a 40-byte packet can be received in 3.2 µsec at 100 Mbps,

two binary search lookups would use up all of the packet-processing budget for a single link,

leaving no time for other chores, such as inserting and removing from link chip queues.

One simple approach to meet the challenge of wire speed forwarding is to retain binary

search but to use faster hardware (P5). In particular, faster SRAM (Chapter 2) could be used

to store the database. Given a factor of 5–10 decrease in memory access time using SRAM in

place of DRAM, binary search will easily scale to wire speed FDDI forwarding.

However, this approach is unsatisfactory, for two reasons. First, it is more expensive,

because SRAM is more expensive than DRAM. Second, using faster memory gets us lookups

at FDDI speeds but will not work for the next speed increment (e.g., Gigabit Ethernet). What

is needed is a way to reduce the number of memory accesses associated with a lookup so that

bridging can scale with link technology. Of the two following approaches to bridge-lookup

scaling, one is based on hashing and the other on hardware parallelism.

10.3.1 Scaling via Hashing
In the 1990s, DEC decided to build a fast crossbar switch connecting up to 32 links, called

the Gigaswitch [SKO+94]. The switch-arbitration algorithms used in this switch will be

described in Chapter 13. This chapter concentrates on the bridge-lookup algorithms used

in the Gigaswitch. The vision of the original designers, Bob Simcoe and Bob Thomas, was

to have the Gigaswitch be a switch connecting point-to-point FDDI links without implement-

ing bridge forwarding and learning. Bridge lookups were considered to be too complex at

100-Mbps speeds.

Into the development arena strode a young software designer who changed the prod-

uct direction. Barry Spinney, who had implemented an Ada compiler in his last job, was

determined to do hardware design at DEC. Barry suggested that the Gigaswitch be converted

to a bridge interconnecting FDDI local area networks. To do so, he proposed designing an


10.3 Challenge 3: Scaling Lookups to Higher Speeds
D(x) * M(x) mod G(x)

BACKUP



229
S
D


CAM

F I G U R E 10.4
Gigaswitch hashing uses a hash function with a programmable multiplier, a small,

balanced binary tree in every hash bucket, and a backup CAM to hold the rare case of entries that result

in more than seven collisions.

FDDI-to-Gigaswitch network controller (FGC) chip on the line cards that would implement a

hashing-based algorithm for lookups. The Gigaswitch article [SKO+94] states that each bridge

lookup makes at most four reads from memory.

Now, every student of algorithms [CLR90] knows that hashing, on average, is much

faster (constant time) than binary search (logarithmic time). However, the same student also

knows that hashing is much slower in the worst case, potentially taking linear time because

of collisions. How, then, can the Gigaswitch hash lookups claim to take at most four reads to

memory in the worst case even for bridge databases of size 64K, whereas binary search would

require 16 memory accesses?

The Gigaswitch trick has its roots in an algorithmic technique (P15) called perfect hashing
[DKea88]. The idea is to use a parameterized hash function, where the hash function can

be changed by varying some parameters. Then appropriate values of the parameters can be

precomputed (P2a) to obtain a hash function such that the worst-case number of collisions is

small and bounded.

While ﬁnding such a good hash function may take (in theory) a large amount of time, this

is a good trade-off because this new station’s addresses do not get added to local area networks

at a very rapid rate. On the other hand, once the hash function has been picked, lookup can be

done at wire speeds.

Speciﬁcally, the Gigaswitch hash function treats each 48-bit address as a 47-degree poly-

nomial in the Galois ﬁeld of order 2, GF(2). While this sounds impressive, this is the same

arithmetic used for calculating CRCs; it is identical to ordinary polynomial arithmetic, except

that all additions are done mod 2. A hashed address is obtained by the equation A(X) ∗ M(X )

mod G(X), where G(X) is the irreducible polynomial X48+ X36+ X25+ X10+ 1, M(X) is

a nonzero, 47-degree programmable hash multiplier, and A(X) is the address expressed as a

47-degree polynomial.

The hashed address is 48 bits. The bottom 16 bits of the hashed address is then used as

an index into a 64K-entry hash table. Each hash table entry [see Figure 10.4 as applied to

the destination address lookup, with D(x) being used in place of A(x)] points to the root of a

balanced binary tree of height at most 3. The hash function has the property that it sufﬁces to

use only the remaining high-order 32 bits of the hashed address to disambiguate collided keys.

Thus the binary tree is sorted by these 32-bit values, instead of the original 48-bit keys.

This saves 16 bits to be used for associated lookup information. Thus any search is guaranteed

to take no more than four memory accesses, one to lookup the hash table and three more to

navigate a height-3 binary tree.


230


C H A P T E R 1 0
Exact-Match Lookups
It turns out that picking the multiplier is quite easy in practice. The coefﬁcients of M (x) are

picked randomly. Having picked M (x) it sometimes happens that a few buckets have more than

seven colliding addresses. In such a case, these entries are stored in a small hardware lookup

database called a Content Addressable Memory or CAM (studied in more detail in Chapter 11).

The CAM lookup occurs in parallel with the hash lookup. Finally, in the extremely rare

case when several dozen addresses are added to the CAM (say, when new station addresses

are learned that cause collisions), the central processor initiates a rehashing operation and

distributes the new hash function to the line cards. It is perhaps ironic that rehashing occured

so rarely in practice that one might worry whether the rehashing code was adequately tested!

The Gigaswitch became a successful product, allowing up to 22 FDDI networks to be

bridged together with other link technologies, such as ATM. Barry Spinney was assigned U.S.

patent 5,920,900, “Hash-based translation method and apparatus with multiple-level collision

resolution.” While techniques based on perfect hashing [DKea88] have been around for a

while in the theoretical community, Spinney’s contribution was to use a pragmatic version of

the perfect hashing idea for high-speed forwarding.

10.3.2 Using Hardware Parallelism
Techniques based on perfect hashing do not completely provide worst-case guarantees. While

they do provide worst-case search times of three to four memory accesses, they cannot guar-

antee worst-case update times. It is conceivable that an update takes an unpredictably long

time while the software searches for a hash function with the speciﬁed bound on the number

of collisions.

One can argue that exactly the same guarantees are provided every moment by millions

of Ethernets around the world and that nondeterministic update times are far preferable to

nondeterministic search times. However, proving that long update times are rare in practice

requires either considerable experimentation or good analysis. This makes some designers

uncomfortable. It leads to a preference for search schemes that have bounded worst-case

search and update times.

An alternate approach is to apply hardware parallelism (P5) to a deterministic scheme such

as binary search. Binary search has deterministic search and update times; its only problem

is that search takes a logarithmic number of memory accesses, which is too slow. We can get

around this difﬁculty by pipelining binary search to increase lookup throughput (number of

lookups per second) without improving lookup latency. This is illustrated in Figure 10.5.

A

Probe 1



E

Probe 1

table



C

G

Probe 2

table


B

D

F

H

Probe 3

table


B

C

D

E

F

G

H

Probe 4

table

F I G U R E 10.5
Pipeling binary search for a database with keys A through H.

10.4 Summary



231
The idea is to have a logarithmic number of processing stages, each with its own memory

array. In Figure 10.5 the keys are the characters A through H. The ﬁrst array has only the

root of the trie, the median element E. The second array corresponds to the quartile and third

quartile elements C and G, which are the possible keys at the second probe of binary search,

and so on. Search keys enter from the left and progress from stage to stage, carrying a pointer

that identiﬁes which key in the corresponding stage memory must be compared to the search

key. The lookup throughput is nearly one per memory access, because there can be multiple

concurrent searches progressing through the stages in order.

Although the ﬁgure shows the elements in, say, Stage 2, C and G, as being separated by

their spacing in the original table, they can be packed together to save memory in the stages.

Thus the overall memory across all stages becomes equal to the memory in a nonpipelined

implementation. Indexing into each stage memory becomes slightly more tricky.

Assume Stage i has passed a pointer j to Stage j + 1 along with search key S. Stage j + 1

compares the search key S to its jth array entry. If the answer is equal, the search is ﬁnished

but continues ﬂowing through the pipeline with no more changes. If the search key is smaller,

the search key is passed to stage i + 1 with the pointer j0 (i.e., j concatenated with bit 0); if the

search key is larger, the pointer passed is j1. For example, if the key searched for is F , then

the pointer becomes 1 when entering Stage 2 and becomes 10 when entering Stage 3.

The author ﬁrst heard of this idea from Greg Waters, who later went on to implement IP

lookups for the core router company Avici. While the idea looks clever and arcane, there is

a much simpler way of understanding the ﬁnal solution. Computer scientists are well aware

of the notion of a binary search tree [CLR90]. Any binary search table can be converted into

a fully balanced binary search tree by making the root the median element, and so on, along

the lines of Figure 10.5. Any tree is trivially pipelined by height, with nodes of height i being

assigned to Stage i.

The only problem with a binary search tree, as opposed to a table, is the extra space

required for pointers to children. However, it is well known that for a full binary search tree,

such as a heap [CLR90], the pointers can be implicit and can be calculated based on the history

of comparisons — as shown earlier. The upshot is that a seemingly abstruse trick can be seen

as the combination of three simple and well-known facts from theoretical computer science.

10.4 SUMMARY
This chapter on exact-match lookups is written as a story — the story of bridging. Three morals

can be drawn from this story.

First, bridging was a direct response to the challenge of efﬁciently extending Ethernets

without using routers or repeaters; wire speed forwarding was a direct response to the problem

of potentially losing important packets in a ﬂood of less important packets. At the risk of

sounding like a self-help book, I hold that challenges are best regarded as opportunities and

not as annoyances. The mathematician Felix Klein [Bel86] used to say, “ You must always have

a problem; you may not ﬁnd what you were looking for but you will ﬁnd something interesting

on the way.” For example, it is clear that the main reason bridges were invented — the lack

of high-performance multiprotocol routers — is not the reason bridges are still useful today.

This brings us to the second moral. Today it is clear that bridges will never displace

routers, because of their lack of scalability using ﬂat Ethernet addresses, lack of shortest-cost

232


C H A P T E R 1 0
Exact-Match Lookups
routing, etc. However, they remain interesting today because bridges are interconnect devices

with better cost for performance and higher ﬂexibility than routers for interconnecting a small

number of similar local area networks. Thus bridges still abound in the marketplace, often

referred to as switches. What many network vendors refer to as a switch is a crossbar switch,

such as the Gigaswitch, that is capable of bridging on every interface. A few new features,

notably virtual LANs (VLANs) [Per92], have been added. But the core idea remains the same.

Third, the techniques introduced by the ﬁrst bridge have deeply inﬂuenced the next gener-

ation of interconnect devices, from core routers to Web switches. Recall that Roger Bannister,

who ﬁrst broke the 4-minute-mile barrier, was followed in a few months by several others.

In the same way, the ﬁrst Ethernet bridge was quickly followed by many other wire speed

bridges. Soon the idea began to ﬂow to routers as well. Other important concepts introduced

by bridges include the use of memory references as a metric, the notion of trading update time

for faster lookups, and the use of minimal hardware speedups. All these ideas carry over into

the study of router lookups in the next chapter.

In conclusion, the challenge of building the ﬁrst bridge stimulated creative actions that

went far beyond the ﬁrst bridge. While wire speed router designs are fairly commonplace

today, it is perhaps surprising that there are products still being announced that claim gigabit

wire speed processing rates for such abstruse networking tasks as encryption and even XML

transformations.

10.5 EXERCISE
1. ARP Caches: Another example of an exact-match lookup is furnished by ARP caches in

a router or endnode. In an Internet router, when a packet ﬁrst arrives to a destination, the

router must store the packet and send an ARP request to the Ethernet containing the

packet. The ARP request is broadcast to all endnodes on the Ethernet and contains the IP

address of the destination. When the destination responds with an ARP reply containing

the Ethernet address of the destination, the router stores the mapping in an ARP table and

sends the stored data packet, with the destination Ethernet address ﬁlled in.

• What lookup algorithms can be used for ARP caches?

• Why might the task of storing data packets awaiting data translation result in packet

reordering?

• Some router implementations get around the reordering problem by dropping all data

packets that arrive to ﬁnd that the destination address is not in the ARP table (however,

the ARP request is sent out). Explain the pros and cons of such a scheme.


C H A P T E R 11
Prefix-Match Lookups
You can look it up.



— Traditional

Consider a ﬂight database in London that lists ﬂights to a thousand U.S. cities. One alternative

would be to keep a record specifying the path to each of the thousand cities. Suppose, however,

that most ﬂights to America hub though Boston, except ﬂights to California, which hub through

Los Angeles. This observation can be exploited to reduce the ﬂight database from a thousand

entries to two preﬁx entries (USA* −− > Boston; USA.CA.* −− > LA).

A problem with this reduction is that a destination city like USA.CA.Fresno will now

match both the USA* and USA.CA.* preﬁxes; the database must return the longest match

(USA.CA.*). Thus preﬁxes have been used to compress a large database, but at the cost of a

more complex longest-matching-preﬁx lookup.

As described in Chapter 2, the Internet uses the same idea. In the year 2004, core routers

stored only around 150,000 preﬁxes, instead of potentially billions of entries for each possible

Internet address. For example, to a core router all the computers within a university, such as

UCSD, will probably be reachable by the same next hop. If all the computers within UCSD

are given the same initial set of bits (the network number, or preﬁx), then the router can store

one entry for UCSD instead of thousands of entries for each computer in UCSD.

The entire chapter is organized as follows. Section 11.1 provides an introduction to preﬁx

lookups. Section 11.2 describes attempts to ﬁnesse the need for IP lookups. Section 11.3

presents nonalgorithmic techniques for lookup based on caching and parallel hardware.

Section 11.4 describes the simplest technique based on unibit tries.

The chapter then transitions to describe six new schemes: multibit tries (Section 11.5),

level-compressed tries (Section 11.6), Lulea-compressed tries (Section 11.7), tree bitmap

(Section 11.8), binary search on preﬁx ranges (Section 11.9), and binary search on preﬁx

lengths (Section 11.10). The chapter ends with Section 11.11, describing memory allocation

issues for lookup schemes.

The techniques described in this chapter (and the corresponding principles) are summa-

rized in Figure 11.1.

233

234


C H A P T E R 1 1
Preﬁx-Match Lookups
Number
Principle
P2a, P10
Precompute indices

P2a, P10
Pass indices computed at run time

P4a
Exploit ATM switch hardware

P11
Cache whole IP addresses

P5
Hardware parallel lookup

P4b
Expand prefixes to gain speed

P13
Strides as a degree of freedom

P4b
Compress to gain speed

P12, P2a
Precomputed count of bits set

P15
Use efficient search

P12
Add marker state

P2a
Precompute marker watch



Lookup Technique
Tag switching

IP switching

Lookup caches

CAMs

Controlled expansion

Variable-stride tries

Lulea tries

Binary search on

prefix lengths

P2a


Precompute range to prefix matching
Binary search on

prefixes

F I G U R E 11.1
Principles involved in the various preﬁx-lookup schemes described in this chapter.

Q u i c k R e f e r e n c e G u i d e
The most important lookup algorithms for an implementor today are as follows. At speeds up to

10 Gbps in hardware or software using DRAM technology, the simplest and most effective scheme is

based on multibit tries (Section 11.5). At faster speeds, up to 40 Gbps, especially using more expensive

SRAM technology, the most effective algorithm described in this chapter is the tree bitmap (Section 11.8)

scheme. A simple reduction of preﬁx search to binary search is described in Section 11.9; using wide

memory words, this scheme is quite effective and, more importantly, is unencumbered by patents. Finally,

an important and often not well-appreciated point is the issue of memory allocation for compressed data

structures, which is introduced in Section 11.11. While these four sections will probably answer immediate

implementation needs, the remaining sections provide insight and alternatives that may help a designer

to invent new schemes.

11.1 INTRODUCTION TO PREFIX LOOKUPS
This section introduces preﬁx notation, explains why preﬁx lookup is used, and describes the

main metrics used to evaluate preﬁx lookup schemes.

11.1.1 Preﬁx Notation
Internet preﬁxes are deﬁned using bits and not alphanumerical characters, of up to 32 bits in

length. To confuse matters, however, IP preﬁxes are often written in dot-decimal notation.


11.1 Introduction to Preﬁx Lookups



235
Thus, the 16-bit preﬁx for UCSD at the time of writing is 132.239. Each of the decimal

digits between dots represents a byte. Since in binary 132 is 10000100 and 239 is 11101111,

the UCSD preﬁx in binary can also be written as 1000010011101111*, where the wildcard

character * is used to denote that the remaining bits do not matter. All UCSD hosts have 32-bit

IP addresses beginning with these 16 bits.

Because preﬁxes can be variable length, a second common way to denote a preﬁx is

by slash notation of the form A/L. In this case A denotes a 32-bit IP address in dot-decimal

notation and L denotes the length of the preﬁx. Thus the UCSD preﬁx can also be denoted

as 132.239.0.0/16, where the length 16 indicates that only the ﬁrst 16 bits (i.e., 132.239) are

relevant. A third common way to describe preﬁxes is to use a mask in place of an explicit preﬁx

length. Thus the UCSD preﬁx can also be described as 128.239.0.0 with a mask of 255.255.0.0.

Since 255.255.0.0 has 1’s in the ﬁrst 16 bits, this implicitly indicates a length of 16 bits.1
Of these three ways to denote a preﬁx (binary with a wildcard at the end, slash notation,

and mask notation), the last two are more compact for writing down large preﬁxes. However,

for pedagogical reasons, it is much easier to use small preﬁxes as examples and to write them

in binary. Thus in this chapter we will use 01110* to denote a preﬁx that matches all 32-bit

IP addresses that start with 01110. The reader should easily be able to convert this notation to

the slash or mask notation used by vendors. Also, note that most preﬁxes are at least 8 bits in

length; however, to keep our examples simple, this chapter uses smaller preﬁxes.

11.1.2 Why Variable-Length Preﬁxes?
Before we consider how to deal with the complexity of variable-length-preﬁx matching, it

is worth understanding why Internet preﬁxes are variable length. Given a telephone number

such as 858-549-3816, it is a trivial matter to extract the ﬁrst three digits (i.e., 858) as the area

code. If ﬁxed-length preﬁxes are easier to implement, what is the advantage of variable-length

preﬁxes?

The general answer to this question is that variable-length preﬁxes make more efﬁcient

use of the address space. This is because areas with a large number of endpoints can be assigned

shorter preﬁxes, while areas with a few endpoints can be assigned longer preﬁxes.

The speciﬁc answer comes from the history of Internet addressing. The Internet began with

a simple hierarchy in which 32-bit addresses were divided into a network address and a host

number; routers only stored entries for networks. For ﬂexible address allocation, the network

address came in variable sizes: Class A (8 bits), Class B (16 bits), and Class C (24 bits). To

cope with exhaustion of Class B addresses, the Classless Internet Domain Routing (CIDR)

scheme [RL96] assigns new organizations multiple contiguous Class C addresses that can be

aggregated by a common preﬁx. This reduces core router table size.

Today, the potential depletion of the address space has led Internet registries to be very

conservative in the assignment of IP addresses. A small organization may be given only a small

portion of a Class C address, perhaps a /30, which allows only four IP addresses within the

organization. Many organizations are coping with these sparse assignments by sharing a few

1The mask notation is actually more general because it allows noncontiguous masks where the 1’s are not

necessarily consecutive starting from the left. Such deﬁnitions of networks actually do exist. However, they are

becoming increasingly uncommon and are nonexistent in core router preﬁx tables. Thus we will ignore this possibility

in this chapter.


236


C H A P T E R 1 1
Preﬁx-Match Lookups
IP addresses among multiple computers, using schemes such as network address translation,

or NAT.

Thus CIDR and NAT have helped the Internet handle exponential growth with a ﬁnite

32-bit address space. While there are plans for a new IP (IPv6) with a 128-bit address, the

effectiveness of NAT in the short run and the complexity of rolling out a new protocol have

made IPv6 deployment currently slow. Despite this, a brave new world containing billions of

wireless sensors may lead to an IPv6 resurgence.

The bottom line is that the decision to deploy CIDR helped save the Internet, but it has

introduced the complexity of longest-matching-preﬁx lookup.

11.1.3 Lookup Model
Recall the router model of Chapter 2. A packet arrives on an input link. Each packet carries a

32-bit Internet (IP) address.2
The processor consults a forwarding table to determine the output link for the packet. The

forwarding table contains a set of preﬁxes with their corresponding output links. The packet is

matched to the longest preﬁx that matches the destination address in the packet, and the packet

is forwarded to the corrresponding output link. The task of determining the output link, called

address lookup, is the subject of this chapter, which surveys lookup algorithms and shows that

lookup can be implemented at gigabit and terabit speeds.

Before searching for IP lookup solutions, it is important to be familiar with some basic

observations about trafﬁc distributions, memory trends, and database sizes, which are shown

in Figure 11.2. These in turn will motivate the requirements for a lookup scheme.

First, a study of backbone trafﬁc [TMW97] as far back as 1997 shows around 250,000

concurrent ﬂows of short duration, using a fairly conservative measurement of ﬂows. Mea-

surement data shows that this number is only increasing. This large number of ﬂows means

caching solutions do not work well.

Second, the same study [TMW97] shows that roughly half the packets received by a

router are minimum-size TCP acknowledgments. Thus it is possible for a router to receive a

stream of minimum-size packets. Hence, being able to preﬁx lookups in the time to forward

a minimum-size packet can ﬁnesse the need for an input link queue, which simpliﬁes system

design. A second reason is simple marketing: Many vendors claim wire speed forwarding,

and these claims can be tested. Assuming wire speed forwarding, forwarding a 40-byte packet

should take no more than 320 nsec at 1 Gbps, 32 nsec at 10 Gbps (OC-192 speeds), and 8 nsec

at 40 Gbps (OC-768).

Clearly, the most crucial metric for a lookup scheme is lookup speed. The third observation

states that because the cost of computation today is dominated by memory accesses, the simplest

measure of lookup speed is the worst-case number of memory accesses. The fourth observation

shows that backbone databases have all preﬁx lengths from 8 to 32, and so naive schemes will

require 24 memory accesses in the worst case to try all possible preﬁx lengths.

The ﬁfth observation states that while current databases are around 150,000 preﬁxes,

the possible use of host routes (full 32-bit addresses) and multicast routes means that future

backbone routers will have preﬁx databases of 500,000 to 1 million preﬁxes.

2While most users deal with domain names, recall again that these names are translated to an IP address by a

directory service called DNS before packets are sent.


Observation
1. 250,000 concurrent flows

    in backbone

2. 50% are TCP acks

3. Lookup dominated by

    memory accesses

4. Prefix lengths from 8–32

5. 150,000 prefixes today and

    multicast and host routes

6. Unstable BGP, multicast

7. Higher speeds need SRAM

8. IPv6, multicast delays



11.1 Introduction to Preﬁx Lookups
Inference
Caching works poorly

in backbone routers

Wire speed lookup needed

for 40-byte packets

Lookup speed measured by

number of memory accesses

Naive schemes take 24

memory accesses

With growth, require 500,000–
1 million prefixes

Updates in milliseconds to

seconds

Worth minimizing memory

32-bit lookups more crucial



237
F I G U R E 11.2
Some current data about the lookup problem and the corresponding implications for

lookup solutions.

The sixth observation refers to the speed of updates to the lookup data structure, for

example, to add or delete a preﬁx. Unstable routing-protocol implementations can lead to

requirements for updates on the order of milliseconds. Note that whether seconds or mil-

liseconds, this is several orders of magnitude below the lookup requirements, allowing

implementations the luxury of precomputing (P2a) information in data structures to speed

up lookup, at the cost of longer update times.

The seventh observation comes from Chapter 2. While standard (DRAM) memory is

cheap, DRAM access times are currently around 60 nsec, and so higher-speed memory (e.g.,

off- or on-chip SRAM, 1–10 nsec) may be needed at higher speeds. While DRAM memory

is essentially unlimited, SRAM and on-chip memory are limited by expense or unavailability.

Thus a third metric is memory usage, where memory can be expensive fast memory (cache in

software, SRAM in hardware) as well as cheaper, slow memory (e.g., DRAM, SDRAM).

Note that a lookup scheme that does not do incremental updates will require two copies of

the lookup database so that search can proceed in one copy while lookups proceed on the other

copy. Thus it may be worth doing incremental updates simply to reduce high-speed memory

by a factor of 2!

The eight observation concerns preﬁx lengths. IPv6 requires 128-bit preﬁxes. Multi-

cast lookups require 64-bit lookups because the full group address and a source address can

be concatenated to make a 64-bit preﬁx. However, the full deployment of both IPv6 and

multicast is in question. Thus at the time of writing, 32-bit IP lookups remain the most inter-

esting problem. However, this chapter does describe schemes that scale well to longer preﬁx

lengths.

238


C H A P T E R 1 1
Preﬁx-Match Lookups
In summary, the interesting metrics, in order of importance, are lookup speed, memory,

and update time. As a concrete example, a good on-chip design using 16 Mbits of on-chip

memory may support any set of 500,000 preﬁxes, do a lookup in 8 nsec to provide wire speed

forwarding at OC-192 rates, and allow preﬁx updates in 1 msec.

All the data described in this chapter is based on traces in [TMW97] and the routing

databases made available by the IPMA project [Mer]. Thus most academic papers and routing

vendors use the same databases to experimentally compare lookup schemes. The largest of

these, Mae East, is a reasonable model for a large backbone router.

The following notation is used consistently in reporting the theoretical performance of IP

lookup algorithms. N denotes the number of preﬁxes (e.g., 150,000 for large databases today),

and W denotes the length of an address (e.g., 32 for IPv4).

Finally, two additional observations can be exploited to optimize the expected case.

O1: Almost all preﬁxes are 24 bits or less, with the majority being 24-bit preﬁxes and the next

largest spike being at 16 bits. Some vendors use this to show worst-case lookup times

only for 24-bit preﬁxes; however, the future may lead to databases with a large number

of host routes (32-bit addresses) and integration of ARP caches.

O2: It is fairly rare to have preﬁxes that are preﬁxes of other preﬁxes, such as the preﬁxes 00*

and 0001*. In fact, the maximum number of preﬁxes of a given preﬁx in current databases

is seven.

While the ideal is a scheme that meets worst-case lookup time requirements, it is

desirable to have schemes that also utilize these observations to improve average storage

performance.

11.2 FINESSING LOOKUPS
The ﬁrst instinct for a systems person is not to solve complex problems (like longest matching

preﬁx) but to eliminate the problem.

Observe that in virtual circuit networks such as ATM, when a source wishes to send data

to a destination, a call, analogous to a telephone call, is set up. The call number (VCI) at each

router is a moderate-size integer that is easy to look up. However, this comes at the cost of a

round-trip delay for call setup before data can be sent.

In terms of our principles, ATM has a previous hop switch pass an index (P10, pass hints

in protocol headers) into a next hop switch. The index is precomputed (P2a) just before data is

sent by the previous hop switch (P3c, shifting computation in space). The same abstract idea

can be used in datagram networks such as the Internet to ﬁnesse the need for preﬁx lookups.

We now describe two instantiations of this abstract idea: tag switching (Section 11.2.1) and

ﬂow switching (Section 11.2.2).

11.2.1 Threaded Indices and Tag Switching
In threaded indices [CV96], each router passes an index into the next router’s forwarding

table, thereby avoiding preﬁx lookups. The indexes are precomputed by the routing protocol
whenever the topology changes. Thus in Figure 11.3, source S
sends a packet to destination

D
to the ﬁrst router A
as usual; however, the packet header also contains an index
i
into


A, i

Endnode

cache



D i



B, j



D j



D, 



11.2 Finessing Lookups
D



239
S


Routing

table

A


Routing

table

B



D

F I G U R E 11.3
Replacing the need for a destination lookup in a datagram router by having each router

pass an index into the next router’s forwarding table.

Node D
i



D, 5



Cost 5

Cost 3



Cost 6

Cost 1



D, 6



j
Node A


D, 5, i
D, B, j
D, 6, j
Table sent
Table sent

by A
by B
Node R

Node B
F I G U R E 11.4
Setting up the threaded indexes or tags by modifying Bellman–Ford routing.

A’s forwarding table.
A’s entry for D says that the next hop is router B and that B stores

its forwarding entry for D at index j. Thus A sends the packet on to B, but ﬁrst it writes j
(Figure 11.3) as the packet index. This process is repeated, with each router in the path using

the index in the packet to look up its forwarding table.

The two main differences between threaded indices and virtual circuit indices (VCIs) are

as follows. First, threaded indexes are per destination and not per active source–destination
pair as in virtual circuit networks such as ATM. Second, and most important, threaded indexes

are precomputed by the routing protocol whenever the topology changes. As a simple example,

consider Figure 11.4, which shows a sample router topology where the routers run the Bellman–
Ford protocol to ﬁnd their distances to destinations.

In Bellman–Ford (used, for example, in the intradomain protocol Routing Information

Protocol (RIP) [Per92]), a router R calculates its shortest path to D by taking the minimum of

the cost to D through each neighbor. The cost through a neighbor such as A is A’s cost to D
(i.e., 5) plus the cost from R to A (i.e., 3). In Figure 11.4, the best-cost path from R to D is

through router B, with cost 7.
R can compute this because each neighbor of
R (e.g.,
A, B)


240


C H A P T E R 1 1
Preﬁx-Match Lookups
passes its current cost to D to R, as shown in the ﬁgure. To compute indices as well, we

modify the basic protocol so that each neighbor reports its index for a destination in addition
to its cost to the destination. Thus, in Figure 11.4, A passes i and B passes j; thus when R
chooses B, it also uses B’s index j in its routing table entry for D. In summary, each router

uses the index of the minimal-cost neighbor for each destination as the threaded index for that

destination.

Cisco later introduced tag switching [Rea96], which is similar in concept to threaded

indices, except tag switching also allows a router to pass a stack of tags (indices) for multiple

routers downstream. Both schemes, however, do not deal well with hierarchies. Consider a

packet that arrives from the backbone to the ﬁrst router in the exit domain. The exit domain is

the last autonomously managed network the packet traverses — say, the enterprise network in

which the destination of the packet resides.

The only way to avoid a lookup at the ﬁrst router, R, in the exit domain is to have some

earlier router outside the exit domain pass an index (for the destination subnet) to R. But this is

impossible because the prior backbone routers should have only one aggregated routing entry

for the entire destination domain and can thus pass only one index for all subnets in that domain.

The only solution is either to add extra entries to routers outside a domain (infeasible) or to

require ordinary IP lookup at domain entry points (the chosen solution). Today tag switching

is ﬂourishing in a more general form called multiprotocol label switching (MPLS) [Rea96].

However, neither tag switching nor MPLS completely avoids the need for ordinary IP lookups.

11.2.2 Flow Switching
A second proposal to ﬁnesse lookups was called ﬂow switching [NMH97, PTS95]. Flow

switching also relies on a previous hop router to pass an index into the next hop router. Unlike

tag switching, however, these indexes are computed on demand when data arrives, and they

are then cached.

Flow switching starts with routers that contain an internal ATM switch and (potentially

slow) processors capable of doing IP forwarding and routing. Two such routers, R1 and R2,

are shown in Figure 11.5. When R2 ﬁrst sends an IP packet to destination D that arrives on the

left input port of R1, the input port sends the packet to its central processor. This is the slow

path. The processor does the IP lookup and switches the packet internally to output link L. So

far nothing out of the ordinary.

R2
Slow path



I
D


I, L



R1


L

M

Fast path


Processor

F I G U R E 11.5
In IP switching, if R1 wishes to switch packets sent to D that are destined for output

link L, R1 picks an idle virtual circuit I , places the mapping I, L in its input port, and then sends I back to

R2. If R2 now sends packets to D labeled with VCI I, the packet will get switched directly to the output

link without going through the processor.

11.2 Finessing Lookups



241
Life gets more exciting if R1 decides to “switch” packets going to D. R1 may decide to do

so if, for instance, there is a lot of trafﬁc going to D. In that case, R1 ﬁrst picks an idle virtual

circuit identiﬁer I, places the mapping I → L in its input port hardware, and then sends I back

to R2. If R2 now sends packets to D labeled with VCI I to the input port of R1, the input port

looks up the mapping from I to L and switches the packet directly to the output link L without

going through the processor.

Of course, R2 can repeat this switching process with the preceding router in the path, and

so on. Eventually, IP forwarding can be completely dispensed with in the switched portion of

a sequence of ﬂow-switching routers.

Despite its elegance, ﬂow switching seems likely to work poorly in the backbone. This

is because backbone ﬂows are short lived and exhibit poor locality. A contrarian opinion is

presented in Molinero-Fernandez and McKeown [MM02], where the authors argue for the

resurrection of ﬂow switching based on TCP connections. They claim that the current use of

circuit-switched optical switches to link core routers, the underutilization of backbone links

running at 10% of capacity, and increasing optical bandwidths all favor the simplicity of circuit

switching at higher speeds.

Both IP and tag switching are techniques to ﬁnesse the need for IP lookups by passing

information in protocol headers. Like ATM, both schemes rely on passing indices (P10).

However, tag switching precomputes the index (P2a) at an earlier time scale (topology change

time) than ATM (just before data transfer). On the other hand, in IP switching the indices are

computed on demand (P2c, lazy evaluation) after the data begins to ﬂow. However, neither

tag nor IP switching completely avoids preﬁx lookups, and each adds a complex protocol. We

now look afresh at the supposed complexity of IP lookups.

11.2.3 Status of Tag Switching, Flow Switching, and Multiprotocol Label Switching
While tag switching and IP switching were originally introduced to speed up lookups, IP

switching has died away. However, tag switching in the more general form of multi-protocol-

label switchings (MPLS) [Cha97]) has reinvented itself as a mechanism for providing ﬂow

differention to provide quality of service. Just as a VCI provides a simple label to quickly

distinguish a ﬂow, a label allows a router to easily isolate a ﬂow for special service. In effect,

MPLS uses labels to ﬁnesse the need for packet classiﬁcation (Chapter 12), a much harder

problem than preﬁx lookups. Thus although preﬁx matching is still required, MPLS is also de

rigeur for a core router today.

Brieﬂy, the required MPLS fast path forwarding is as follows. A packet with an MPLS

header is identiﬁed, a 20-bit label is extracted, and the label is looked up in a table that maps

the label to a forwarding rule. The forwarding rule speciﬁes a next hop and also speciﬁes the

operations to be performed on the current set of labels in the MPLS packet. These operations

can include removing labels (“popping the label stack”) or adding labels (“pushing on to the

label stack”).

Router MPLS implementations have to impose some limits on this general process to

guarantee wire speed forwarding. Possible limits include requiring that the label space be

dense, supporting a smaller number of labels than 220(this allows a smaller amount of lookup

memory while avoiding a hash table), and limiting the number of label-stacking operations

that can be performed on a single packet.

242


C H A P T E R 1 1
Preﬁx-Match Lookups
11.3 NONALGORITHMIC TECHNIQUES FOR PREFIX MATCHING
In this section, we consider two other systems techniques for preﬁx lookups that do not rely

on algorithmic methods: caching and ternary CAMs. Caching relies on locality in address

references, while CAMs rely on hardware parallelism.

11.3.1 Caching
Lookups can be sped up by using a cache (P11a) that maps 32-bit addresses to next hops.

However, cache hit ratios in the backbone are poor [NMH97] because of the lack of locality

exhibited by ﬂows in the backbone. The use of a large cache still requires the use of an exact-

match algorithm for lookup. Some researchers have advocated a clever modiﬁcation of a CPU

cache lookup algorithm for this purpose [CP99]. In summary, caching can help, but it does not

avoid the need for fast preﬁx lookups.

11.3.2 Ternary Content-Addressable Memories
Ternary content-addressable memories (CAMs) that allow “don’t care” bits provide parallel

search in one memory access. Today’s CAMs can search and update in one memory cycle

(e.g., 10 nsec) and handle any combination of 100,000 preﬁxes. They can even be cascaded to

form larger databases. CAMs, however, have the following issues.

•
Density Scaling: One bit in a TCAM requires 10–12 transistors, while an SRAM requires

4–6 transistors. Thus TCAMs will also be less dense than SRAMs or take more area.

Board area is a critical issue for many routers.

•
Power Scaling: TCAMs take more power because of the parallel compare. CAM vendors

are, however, chipping away at this issue by ﬁnding ways to turn off parts of the CAM to

reduce power. Power is a key issue in large core routers.

•
Time Scaling: The match logic in a CAM requires all matching rules to arbitrate so that the

highest match wins. Older-generation CAMs took around 10 nsec for an operation, but

currently announced products appear to take 5 nsec, possibly by pipelining parts of the

match delay.

•
Extra Chips: Given that many routers, such as the Cisco GSR and the Juniper M160,

already have a dedicated Application Speciﬁc Integrated Circuit (ASIC) (or network

processor) doing packet forwarding, it is tempting to integrate the classiﬁcation algorithm

with the lookup without adding CAM interfaces and CAM chips. Note that CAMs

typically require a bridge ASIC in addition to the basic CAM chip and sometimes require

multiple CAM chips.

In summary, CAM technology is rapidly improving and is supplanting algorithmic meth-

ods in smaller routers. However, for larger core routers that may wish to have databases of a

million routes in the future it may be better to have solutions (as we describe in this chapter)

that scale with standard memory technologies such as SRAM. SRAM is likely always to be

cheaper, faster, and denser than CAMs. While it is clearly too early to predict the outcome of

this war between algorithmic and TCAM methods, even semiconductor manufacturers have

hedged their bets and are providing both algorithmic and CAM-based solutions.


P1

P2

P3

P4

P5

P6

P7

P8

P9



101*

111*

11001*

1*

0*

1000*

100000*

100*

110



11.4 Unibit Tries



243
F I G U R E 11.6
Sample preﬁx database used for the rest of this chapter. Note that the next hops

corresponding to each preﬁx have been omitted for clarity.

11.4 UNIBIT TRIES
It is helpful to start a survey of algorithmic techniques (P15) for preﬁx lookup with the simplest

technique: a unibit trie. Consider the sample preﬁx database of Figure 11.6. This database will

be used to illustrate many of the algorithmic solutions in this chapter. It contains nine preﬁxes,

called P1 to P9, with the bit strings shown in the ﬁgure.

In practice, there is a next hop associated with each preﬁx omitted from the ﬁgure.

To avoid clutter, preﬁx names are used to denote the next hops. Thus in the ﬁgure, an address

D that starts with 1 followed by a string of 31 zeroes will match P6, P7, and P8. The longest

match is P7.

Figure 11.7 shows a unibit trie for the sample database of Figure 11.6. A unibit trie is a tree

in which each node is an array containing a 0-pointer and a 1-pointer. At the root all preﬁxes

that start with 0 are stored in the subtrie pointed to by the 0-pointer and all preﬁxes that start

with a 1 are stored in the subtrie pointed to by the 1-pointer.

Each subtrie is then constructed recursively in a similar fashion using the remaining bits

of the preﬁxes allocated to the subtrie. For example, in Figure 11.7 notice that P1 = 101 is

stored in a path traced by following a 1-pointer at the root, a 0-pointer at the right child of the

root, and a 1-pointer at the next node in the path.

There are two other ﬁne points to note. In some cases, a preﬁx may be a substring of

another preﬁx. For example, P4 = 1* is a substring of P2 = 111*. In that case, the smaller

string, P4, is stored inside a trie node on the path to the longer string. For example, P4 is stored

at the right child to the root; note that the path to this right child is the string 1, which is the

same as P4.

Finally, in the case of a preﬁx such as P3 = 11001, after we follow the ﬁrst three bits,

we might naively expect to ﬁnd a string of nodes corresponding to the last two bits. However,

since no other preﬁxes share more than the ﬁrst 3 bits with P3, these nodes would only contain

one pointer apiece. Such a string of trie nodes with only one pointer each is a called a one-way

branch.

Clearly one-way branches can greatly increase wasted storage by using whole nodes

(containing at least two pointers) when only a single bit sufﬁces. (The exercises will help you

quantify the amount of wasted storage.) A simple technique to remove this obvious waste (P1)

is to compress the one-way branches.


244


C H A P T E R 1 1
Preﬁx-Match Lookups
P5

P8
0

0



ROOT

0

1



P4

0

1



P9



0

P7



0


P6

0

1


1



P1



P3


1


0


1



P2

F I G U R E 11.7
The one-bit trie for the sample database of Figure 11.6.

In Figure 11.7, this is done by using a text string (i.e. “01”) to represent the pointers

that would have been followed in the one-way branch. Thus in Figure 11.7, two trie nodes

(containing two pointers apiece) in the path to P3 have been replaced by a single text string of

2 bits. Clearly, no information has been lost by this transformation. (As an exercise, determine

if there is another path in the trie that can similarly be compressed.)

To search for the longest matching preﬁx of a destination address D, the bits of D are used

to trace a path through the trie. The path starts with the root and continues until search fails by

ending at an empty pointer or at a text string that does not completely match. While following

the path, the algorithm keeps track of the last preﬁx encountered at a node in the path. When

search fails, this is the longest matching preﬁx that is returned.

For example, if D begins with 1110, the algorithm starts by following the 1-pointer at the

root to arrive at the node containing P4. The algorithm remembers P4 and uses the next bit

of D (a 1) to follow the 1-pointer to the next node. At this node, the algorithm follows the

1-pointer to arrive at P2. When the algorithm arrives at P2, it overwrites the previously stored

value (P4) by the newer preﬁx found (P2). At this point, search terminates, because P2 has no

outgoing pointers.

On the other hand, consider doing a search for a destination D
whose ﬁrst 5 bits are 11000.

Once again, the ﬁrst 1 bit is used to reach the node containing P4. P4 is remembered as the

last preﬁx encountered, and the 1 pointer is followed to reach the rightmost node at height 2.

The algorithm now follows the third bit in D
(a 0) to the text string node containing “01.”
Thus we remember P9 as the last preﬁx encountered. The fourth bit of D
is a 0, which matches

11.5 Multibit Tries



245
the ﬁrst bit of “01.” However, the ﬁfth bit of D
is a 0 (and not a 1 as in the second bit of “01”).

Thus the search terminates with P9 as the longest matching preﬁx.

The literature on tries [Knu73] does not use text strings to compress one-way branches

as in Figure 11.7. Instead, the classical scheme, called a Patricia trie, uses a skip count. This

count records the number of bits in the corresponding text string, not the bits themselves. For

example, the text string node “01” in our example would be replaced with the skip count “2”
in a Patricia trie.

This works ﬁne as long as the Patricia trie is used for exact matches, which is what they

were used for originally. When search reaches a skip count node, it skips the appropriate

number of bits and follows the pointer of the skip count node to continue the search. Since bits

that are skipped are not compared for a match, Patricia requires that a complete comparison

between the searched key and the entry found by Patricia be done at the end of the search.

Unfortunately, this works very badly with preﬁx matching, an application that Patricia

tries were not designed to handle in the ﬁrst place. For example, in searching for D , whose

ﬁrst 5 bits are 11000 in the Patricia equivalent of Figure 11.7, search would skip the last two

bits and get to P3. At this point, the comparison will ﬁnd that P3 does not match D .

When this happens, a search in a Patricia trie has to backtrack and go back up the trie

searching for a possible shorter match. In this example, it may appear that search could have

remembered P4. But if P4 was also encountered on a path that contains skip count nodes, the

algorithm cannot even be sure of P4. Thus it must backtrack to check if P4 is correct.

Unfortunately, the BSD implementation of IP forwarding [WS95] decided to use Patricia

tries as a basis for best matching preﬁx. Thus the BSD implementation used skip counts; the

implementation also stored preﬁxes by padding them with zeroes. Preﬁxes were also stored

at the leaves of the trie, instead of within nodes as shown in Figure 11.7. The result is that

preﬁx matching can, in the worst case, result in backtracking up the trie for a worst case of 64

memory accesses (32 down the tree and 32 up).

Given the simple alternative of using text strings to avoid backtracking, doing skip counts

is a bad idea. In essence, this is because the skip count transformation does not
preserve

information, while the text string transformation does. However, because of the enormous

inﬂuence of BSD, a number of vendors and even other algorithms (e.g., Ref. NK98) have used

skip counts in their implementations.

11.5 MULTIBIT TRIES
Most large memories use DRAM. DRAM has a large latency (around 60 nsec) when compared

to register access times (2–5 nsec). Since a unibit trie may have to make 32 accesses for a

32-bit preﬁx, the worst-case search time of a unibit trie is at least 32 * 60 = 1.92 µsec. This

clearly motivates multibit trie search.

To search a trie in strides of 4 bits, the main problem is dealing with preﬁxes like 10101*

(length 5), whose lengths are not a multiple of the chosen stride length, 4. If we search 4 bits

at a time, how can we ensure that we do not miss preﬁxes like 10101*?
Controlled preﬁx
expansion solves this problem by transforming an existing preﬁx database into a new database

with fewer preﬁx lengths but with potentially more preﬁxes. By eliminating all lengths that are

not multiples of the chosen stride length, expansion allows faster multibit trie search, at the

cost of increased database size.


246


C H A P T E R 1 1
Preﬁx-Match Lookups
Old

prefixes

P1
101*

P2
111*

P3
11001*

P5
0*

P6
1000*

Fails

P7
100000*

P8
100*

P9
110



New

prefixes

101*

111*

110010*

110011*

000*

001*

010*

011*

100001

100010

100011

100000

100*

110*

F I G U R E 11.8
Controlled expansion of the original preﬁx database shown on the left (which has ﬁve

preﬁx lengths, 1, 3, 4, 5, and 6) to an expanded database (which has only 2 preﬁx lengths, 3 and 6).

For example, removing odd preﬁx lengths reduces the number of preﬁx lengths from

32 to 16 and would allow trie search 2 bits at a time. To remove a preﬁx like 101* of length 3,

observe that 101* represents addresses that begin with 101, which in turn represents addresses

that begin with 1010* or 1011*. Thus 101* (of length 3) can be replaced by two preﬁxes of

length 4 (1010* and 1011*), both of which inherit the next hop forwarding entries of 101*.

However, the expanded preﬁxes may collide with an existing preﬁx at the new length. In

that case, the expanded preﬁx is removed. The existing preﬁx is given priority because it was

originally of longer length.

In essence, expansion trades memory for time (P4b). The same idea can be used to remove

any chosen set of lengths except length 32. Since trie search speed depends linearly on the

number of lengths, expansion reduces search time.

Consider the sample preﬁx database shown in Figure 11.6, which has nine preﬁxes, P1

to P9. The same database is repeated on the left
of Figure 11.8. The database on the right
of Figure 11.8 is an equivalent database, constructed by expanding the original database to

contain preﬁxes of lengths 3 and 6 only. Notice that of the four expansions of P6 = 1000* to

6 bits, one collides with P7 = 100000* and is thus removed.

11.5.1 Fixed-Stride Tries
Figure 11.9 shows a trie for the same database as Figure 11.8, using expanded tries with a

ﬁxed stride length of 3. Thus each trie node uses 3 bits. The replicated entries within trie nodes

in Figure 11.9 correspond exactly to the expanded preﬁxes on the right of Figure 11.8. For

example, P6 in Figure 11.8 has three expansions (100001, 100010, 100011).

These three expanded preﬁxes are pointed to by the 100 pointer in the root node of

Figure 11.9 (because all three expanded preﬁxes start with 100) and are stored in the 001, 010,

and 011 entries of the right child of the root node. Notice also that the entry 100 in the root node

has a stored preﬁx P8 (besides the pointer pointing to P6’s expansions), because P8 = 100* is

itself an expanded preﬁx.


000

001

010

011

100

101

110

111



P3

P3



000

001

010

011

100

101

110

111



P5

P5

P5

P5

P8

P1

P9

P2



000

001

010

011

100

101

110

111



P7

P6

P6

P6



11.5 Multibit Tries



247
F I G U R E 11.9
Expanded trie (which has two strides of 3 bits each) corresponding to the preﬁx

database of Figure 11.8.

Thus each trie node element is a record containing two entries: a stored preﬁx and a pointer.

Trie search proceeds 3 bits at a time. Each time a pointer is followed, the algorithm remembers

the stored preﬁx (if any). When search terminates at an empty pointer, the last stored preﬁx in

the path is returned.

For example, if address D begins with 1110, search for D starts at the 111 entry at the root

node, which has no outgoing pointer but a stored preﬁx (P2). Thus search for D terminates

with P2. A search for an address that starts with 100000 follows the 100 pointer in the root (and

remembers P8). This leads to the node on the lower right, where the 000 entry has no outgoing

pointer but a stored preﬁx (P7). The search terminates with result P7. Both the pointer and

stored preﬁx can be retrieved in one memory access using wide memories (P5b).

A special case of ﬁxed-stride tries, described in Gupta et al. [GLM98], uses ﬁxed strides

of 24, 4, and 4. The authors observe that DRAMs with more than 224locations are becoming

available, making even 24-bit strides feasible.

11.5.2 Variable-Stride Tries
In Figure 11.9, the leftmost leaf node needs to store the expansions of P3 = 11001*, while

the rightmost leaf node needs to store P6 (1000*) and P7 (100000*). Thus, because of P7, the

rightmost leaf node needs to examine 3 bits. However, there is no reason for the leftmost leaf

node to examine more than 2 bits because P3 contains only 5 bits, and the root stride is 3 bits.

There is an extra degree of freedom that can be optimized (P13).

In a variable-stride trie, the number of bits examined by each trie node can vary, even for

nodes at the same level. To do so, the stride of a trie node is encoded with the pointer to the

node. Figure 11.9 can be transformed into a variable-stride trie (Figure 11.10) by replacing the

leftmost node with a four-element array and encoding length 2 with the pointer to the leftmost


248


C H A P T E R 1 1
Preﬁx-Match Lookups
00

01
P3

10

11



000

001

010

011

100

101

110

111



P5

P5

P5

P5

P8

P1

P9

P2

2 bits



3 bits

000

001

010

011

100

101

110

111



P7

P6

P6

P6

F I G U R E 11.10
Transforming the ﬁxed-stride trie of Figure 11.9 into a variable-stride trie by encoding

the stride of each trie node along with a pointer to the node. Notice that the leftmost leaf node now only

contains four locations (instead of eight), thus reducing the number of locations from 24 to 20.

node. The stride encoding costs 5 bits. However, the variable stride trie of Figure 11.10 has

four fewer array entries than the trie of Figure 11.9.

Our example motivates the problem of picking strides to minimize the total amount of

trie memory. Since expansion trades memory for time, why not minimize the memory needed

by optimizing a degree of freedom (P13), the strides used at each node? To pick the variable

strides, the designer ﬁrst speciﬁes the worst-case number of memory accesses. For example,

with 40-byte packets at 1-Gbps and 80-nsec DRAM, we have a time budget of 320 nsec,

which allows only four memory accesses. This constrains the maximum number of nodes in

any search path (four in our example).

Given this ﬁxed height, the strides can be chosen to minimize storage. This can be done

using dynamic programming [SV99] in a few seconds, even for large databases of 150,000

preﬁxes. A degree of freedom (the strides) is optimized to minimize the memory used for a

given worst-case tree height.

A trie is said to be optimal for height h and a database D if the trie has the smallest storage

among all variable-stride tries for database D, whose height is no more than h. It is easy to

prove (see exercises) that the trie of Figure 11.10 is optimal for the database on the left of

Figure 11.8 and height 2.

The general problem of picking an optimal stride trie can be solved recursively

(Figure 11.11). Assume the tree height must be h. The algorithm ﬁrst picks a root with stride s.

The y = 2spossible pointers in the root can lead to y nonempty subtries T1, . . . Ty. If the s-bit

pointer pileads to subtrie Ti, then all preﬁxes in the original database D that start with pimust

be stored in Ti. Call this set of preﬁxes Di.

Suppose we could recursively ﬁnd the optimal Tifor height h − 1 and database Di. Having

used up one memory access at the root node, there are only h − 1 memory accesses left to


s


Cost
 2s


11.5 Multibit Tries



249
T1


T2


Ty1



Ty


Cost
 sum of costs of

covering T1 through Ty,

each of height at most h
1

F I G U R E 11.11
Picking an optimum variable-stride trie via dynamic programming.

navigate each subtrie Ti. Let Cidenote the storage cost required, counted in array locations,

for the optimal Ti. Then for a ﬁxed root stride s, the cost of the resulting optimal trie C(s) is 2s
(cost of root node in array locations) plusyi=1Ci. Thus the optimal value of the initial stride

is the value of s, where 1 ≤ s ≤ 32, that minimizes C(s).

A naive use of recursion leads to repeated subproblems. To avoid repeated subproblems,

the algorithm ﬁrst constructs an auxiliary 1-bit trie. Notice that any subtrie Ti
in Figure 11.11

must be a subtrie N of the 1-bit trie. Then the algorithm uses dynamic programming to construct

the optimal cost and trie strides for each subtrie N in the original 1-bit trie for all values of

height from 1 to h, building bottom-up from the smallest-height subtries to the largest-height

subtries. The ﬁnal result is the optimal strides for the root (of the 1-bit subtrie) with height h.

Details are described in Srinivasan and Varghese [SV99].

The ﬁnal complexity of the algorithm is easily seen to be O(N ∗ W2∗ h), where N is the

number of original preﬁxes in the original database, W is the width of the destination address,

and h is the desired worst-case height. This is because there are N ∗ W subtries in the 1-bit trie,

each of which must be solved for heights that range from 1 to h, and each solution requires a

minimization across at most W possible choices for the initial stride s. Note that the complexity

is linear in N (the largest number, around 150,000 at the time of writing) and h (which should

be small, at most 8), but quadratic in the address width (currently 32). In practice, the quadratic

dependence on address width is not a major factor.

For example, Srinivasan and Varghese [SV99] show that using a height of 4, the optimized

Mae–East database required 423 KB of storage, compared to 2003 KB for the unoptimized

version. The unoptimized version uses the “natural” stride lengths 8, 8, 8, 8. The dynamic

program took 1.6 seconds to run on a 300-MHz Pentium Pro. The dynamic program is even

simpler for ﬁxed-stride tries and takes only 1 msec to run. However, the use of ﬁxed strides

requires 737 KB instead of 423 KB.

Clearly, 1.6 seconds is much too long to let the dynamic program be run for every update

and still allow millisecond updates [LMJ97]. However, backbone instabilities are caused by

pathologies in which the same set of preﬁxes S are repeatedly inserted and deleted by a router

that is temporarily swamped [LMJ97]). Since we had to allocate memory for the full set,

including
S, anyway, the fact that the trie is suboptimal in its use of memory when
S
is

deleted is irrelevant. On the other hand, the rate at which new preﬁxes get added or deleted

by managers seems more likely to be on the order of days. Thus a dynamic program that

250


C H A P T E R 1 1
Preﬁx-Match Lookups
takes several seconds to run every day seems reasonable and will not unduly affect worst-case

insertion and deletion times while still allowing reasonably optimal tries.

11.5.3 Incremental Update
Simple insertion and deletion algorithms exist for multibit tries. Consider the addition of a

preﬁx P. The algorithm ﬁrst simulates search on the string of bits in the new preﬁx P up to and

including the last complete stride in preﬁx P. Search will terminate either by ending with the

last (possibly incomplete) stride or by reaching a nil pointer. Thus for adding P10 = 1100* to

the database of Figure 11.9, search follows the 110-pointer and terminates at the leftmost leaf

trie node X.

For the purposes of insertion and deletion, for each node X in the multibit trie, the algorithm

maintains a corresponding 1-bit trie, with the preﬁxes stored in X. This auxiliary structure need

not be in fast memory. Also, for each node array element, the algorithm stores the length of

its present best match. After determining that P10 must be added to node X, the algorithm

expands P10 to the stride of X . Any array element to which P10 expands (which is currently

labeled with a preﬁx of a length smaller than P10) must be overwritten with P10.

Thus in adding P10 = 1100*, the algorithm must add the expansions of 0* into node X.

In particular, the 000 and 001 entries in node X must be updated to be P10.

If the search ends before reaching the last stride in the preﬁx, the algorithm creates new trie

nodes. For example, if the preﬁx P11 = 1100111* is added, search fails at node X
when a nil

pointer is found at the 011 entry. The algorithm then creates a new pointer at this location that

is made to point to a new trie node that contains P11. P11 is then expanded in this new node.

Deletion is similar to insertion. The complexity of insertion and deletion is the time to

perform a search (O(W )) plus the time to completely reconstruct a trie node (O(S ), where S
is the maximum size of a trie node). For example, using 8-bit trie nodes, the latter cost will

require scanning roughly 28= 256 trie node entries. Thus to allow for fast updates, it is crucial

to also limit the size of any trie node in the dynamic program described earlier.

11.6 LEVEL-COMPRESSED (LC) TRIES
An LC trie [NK98] is a variable-stride trie in which every trie node contains no empty entries.

An LC-trie is built by ﬁrst ﬁnding the largest-root stride that allows no empty entries and then

recursively repeating this procedure on the child subtries. An example of this procedure is

shown in Figure 11.12, starting with a 1-bit trie on the left and resulting in an LC trie on the

left. Notice that P4 and P5 form the largest possible full-root subtrie — if the root stride is

2, then the ﬁrst two array entries will be empty. The motivation, of course, is to avoid empty

array elements, to minimize storage.

However, general variable-stride tries are more tunable, allowing memory to be traded

for speed. For example, the LC trie representation using a 1997 snapshot of Mae–East has

a trie height of 7 and needs 700 KB of memory. By comparison, an optimal variable-stride

trie [SV99] has a trie height of 4 using 400 KB. Recall also that the optimal variable-stride

calculates the best trie for a given target height and thus would indeed produce the LC trie if
the LC trie were optimal for its height.


P7



P6



0

P5

P8



1

P4

P1
P9
P2

P3



11.6 Level-Compressed (LC) Tries
P5

P4

P8

P1

P9

P2

P6
P3

P7



251
F I G U R E 11.12
The level-compressed (LC) trie scheme decomposes the 1-bit trie recursively into

full subtries of the largest size possible (left). The children in each full subtrie (shown by the dotted

boxes) are then placed in a trie node to form a variable-stride trie that is speciﬁc to the database chosen.

P6

P8



P5

P4

P8

P1

P9

P2



P3



Layout nodes

contiguously in

breadth-first order



P5

P4

P8

P1

P3

P2

P6

P3

P8

F I G U R E 11.13
Array representation of LC tries.

In its ﬁnal form, the variable-stride LC trie nodes are laid out in breadth-ﬁrst order

(ﬁrst the root, then all the trie nodes at the second level from left to right, then third-level

nodes, etc.), as shown on the right of Figure 11.13. Each pointer becomes an array off-

set. The array layout and the requirement for full subtries make updates slow in the worst

case. For example, deleting P5 in Figure 11.12 causes a change in the subtrie decomposition.

Worse, it causes almost every element in the array representation of Figure 11.13 to be moved

upward.

252


C H A P T E R 1 1
Preﬁx-Match Lookups
11.7 Lulea-Compressed Tries
Though LC tries and variable-stride tries attempt to compress multibit tries by varying the stride

at each node, both schemes have problems. While the use of full arrays allows LC tries not to

waste any memory because of empty array locations, it also increases the height of the trie,

which cannot then be tuned. On the other hand, variable-stride tries can be tuned to have short

height, at the cost of wasted memory because of empty array locations in trie nodes. The Lulea

approach [DBCP97], which we now describe, is a multibit-trie scheme that uses ﬁxed-stride

trie nodes of large stride but uses bitmap compression to reduce storage considerably.

We know that a string with repetitions (e.g., AAAABBAAACCCCC) can be compressed

using a bitmap denoting repetition points (i.e., 10001010010000) together with a compressed

sequence (i.e., ABAC). Similarly, the root node of Figure 11.9 contains a repeated sequence

(P5, P5, P5, P5) caused by expansion.

The Lulea scheme [DBCP97] avoids this obvious waste by compressing repeated informa-

tion using a bitmap and a compressed sequence without paying a high penalty in search time.

For example, this scheme used only 160 KB of memory to store the Mae–East database. This

allows the entire database to ﬁt into expensive SRAM or on-chip memory. It does, however,

pay a high price in insertion times.

Some expanded trie entries (e.g., the 110 entry at the root of Figure 11.9) have two values,

a pointer and a preﬁx. To make compression easier, the algorithm starts by making each entry

have exactly one value by pushing preﬁx information down to the trie leaves. Since the leaves

do not have a pointer, we have only next-hop information at leaves and only pointers at nonleaf

nodes. This process is called leaf pushing.

For example, to avoid the extra stored preﬁx in the 110 entry of the root node of Figure 11.9,

the P9 stored preﬁx is pushed to all the entries in the leftmost trie node, with the exception of

the 010 and 011 entries (both of which continue to contain P3). Similarly, the P8 stored preﬁx

in the 100 root node entry is pushed down to the 100, 101, 110, and 111 entries of the rightmost

trie node. Once this is done, each node entry contains either a stored preﬁx or a pointer but

not both.

The Lulea scheme starts with a conceptual leaf-pushed expanded trie and replaces consec-

utive identical elements with a single value. A node bitmap (with 0’s corresponding to removed

positions) is used to allow fast indexing on the compressed nodes.

Consider the root node in Figure 11.9. After leaf pushing, the root has the sequence P5,

P5, P5, P5, ptr1, P1, ptr2, P2 (ptr1 is a pointer to the trie node containing P6 and P7, and ptr2 is

a pointer to the node containing P3). After replacing consecutive values with the ﬁrst value, we

get P5, -, -, -, ptr1, P1, ptr2, P2, as shown in the middle frame of Figure 11.14. The rightmost

frame shows the ﬁnal result, with a bitmap indicating removed positions (10001111) and a

compressed list (P5, ptr1, P1, ptr2, P2).

If there are N original preﬁxes and pointers within an original (unexpanded) trie node, the

number of entries within the compressed node can be shown never to be more than 2N + 1.

Intuitively, this is because N
preﬁxes partition the address space into at most 2N + 1 disjoint

subranges and each subrange requires at most one compressed node entry.

Search uses the number of bits speciﬁed by the stride to index into the current trie node,

starting with the root and continuing until a null pointer is encountered. However, while

following pointers, an uncompressed index must be mapped to an index into the compressed

node. This mapping is accomplished by counting bits within the node bitmap.


000

001

010

011

100

101

110

111



P5

P5

P5

P5

P1

P2



P5

–
–
–
ptr1

P1

ptr2

P2



11.7 Lulea-Compressed Tries
1
P5

0
ptr1

0
P1

0
ptr2

1
P2

1

1

1



253
F I G U R E 11.14
Compressing the root node of Figure 11.9 (after leaf pushing) using the Lulea bitmap

compression scheme.

Consider the data structure on the right of Figure 11.14 and a search for an address that starts

with 100111. If we were dealing with just the uncompressed node on the left of Figure 11.14,

we could use 100 to index into the ﬁfth array element to get ptr1. However, we must now obtain

the same information from the compressed-node representation on the right of Figure 11.14.

Instead, we use the ﬁrst three bits (100) to index into the root-node bitmap. Since this is

the second bit set (the algorithm needs to count the bits set before a given bit), the algorithm

indexes into the second element of the compressed node. This produces a pointer ptr1 to the

rightmost trie node. Next, imagine the rightmost leaf node of Figure 11.9 (after leaf pushing)

also compressed in the same way. The node contains the sequence P7, P6, P6, P6, P8, P8, P8,

P8. Thus the corresponding bitmap is 11001000, and the compressed sequence is P7, P6, P8.

Thus in the rightmost leaf node, the algorithm uses the next 3 bits (111) of the destination

address to index into bit 8. Since this bit is a 0, the search terminates: There is no pointer to

follow in the equivalent uncompressed node. However, to retrieve the best matching preﬁx (if

any) at this node, the algorithm must ﬁnd any preﬁx stored before this entry.

This would be trivial with expansion because the value P8 would have been expanded into

the 111 entry; but since the expanded sequence of P8 values has been replaced by a single P8

value in the compressed version, the algorithm has to work harder. Thus the Lulea algorithm

counts the number of bits set before position 8 (which happens to be 3) and then indexes into

the third element of the compressed sequence. This gives the correct result, P8.

The Lulea paper [DBCP97] describes a trie that uses ﬁxed strides of 16, 8, and 8. But how

can the algorithm efﬁciently count the bits set in a large bitmap, for example, a 16-bit stride

uses 64K bits? Before you read on, try to answer this question using principles P12 (adding

state for speed) and P2a (precomputation).

To speed up counting set bits, the algorithm accompanies each bitmap with a summary

array that contains a cumulative count (precomputed) of the number of set bits associated with

ﬁxed-size chunks of the bit map. Using 64-bit chunks, the summary array takes negligible

storage. Counting the bits set up to position i now takes two steps. First, access the summary

array at position j, where j is the chunk containing bit i. Then access chunk j and count the

bits in chunk j up to position i. The sum of the two values gives the count.

While the Lulea paper uses 64-bit chunks, the example in Figure 11.15 uses 8-bit chunks.

The large bitmap is shown from left to right, starting with 10001001, as the second array from

the top. Each 8-bit chunk has a summary count that is shown as an array above the bitmap.


254


C H A P T E R 1 1
Preﬁx-Match Lookups
0
3



5  .  .

10001001 10000001 .  .  .  .  . 10011000 .  .  .  .  .

J

8



011

3

Uncompressed index


Compressed index

F I G U R E 11.15
To allow fast counting of the bits set even in large bitmaps (e.g., 64 Kbits), the bitmap

is divided into chunks and a summary count of the bits set before each chunk precomputed.

The summary count for chunk i counts the cumulative bits in the previous chunks of the bitmap

(not including chunk i).

Thus the ﬁrst chunk has count 0, the second has count 3 (because 10001001 has three bits

set), and the third has count 5 (because 10001001 has two bits set, which added to the previous

chunk’s value of 3 gives a cumulative count of 5).

Consider searching for the bits set up to position X in Figure 11.15, where X can be written

as J011. Clearly, X belongs to chunk J. The algorithm ﬁrst looks up the summary count array

to retrieve numSet[J]. This yields the number of bits set up to but not including chunk J. The

algorithm then retrieves chunk J itself (10011000) and counts the number of bits set until the

third position of chunk J. Since the ﬁrst three bits of chunk J are 100, this yields the value 1.

Finally, the desired overall bit count is numSet[J] + 1.

Notice that the choice of the chunk size is a trade-off between memory size and speed.

Making a chunk equal to the size of the bitmap will make counting very slow. On the other

hand, making a chunk equal to a bit will require more storage than the original trie node!

Choosing a 64-bit chunk size makes the summary array size only 1/64 the size of the original

node, but this requires counting the bits set within a 64-bit chunk. Counting can easily be done

using special instructions in software and via combinational logic in hardware.

Thus search of a node requires ﬁrst indexing into the summary table, then indexing into

the corresponding bitmap chunk to compute the offset into the compressed node, and ﬁnally

retrieving the element from the compressed node. This can take three memory references per

node, which can be quite slow.

The ﬁnal Lulea scheme also compresses entries based on their next-hop values (entries

with the same next-hop values can be considered the same even though they match different

preﬁxes). Overall the Lulea scheme has very compact storage. Using an early (1997) snap-

shot of the Mae–East database of around 40,000 entries, the Lulea paper [DBCP97] reports

compressing the entire database to around 160 KB, which is roughly 32-bits per preﬁx.

This is a very small number, given that one expects to use at least one 20-bit pointer

per preﬁx in the database. The compact storage is a great advantage because it allows the

preﬁx database to potentially ﬁt into limited on-chip SRAM, a crucial factor in allowing preﬁx

lookups to scale to OC-768 speeds.

Despite compact storage, the Lulea scheme has two disadvantages. First, counting bits

requires at least one extra memory reference per node. Second, leaf pushing makes worst-case



11.8 Tree Bitmap



255
insertion times large. A preﬁx added to a root node can cause information to be pushed to

thousands of leaves. The full tree bitmap scheme, which we study next, overcomes these

problem by abandoning leaf pushing and using two bitmaps per node.

11.8 TREE BITMAP
The tree bitmap [EDV] scheme starts with the goal of achieving the same storage and speed

as the Lulea scheme, but it adds the goal of fast insertions. While we have argued that fast

insertions are not as important as fast lookups, they clearly are desirable. Also, if the only way

to handle an insertion or deletion is to rebuild the Lulea-compressed trie, then a router must

keep two copies of its routing database, one that is being built and one that is being used for

lookups. This can potentially double the storage cost from 32 bits per preﬁx to 64 bits per

preﬁx. This in turn can halve the number of preﬁxes that can be supported by a chip that places

the entire database in on-chip SRAM.

To obtain fast insertions and hence avoid the need for two copies of the database, the ﬁrst

problem in Lulea that must be handled is the use of leaf pushing. When a preﬁx of small length

is inserted, leaf pushing can result in pushing down the preﬁx to a large number of leaves,

making insertion slow.

11.8.1 Tree Bitmap Ideas
Thus the ﬁrst and main idea in the tree bitmap scheme is that there be two bitmaps per trie

node, one for all the internally stored preﬁxes and one for the external pointers. Figure 11.16

shows the tree bitmap version of the root node in Figure 11.14.

Recall that in Figure 11.14, the preﬁxes P8 = 100* and P9 = 110* in the original database

are missing from the picture on the left side because they have been pushed down to the leaves

to accommodate the two pointers (ptr 1, which points to nodes containing longer preﬁxes such

as P6 = 1000*, and ptr 2, which points to nodes containing longer preﬁxes such as P3 =

11001*). This results in the basic Lulea trie node, in which each element contains either a

pointer or a preﬁx but not both. This allows the use of a single bitmap to compress a Lulea

node, as shown on the extreme right of Figure 11.14.

By contrast, the same trie node in Figure 11.16 is split into two compressed arrays, each

with its own bitmap. The ﬁrst array, shown vertically, is a pointer array, which contains

a bitmap denoting the (two) positions where nonnull pointers exist and a compressed array

containing the nonnull pointers, ptr1 and ptr 2.

The second array, shown horizontally, is the internal preﬁx array, which contains a list of

all the preﬁxes within the ﬁrst 3 bits. The bitmap used for this array is very different from the

Lulea encoding and has one bit set for every possible preﬁx stored within this node. Possible

preﬁxes are listed lexicographically, starting from ∗, followed by 0∗ and 1∗, and then on to

the length-2 preﬁxes (00*, 01*, 10*, 11*), and ﬁnally the length-3 preﬁxes. Bits are set when

the corresponding preﬁxes occur within the trie node.

Thus in Figure 11.16, the preﬁxes P8 and P9, which were leaf pushed in Figure 11.14,

have been resurrected and now correspond to bits 12 and 14 in the internal preﬁx bitmap.

In general, for an r-bit trie node, there are 2r+1 −1 possible preﬁxes of lengths r or less, which

requires the use of a (2r+1 − 1) bitmap. The scheme gets its name because the internal preﬁx


256


C H A P T E R 1 1
Preﬁx-Match Lookups
P1
101*
P2
111* P4
1* P5
0* P8
100* P9
110*

000

001

010

011

100

101

110

111



0

0

0

0

1

0

1

0



ptr1

ptr2



P5 P4 P8 P1 P9 P2

0
1
1
0
0
0
0
0
0
0
0
1
1
1
1

*
0*
1*
00* 01* 10* 11* 000* 001* 010* 011* 100* 101* 110* 111*

F I G U R E 11.16
The tree bitmap scheme allows the compression of Lulea without sacriﬁcing fast

insertions by using two bitmaps per node. The ﬁrst bitmap describes internally stored preﬁxes, and the

second describes valid versus null pointers.

bitmap represents a trie in a linearized format: Each row of the trie is captured top-down from

left to right.

The second idea in the tree bitmap scheme is to keep the trie nodes as small as possible to

reduce the required memory access size for a given stride. Thus a trie node is of ﬁxed size and

contains only a pointer bitmap, an internal preﬁx bitmap, and child pointers. But what about

the next-hop information associated with any stored preﬁxes?

The trick is to store the next hops associated with the internal preﬁxes stored within each

trie node in a separate array associated with this trie node. Putting next-hop pointers in a

separate result array potentially requires two memory accesses per trie node (one for the trie

node and one to fetch the result node for stored preﬁxes).

However, a simple lazy evaluation strategy (P2b) is not to access the result nodes until

search terminates. Upon termination, the algorithm makes a ﬁnal access to the correct result

node. This is the result node that corresponds to the last trie node encountered in the path that

contained a valid preﬁx. This adds only a single memory reference at the end, in addition to

the one memory reference required per trie node.

The third idea is to use only one memory access per node, unlike Lulea, which uses at

least two memory accesses. Lulea needs two memory accesses per node because it uses large

strides of 8 or 16 bits. This increases the bitmap size so much that the only feasible way to

count bits is to use an additional chunk array that must be accessed separately. The tree bitmap

scheme gets around this by simply using smaller-stride nodes, say, of 4 bits. This makes the

bitmaps small enough that the entire node can be accessed by a single wide access (P4a, exploit

locality). Combinatorial logic (Chapter 2) can be used to count the bits.

11.8.2 Tree Bitmap Search Algorithm
The search algorithm starts with the root node and uses the ﬁrst r bits of the destination address

(corresponding to the stride of the root node, 3 in our example) to index into the pointer bitmap

at the root node at position P. If there is a 1 in this position, there is a valid child pointer.

The algorithm counts the number of 1’s to the left of this 1 (including this 1) and denotes this

count by I. Since the pointer to the start position of the child pointer block (say, y) is known,

as is the size of each trie node (say,
S), the pointer to the child node can be calculated as

y + (I ∗ S).

11.9 Binary Search on Ranges



257
Before moving on to the child, the algorithm must also check the internal bitmap to see

if there are one or more stored preﬁxes corresponding to the path through the multibit node

to position P. For example, suppose P
is 101 and a 3-bit stride is used at the root node

bitmap, as in Figure 11.16. The algorithm ﬁrst checks to see whether there is a stored internal

preﬁx 101*. Since 101* corresponds to the 13th bit position in the internal preﬁx bitmap,

the algorithm can check if there is a 1 in that position (there is one in the example). If there

was no 1 in this position, the algorithm would back up to check whether there is an internal

preﬁx corresponding to 10*. Finally, if there is a 10* preﬁx, the algorithm checks for the

preﬁx 1*.

This search algorithm appears to require a number of iterations, proportional to the loga-

rithm of the internal bitmap length. However, for bitmaps of up to 512 bits or so in hardware,

this is just a matter of simple combinational logic. Intuitively, such logic performs all iterations

in parallel and uses a priority encoder to return the longest matching stored preﬁx.

Once it knows there is a matching stored preﬁx within a trie node, the algorithm does not

immediately retrieve the corresponding next-hop information from the result node associated

with the trie node. Instead, the algorithm moves to the child node while remembering the

stored-preﬁx position and the corresponding parent trie node. The intent is to remember the

last trie node T in the search path that contained a stored preﬁx, and the corresponding preﬁx

position.

Search terminates when it encounters a trie node with a 0 set in the corresponding position

of the extending bitmap. At this point, the algorithm makes a ﬁnal access to the result array

corresponding to
T
to read off the next-hop information. Further tricks to reduce memory

access width are described in Eatherton’s MS thesis [Eat], which includes a number of other

useful ideas.

Intuitively, insertions in a tree bitmap are very similar to insertions in a simple multibit trie

wihout leaf pushing. A preﬁx insertion may cause a trie node to be changed completely; a new

copy of the node is created and linked in atomically to the existing trie. Compression results

in Eatherton et al. [EDV] show that the tree bitmap has all the features of the Lulea scheme, in

terms of compression and speed, along with fast insertions. The tree bitmap also has the ability

to be tuned for hardware implementations ranging from the use of RAMBUS-like memories

to on-chip SRAM.

11.9 BINARY SEARCH ON RANGES
So far, all our schemes (unibit tries, expanded tries, LC tries, Lulea tries, tree bitmaps) have

been trie variants. Are there other algorithmic paradigms (P15) to the longest-matching-preﬁx

problem? Now, exact matching is a special case of preﬁx matching. Both binary search and

hashing [CLR90] are well-known techniques for exact matching. Thus we should consider

generalizing these standard exact-matching techniques to handle preﬁx matching. In this sec-

tion, we examine an adaptation of binary search; in the next section, we look at an adaptation

of hashing.

In binary search on ranges [LSV98], each preﬁx is represented as a range, using the start

and end of the range. Thus the range endpoints for N preﬁxes partition the space of addresses

into 2N + 1 disjoint intervals. The algorithm [LSV98] uses binary search to ﬁnd the interval in

which a destination address lies. Since each interval corresponds to a unique preﬁx match, the


258


C H A P T E R 1 1
Preﬁx-Match Lookups
Prefixes P4
1*, P1
101*

0000
–
–
1000
P4
P4

1010
P1
P1

P4
P1

1011
P4
P1

1111
–
P4



–


0000



P1
P1

1010

P4
P4
P4
P1

1000
1011

–
–


P4

1111

F I G U R E 11.17
Binary search on values of a tiny subset of the sample database, consisting of only

preﬁxes P4 = 1* and P1 = 101*.

algorithm precomputes this mapping and stores it with range endpoints. Thus preﬁx matching

takes log2(2N) memory accesses.

Consider a tiny routing table with only two preﬁxes, P4 = 1* and P1 = 101*. This is a

small subset of the database used in Figure 11.8. Figure 11.17 shows how the binary search

data structure is built as a table (left) and as a binary tree (right).

The starting point for this scheme is to consider a preﬁx as a range of addresses. To keep

things simple, imagine that addresses are 4 bits instead of 32 bits. Thus P4 = 1* is the range

1000 to 1111, and P1 = 101* is the range 1010 to 1011. Next, after adding in the range for the

entire address space (0000 to 1111), the endpoints of all ranges are sorted into a binary search

table, as shown on the left of Figure 11.17.

In Figure 11.17, the range endpoints are drawn vertically on the left. The ﬁgure also shows

the ranges covered by each of the preﬁxes. Next, two next-hop entries are associated with each

endpoint. The leftmost entry, called the > entry, is the next hop corresponding to addresses

that are strictly greater than the endpoint but strictly less than the next range endpoint in sorted

order. The rightmost entry, called the = entry, corresponds to addresses that are exactly equal
to the endpoint.

For example, it should be clear from the ranges covered by the preﬁxes that any addresses

greater than or equal to 0000 but stricly less than 1000 do not match any preﬁx. Hence the

entries corresponding to 0000 are −, to denote no next hop.3Similarly, any address greater

than or equal to 1000 but strictly less than 1010 must match preﬁx P4 = 1*.

The only subtle case, which illustrates the need for two separate entries for > and =, is

the entry for 1011. If an address is strictly greater than 1011 but strictly less than the next entry,

1111, then the best match is P4. Thus the > pointer is P4. On the other hand, if an address is

exactly equal to 1011, its best match is P1. Thus the = pointer is P1.

The entire data structure can be built as a binary search table, where each table entry

has three items, consisting of an endpoint, a > next-hop pointer, and a = next-hop pointer.

The table has at most 2N
entries, because each of N preﬁxes can insert two endpoints. Thus

after the next-hop values are precomputed, the table can be searched in log22N
time using

binary search on the endpoint values. Alternatively, the table can be drawn as a binary tree, as

shown on the right in Figure 11.17. Each tree node contains the endpoint value and the same

two next-hop entries.

3In a core router, no preﬁx match implies that the message should be dropped; in a router within a domain, no

preﬁx match is often sent to the so-called default route.

11.10 Binary Search on Preﬁx Lengths



259
The description so far shows that binary search on values can ﬁnd the longest preﬁx match

after log22N time. However, the time can be reduced using binary trees of higher radix, such

as B-trees. While such trees require wider memory accesses, this is an attractive trade-off for

DRAM-based memories, which allow fast access to consecutive memory locations (P4a).

Computational geometry [PS85] offers a data structure called a range tree for ﬁnding

the narrowest range. Range trees offer fast insertion times as well as fast O(log2N ) search

times. However, there seems to be no easy way to increase the radix of range trees to obtain

O(logMN) search times for M > 2.

As described, this data structure can easily be built in linear time using a stack and an

additional trie. It is not hard to see that even with a balanced binary tree (see exercises), adding a

short preﬁx can change the > pointers of a large number of preﬁxes in the table. A trick to allow

fast insertions and deletions in logarithmic time is described in Warkhede et al. [WSV01b].

Binary search on preﬁx values is somewhat slow when compared to multibit tries. It also

uses more memory than compressed trie variants. However, unlike the other trie schemes, all

of which are subject to patents, binary search is free of such restrictions. Thus at least a few

vendors have implemented this scheme into hardware. In hardware, the use of a wide memory

access (to reduce the base of the logarithm) and pipelining (to allow one lookup per memory

access) can make this scheme sufﬁciently fast.

11.10 BINARY SEARCH ON PREFIX LENGTHS
In this section, we adapt another classical exact-match scheme, hashing, to longest preﬁx

matching. Binary search on preﬁx lengths ﬁnds the longest match using log2W hashes, where

W
is the maximum preﬁx length. This can provide a very scalable solution for 128-bit IPv6

addresses. For 128-bit preﬁxes, this algorithm takes only seven memory accesses, as opposed

to 16 memory accesses using a multibit trie with 8-bit strides. To do so, the algorithm ﬁrst

segregates preﬁxes by length into separate hash tables. More precisely, it uses an array L of

hash tables such that L[i] is a pointer to a hash table containing all preﬁxes of length i.

Assume the same tiny routing table, with only two preﬁxes, P4 = 1* and P1 = 101*,

of lengths 1 and 3, respectively, that was used in Figure 11.17. Recall that this is a small

subset of Figure 11.8. The array of hash tables is shown horizontally in the top frame (A) of

Figure 11.18. The length-1 hash table storing P4 is shown vertically on the left and is pointed to

by position 1 in the array; the length-3 hash table storing P1 is shown on the right and is pointed

to by position 3 in the array; the length-2 hash table is empty because there are no preﬁxes of

length 2.

Naively, a search for address D would start with the greatest-length hash table
l
(i.e.,

3), would extract the ﬁrst l bits of D into Dl, and then search the length-l hash table for Dl.

If search succeeds, the best match has been found; if not, the algorithm considers the next

smaller length (i.e., 2). The algorithm moves in decreasing order among the set of possible

preﬁx lengths until it either ﬁnds a match or runs out of lengths.

The naive scheme effectively does
linear
search among the distinct preﬁx lengths.

The analogy suggests a better algorithm: binary search (P15). However, unlike binary search

on preﬁx ranges, this is binary search on preﬁx
lengths. The difference is major. With 32

lengths, binary search on lengths takes ﬁve hashes in the worst case; with 32,000 preﬁxes,

binary search on preﬁx ranges takes 16 accesses.


260


C H A P T E R 1 1
Preﬁx-Match Lookups
Length-1
Length-2

table
table

1
2

P4
1*

bmp
P4

1
2

P4
1*

10



Length-3

table

3

P1
101*

bmp
P1

3

P1
101*



A) Naive

B) With markers

bmp
P4


bmp
P1

1

P4
1*

bmp
P4



2

10

bmp
P4



3

P1
101*

bmp
P1



C) Markers and

     precomputation

F I G U R E 11.18
From naive linear search on the possible preﬁx lengths to binary search.

Binary search must start at the median preﬁx length, and each hash must divide the possible

preﬁx lengths in half. A hash search gives only two values: found and not found. If a match

is found at length m, then lengths strictly greater than m must be searched for a longer match.

Correspondingly, if no match is found, search must continue among preﬁxes of lengths strictly

less than m.

For example, in Figure 11.18, part (A), suppose search begins at the median length-2

hash table for an address that starts with 101. Clearly, the hash search does not ﬁnd a match.

But there is a longer match in the length-3 table. Since only a match makes search move to the

right half, an “artiﬁcial match,” or marker, must be introduced to force the search to the right

half when there is a potentially longer match.

Thus part (B) introduces a bolded marker entry 10, corresponding to the ﬁrst two bits

of preﬁx P1 = 101, in the length-2 table. In essence, state has been added for speed (P12).

The markers allow probe failures in the median to rule out all lengths greater than the median.

Search for an address D that starts with 101 works correctly. Search for 10 in the length-2

table (in Part (B) of Figure 11.18) results in a match; search proceeds to the length-3 table,

ﬁnds a match with P1, and terminates. In general, a marker for a preﬁx P
must be placed

11.11 Memory Allocation in Compressed Schemes



261
at all lengths that binary search will visit in a search for P. This adds only a logarithmic

number of markers. For a preﬁx of length 32, markers are needed only at lengths 16, 24, 28,

and 30.

Unfortunately, the algorithm is still incorrect. While markers lead to potentially longer

preﬁxes, they can also cause search to follow false leads. Consider a search for an address D
whose ﬁrst three bits are 100 in part (B) of Figure 11.18. Since the median table contains 10,

search in the middle hash table results in a match. This forces the algorithm to search in the

third hash table for 100 and to fail. But the correct best matching preﬁx is at the ﬁrst hash table

— i.e., P4 = 1*. Markers can cause the search to go off on a wild goose chase! On the other

hand, a backtracking search of the left half would result in linear time.

To ensure logarithmic time, each marker node M contains a variable M .bmp, where M.bmp
is the longest preﬁx that matches string M. This is precomputed when M
is inserted into its

hash table. When the algorithm follows marker M and searches for preﬁxes of lengths greater

than M, and if the algorithm fails to ﬁnd such a longer preﬁx, then the answer is M.bmp. In

essence, the best matching preﬁx of every marker is precomputed (P2a). This avoids searching

all lengths less than the median when a match is obtained with a marker.

The ﬁnal version of the database containing preﬁxes P4 and P1 is shown in part (C) of

Figure 11.18. A bmp ﬁeld has been added to the 10 marker that points to the best matching

preﬁx of the string 10 (i.e., P4 = 1*). Thus when the algorithm searches for 100 and ﬁnds a

match in the median length-2 table, it remembers the value of the corresponding bmp entry P4

before it searches the length-3 table. When the search fails (in the length-3 table), the algorithm

returns the bmp ﬁeld of the last marker encountered (i.e., P4).

A trivial algorithm for building the simple binary search data structure from scratch is as

follows. First determine the distinct preﬁx lengths; this determines the sequence of lengths to

search. Then add each preﬁx P in turn to the hash table corresponding to length(P). For each

preﬁx, also add a marker to all hash tables corresponding to lengths L < length(P) that binary

search will visit (if one does not already exist). For each such marker M , use an auxiliary

1-bit trie to determine the best matching preﬁx of M. Further reﬁnements are described in

Waldvogel et al. [WVTP01].

While the search algorithm takes ﬁve hash table lookups in the worst case for IPv4, we

note that in the expected case most lookups should take two memory accesses. This is because

the expected case observation O1 shows that most preﬁxes are either 16 or 24 bits (at least

today). Thus doing binary search at 16 and then 24 will sufﬁce for most preﬁxes.

The use of hashing makes binary search on preﬁx lengths somewhat difﬁcult to implement

in hardware. However, its scalability to large preﬁx lengths, such as IPv6 addresses, has made

it sufﬁciently appealing to some vendors.

11.11 MEMORY ALLOCATION IN COMPRESSED SCHEMES
With the exception of binary search and ﬁxed-stride multibit tries, many of the schemes

described in this chapter need to allocate memory in different sizes. Thus if a compressed trie

node grows from two to three memory words, the insertion algorithm must deallocate the old

node of size 2 and allocate a new node of size 3. Memory allocation in operating systems is a

somewhat heuristic affair, using algorithms, such as best-ﬁt and worst-ﬁt, that do not guarantee

worst-case properties.


262


C H A P T E R 1 1
Preﬁx-Match Lookups
In fact all standard memory allocators can have a worst-case fragmentation ratio that is

very bad. It is possible for allocates and deallocates to conspire to break up memory into a

patchwork of holes and small allocated blocks. Speciﬁcally, if Max is the size of the largest

memory allocation request, the worst-case scenario occurs when all holes are of size Max − 1

and all allocated blocks are of size 1. This can occur by allocating all of memory using requests

of size 1, followed by the appropriate deallocations. The net result is that onlyMax1
of memory

is guaranteed to be used, because all future requests may be of size Max.

The allocator’s use of memory translates directly into the maximum number of preﬁxes

that a lookup chip can support. Suppose that — ignoring the allocator — one can show that

20 MB of on-chip memory can be used to support 640,000 preﬁxes in the worst case. If one

takes the allocator into account and Max = 32, the chip can guarantee supporting only 20,000

preﬁxes!

Matters are not helped by the fact that CAM vendors at the time of writing were advertising

a worst-case number of 100,000 preﬁxes, with 10-nsec search times and microsecond update

times. Thus, given that algorithmic solutions to preﬁx lookup often compress data structures

to ﬁt into SRAM, algorithmic solutions must also design memory allocators that are fast and

that minimally fragment memory.

There is an old result [Rob74] that says that no allocator that does not compact memory

can have a utilization ratio better than1

log2Max . For example, this is 20% for Max
=
32.

Since this is unacceptable, algorithmic solutions involving compressed data structures must
use compaction. Compaction means moving allocated blocks around to increase the size of

holes.

Compaction is hardly ever used in operating systems, for the following reason. If you

move a piece of memory M , you must correct all pointers that point to M . Fortunately, most

lookup structures are trees, in which any node is pointed to by at most one other node. By

maintaining a parent pointer for every tree node, nodes that point to a tree node
M
can be

suitably corrected when
M
is relocated. Fortunately, the parent pointer is needed only for

updates and not for search. Thus the parent pointers can be stored in an off-chip copy of the

database used for updates in the route processor, without consuming precious on-chip SRAM.

Even after this problem is solved, one needs a simple algorithm that decides when to

compact a piece of memory. The existing literature on compaction is in the context of garbage

collection (e.g., Refs. Wil92, LB96) and tends to use global compactors that scan through all

of memory in one compaction cycle. To bound insertion times, one needs some form of local
compactor that compacts only a small amount of memory around the region affected by an

update.

11.11.1 Frame-Based Compaction
To show how simple local compaction schemes can be, we ﬁrst describe an extremely simple

scheme that does minimal compaction and yet achieves 50% worst-case memory utilization.

We then extend this to improve utilization to closer to 100%.

In frame merging, assume that all M
words of memory are divided intoMaxM
frames of

size Max. Frame merging seeks to keep the memory utilization to at least 50%. To do so, all

nonempty frames should be at least 50% full. Frame merging maintains the following simple


11.12 Lookup-Chip Model



263
invariant: All but one unﬁlled frame is at least 50% full. If so, and ifM
1, this will yield a guaranteed utilization of almost 50%.



Max
is much larger than

Allocate and deallocate requests are handled [SV00] with the help of tags added to each

word that help identify free memory and allocated blocks. The only additional restriction is

that all holes be contained within a frame; holes are not allowed to span frames.

Call a frame ﬂawed if it is nonempty but is less than 50% utilized. To maintain the invariant,

frame merging has one additional pointer to keep track of the current ﬂawed frame, if any.

Now, an allocate could cause a previously empty frame to become ﬂawed if the allocation is

less thanMax
2.
Similarly, a deallocate could cause a frame that was ﬁlled more than 50% to become less

than 50% full. For example, consider a frame that contains two allocated blocks of size 1 and

size Max − 1 and hence has a utilization of 100%. The utilization could reduce toMax1
if the

block of Max − 1 is deallocated. This could cause two frames to become ﬂawed, which would

violate the invariant.

A simple trick to maintain the invariant is as follows. Assume there is already a ﬂawed

frame F and that a new ﬂawed frame, F , appears on the scene. The invariant is maintained by

merging the contents of F
and F
into F. This is clearly possible because both frames F and

F
were less than half full. Note that the only compaction done is local and is limited to the

two ﬂawed frames, F and F . Such local compaction leads to fast update times.

The worst-case utilization of frame merging can be improved by increasing the frame size

to kMax and by changing the deﬁnition of a ﬂawed frame to be one whose utilization is less

thank+k1. The scheme described earlier is a special case with k
= 1. Increasing k improves

the utilization, at the cost of increased compaction. More complex allocators with even better

performance are described in Sikka and Varghese [SV00].

11.12 LOOKUP-CHIP MODEL
Given speed increases to OC-768 speeds, lookup schemes will probably be implemented on

chips rather than on network processors, at least for the very highest speeds. Figure 11.19

On- or off-chip SRAM

Wide memory access;

time multiplexed between

search and update

Search

Input
Search

key
result



Update

Update

F I G U R E 11.19
Model of a lookup chip that does a search in hardware using a common SRAM that

could be on or off chip.

264


C H A P T E R 1 1
Preﬁx-Match Lookups
describes a model of a lookup chip that does search and update. The chip has a Search

and an Update process, both of which access a common SRAM memory that is either

on or off chip (or both). The Update process allows incremental updates and (potentially)

does a memory allocation/deallocation and a small amount of local compaction for every

update.

The actual updates can be done either completely on chip, partially in software, or

completely in software. If a semiconductor company wishes to sell a lookup chip using a

complex update algorithm (e.g., for compressed schemes), it may be wiser also to provide

an update algorithm in hardware. If the lookup chip is part of a forwarding engine, how-

ever, it may be simpler to relegate the update process completely to a separate CPU on the

line card.

Each access to SRAM can be fairly wide if needed, even up to 1000 bits. This is quite

feasible today using a wide bus. The search and update logic can easily process 1000 bits in

parallel in one memory cycle time. Recall that wide word accesses can help — for example,

in the tree bitmap and binary search on values schemes — to reduce search times.

Search and Update use time multiplexing to share access to the common SRAM that stores

the lookup database. Thus the Search process is allowed S consecutive accesses to memory,

and then the Update process is allowed K accesses to memory. If S is 20 and K is 2, this allows

Update to steal a few cycles from Search while slowing down Search throughput by only a

small fraction. Note that this increases the latency of Search by K memory accesses in the

worst case; however, since the Search process is likely to be pipelined, this can be considered

a small additional pipeline delay.

The chip has pins to receive inputs for Search (e.g., keys) and Update (e.g., update type,

key, result) and can return search outputs (e.g., result). The model can be instantiated for

various types of lookups, including IP lookups (e.g., 32-bit IP addresses as keys and next hops

as results), bridge lookups (48-bit MAC addresses as keys and output ports as results), and

classiﬁcation (e.g., packet headers as keys and matching rules as results).

Each addition or deletion of a key can result in a call to deallocate a block and to allocate a

different-size block. Each allocate request can be in any range from 1 to Max memory words.

There is a total of M words that can be allocated. The actual memory can be either off chip,

on chip, or both. Clearly, even off-chip solutions will cache the ﬁrst levels of any lookup tree

on chip. On-chip memory is attractive because of its speed and cost. Unfortunately, on-chip

memory was limited by current processes to around 32 Mbits at the time of writing. This makes

it difﬁcult to support databases of 1 million preﬁxes.

Internally, the chip will very likely be heavily pipelined. The lookup data structure is

partitioned into several pieces, each of which is concurrently worked on by separate stages of

logic. Thus the SRAM will likely be broken into several smaller SRAMs that can be accessed

independently by each pipeline stage.

There is a problem [SV00] with statically partitioning SRAM between pipeline stages,

because memory needs for each stage can vary as preﬁxes are inserted and deleted. One possible

solution is to break the single SRAM into a fairly large number of smaller SRAMs that can be

dynamically allocated to the stages via a partial crossbar switch. However, designing such a

crossbar at very high speeds is not easy.

All the schemes described in this chapter can be pipelined because they are all fundamen-

tally based on trees. All nodes at the same depth in a tree can be allocated to the same pipeline

stage.

11.13 CONCLUSIONS


11.13 Conclusions



265
It is important to gain some perspective after the large number of isolated lookup variants

described in this chapter. Thus we conclude with a summary of the state of the art in lookups,

and a survey of the common principles used in their design.

State of the Art in Lookups:
Lookup schemes are coming under severe pressure in

core routers as both table sizes (up to 1 million preﬁxes) and speed (up to 40 Gbps) ratchet

upwards. MPLS, once thought to be a way to ﬁnesse lookups, is now mostly used to avoid

packet classiﬁcation for trafﬁc engineering purposes. CAMs are nibbling away at even the

core router space, but the large cost, power, and board real estate issues of large CAMs remain

issues. Thus many core router vendors are still using and designing algorithmic schemes for

lookups.

Oddly enough, even after the algorithmic riches explored in this chapter, simple unibit

tries together with SRAM and pipelining work well, even at 40-Gbps speeds. This is because

path-compressed unibit tries are relatively compact; their slow search times can be offset by a

pipeline together with an initial array lookup. Recall, however, that pipelining is trickier than

it looks because of the need to partition memory among stages.

At slower speeds of up to 10 Gbps, simple multibit tries using controlled preﬁx expansion

work well with DRAM. While DRAM is slow, it is plentiful and cheap. The use of RAMBUS-

like technologies can allow lookup pipelining even with network processors. The simplicity

of this scheme has proved attractive to a number of vendors.

Some vendors even use binary search on values; its speed and memory use are reasonable,

especially with B-trees with wide memories to reduce tree height. The binary-search-on-ranges

scheme is also unencumbered with patents.

At the highest speeds, the number of pipeline stages can be reduced from 20 to 5 using

multibit tries. However, multibit tries must be compressed to ﬁt into limited SRAM, when on

or off chip. While Lulea’s compression is remarkable, it appears that the algorithm can be used

today only via custom solutions sold by a company called Effnet. The Lulea scheme also has

slow updates. By contrast, the tree bitmap scheme has fast updates and can be tailored to a

wide variety of hardware settings [EDV]. However, there may be patents that restrict the use

of tree bitmap as well. It is used today in Cisco’s CRS-1 Router.

Finally, binary search on preﬁx lengths is attractive because of its scaling properties to

large address lengths. Unfortunately, its use of hashing makes it hard to guarantee lookup times.

Similarly, the slow deployment of IPv6 and multicast, both of which increase the importance

of long address lookup, have made this scheme less attractive. It is, however, used by a few

vendors in software implementations. It may be a contender in the future.

The bottom line is that algorithmic solutions together with pipelining can scale with link

speeds as long as SRAM speeds scale to match packet arrival times. All the schemes studied

in this chapter can be pipelined to provide one lookup per memory access time. The choice

between CAMs and algorithmic schemes will continue to be hard to quantify and will probably

be made on an ad hoc basis for each product.

However, fundamentally, if compressed trie schemes can use less than 32 bits per preﬁx,

compressed tries appear to use fewer transistors and less power than CAMs. This is because in

a CAM the lookup logic is distributed in each of N memory cells, whereas in an algorithmic

solution the lookup logic, albeit more complicated, is distributed among a small, constant

266


C H A P T E R 1 1
Preﬁx-Match Lookups
number of stages. A careful VLSI scaling analysis of these two approaches would be very

useful.

Underlying Principles:
Although this is a chapter about lookups and thinking about

lookups requires paying attention to current market trends, it is important not to forget that

this is a book about underlying principles. It is plausible that routers in the misty future may

use all-optical switches and all-optical processing, even for lookups. In that case, the speciﬁc

algorithms described in this chapter may be discarded; but perhaps the underlying design

principles will remain.

Although the schemes described in this chapter require some algorithmic thinking, they

also employ many of the other principles we have stressed. The schemes make heavy use of

precomputation, which trades slower insert/delete times for fast search times. The schemes

also exploit hardware features such as wide memories, distinguish fast and slow memories,

trade memory for time, and optimize the degrees of freedom in a given design. Figure 11.1

summarizes the schemes and the principles used in them.

Finally, this chapter cannot hope to do justice to all the interesting IP lookup schemes that

have been published in the academic and patent literature. You can look it up.

11.14 EXERCISES
1. Caching Preﬁxes: Suppose we have the preﬁxes 10*, 100*, and 1001*. Hugh Hopeful

would like to cache preﬁxes instead of entire 32-bit addresses. Hugh’s scheme keeps a

set of preﬁxes in the cache (fast memory), in addition to the complete set of preﬁxes in

slow memory. Hugh’s scheme ﬁrst does a best-matching-preﬁx search in the cache; if a

matching preﬁx is found, the next hop of the preﬁx is used. If no matching preﬁx is

found, a best-matching-preﬁx search is done for the entire database and the resulting

preﬁx cached. Periodically, preﬁxes that have not been matched for a while are ﬂushed

from the cache. Alyssa P. Hacker quickly gives Hugh a counterexample to show him that

his scheme is ﬂawed and that caching preﬁxes is tricky (if not impossible). Can you?

2. Encoding Preﬁxes in a Constant Length: We said in the text that encoding preﬁxes

like 10*, 100*, and 1000* in a ﬁxed length could not be done by padding preﬁxes with

zeroes. It clearly can be done by padding with zeroes and adding an encoding of the

preﬁx length. We want to study a more efﬁcient method.

• How many possible preﬁxes on 32 bits can there be?

• Show how to encode all such preﬁxes using a ﬁxed length of 33 bits. Make sure that

10*, 100*, and 1000* encode to different values.

• Can you use this ﬁxed-length encoding of preﬁxes to have the multiple hash tables

used in Section 11.10 be packed into a single hash table? Why might this help to

decrease the chances of hash collisions for a given memory size?

3. Quantifying the Beneﬁts of Compressing One-Way Branches:
• For a unibit trie that does not compress one-way branches, show that the maximum

number of trie nodes can be O(N · W ), where N is the number of preﬁxes and W is the

maximum preﬁx length. (Hint: Generate a trie that uses log2N levels to generate N
nodes, and then hang a long string of N − W nodes from each of the N nodes.)

11.14 Exercises



267
• Show that a unibit trie with text strings to compress one-way branches can have at

most 2N trie nodes and 2N text strings.

• Extend your analysis to multibit trie nodes with a ﬁxed stride. How would you

implement text string compression in such tries?

4. Controlled Preﬁx Expansion: Code up an efﬁcient algorithm that expands a set of

preﬁxes to any target set of lengths L1, . . . , Lk . Check your algorithm using the sample

database of Figure 11.8. What is the complexity of your algorithm?

5. Optimal Variable-Stride Trie: Prove that the varied-stride trie of Figure 11.10 is

optimal for a trie height of 2. Use the recursive formulation shown in the text.

6. Reducing Memory References in Lulea: The naive approach to counting bits shown in

Figure 11.15 should take three memory references (to access numSet, to read the

appropriate chunk of the bitmap, and to access the compressed trie node for the actual

information.) Show how to use P4a to combine the ﬁrst two accesses into a single access.

7. Next Node versus Leaf Pushing in Lulea: Before we applied Lulea compression, we

ﬁrst leaf pushed the expanded trie of Figure 11.9. The motivation was to make every

entry either a pointer or a preﬁx but not both. Suppose we have a special preﬁx entry at

the top of every trie node; if any entry in a trie node has pointer p and preﬁx P, we push

P to the top of the node pointed to by p. Thus we would push the preﬁx P8 in the 100

entry of the root of Figure 11.9 to the top of the rightmost trie node.

• We cited leaf pushing as one of the reasons for slow insertion times in the Lulea

scheme. Does next-node pushing allow incremental insertion for the Lulea scheme?

• How would you modify trie search to take into account the fact that preﬁxes can be

stored at the top of (potentially large) trie nodes? How would this increase the search

time (in memory accesses) of the Lulea scheme?

8. CAM Node Compression: Instead of using the Lulea scheme for compression, we

could just store all the preﬁxes within a trie node without expansion. If we use small trie

nodes (3- or 4-bit strides), a chip can potentially read all the entries in a node and

internally do a comparison to ﬁnd the best-matching preﬁx within the node. Describe the

details of such a scheme.

9. Tree Bitmap Algorithm: The tree bitmap algorithm described in the text requires

rooting through the internal preﬁx bitmap to decide if there was a matching preﬁx at a

trie node N before moving on. This requires a greater access width (to access the internal

preﬁx bitmaps) and more time. Consider adding state to the next node in the search path

(P12) and one more ﬁnal memory access to avoid this overhead.

10. Multicolumn Binary Search: In Chapter 4 we saw how to efﬁciently use binary search

when the identiﬁers were wide. Explain how to combine this idea with that of binary

search on preﬁxes explained in this chapter in order to do IPv6 lookups (up to 128-bit

preﬁxes). How does this scheme compare with the other schemes in terms of lookup

performance for IPv6?

11. Binary Search with Fast Incremental Updates: (This is difﬁcult.) Find a way to

remove all the problems of updates to binary search. The key problem is that if a large

268


C H A P T E R 1 1
Preﬁx-Match Lookups
preﬁx range R contains lots of disjoint preﬁx ranges R1, . . . Rk, then the spaces between

the ranges Rkmust be precomputed to map to R. If we now add a new preﬁx range, R,

that is contained in R but still contains R1through Rk, then all the spaces between the

ranges Rkmust be changed to map to the new range, R . Since k can be O(n), this could

lead to a O(n) update. Try to avoid this problem by storing the binary search database as

a tree and storing information about precomputed preﬁxes that cover the space between

ranges as high as possible in the tree, as opposed to storing in the leaves. Details can be

found in Warkhede et al. [WSV01b].

12. Counterexamples for Binary Search on Preﬁx Lengths: Even in industry, it is often

useful to show by counter example that worst cases can actually exist. This ensures that

we are not doing unnecessary work, and it also silences people who say that the worst

case will never be too bad. Imagine that Hugh Hopeful is working for the same startup

building an IP lookup chip. The company is now considering using binary search on

preﬁx lengths.

• Suppose we use only markers and no precomputation. This would make insertion a lot

faster. Hugh Hopeful suggests that backtracking can only lead to a logarithmic

number of extra accesses. Find an example that leads to linear time.

• Hugh Hopeful ﬁnds that in practice real databases add only 25% extra marker storage,

much less than the log2W multiplicative factor that we claimed. This is important

because he would like to boast of a larger number of preﬁxes that his chip can handle

for the given amount of memory. Give a worst-case example to show that we can add

log2W entries per marker.

13. Rope Search: Binary search on preﬁx lengths can be improved by what is called rope
search in Waldvogel et al. [WVTP01]. If we ever get a match with some entry M at

length m, we only search further among the set of lengths corresponding to preﬁxes that

are extensions of M. The basic technique we studied earlier will continue to search

among all lengths greater than m in the current set of lengths R. However, many of the

lengths l > m may not have a preﬁx that is an extension of M . Thus this optimization

can result in more than halving the set of possible lengths on each match. It may not help

the worst case, but it can considerably help the average case. Try to work out details of

such a scheme. In particular, a naive approach would keep a list of all potentially

matching lengths (O(W ) space, where W is the length of an address) with each preﬁx.

Find a way to reduce the state kept with each marker to O(log W ). Details can be found

in Waldvogel et al. [WVTP01].

14. Invariant for Binary Search on Preﬁx Lengths: Designing and proving algorithms

that correct via invariants is a useful technique even in network algorithmics. The

standard invariant for ordinary binary search when searching for key K is: “K is not in

the table, or K is in the current range R.” Standard binary search starts with R equal to

the entire table and constantly halves the range while maintaining the invariant. Find a

similar invariant for binary search on preﬁx ranges.

15. Semiperfect Hashing: Hardware chips can fetch up to 1000 bits at a time using wide

buses. Exploit this observation to allow up to X collisions in each hash table entry,

where the X colliding entries are stored at adjacent locations. Code up a perfect hashing

11.14 Exercises
implementation (of 1000 IP addresses using a set of random hash functions), and



269
compare the amount of memory needed with an implementation based on semiperfect

hashing.

16. Removing Redundancies in Lookup Tables: Besides the use of compressed structures,

another technique to reduce the size of IP lookup tables (especially when the tables are

stored in on-chip SRAM) is to remove redundancy. One simple example of redundancy

is when a preﬁx P is longer than a preﬁx P
and they both have the same next hop.

Which preﬁx can be removed from the table? Can you think of other examples of

removing redundancy? How would you implement such compression? Draves et al.

[DKVZ99] describe a dynamic programming algorithm for compression, but even

simpler alternatives can be effective.

17. Implementing Tries for Best Matching Preﬁx: (Due to V. Srinivasan.) The problem is

to use tries to implement a ﬁle name completion routine in C or C++, similar to ones

found in many shells. Given a unique preﬁx, the query should return the entire string.

For example, with the words angle, epsilon, and eagle: Search(a) should return angle,

Search(e) should return “No unique completion,” Search(ea), Search(eag), etc. should

return eagle; and Search(b) should return “No matching entries found.” Assume all

lowercase alphabets. To obtain an index into a trie array use:

index= charVariable - ’a’.

The following deﬁnition of a trie node may be helpful.

#deﬁneALPHA26

structTRIENODE

{

intcompletionStatus;

charcompletion[MAXLEN];

structTRIENODE*next[ALPHA];

}

Can other techniques discussed in the text (e.g., binary search) be applied to this

problem? Are insertion costs signiﬁcant?


C H A P T E R 12
Packet Classification
A classiﬁcation is a deﬁnition comprising a system of deﬁnitions.
— Friedrich von Schlegel

Traditionally, the post ofﬁce forwards messages based on the destination address in each

letter. Thus all letters to Timbuctoo were forwarded in exactly the same way at each post

ofﬁce. However, to gain additional revenue, the post ofﬁce introduced service differentiation
between ordinary mail, priority mail, and express mail. Thus forwarding at the post ofﬁce is

now a function of the destination address and the trafﬁc class. Further, with the spectre of

terrorist threats and criminal activity, forwarding could even be based on the source address,

with special screening for suspicious sources.

In exactly the same way, routers have evolved from traditional destination-based forward-

ing devices to what are called packet classiﬁcation routers. In modern routers, the route and

resources allocated to a packet are determined by the destination address as well as other header

ﬁelds of the packet, such as the source address and TCP/UDP port numbers.

Packet classiﬁcation uniﬁes the forwarding functions required by ﬁrewalls, resource reser-

vations, QoS routing, unicast routing, and multicast routing. In classiﬁcation, the forwarding

database of a router consists of a potentially large number of rules on key header ﬁelds. A given

packet header can match multiple rules. So each rule is given a cost, and the packet is forwarded

using the least-cost matching rule.
This chapter is organized as follows. The packet classiﬁcation problem is motivated in

Section 12.1. The classiﬁcation problem is formulated precisely in Section 12.2, and the

metrics used to evaluate rule schemes are described in Section 12.3. Section 12.4 presents

simple schemes such as linear search and CAMs. Section 12.5 begins the discussion of more

efﬁcient schemes by describing an efﬁcient scheme called grid of tries that works only for rules

specifying values of only two ﬁelds. Section 12.6 transitions to general rule sets by describing

a set of insights into the classiﬁcation problem, including the use of a geometric viewpoint.

Section 12.7 begins the transition to algorithms for the general case with a simple idea

to extend 2D schemes. A general approach based on divide-and-conquer is described in

Section 12.8. This is followed by three very different examples of algorithms based on divide-

and-conquer: simple and aggregated bit vector linear search (Section 12.9), cross-producting

(Section 12.10), and RFC, or equivalenced cross-producting (Section 12.11). Section 12.12

presents the most promising of the current algorithmic approaches, an approach based on

decision trees.

270

Num
P12


Add marker state



Principle


12.1 Why Packet Classiﬁcation?
Lookup Technique
Rectangle and  



271
P2a
P15
P2a
P15
P12,2a
P11
P4a

Precompute filter info

Use Dest and SRC tries

Precompute switch pointers

Divide-and-conquer by first doing field lookups

Exploit lack of general ranges

Exploit bitmap memory locality


tuple search

Grid of tries

Bit vector, pruned tuple,

cross-producting

Multiple 2D planes

Bit vector scheme

P11

Exploit small number of prefixes that match any field
Pruned tuple

P11a,4a
Exploit crossproduct locality



On-demand cross-product

P1

Avoid redundant crossproducts


Equivalent cross-producting

F I G U R E 12.1
Summary of the principles used in the classiﬁcation algorithms described in this

chapter.

This chapter will continue to exhibit the set of principles introduced in Chapter 3, as

summarized in Figure 12.1. The chapter will also illustrate three general problem-solving

strategies: solving simpler problems ﬁrst before solving a complex problem, collecting

different viewpoints, and exploiting the structure of input data sets.

Q u i c k R e f e r e n c e G u i d e
The most important lookup algorithms for an implementor today are as follows. If memory is not an

issue, the fastest scheme is one called recursive ﬂow classiﬁcation (RFC), described in Section 12.11. If

memory is an issue, a simple scheme that works well for classiﬁers up to around 5000 rules is the Lucent

bit vector scheme (Section 12.9). For larger classiﬁers, the best trade-off between speed and memory

is provided by decision tree schemes, such as HiCuts and HyperCuts (Section 12.12). Unfortunately, all

these algorithms are based on heuristics and cannot guarantee performance on all databases. If guaranteed

performance is required for more than two ﬁeld classiﬁers, there is no alternative but to consider hardware

schemes such as ternary CAMs.

12.1 WHY PACKET CLASSIFICATION?
Packet forwarding based on a longest-matching-preﬁx lookup of destination IP addresses is

fairly well understood, with both algorithmic and CAM-based solutions in the market. Using

basic variants of tries and some pipelining (see Chapter 11), it is fairly easy to perform one

packet lookup every memory access time.

272


C H A P T E R 1 2
Packet Classiﬁcation
Unfortunately, the Internet is becoming more complex because of its use for mission-

critical functions executed by organizations. Organizations desire that their critical activities

not be subverted either by high trafﬁc sent by other organizations (they require QoS guarantees)

or by malicious intruders (they require security guarantees). Both QoS and security guarantees

require a ﬁner discrimination of packets, based on ﬁelds other than the destination. This is

called packet classiﬁcation. To quote John McQuillan [McQ97]:

Routing has traditionally been based solely on destination host numbers. In the future
it will also be based on source host or even source users, as well as destination URLs
(universal resource locators) and speciﬁc business policies. . . . Thus, in the future,
you may be sent on one path when you casually browse the Web for CNN headlines.
And you may be routed an entirely different way when you go to your corporate Web
site to enter monthly sales ﬁgures, even though the two sites might be hosted by the
same facility at the same location. . . . An order entry form may get very low latency,
while other sections get normal service. And then there are Web sites comprised of
different servers in different locations. Future routers and switches will have to use
class of service and QoS to determine the paths to particular Web pages for particular
end users. All this requires the use of layers 4, 5, and above.
This new vision of forwarding is called packet classiﬁcation. It is also sometimes called

layer 4 switching, because routing decisions can be based on headers available at layer 4 or

higher in the OSI architecture. Examples of other ﬁelds a router may need to examine include

source addresses (to forbid or provide different service to some source networks), port ﬁelds

(to discriminate between trafﬁc types, such as Napster and E-mail), and even TCP ﬂags (to

distinguish between externally and internally initiated connections). Besides security and QoS,

other functions that require classiﬁcation include network address translation (NAT), metering,

trafﬁc shaping, policing, and monitoring.

Several variants of packet classiﬁcation have already established themselves on the Inter-

net. First, many routers implement ﬁrewalls [CB95] at trust boundaries, such as the entry and

exit points of a corporate network. A ﬁrewall database consists of a series of packet rules that

implement security policies. A typical policy may be to allow remote login from within the

corporation but to disallow it from outside the corporation.

Second, the need for predictable and guaranteed service has led to proposals for reservation

protocols, such as DiffServ [SWG], that reserve bandwidth between a source and a destination.

Third, the cries for routing based on trafﬁc type have become more strident recently — for

instance, the need to route Web trafﬁc between Site 1 and Site 2 on, say, Route A and other

trafﬁc on, say, Route B. Figure 12.2 illustrates some of these examples.

Classiﬁers historically evolved from ﬁrewalls, which were placed at the edges of networks

to ﬁlter out unwanted packets. Such databases are generally small, containing 10–500 rules,

and can be handled by ad hoc methods. However, with the DiffServ movement, there is

potential for classiﬁers that could support 100,000 rules for DiffServ and policing applications

at edge routers.

While large classiﬁers are anticipated for edge routers to enforce QoS via DiffServ, it

is perhaps surprising that even within the core, fairly large (e.g., 2000-rule) classiﬁers are

commonly used for security. While these core router classiﬁers are nowhere near the anticipated

size of edge router classiﬁers, there seems no reason why they should not continue to grow

beyond the sizes reported in this book. For example, many of the rules appear to be denying


S2

S1



R

Subnet X



L1

L2



12.2 Packet-Classiﬁcation Problem
D

Subnet Y



273
To


From


DATABASE AT ROUTER R

Traffic Type
Forwarding Directive
D

*
Y



S1

S2

X



Video

*

*



Forward via L1

Drop all traffic

Reserve 50 Mbps

F I G U R E 12.2
Example of rules that provide trafﬁc-sensitive routing, a ﬁrewall rule, and resource

reservation. The ﬁrst rule routes video trafﬁc from S1 to D via L1; not shown is the default routing to D,

which is via L2. The second rule blocks trafﬁc from an experimental site, S2, from accidentally leaving

the site. The third rule reserves 50 Mbps of trafﬁc from an internal network X to an external network

Y, implemented perhaps by forwarding such trafﬁc to a special outbound queue that receives special

scheduling guarantees; here X and Y are preﬁxes.

trafﬁc from a speciﬁed subnetwork outside the ISP to a server (or subnetwork) within the ISP.

Thus, new offending sources could be discovered and new servers could be added that need

protection. In fact, we speculate that one reason why core router classiﬁers are not even bigger

is that most core router implementations slow down (and do not guarantee true wire speed

forwarding) as classiﬁer sizes increase.

12.2 PACKET-CLASSIFICATION PROBLEM
Traditionally, the rules for classifying a message are called rules and the packet-classiﬁcation

problem is to determine the lowest-cost matching rule for each incoming message at a router.

Assume that the information relevant to a lookup is contained in
K
distinct header
ﬁelds in each message. These header ﬁelds are denoted H[1], H[2], . . . , H[K], where each

ﬁeld is a string of bits. For instance, the relevant ﬁelds for an IPv4 packet could be the

destination address (32 bits), the source address (32 bits), the protocol ﬁeld (8 bits), the

destination port (16 bits), the source port (16 bits), and TCP ﬂags (8 bits). The number

of relevant TCP ﬂags is limited, and so the protocol and TCP ﬂags are combined into one

ﬁeld — for example, TCP-ACK can be used to mean a TCP packet with the ACK bit set.1
1TCP ﬂags are important for packet classiﬁcation because the ﬁrst packet in a connection does not have the

ACK bit set, while the others do. This allows a simple rule to block TCP connections initiated from the outside while

allowing responses to internally initiated connections.

274


C H A P T E R 1 2
Packet Classiﬁcation
Other relevant TCP ﬂags can be represented similarly; UDP packets are represented by

H[3] = UDP.

Thus, the combination (D, S, TCP-ACK, 63, 125) denotes the header of an IP packet with

destination D, source S, protocol TCP, destination port 63, source port 125, and the ACK

bit set.

The classiﬁer, or rule database, router consists of a ﬁnite set of rules, R1, R2, . . . , RN. Each

rule is a combination of K values, one for each header ﬁeld. Each ﬁeld in a rule is allowed

three kinds of matches: exact match, preﬁx match, and range match. In an exact match, the

header ﬁeld of the packet should exactly match the rule ﬁeld — for instance, this is useful for

protocol and ﬂag ﬁelds. In a preﬁx match, the rule ﬁeld should be a preﬁx of the header ﬁeld

— this could be useful for blocking access from a certain subnetwork. In a range match, the

header values should lie in the range speciﬁed by the rule — this can be useful for specifying

port number ranges.

Each rule Rihas an associated directive dispi, which speciﬁes how to forward the packet

matching this rule. The directive speciﬁes if the packet should be blocked. If the packet is to

be forwarded, the directive speciﬁes the outgoing link to which the packet is sent and, perhaps,

also a queue within that link if the message belongs to a ﬂow with bandwidth guarantees.

A packet P is said to match a rule R if each ﬁeld of P matches the corresponding ﬁeld of

R — the match type is implicit in the speciﬁcation of the ﬁeld. For instance, if the destination

ﬁeld is speciﬁed as 1010∗, then it requires a preﬁx match; if the protocol ﬁeld is UDP, then it

requires an exact match; if the port ﬁeld is a range, such as 1024–1100, then it requires a range

match. For instance, let R
= (1010∗, ∗, TCP, 1024–1080, ∗) be a rule, with disp = block.

Then, a packet with header (10101 . . . 111, 11110 . . . 000, TCP, 1050, 3) matches R and is

therefore blocked. The packet (10110 . . . 000, 11110 . . . 000, TCP, 80, 3), on the other hand,

doesn’t match R.

Since a packet may match multiple rules in the database, each rule R in the database is

associated with a nonnegative number, cost(R). Ambiguity is avoided by returning the least-

cost rule matching the packet’s header. The cost function generalizes the implicit precedence

rules that are used in practice to choose between multiple matching rules. In ﬁrewall applica-

tions or Cisco ACLs, for instance, rules are placed in the database in a speciﬁc linear order,

where each rule takes precedence over a subsequent rule. Thus, the goal there is to ﬁnd the

ﬁrst matching rule. Of course, the same effect can be achieved by making cost(R) equal to the

position of rule R in the database.

As an example of a rule database, consider the topology and ﬁrewall database [CB95]

shown in Figure 12.3, where a screened subnet conﬁguration interposes between a company

subnetwork (shown on top left) and the rest of the Internet (including hackers). There is a

so-called bastion host M within the company that mediates all access to and from the external

world. M serves as the mail gateway and also provides external name server access. TI , TO are

network time protocol (NTP) sources, where TI is internal to the company and TO is external.

S is the address of the secondary name server, which is external to the company.

Clearly, the site manager wishes to allow communication from within the network to

TO and S and yet wishes to block hackers. The database of rules shown on the bottom of

Figure 12.3 implements this intention. Terse explanations of each rule are shown on the right

of each rule. Assume that all addresses of machines within the company’s network start with

the CIDR preﬁx Net. Thus M and TI both match the preﬁx Net. All packets matching any of

the ﬁrst seven rules are allowed; the remaining (last rule) are dropped by the screening router.


Mail gateway M
Internal time

server TI


Screening

router



12.3 Requirements and Metrics
External time

server TO
Secondary name

server S
Hacker to be

kept out!



275
Destination
Source
Destination
Port


Source
Port


Flags
Comments
M
M
M
M
TI
*

Net

*


*

*

S

*

TO
Net

*

*


25

53

53

23

123

*

*

*


*

*

*

*

123

*

*

*


*

UDP

*

*

UDP

*

TCP

ack

*


Allow inbound mail

Allow DNS access

Secondary access

Incoming telnet

NTP time info

Outgoing packets

Return ACKs OK

Block everything!

F I G U R E 12.3
The top half of the ﬁgure shows the topology of a small company; the bottom half

shows a sample ﬁrewall database for this company as described in the book by Cheswick and Bellovin

[CB95]. The block ﬂags are not shown in the ﬁgure; the ﬁrst seven rules have block = false (i.e., allow)

and the last rule has block
=
true (i.e., block). We assume that all the addresses within the company

subnetwork (shown on top left) start with the preﬁx Net, including M and TI.

A more general ﬁrewall could arbitrarily interleave rules that allow packets with rules that drop

packets.

As an example, consider a packet sent to M from S with UDP destination port equal to 53.

This packet matches Rules 2, 3, and 8 but must be allowed through because the ﬁrst matching

rule is Rule 2.

Note that this description uses N for the number of rules and K for the number of packet

ﬁelds. K is sometimes called the number of dimensions, for reasons that will become clearer

in Section 12.6.

12.3 REQUIREMENTS AND METRICS
The requirements for rule matching are similar to those for IP lookups (Chapter 11). We wish

to do packet classiﬁcation at wire speed for minimum-size packets, and thus speed is the

dominant metric. To allow the database to ﬁt in high-speed memory it is useful to reduce the


276


C H A P T E R 1 2
Packet Classiﬁcation
amount of memory needed. For most ﬁrewall databases, insertion speed is not an issue because

rules are rarely changed.

However, this is not true for dynamic or stateful packet rules. This capability is useful, for

example, for handling UDP trafﬁc. Because UDP headers do not contain an ACK bit that can

be used to determine whether a packet is the bellwether packet of a connection, the screening

router cannot tell the difference between the ﬁrst packet sent from the outside to an internal

server (which it may want to block) and a response sent to a UDP request to an internal client

(which it may want to pass). The solution used in some products is to have the outgoing request

packet dynamically trigger the insertion of a rule (which has addresses and ports that match the

request) that allows the inbound response to be passed. This requires very fast update times, a

third metric.

12.4 SIMPLE SOLUTIONS
There are ﬁve simple solutions that are often used or considered: linear search, caching,

demultiplexing algorithms, MPLS, and content addressable memories (CAMs). While CAMs

have difﬁcult hardware design issues, they effectively represent a parallelization of the simplest

algorithmic approach: linear search.

12.4.1 Linear Search
Several existing ﬁrewall implementations do a linear search of the database and keep track

of the best-match rule. Linear search is reasonable for small rule sizes but is extremely slow

for large rule sets. For example, a core router that does linear search among a rule set of

2000 rules (used at the time of writing by some ISPs) will considerably degrade its forwarding

performance below wire speed.

12.4.2 Caching
Some implementations even cache the result of the search keyed against the whole header.

There are two problems with this scheme. First, the cache hit rate of caching full IP addresses

in the backbones is typically at most 80–90% [Par96, NMH97]. Part of the problem is Web

accesses and other ﬂows that send only a small number of packets; if a Web session sends just

ﬁve packets to the same address, then the cache hit rate is 80%. Since caching full headers

takes a lot more memory, this should have an even worse hit rate (for the same amount of

cache memory).

Second, even with a 90% hit rate cache, a slow linear search of the rule space will result

in poor performance.2For example, suppose that a search of the cache costs 100 nsec (one

memory access) and that a linear search of 10,000 rules costs 1,000,000 nsec = 1 msec (one

memory access per rule). Then the average search time with a cache hit rate of 90% is still

0.1 msec, which is rather slow. However, caching could be combined with some of the fast

algorithms in this chapter to improve the expected search time even further. An investigation

of the use of caching for classiﬁcation can be found in Xu et al. [XSD00].

2This is an application of a famous principle in computer architecture called Amdahl’s law.

12.4.3 Demultiplexing Algorithms


12.4 Simple Solutions



277
Chapter 8 describes the use of packet rules for demultiplexing and algorithms such as

Pathﬁnder, Berkeley packet ﬁlter, and dynamic path ﬁnder. Can’t these existing solutions

simply be reused? It is important to realize that the two problems are similar but subtly

different.

The ﬁrst packet-classiﬁcation scheme that avoids a linear search through the set of rules is

Pathﬁnder [BGP+94]. However, Pathﬁnder allows wildcards to occur only at the end of a rule.

For instance, (D, S, ∗, ∗, ∗) is allowed, but not (D, ∗, Prot, ∗, SourcePort). With this restriction,

all rules can be merged into a generalized trie — with hash tables replacing array nodes —
and rule lookup can be done in time proportional to the number of packet ﬁelds. DPF [EK96]

uses the Pathﬁnder idea of merging rules into a trie but adds the idea of using dynamic code

generation for extra performance. However, it is unclear how to handle intermixed wildcards

and speciﬁed ﬁelds, such as (D, ∗, Prot, ∗, SourcePort), using these schemes.

Because packet classiﬁcation allows more general rules, the Pathﬁnder idea of using a trie

does not work well. There does exist a simple trie scheme (set-pruning tries; see Section 12.5.1)

to perform a lookup in time O(M), where M
is the number of packet ﬁelds. Such schemes are

described in Decasper et al. [DDPP98] and Malan and Jahanian [MJ98]. Unfortunately, such

schemes require
(NK) storage, where K is the number of packet ﬁelds and N is the number

of rules. Thus such schemes are not scalable for large databases. By contrast, some of the

schemes we will describe require only O(NM ) storage.

12.4.4 Passing Labels
Recall from Chapter 11 that one way to ﬁnesse lookups is to pass a label from a previous-

hop router to a next-hop router. One of the most prominent examples of such a technology

is multiprotocol label switching (MPLS) [Cha97]. While IP lookups have been able to keep

pace with wire speeds, the difﬁculties of algorithmic approaches to packet classiﬁcation have

ensured an important niche for MPLS. Refer to Chapter 11 for a description of tag switching

and MPLS.

Today MPLS is useful mostly for trafﬁc engineering. For example, if Web trafﬁc between

two sites A and B is to be routed along a special path, a label-switched path is set up between

the two sites. Before trafﬁc leaves site A, a router does packet classiﬁcation and maps the Web

trafﬁc into an MPLS header. Core routers examine only the label in the header until the trafﬁc

reaches B, at which point the MPLS header is removed.

The gain from the MPLS header is that the intermediate routers do not have to repeat

the packet-classiﬁcation effort expended at the edge router; simple table lookup sufﬁces.

The DiffServ [SWG] proposal for QoS is actually similar in this sense. Classiﬁcation is done

at the edges to mark packets that deserve special quality of service. The only difference is that

the classiﬁcation information is used to mark the Type of Service [TOS] bits in the IP header,

as opposed to an MPLS label. Both are examples of Principle P10, passing hints in protocol

headers.

Despite MPLS and DiffServ, core routers still do classiﬁcation at the very highest speeds.

This is largely motivated by security concerns, for which it may be infeasible to rely on label

switching. For example, Singh et al. [SBV04] describe a number of core router classiﬁers, the

largest of which contains 2000 rules.

278


C H A P T E R 1 2
Packet Classiﬁcation
12.4.5 Content-Addressable Memories
Recall from Chapter 11 that a CAM is a content-addressable memory, where the ﬁrst cell that

matches a data item will be returned using a parallel lookup in hardware. A ternary CAM allows

each bit of data to be either a 0, a 1, or a wildcard. Clearly, ternary CAMs can be used for rule

matching as well as for preﬁx matching. However, the CAMs must provide wide lengths —
for example, the combination of the IPv4 destination, source, and two port ﬁelds is 96 bits.

Because of problems with algorithmic solutions described in the remainder of this chapter,

there is a general belief that hardware solutions such as ternary CAMs are needed for core

routers, despite the problems [GM01] of ternary CAMs. There are, however, several reasons

to consider algorithmic alternatives to ternary CAMs, which were presented in Chapter 11.

Recall that these reasons include the smaller density and larger power of CAMs versus

SRAMs and the difﬁculty of integrating forwarding logic with the CAM. These problems

remain valid when considering CAMs for classiﬁcation. An additional issue that arises is the

rule multiplication caused by ranges. In CAM solutions, each range has to be replaced by a

potentially large number of preﬁxes, thus causing extra entries. Some algorithmic solutions

can handle ranges in rules without converting ranges to rules.

These arguments are strengthened by the fact that, at the time of writing, several CAM

vendors were also considering algorithmic solutions, motivated by some of the difﬁculties

with CAMs. While better CAM cell designs that reduce density and power requirements may

emerge, it is still important to understand the corresponding advantages and disadvantages of

algorithmic solutions. The remainder of the chapter is devoted to this topic.

12.5 TWO-DIMENSIONAL SCHEMES
A useful problem-solving technique is ﬁrst to solve a simpler version of a complex problem

such as packet classiﬁcation and to use the insight gained to solve the more complex problem.

Since packet classiﬁcation with just one ﬁeld has been solved in Chapter 11, the next simplest

problem is two-dimensional packet classiﬁcation.

Two-dimensional rules may be useful in their own right. This is because large backbone

routers may have a large number of destination–source rules to handle virtual private networks

and multicast forwarding and to keep track of trafﬁc between subnets. Further, as we will see,

there is a heuristic observation that reduces the general case to the two-dimensional case.

Since there are only three distinct approaches to one-dimensional preﬁx matching — using

tries, binary search on preﬁx lengths, and binary search on ranges — it is worth looking for

generalizations of each of these distinct approaches. All three generalizations exist. However,

this chapter will describe only the most efﬁcient of these (the generalization of tries) in this

section.

The appropriate generalization of standard preﬁx tries to two dimensions is called the grid
of tries. The main idea will be explained using an example database of seven destination–
source rules, shown in Figure 12.4. We arrive at the ﬁnal solution by ﬁrst considering two

naive variants.

12.5.1 Fast Searching Using Set-Pruning Tries
Consider the two-dimensional rule set in Figure 12.4. The simplest idea is ﬁrst to build a trie on

the destination preﬁxes in the database and then to hang a number of source tries off the leaves


12.5 Two-Dimensional Schemes
Rule
Destination
Source


279
R1
R2
R3
R4
R5
R6
R7


0*

0*

0*

00*

00*

10*

*



10*

01*

1*

1*

11*

1*

00*

F I G U R E 12.4
An example with seven destination–source rules.

of the destination trie. Figure 12.5 illustrates the construction for the rules in Figure 12.4. Each

valid preﬁx in the destination trie points to a trie containing some source preﬁxes. The question

is: Which source preﬁxes should be stored in the source trie corresponding to each destination

preﬁx?

For instance, consider D = 00∗. Both rules R4 and R5 have this destination preﬁx, and so

the trie at D clearly needs to store the corresponding source preﬁxes 1∗ and 11∗. But storing

only these source preﬁxes is insufﬁcient. This is because the destination preﬁx 0∗ in rules

R1, R2, and R3also matches any destination that D matches. In fact, the wildcard destination

preﬁx ∗ of R7also matches whatever D matches. This suggests that the source trie at D = 00

must contain the source preﬁxes for {R1, R2, R3, R4, R5, R7}, because these are the set of rules

whose destination is a preﬁx of D.

Figure 12.5 shows a schematic representation of this data structure for the database of

Figure 12.4. Note that S1 denotes the source preﬁx of rule R1, S2 of rule R2, and so on. Thus

each preﬁx D in the destination trie prunes the set of rules from the entire set of rules down

to the set of rules compatible with D. The same idea can be extended to more than two ﬁelds,

with each ﬁeld value in the path pruning the set of rules further.

In this trie of tries, the search algorithm ﬁrst matches the destination of the header in the

destination trie. This yields the longest match on the destination preﬁx. The search algorithm

then traverses the associated source trie to ﬁnd the longest source match. While searching the

source trie, the algorithms keep track of the lowest-cost matching rule. Since all rules that

have a matching destination preﬁx are stored in the source trie being searched, the algorithm

ﬁnds the correct least-cost rule. This is the basic idea behind set-pruning trees [Decasper et al.,

DDPP98].

Unfortunately, this simple extension of tries from one to two dimensions has a memory-

explosion problem. The problem arises because a source preﬁx can occur in multiple tries.

In Figure 12.5, for instance, the source preﬁxes S1, S2, S3 appear in the source trie associated

with D = 00∗ as well as the trie associated with D = 0∗.

How bad can this replication get? A worst-case example forcing roughly N2memory is

created using the set of rules shown in Figure 12.6. The problem is that since the destina-

tion preﬁx ∗ matches any destination header, each of the N/2 source preﬁxes are replicated


280


C H A P T E R 1 2
Packet Classiﬁcation
0

Trie of
Trie of

S1, S2, S3,
S1, S2,

S4, S5, S7
S3, S7



0



Trie of

S7



1

0



Trie of

S6, S7



Destination Trie

Source Tries

F I G U R E 12.5
The set-pruning trie data structure in two dimensions corresponding to the database

of Figure 12.4. Destination Trie is a trie for the destination preﬁxes. The nodes corresponding to a valid

destination preﬁx in the database are shown as ﬁlled circles; others are shown as empty circles. Each

valid destination preﬁx D has a pointer to a trie containing the source preﬁxes that belong to rules whose

destination ﬁeld is a preﬁx of D.

Rule
Destination
Source
R1
R2
RN/2

RN/2
1

RN/2
2

RN


D1

D2

DN/2

*

*

*



*

*

*

S1
S2
SN
F I G U R E 12.6
An example forcing N2/2 memory for two-dimensional set-pruning trees. Similar

examples, which apply to a number of other simple schemes, can be used to show O(NK) storage for

K-dimensional rules.

N/2 times, one for each destination preﬁx. The example (see exercises) can be extended to

show a O(Nk) bound for general set-pruning tries in K dimensions.

While set-pruning tries do not scale to large classiﬁers, the natural extension to more than

two ﬁelds has been used in Decasper et al. [DDPP98] as part of a router toolkit, and in Malan

and Jahanian [MJ98] as part of a ﬂexible monitoring system. The performance of set-pruning

tries is also studied in Qiu et al. [QVS01]. One interesting optimization introduced in Decasper

et al. [DDPP98] and Malan and Jahanian [MJ98] is to avoid obvious waste (P1) when two




12.5 Two-Dimensional Schemes



281
subtries S1 and S2 have exactly the same contents. In this case, one can replace the pointers

to S1 and S2 by a pointer to a common subtrie, S. This changes the structure from a tree to

a directed acyclic graph (DAG). The DAG optimization can greatly reduce storage for set-

pruning tries (see Ref. QVS01 for other, related optimizations) and can be used to implement

small classiﬁers, say, up to 100 rules, in software.

12.5.2 Reducing Memory Using Backtracking
The previous scheme pays in memory in order to reduce search time. The dual idea is to pay

with time in order to reduce memory. In order to avoid the memory blowup of the simple trie

scheme, observe that rules associated with a destination preﬁx D are copied into the source

trie of D
whenever D is a preﬁx of D . For instance, in Figure 12.5, the preﬁx D = 00∗ has

two rules associated with it: R4and R5. The other rules, R1, R2, R3, are copied into D’s trie

because their destination ﬁeld 0∗ is a preﬁx of D.

The copying can be avoided by having each destination preﬁx D point to a source trie

that stores the rules whose destination ﬁeld is exactly D. This requires modifying the search

strategy as follows: Instead of just searching the source trie for the best-matching desti-

nation preﬁx D, the search algorithm must now search the source tries associated with all

ancestors of D.

In order to search for the least-cost rule, the algorithm ﬁrst traverses the destination trie

and ﬁnds the longest destination preﬁx D
matching the header. The algorithm then searches the

source trie of D
and updates the least-cost-matching rule. Unlike set-pruning tries, however,

the search algorithm is not ﬁnished at this point.

Instead, the search algorithm must now work its way back up the destination trie and

search the source trie associated with every preﬁx of D
that points to a nonempty source trie.3
Since each rule now is stored exactly once, the memory requirement for the new structure

is O(NW ), which is a signiﬁcant improvement over the the previous scheme. Unfortunately,

the lookup cost for backtracking is worse than for set-pruning tries: In the worst case, the

lookup costs
(W2), where W is the maximum number of bits speciﬁed in the destination or

source ﬁelds.

The
(W2) bound on the search cost follows from the observation that, in the worst case,

the algorithm may end up searching W
source tries, each at the cost of O(W ), for a total of

O(W2) time. For W
= 32 and using 1-bit tries, this is 1024 memory accesses. Even using 4-bit

tries, this scheme requires 64 memory accesses.

While backtracking can be very slow in the worst case, it turns out that all classiﬁcation

algorithms exhibit pathological worst-case behavior. For databases encountered in practice,

backtracking can work very well. Qiu et al. [QVS01] describe experimental results using

backtracking and also describe potential hardware implementations on pipelined processors.

12.5.3 The Best of Both Worlds: Grid of Tries
The two naive variants of two-dimensional tries pay either a large price in memory (set-

pruning tries) or a large price in time (backtracking search). However, a careful examination

3Note that backtracking search can actually search the source tries corresponding to destination preﬁxes in any

order; this particular order was used only to motivate the grid-of-tries scheme. Another search order that minimizes

the state required for backtracking is described in Qiu et al. [QVS01].


282


C H A P T E R 1 2
Packet Classiﬁcation
0



0



1

0



Destination Trie

R4


1

1

R5


0

1



1

0



R3


0

0



1

R6


Source Tries

R2R1

R7
F I G U R E 12.7
Avoiding the memory blowup by storing each rule in exactly one trie.

of backtracking search reveals obvious waste (P1), which can be avoided using precomputa-

tion (P2a).

To see the wasted time in backtracking search, consider matching the packet with desti-

nation address 001 and source address 001 in Figure 12.7. The search in the destination trie

gives D = 00 as the best match. So the backtracking algorithm starts its search for the match-

ing source preﬁx in the associated source trie, which contains rules R4 and R5. However, the

search immediately fails, since the ﬁrst bit of the source is 0. Next, backtracking search backs

up along the desination trie and restarts the search in the source trie of D
= 0∗, the parent

of 00∗.

But backing up the trie is a waste because if the search fails after searching destination

bits 00 and source bit 0, then any matching rule must be shorter in the destination (e.g., 0) and

must contain all the source bits searched so far, including the failed bit. Thus backing up to

the source trie of D = 0∗ and then traversing the source bit 0 to the parent of R2in Figure 12.7

(as done in backtracking search) is a waste.

The algorithm could predict that this sequence of bits would be traversed when it ﬁrst

failed in the source trie of D = 00. This motivates a simple idea: Why not jump directly to the

parent of R2from the failure point in the source trie of D = 00∗?

Thus in the new scheme (Figure 12.8), for each failure point in a source trie, the trie-

building algorithm precomputes what we call a switch pointer. Switch pointers allow search

to jump directly to the next possible source trie that can contain a matching rule. Thus in

Figure 12.8, notice that the source trie containing R4and R5has a dashed line labeled with

0 that points to a node
x in the source trie containing {R1, R2, R3}. All the dashed lines in

Figure 12.8 are switch pointers. Please distinguish the dashed switch pointers from the dotted

lines that connect the destination and source tries.

Now consider again the same search for the packet with destination address 001 and source

address 001 in Figure 12.8. As before, the search in the destination trie gives D = 00 as the

best match. Search fails in the corresponding source trie (containing R4and R5) because the

source trie contains a path only if the ﬁrst source bit is a 1. However, in Figure 12.8, instead of

failing and backtracking, the algorithm follows the switch pointer labeled 0 directly to node x.


R4


1

1



0

0
x



0

1



0



1

0



R3


0



0



0



0

y



12.5 Two-Dimensional Schemes
1

0
Destination Trie

1
Source Tries

0

R6


283
R5

R2R1

R7
F I G U R E 12.8
Improving the search cost with the use of switch pointers.

It then continues matching from node x, without skipping a beat, using the remaining bits of

the source.

Since the next bit of the source is a 0, the search in Figure 12.8 fails again. The search

algorithm once again follows the switch pointer labeled 0 and jumps to node y of the third

source trie (associated with the destination preﬁx ∗). Effectively, the switch pointers allow

skipping over all rules in the next ancestor source trie whose source ﬁelds are shorter than the

current source match. This in turn improves the search complexity from O(W2) to O(W ).

It may help to deﬁne switch pointers more precisely. Call a destination string D an ancestor
of D if D
is a preﬁx of D. Call D
the lowest ancestor of D if D
is the longest preﬁx of D in

the destination trie. Let T (D) denote the source trie pointed to by D. Recall that T (D) contains

the source ﬁelds of exactly those rules whose destination ﬁeld is D.

Let u be a node in T (D) that fails on bit 0; that is, if u corresponds to the source preﬁx

s, then the trie T (D) has no string starting with s0. Let D
be the lowest ancestor of D whose

source trie contains a source string starting with preﬁx s0, say, at node v. Then we place a

switch pointer at node u pointing to node v. If no such node v exists, the switch pointer is nil.

The switch pointer for failure on bit 1 is deﬁned similarly. For instance, in Figure 12.8, the

node labeled x fails on bit 0 and has a switch pointer to the node labeled y.

As a second example, consider the packet header (00∗, 10∗). Search starts with the ﬁrst

source trie, pointed to by the destination trie node 00∗. After matching the ﬁrst source bit, 1,

search encounters rule R4. But then search fails on the second bit. Search therefore follows the

switch pointer, which leads to the node in the second trie labeled with R1. The switch pointers

at the node containing R1are both nil, and so search terminates. Note, however, that search

has missed the rule R3= (0∗, 1∗), which also matches the packet header. While in this case

R3has higher cost than R1, in general the overlooked rule could have lower cost.

Such problems can be avoided by having each node in a source trie maintain a variable

storedRule. Speciﬁcally, a node v with destination preﬁx D and source preﬁx S stores in

storedRule(v) the least-cost rule whose destination ﬁeld is a preﬁx of D and whose source ﬁeld

is a preﬁx of S. With this precomputation, the node labeled with R1in Figure 12.8 would store

information about R3instead of R1if R3had lower cost than R1.

284


C H A P T E R 1 2
Packet Classiﬁcation
Finally, here is an argument that the search cost in the ﬁnal scheme is at most 2W . The time

to ﬁnd the best destination preﬁx is at most W . The remainder of the time is spent traversing

the source tries. However, in each step, the length of the match on the source ﬁeld increases

by 1 — either by traversing further down in the same trie or by following a switch pointer to

an ancestral trie. Since the maximum length of the source preﬁxes is W , the total time spent

in searching the source tries is also W . The memory requirement is O(NW ), since each of the

N rules is stored only once, and each rule requires O(W ) space.

Note that k-bit tries (Chapter 11) can be used in place of 1-bit tries by expanding each

destination or source preﬁx to the next multiple of k. For instance, suppose k = 2. Then, in

the example of Figure 12.8, the destination preﬁx 0∗ of rules R1, R2, R3is expanded to 00

and 01. The source preﬁxes of R3, R4, R6are expanded to 10 and 11. Using k-bit expansion, a

single preﬁx can expand to 2k−1 preﬁxes. The total memory requirement grows from 2NW to

NW 2k/k, and so the memory increases by the factor 2k−1/k. On the other hand, the depth of

the trie reduces to W /k, and so the total lookup time becomes O(W /k).

The bottom line is that by using multibit tries, the time to search for the best matching rule

in an arbitrarily large two-dimensional database is effectively the time for two IP lookups.

Just as the grid of tries represents a generalization of familiar trie search for preﬁx matching,

there is a corresponding generalization of binary search on preﬁx lengths (Chapter 11) that

searches a database of two ﬁeld rules in 2W hashes, where W is the length of the larger of the

two ﬁelds. This is a big gap from the log W
time required for preﬁx matching using binary

search on preﬁx lengths. In the special case where the rules do not overlap, the search time

reduces even further to log2W , as shown in Warkhede et al. [WSV01a]. While these results

are interesting theoretically, they seem to have less relevance to real routers, mostly because

of the difﬁculties of implementing hashing in hardware.

12.6 APPROACHES TO GENERAL RULE SETS
So far this chapter has concentrated on the special case of rules on just two header ﬁelds.

Before moving to algorithms for rules with more than two ﬁelds, this section brings together

some insights that inform the algorithms in later sections. Section 12.6.1 describes a geometric

view of classiﬁcation that provides visual insight into the problem. Section 12.6.2 utilizes the

geometric viewpoint to obtain bounds on the fundamental difﬁculty of packet classiﬁcation in

the general case. Section 12.6.3 describes several observations about real rule sets that can be

exploited to provide efﬁcient algorithms that will be described in subsequent sections.

12.6.1 Geometric View of Classiﬁcation
A second problem-solving technique that is useful is to collect different viewpoints for the

same problem. This section describes a geometric view of classiﬁcation that was introduced

by Lakshman and Staliadis [LS98] and independently by Adisehsu [Adi98].

Recall from Chapter 11 that we can view a 32-bit preﬁx like 00∗ as a range of addresses

from 000 . . . 00 to 001 . . . 11 on the number line from 0 to 232. If preﬁxes correspond to line
segments geometrically, two-dimensional rules correspond to rectangles (Figure 12.9), three-

dimensional rules to cubes, and so on. A given packet header is a point. The problem of packet

classiﬁcation reduces to ﬁnding the lowest-cost box that contains the given point.


1*

0*



R2
01*



12.6 Approaches to General Rule Sets
1*

R1R3
10*
11*



285
F I G U R E 12.9
Geometric view of the ﬁrst three rules, R1, R2, R3, in the rule database of Figure 12.4.

For example, the rule R1=0∗, 10∗ is the box whose projection on the destination axis is the range

corresponding to 0∗ and whose projection on the source axis is the range corresponding to 10∗. Note

that because R3= 0∗, 1∗ has the same destination range as R1and a source range that strictly includes

the range of R1, the dashed box, R3, contains the box R1.

Figure 12.9 shows the geometric view of the ﬁrst three two-dimensional rules in

Figure 12.4. Destination addresses are represented on the y-axis and source addresses on the

x-axis. In the ﬁgure, some sample preﬁx ranges are marked off on each axis. For example, the

two halves of the y-axis are the preﬁx ranges 0∗ and 1∗. Similarly, the x-axis is divided into

the four preﬁx ranges 00∗, 01∗, 10∗, and 11∗. To draw the box for a rule like R1= 0∗, 10∗,

draw the 0∗ range on the y-axis and the 10∗ range on the x-axis, and extend the range lines

to meet, forming a box. Multiple-rule matches, such as R1and R2, correspond to overlapping

boxes.

The ﬁrst advantage of the geometric view is that it enables the application of algorithms

from computational geometry. For example, Lakshman and Staliadis [LS98] adapt a technique

from computational geometry known as fractional cascading to do binary search for two-

ﬁeld rule matching in O(log N ) time, where N
is the number of rules. In other words, two-

dimensional rule matching is asymptotically as fast as one-dimensional rule matching using

binary search. This is consistent with the results for the grid of tries. The result also generalizes

binary search on values for preﬁx searching as described in Chapter 11.

Unfortunately, the constants for fractional cascading are quite high. Perhaps this sug-

gests that adapting existing geometric algorithms may actually not result in the most efﬁcient

algorithms. However, the second and main advantage of the geometric viewpoint is that it is

suggestive and useful.

For example, the geometric view provides a useful metric, the number of disjoint (i.e.,

nonintersecting) classiﬁcation regions. Since rules can overlap, this is not the number of rules.

In two dimensions, for example, with
N
rules one can create
N2classiﬁcation regions by

having N /2 rules that correspond geometrically to horizontal strips together with N /2 rules

that correspond geometrically to vertical strips. The intersection of the N/2 horizontal strips

with the N /2 vertical strips creates O(N2) disjoint classiﬁcation regions. For example, the

database in Figure 12.6 has this property. Similar constructions can be used to generate O(NK)

regions for K-dimensional rules.

286


C H A P T E R 1 2
Packet Classiﬁcation
As a second example, the database of Figure 12.9 has four classiﬁcation regions: the rule

R1, the rule R2, the points in R3not contained in R1, and all points not contained in R1, R2, or

R3. We will use the number of classiﬁcation regions later to characterize the complexity of a

given classiﬁer or rule database.

12.6.2 Beyond Two Dimensions: The Bad News
The success of the grid of tries may make us optimistic about generalizing to larger dimensions.

Unfortunately, this optimism is misplaced; either the search time or the storage blows up

exponentially with the number of dimensions K for K > 2.

Using the geometric viewpoint just described, it is easy to adapt a lower bound from

computational geometry. Thus, it is known that general multidimensional range searching

over
N
ranges in k
dimensions requires
((log N )K−1) worst-case time if the memory is

limited to about linear size [Cha90b, Cha90a] or requires O(NK) size memory. While log N
could be reasonable (say, 10 memory accesses), log4N will be very large (say, 10,000 memory

accesses). Notice that this lower bound is consistent with solutions for the two-dimensional

cases that take linear storage but are as fast as O(log N).

The lower bound implies that for perfectly general rule sets, algorithmic approaches to
classiﬁcation require either a large amount of memory or a large amount of time.
Unfortu-

nately, classiﬁcation at high speeds, especially for core routers, requires the use of limited

and expensive SRAM. Thus the lower bound seems to imply that content address memories

are required for reasonably sized classiﬁers (say, 10,000 rules) that must be searched at high

speeds (e.g., OC-768 speeds).

12.6.3 Beyond Two Dimensions: The Good News
The previous subsection may have left the reader wondering whether there is any hope left for

algorithmic approaches to packet classiﬁcation in the general case. Fortunately, real databases

have more
structure, which can be exploited to efﬁciently solve multidimensional packet

classiﬁcation using algorithmic techniques.

The good
news about packet classiﬁcation can be articulated using four observations.

Subsequent sections describe a series of heuristic algorithms, all of which do very badly in the

worst case but quite well on databases that satisfy one or more of the assumptions.

The expected case can be characterized using four observations drawn from a set of ﬁrewall

databases studied in Srinivasan et al. [SVSW98] and Gupta and McKeown [GM99b] (and not

from publically available lookup tables as in the previous chapter). The ﬁrst is identical to an

observation made in Chapter 11 and repeated here. The observations are numbered starting

from O2 to be consistent with observation O1 made in the lookup chapter.

O2: Preﬁx containment is rare. It is somewhat rare to have preﬁxes that are preﬁxes of other

preﬁxes, as, for example, the preﬁxes 00* and 0001*. In fact, the maximum number of

preﬁxes of a given preﬁx in lookup tables and classiﬁers is seven.

O3: Many ﬁelds are not general ranges. For the destination and source port ﬁelds, most rules

contain either speciﬁc port numbers (e.g., port 80 for Web trafﬁc), the wildcard range

(i.e., ∗), or the port ranges that separate server ports from client ports (1024 or greater and

less than 1024). The protocol ﬁeld is limited to either the wildcard or (more commonly)

TCP, UDP. This ﬁeld also rarely contains protocols such as IGMP and ICMP. While other

TCP ﬁelds are sometimes referred to, the most common reference is to the ACK bit.

12.7 Extending Two-Dimensional Schemes



287
O4: The number of disjoint classiﬁcation regions is small. This is perhaps the most interesting

observation. Harking back to the geometric view, the lower bounds in Chazelle [Cha90a]

depend partly on the worst-case possibility of creating NKclassiﬁcation regions using N
rules. Such rules require either NKspace or a large search time. However, Gupta and

McKeown [GM99b], after an extensive survey of 8000 rule databases, show that the

number of classiﬁcation regions is much smaller than the worst case. Instead of being

exponential in the number of dimensions, the number of classiﬁcation regions is linear in

N, with a small constant.

O5: Source–Destination matching: In Singh et al. [BSV03], several core router classiﬁers

used by real ISPs are analyzed and the following interesting observation is made. Almost

all packets match at most ﬁve distinct source–destination values found in the classiﬁer.

No packet matched more than 20 distinct source–destination pairs. This is a somewhat

more reﬁned observation than O4 because it says that the number of classiﬁcation regions

is small, even when projected only to the source and destination ﬁelds. By “small,” we

mean that the number of regions grows much more slowly than N, the size of the classiﬁer.

12.7 EXTENDING TWO-DIMENSIONAL SCHEMES
The simplest general scheme uses observation O5 to trivially extend any efﬁcient 2D scheme

to multiple dimensions. A number of algorithms simply use linear search to search through

all possible rules. This scales well in storage but poorly in time. The source–destination

matching observation leads to a very simple idea depicted in Figure 12.10. Use source–
destination address matching to reduce linear searching to just the rules corresponding to

source–destination preﬁx pairs in the database that match the given packet header.

By observation O5, at most 20 rules match any packet when considering only the source

and destination ﬁelds. Thus pruning based on source–destination ﬁelds will reduce the number

of rules to be searched to less than 20, compared to searching the entire database. For example,

Singh at al. [SBV04] describe a database with 2800 rules used by a large ISP.

Thus in Figure 12.10, the general idea is to use any efﬁcient two-dimensional matching

scheme to ﬁnd
all distinct source–destination preﬁx pairs (S1, D1) . . . (St, Dt) that match a

header. For each distinct pair (Si, Di) there is a linear array or list with all rules that contain

(Si, Di) in the source and destination ﬁelds. Thus in the ﬁgure, the algorithm has to traverse

the list at (S1, D1), searching through all the rules for R5, R6, R2, and R4. Then the algorithm

moves on to consider the lists at (S2, D2), and so on.

This structure has two important advantages:

• Each rule is represented only once without replication. However, one may wish to

replicate rules to reduce search times even further.

• The port range speciﬁcations stay as ranges in the individual lists without the associated

blowup associated with range translation in, say, CAMs.

Since the grid-of-tries implementation described earlier is one of the most efﬁcient two-

dimensional schemes in the literature, it is natural to instantiate this general schema by using

a grid of tries as the two-dimensional algorithm in Figure 12.10.

Unfortunately, it turns out that there is a delicacy about extending the grid of tries. In the

the grid of tries, whenever one rule, R, is at least as speciﬁc in all ﬁelds as a second rule, R ,


288


C H A P T E R 1 2
Packet Classiﬁcation



Any 2D search

algorithm for finding all

matches for a pair (S, D)

(S1, D1) .    .   . (Sp, Dp) .    .   . (St, Dt)

R5
R6
R2
R4


R8
R3


R7
R1
F I G U R E 12.10
Extending two-dimensional schemes.

rule R
precomputes its matching directive to be that of R if R is the lower cost of the two rules.

This allows the traversal through the grid of tries to safely skip rule R when encountering rule

R . While this works correctly with two-ﬁeld rules, it requires some further modiﬁcations to

handle the general case.

One solution, equivalent to precomputing rule costs, is to precompute the list for R
to

include all the list elements for R. Unfortunately, this approach can increase storage because

each rule is no longer represented exactly once. A more sophisticated solution, called the

extended grid of tries (EGT) and described in Baboescu et al. [BSV03], is based on extra

traversals beyond the standard grid of tries.

The performance of EGT can be described as follows.

Assumption: The extension of two-dimensional schemes depends critically on observation O5.

Performance: The scheme takes at least one grid-of-tries traversal plus the time to linearly

search
c rules, where c
is the constant embodied in observation O5. Assuming linear

storage, the search performance can increase [BSV03] by an additive factor representing

the time to search for less speciﬁc rules. The addition of a new rule
R
requires only

rebuilding of the individual two-dimensional structure of which R
is a part. Thus rule

update should be fairly fast.

12.8 USING DIVIDE-AND-CONQUER
The next three schemes (bit vector linear search, on-demand cross-producting, and equiva-

lenced cross-producting) all exploit the simple algorithmic idea (P15) of divide-and-conquer.

Divide-and-conquer refers to dividing a problem into simpler pieces and then efﬁciently com-

bining the answers to the pieces. We brieﬂy motivate a skeletal framework of this approach in

this section. The next three sections will ﬂesh out speciﬁc instantiations of this framework.


4

Destination

Prefixes

M
T1

Net

Default



*



4

Source

Prefixes

S
T0

Net

Default



*



5

DstPort

Prefixes

25

53

23

123

Default



*



12.9 Bit Vector Linear Search
2
*
3

SrcPort
Flags

Prefixes
Prefixes

123
UDP

Default
TCP-ACK

Default



480



289
F I G U R E 12.11
The database of Figure 12.3 “sliced” into columns where each column contains the

set of preﬁxes corresponding to a particular ﬁeld.

Chapter 11 has already outlined techniques to do lookups on individual ﬁelds. Given this

background, the common idea in all three divide-and-conquer algorithms is the following. Start

by slicing the rule database into columns, with the ith column storing all distinct preﬁxes (or

ranges) in ﬁeld i. Then, given a packet P, determine the best-matching preﬁx (or narrowest-

enclosing range) for each of its ﬁelds separately. Finally, combine the results of the best-

matching-preﬁx lookups on individual ﬁelds. The main problem, of course, lies in ﬁnding

an efﬁcient method for combining the lookup of individual ﬁelds into a single compound

lookup.

All the divide-and-conquer algorithms conceptually start by slicing the database of

Figure 12.3 into individual preﬁx ﬁelds. In the sliced columns, from now on we will sometimes

refer to the wildcard character ∗ by the string default. Recall that the mail gateway
M
and

internal NTP agent TI are full IP addresses that lie within the preﬁx range of Net. The sliced

database corresponding to Figure 12.3 is shown in Figure 12.11.

Clearly, any divide-and-conquer algorithm starts by doing an individual lookup in each

column and then combines the results. The next three sections show that each of the three

schemes returns different results with lookup and follows different strategies to combine the

individual ﬁeld results, despite using the same sliced database shown in Figure 12.11.

12.9 BIT VECTOR LINEAR SEARCH
Consider doing a match in one of the individual columns in Figure 12.11, say, the destination

address ﬁeld, and ﬁnding a bit string
S
as the longest match. Clearly, this lookup result

eliminates any rules that
do not match S
in this ﬁeld. Then the search algorithm can do a

linear search in the set of all remaining rules that match S. The logical extension is to perform

individual matches in each ﬁeld; each ﬁeld match will prune away a number of rules, leaving

a remaining set. The search algorithm needs to search only the intersection of the remaining

sets obtained by each ﬁeld lookup.

This would clearly be a good heuristic for optimizing the average case if the remaining

sets are typically small. However, one can guarantee performance even in the worst case


290


C H A P T E R 1 2
Packet Classiﬁcation
Destination
Source

Prefixes
Prefixes

M | 11110111
S | 11110011

T1  | 00001111
T0 | 11011011

Net  | 00000111
Net | 11010111

* | 00000101
* | 11010011



DstPort

Prefixes

25 | 10000111

53 | 01100111

23 | 00010111

123 | 00001111

* | 00000111



SrcPort

Prefixes

123 | 11111111

* | 11110111



Flags

Prefixes

UDP| 11111101

TCP| 10110111

*| 10110101

F I G U R E 12.12
The sliced database of Figure 12.11 together with bit vectors for every possible sliced

value. The bit vector has 8 bits, one corresponding to each of the eight possible rules in Figure 12.3. Bit

j is set for value M in ﬁeld i if value M matches Rule j in ﬁeld i.

(to some extent) by representing the remaining sets as bitmaps and by using wide memories

to retrieve a large number of set members in a single memory access (P4a, exploit locality).

In more detail, as in Section 12.8, divide-and-conquer is used to slice the database, as in

Figure 12.11. However, in addition with each possible value M of ﬁeld i, the algorithm stores

the set of rules S(M) that match M in ﬁeld i as a bit vector. This is easy to do when building

the sliced table. The algorithm that builds the data structure scans through the rules linearly to

obtain the rules that match M
using the match rule (e.g., exact, preﬁx, or range) speciﬁed for

the ﬁeld.

For example, Figure 12.12 shows the sliced database of Figure 12.11 together with bit

vectors for each sliced ﬁeld value. The bit vector has 8 bits, one corresponding to each of the

eight possible rules in Figure 12.3. Bit j is set for value M in ﬁeld i if value M matches Rule j
in ﬁeld i.

Consider the destination preﬁx ﬁeld and the ﬁrst value M in Figure 12.12. If we compare it

to Figure 12.3, we see that the ﬁrst four rules specify M in this ﬁeld. The ﬁfth rule speciﬁes T 1

(which does not match M ), and the sixth and eighth rules specify a wildcard (which matches

M ). Finally, the seventh rule speciﬁes the preﬁx Net (which matches M , because Net is assumed

to be the preﬁx of the company network in which M is the mail gateway). Thus the bitmap for

M is 11110111, where the only bit not set is the ﬁfth bit. This is because the ﬁfth rule has T 1,

which does not match M.

When a packet header arrives with ﬁelds H[1] . . . H [K], the search algorithm ﬁrst performs

a longest-matching-preﬁx lookup in each ﬁeld i to obtain matches Miand the corresponding

set S(Mi) of matching rules. The search algorithm then proceeds to compute the intersection

of all the sets S(Mi) and returns the lowest-cost element in the intersection set.

But if rules are arranged in nondecreasing order of cost and all sets are bitmaps, then the

intersection set is the AND of all
K
bitmaps. Finally, the lowest-cost element corresponds

to the index of the ﬁrst bit set in the intersection bitmap. But, the reader may object, since

there are N rules, the intersected bitmaps are N bits long. Hence, computing the AND requires

O(N) operations. So the algorithm is effectively doing a linear search after slicing and doing

individual ﬁeld matches. Why not do simple linear search instead?

12.9 Bit Vector Linear Search



291
The reason is subtle and requires a good grasp of models and metrics. Basically, the

preceding argument above is correct but ignores the large constant-factor improvement that is

possible using bitmaps. Thus computing theAND of K bit vectors and searching the intersection

bit vector is still an O(K · N) operation; however, the constants are much lower than doing

naive linear search because we are dealing with bitmaps. Wide memories (P4a) can be used

to make these operations quite cheap, even for a large number of rules.

This is because the cost in memory accesses for these bit operations is N·(K+1)/W memory

accesses, where W is the width of a memory access. Even with W = 32, this brings down

the number of memory accesses by a factor of 32. A specialized hardware classiﬁcation chip

can do much better. Using wide memories and wide buses (the bus width is often the limiting

factor), a chip can easily achieve W = 1000 with today’s technology. As technology scales,

one can expect even larger memory widths.

For example, using W = 1000 and k = 5 ﬁelds, the number of memory accesses for 5000

rules is 5000 ∗ 6/1000 = 30. Using 10-nsec SRAM, this allows a rule lookup in 300 nsec,

which is sufﬁcient to process minimum-size (40-byte) packets at wire speed on a gigabit link.

By using K-fold parallelism, the further factor of K +1 can be removed, allowing 30,000 rules.

Of course, even linear search can be parallelized, using N-way parallelism; what matters is

the amount of parallelism that can be employed at reasonable cost.

Using our old example, consider a lookup for a packet to M from S with UDP destination

port equal to 53 and source port equal to 1029 in the database of Figure 12.3, as represented

by Figure 12.12. This packet matches Rules 2, 3, and 8 but must be allowed through because

the ﬁrst matching rule is Rule 2.

Using the bit vector algorithm just described (see Figure 12.12), the longest match in the

destination ﬁeld (i.e., M) yields the bitmap 11110111. The longest match in the source ﬁeld

(i.e., S) yields the bitmap 11110011. The longest match in the destination port ﬁeld (i.e., 53)

yields the bitmap 01100111. The longest match in the source port ﬁeld (i.e., the wildcard)

yields the bitmap 11110111; the longest match in the protocol ﬁeld (i.e.,
UDP) yields the

bitmap 11111101. The AND of the ﬁve bitmaps is 01100001. This bitmap corresponds to

matching Rules 2, 3, and 8. The index of the ﬁrst bit set is 2. This corresponds to the second

rule, which is indeed the correct match.

The bit vector algorithm was described in detail in Lakshman and Stidialis [LS98] and also

in a few lines in a paper on network monitoring [MJ98]. The ﬁrst paper [LS98] also describes

some trade-offs between search time and memory. A later paper [BV01] shows how to add

more state for speed (P12) by using summary bits. For every W
bits in a bitmap, the summary

is the OR of the bits. The main intuition is that if, say, W2bits are zero, this can be ascertained

by checking W summary bits.

The bit vector scheme is a good one for moderate-size databases. However, since the heart

of the algorithm relies on linear search, it cannot scale to both very large databases and very

high speeds.

The performance of this scheme can be described as follows.

Assumption: The number of rules will stay reasonably small or will grow only in proportion

to increases in bus width and parallelism made possible by technology improvements.

Performance: The number of memory accesses is N · (K + 1)/W plus the number of mem-

ory accesses for K
longest-matching-preﬁx or narrowest-range operations. The memory

required is that for the
K
individual ﬁeld matches (see schemes in Chapter 11) plus


292


C H A P T E R 1 2
Packet Classiﬁcation
Number
Cross Product
1
M, S, 25, 123, UDP

2
M, S, 25, 123, TCP-ACK

3
M, S, 25, 123, default
4
M, S, 25, default, UDP

5
M, S, 25, default, TCP-ACK

6
M, S, 25, default, default


Matching Rule
Rule 1

Rule 1

Rule 1

Rule 1

Rule 1

Rule 1

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•
479
480

default, default, default, default, TCP-ACK

default, default, default, default, default

Rule 8

Rule 8

F I G U R E 12.13
A sample of the cross products obtained by cross-producting the individual preﬁx

tables of Figure 12.11.

potentially N2K
bits. Recall that N
is the number of rules,
K
is the number of ﬁelds,

and W is the width of a memory access. Updating rules is slow and generally requires

rebuilding the entire database.

12.10 CROSS-PRODUCTING
This section describes a crude scheme called cross-producting [SVSW98]. In the next section,

we describe a crucial reﬁnement we call equivalenced cross-producting (but called RFC by

the authors [GM99b]) that makes cross-producting more feasible. The top of each column in

Figure 12.11 indicates the number of elements in the column. Consider a 5-tuple, formed by

taking one value from each column. Call this a cross product. Altogether, there are 4 ∗ 4 ∗ 5 ∗
2 ∗ 3 = 480 possible cross products. Some sample cross products are shown in Figure 12.13.

Considering the destination ﬁeld to be most signiﬁcant and the ﬂags ﬁeld to be least signiﬁcant,

and pretending that values increase down a column, cross products can be ordered from the

smallest to the largest, as in any number system.

A key insight into the utility of cross products is as follows.

Given a packet header H, if the longest-matching-preﬁx operation for each ﬁeld H[i] is concate-

nated to form a cross product C, then the least-cost rule matching H is identical to the least-cost

rule matching C.

Suppose this were not true. Since each ﬁeld in C is a preﬁx of the corresponding ﬁeld in

H, every rule that matches C also matches H. Thus the only case in which H has a different

matching rule is if there is some rule R that matches H
but not C. This implies that there is

12.11 Equivalenced Cross-Producting


293
some ﬁeld i such that R[i] is a preﬁx of H[i] but not of C[i], where C[i] is the contribution

of ﬁeld i to cross product C. But since C[i] is a preﬁx of H[i], this can happen only if R[i]

is longer than C[i]. But that contradicts the fact that C[i] is the longest-matching preﬁx in

column/ﬁeld i.

Thus, the basic cross-producting algorithm [SVSW98] builds a table of all possible cross

products and precomputes the least-cost rule matching each cross product. This is shown in

Figure 12.13. Then, given a packet header, the search algorithm can determine the least-cost

matching rule for the packet by performing K longest-matching-preﬁx operations, together

with a single hash lookup of the cross-product table. In hardware, each of the K preﬁx lookups

can be done in parallel.

Using our example, consider matching a packet with header (M , S, UDP, 53, 57) in the

database of Figure 12.3. The cross product obtained by performing best-matching preﬁxes on

individual ﬁelds is (M , S, UDP, 53, default). It is easy to check that the precomputed rule for

this cross product is Rule 2 — although Rules 3 and 8 also match the cross product, Rule 2

has the least cost.

The naive cross-producting algorithm suffers from a memory explosion problem: In the

worst case, the cross-product table can have NKentries, where N is the number of rules and

K is the number of ﬁelds. Thus, even for moderate values, say, N
= 100 and K = 5, the table

size can reach 1010, which is prohibitively large.

One idea to reduce memory is to build the cross products on demand (P2b, lazy evaluation)

[SVSW98]: Instead of building the complete cross-product table at the start, the algorithm

incrementally adds entries to the table. The preﬁx tables for each ﬁeld are built as before, but

the cross-product table is initially empty. When a packet header H arrives, the search algorithm

performs a longest-matching preﬁxes on the individual ﬁelds to compute a cross-product

term C.

If the cross-product table has an entry for C, then of course the associated rule is returned.

However, if there is no entry for C in the cross-product table, the search algorithm ﬁnds the

best-matching rule for C (possibly using a linear search of the database) and inserts that entry

into the cross-product table. Of course, any subsequent packets with cross product C will yield

fast lookups.

On-demand cross-producting can improve both the building time of the data structure and

its storage cost. In fact, the algorithm can treat the cross-product table as a cache and remove

all cross products that have not been used recently. Caching based on cross products can be

more effective than full header caching because a single cross product can represent multiple

headers (see Exercises). However, a more radical improvement of cross-producting comes

from the next idea, which essentially aggregates cross products into a much smaller number

of equivalence classes.

12.11 EQUIVALENCED CROSS-PRODUCTING
Gupta and McKeown [GM99b] have invented a scheme called recursive ﬂow classiﬁcation
(RFC), which is an improved form of cross-producting that signiﬁcantly compresses the

cross-product table, at a slight extra expense in search time. We prefer to call their scheme

equivalenced cross-producting, for the following reason. The scheme works by building larger

cross products from smaller cross products; the main idea is to place the smaller cross products

294


C H A P T E R 1 2
Packet Classiﬁcation
into equivalence classes before combining them to form larger cross products. This equiva-

lencing of partial cross products considerably reduces memory requirements, because several

original cross-product terms map into the same equivalence class.

Recall that in simple cross-producting when a header
H
arrives, the individual ﬁeld

matches are immediately concatenated to form a cross product that is then looked up in a

cross-product table. By contrast, equivalenced cross-producting builds the ﬁnal cross product

in several pairwise combining steps instead of in one fell swoop.

For example, one could form the destination–source cross product and separately form

the destination port–source port cross product. Then, a third step can be used to combine these

two cross products into a cross product on the ﬁrst four ﬁelds, say, C . A fourth step is then

needed to combine C
with the protocol ﬁeld to form the ﬁnal cross product, C. The actual

combining sequence is deﬁned by a combining tree, which can be chosen to reduce overall

memory.

Just forming the ﬁnal cross product in several pairwise steps does not reduce memory

below NK. What does reduce memory is the observation that when two partial cross products

are combined, many of these pairs are equivalent: Geometrically, they correspond to the same

region of space; algebraically, they have the same set of compatible rules.

Thus the main trick is to give each class a class number and to form the larger cross

products using the class numbers instead of the original matches. Since the algebraic view

is easier for computation, we will describe an example of equivalencing using the ﬁrst two

columns of Figure 12.11 under the algebraic view.

Figure 12.14 shows the partial cross products formed by only the destination and source

columns in Figure 12.11. For each pair (e.g.,
M , S) we compute the set of rules that are

compatible with such a pair of matches exactly, as in the bit vector linear search scheme. In

fact, we can ﬁnd the bit vector of any pair, such as M , S, by taking the intersection of the rule

bitmaps for M and S in Figure 12.12. Thus from Figure 12.12, since the rule bitmap for M is

11110111 and the bitmap for S is 11110011, the intersection bitmap for M, S is 11110011, as

shown in Figure 12.14.

Doing this for each possible pair, we soon see that several bitmaps repeat themselves. For

example, M , T0, and M , ∗ (second and fourth entries in Figure 12.14) have the same bitmap.

Two rules that have the same bitmap are assigned to the same equivalence class, and each class

is given a class number. Thus in Figure 12.14, the classes are numbered starting with 1; the

table-building algorithm increments the class number whenever it encounters a new bitmap.

Thus, there are only eight distinct class numbers, compared to 16 possible cross products,

because there are only eight distinct bitmaps.

Now assume we combine the two port columns to form six classes from 10 possible

cross products. When we combine the port pairs with the destination–source pairs, we com-

bine all possible combinations of the destination–source and port pair class numbers and not

the original ﬁeld matches. Thus after combining all four columns we get 6 ∗ 8
= 48 cross

products. Note that in Figure 12.11, naive cross-producting will form 4 ∗ 4 ∗ 5 ∗ 2
= 160

cross products from the ﬁrst four columns. Thus we have saved a factor of nearly 3 in

memory.

Of course, we do not stop here. After combining the destination–source and port pair class

numbers we equivalence them again using the same technique. When combining class number

C with class number C , the bitmap for C, C
is the intersection of the bitmaps for C and C .

Once again pairs with identical bitmaps are equivalenced into groups. After this is done, the


Destination–
source
prefix pairs
M, S
M, T0

M, Net
M, *

T1, S
T1, T0

T1, Net
T1, *

Net, S
Net, T0

Net, Net
Net, *

*, S
*, T0

*, Net
*, *



12.11 Equivalenced Cross-Producting
Rule
Class
bitmap
number
11110011
C1

11010011
C2

11010111
C3

11010011
C2

00000011
C4

00001011
C5

00000111
C6

00000011
C4

00000011
C4

00000011
C4

00000111
C6

00000011
C4

00000001
C7

00000001
C7

00000100
C8

00000001
C7



295
F I G U R E 12.14
Forming the partial cross products of the ﬁrst two columns in Figure 12.11 and then

assigning these cross products into the same equivalence class if they have the same rule set (rule bitmap).

Notice that 16 partial cross products form only eight classes.

ﬁnal cross product is formed by combining the classes corresponding to the ﬁrst four columns

with the matches in the ﬁfth column.

Our example combined ﬁelds 1 and 2, then ﬁelds 3 and 4, and then the ﬁrst four and

ﬁnally combined in the ﬁfth (Figure 12.15). Clearly, other pairings are possible, as deﬁned

by a binary tree with the ﬁelds as nodes and edges representing pairwise combining steps.

One could choose the optimal combining tree to reduce memory.

The search process is similar to cross-producting, except the cross products are calculated

pairwise (just as they are built) using the same tree. Each pairwise combining uses the two

class numbers as input into a table that outputs the class number of the combination. Finally,

the class number of the root of the tree is looked up in a table to yield the best-matching rule.

Since each class has the same set of matching rules, it is easy to precompute the lowest-cost

matching rule for the ﬁnal classes. Note that the search process does not need to access the

rule bitmaps, as is needed for the bit vector linear search scheme. The bitmaps are used only

to build the structure.


296


C H A P T E R 1 2
Packet Classiﬁcation
Destination
Source



DstPort
SrcPort
Protocol

Final cross product

F I G U R E 12.15
The combining tree used in the example.

Clearly, each pairwise combining step can take O(N2) memory because there can be N
distinct ﬁeld values in each ﬁeld. However, the total memory falls very short of the NKworst-

case memory for real rule databases. To see why this might be the case, we return to the

geometric view.

Using a survey of 8000 rule databases, Gupta and McKeown [GM99b] observe that all

databases studied have only O(N ) classiﬁcation regions, instead of the NKworst-case number

of classiﬁcation regions. It is not hard to see that when the number of classiﬁcation regions is

NK, then the number of cross products in the equivalenced scheme and in the naive scheme is

also NK.

But when the number of classiﬁcation regions is linear, equivalenced cross-producting

can do better. However, it is possible to construct counterexamples where the number of

classiﬁcation regions is linear but equivalenced cross-producting takes exponential memory.

Despite such potentially pathological cases, the performance of RFC can be summarized as

follows.

Assumption: There is a series of subspaces of the complete rule space (as embodied by nodes

in the combining tree) that all have a linear number of classiﬁcation regions. Note that this

is stronger than O4 and even O5. For example, if we combine two ﬁelds i and j ﬁrst, we

require that this intermediate two-dimensional subspace have a linear number of regions.

Performance:
The memory required is O(N2) ∗ T , where T
is the number of nodes in the

combining tree. The sequential performance (in terms of time) is O(T ) memory accesses,

but the time required in a parallel implementation can be O(1) because the tree can be

pipelined. Note that the O(N2) memory is still very large in practice and would preclude

the use of SRAM-based solutions.

12.12 DECISION TREE APPROACHES
This chapter ends with a description of a very simple scheme that performs well in practice,

better even than RFC and comparable to or better than the extended grid of tries. This scheme

was introduced by Woo [Woo00]. A similar idea, with range tests replacing bit tests, was

independently described by Gupta and McKeown [GM99a].

12.12 Decision Tree Approaches



297
The basic idea is extremely close to the simple set-pruning tries described in Section 12.5.1,

with the addition of some important degrees of freedom. Recall that set-pruning tries work one

ﬁeld at a time; thus in Figure 12.8, the algorithm tests all the bits for the destination address

before testing all the bits for the source address. The extension to multiple ﬁelds in Decasper

et al. [DDPP98] similarly tests all the bits of one ﬁeld before moving on to another ﬁeld. The

set-pruning trie can be seen as an instance of a general decision tree.

Clearly, an obvious degree of freedom (P13) not considered in set-pruning tries is to

arbitrarily interleave the bit tests for all ﬁelds. Thus the root of the trie could test for (say) bit

15 of the source ﬁeld; if the bit is 0, this could lead to a node that tests for, say, bit 22 of the

port number ﬁeld. Clearly, there is an exponential number of such decision trees. The schemes

in Woo [Woo00] and Gupta and McKeown [GM99a] build the ﬁnal decision tree using local
optimization decisions at each node to choose the next bit to test. A simple criterion used in

Gupta and McKeown [GM99a] is to balance storage and time.

A second important degree of freedom considered in Woo [Woo00] is to use multiple

decision trees. For example, for examples such as Figure 12.6, it may help to place all the

rules with wildcards in the source ﬁeld in one tree and the remainder in a second tree. While

this can increase overall search time, it can greatly reduce storage.

A third degree of freedom exploited in both Woo [Woo00] and Gupta and McKeown

[GM99a] is to allow a small amount of linear searching after traversing the decision tree. This

is similar to the common strategy of using an insert. Consider a decision tree with 10,000 leaves

where each leaf is associated with one of four rules. While it may be possible to distinguish

these four rules by lengthening the decision tree in height, this lengthened decision tree could

add 40,000 extra nodes of storage.

Thus, in balancing storage with time, it may be better to settle for a small amount of linear

searching (e.g., among one of four possible rules) at the end of tree search. Intuitively, this

can help because the storage of a tree can increase exponentially with its height. Reducing the

height by employing some linear search can greatly reduce storage.

The hierarchical cuttings (HiCuts) scheme described in Gupta and McKeown [GM99a]

is similar in spirit to that in Woo [Woo00] but uses range checks instead of bit tests at each

node of the decision tree. Range checks are slightly more general than bit tests because a range

check such as 10
<
D
<
35 for a destination address D cannot be emulated by a bit test.

A range test (cut) can be viewed geometrically in two dimensions as a line in either dimension

that splits the space into half; in general, each range cut is a hyperplane.

In what follows, we describe HiCuts in more detail using an example. The HiCuts local

optimization criterion works well when tested on real core router classiﬁers.

Figure 12.16 shows a fragment of a HiCuts decision tree on the database of Figure 12.3.

The nodes contain range comparisons on values of any speciﬁed ﬁelds, and the edges are

labeled True or False. Thus the root node tests whether the destination port ﬁeld is less than

50. The fragment follows the case only when this test is false. Notice in Figure 12.3 that this

branch eliminates R1 (i.e., Rule 1) and R4, because these rules contain port numbers 25 and

23, respectively.

The next test checks whether the source address is equal to that of the secondary name

server S in Figure 12.3. If this test evaluates to true, then R5 is eliminated (because it contains

T 0,), and so is R6 (because it contains Net and because S does not belong to the internal preﬁx

Net). This leads to a second test on the destination port ﬁeld. If the value is not 53, the only

possible rules that can match are R7 and R8.


298


C H A P T E R 1 2
Packet Classiﬁcation
DestPort < 50?

T
F
Source
 S?

T


F
DestPort
 53?



DestPort
 53?

R2

R3

R7

R8



T


F
R7

R8



R2

R6

R7

R8



T


F
R5

R6

R7

R8

F I G U R E 12.16
The HiCuts data structure is essentially a range tree that has pointers corresponding

to some ranges of some dimension variable with linear search at the end.

Thus on a packet header in which the destination port is 123 and the source is S, the

search algorithm takes the right branch at the root, the left branch at the next node, and a right

branch at the ﬁnal node. At this point the packet header is compared to rules R7 and R8 using

linear search. Note that, unlike set pruning trees, the HiCuts decision tree of Figure 12.16 uses

ranges, interleaves the range checks between the destination port and source ﬁelds, and uses

linear searching.

Of course, the real trick is to ﬁnd a way to build an efﬁcient decision tree that minimizes the

worst-case height and yet has reasonable storage. Rather than consider the general optimization

problem, which is NP-complete, HiCuts [GM99a] uses a more restricted heuristic based on

the repeated application of the following greedy strategy.

•
Pick a ﬁeld: The HiCuts paper suggests ﬁrst picking a ﬁeld to cut on at each stage based on

the number of distinct ﬁeld values in that ﬁeld. For example, in Figure 12.16, this heuristic

would pick the destination port ﬁeld.

•
Pick the number of cuts: For each ﬁeld, rather than just pick one range check as in

Figure 12.16, one can pick k ranges or cuts. Of course, these can be implemented as

separate range checks, as in Figure 12.16. To choose k, the algorithm suggested in Gupta

and McKeown [GM99b] is to keep doubling k and to stop when the storage caused by the

k cuts exceeds a prespeciﬁed threshold.

Several details are needed to actually implement this somewhat general framework.

Assuming the cuts or ranges are equally spaced, the storage cost of k cuts on a ﬁeld is estimated

by counting the sum of the rules assigned to each of the k cuts. Clearly, cuts that cause rule

replication will have a large storage estimate. The threshold that deﬁnes acceptable storage is

a constant (called spfac, for space factor) times the number of rules at the node. The intent is

to keep the storage linear in the number of rules up to a tunable constant factor.

12.13 Conclusions



299
Finally, the process stops when all decision tree leaves have no more than binth (bin

threshold) rules. binth controls the amount of linear searching at the end of tree search.

The HiCuts paper [GM99a] mentions the use of the DAG optimization. A more novel

optimization, described in Woo [Woo00] and Gupta and McKeown [GM99a], is to eliminate a

rule, R, that completely overlaps another rule, R , at a node but has higher cost. There are also

several further degrees of freedom (P13) left unexplored in Gupta and McKeown [GM99a]

and Woo [Woo00]: unequal-size cuts at each node, more sophisticated strategies that pick more

than ﬁeld at a time, and linear searching at nodes other than the leaves.

A more recent paper [BSV03] takes the decision tree approach a step further by allowing

the use of several cuts in a single step via multidimensional array indexing. Because each

cut is now a general hypercube, the scheme is called HyperCuts. HyperCuts appears to work

signiﬁcantly faster than HiCuts on many real databases [BSV03].

In conclusion, the decision tree approach described by Woo [Woo00], Gupta and McKe-

own [GM99a], and Singh et al. [BSV03] is best viewed as a framework which encompasses

a number of potential algorithms. However, experimental evidence [BSV03] shows that this

approach works well in practice except on databases that contain a large number of wildcards

in one or more ﬁelds. The performance of this scheme can be summarized as follows.

Assumption:
The scheme assumes there is a sufﬁcient number of distinct ﬁelds to make

reasonable cuts without much storage replication. This rather general observation needs

to be sharpened.

Performance: The memory required can be kept to roughly linear in the number of rules

using the HiCuts heuristics. The tree can be of relatively small height if it is reasonably

balanced. Search can easily be pipelined to allow O(1) lookup times. Finally, update can

be slow if sophisticated heuristics are used to build the decision tree.

12.13 CONCLUSIONS
This chapter describes several algorithms for packet classiﬁcation at gigabit speeds. The grid

of tries provides a two-dimensional classiﬁcation algorithm that is fast and scalable. All the

remaining schemes require exploiting some assumption about real rule databases to avoid

the geometric lower bound. While much progress has been made, it is important to reduce

the number of such assumptions required for classiﬁcation and to validate these assumptions

extensively.

At the time of writing, decision tree approaches [Woo00, GM99a, SBV04] and the

extended grid of tries method [BSV03] appeared to be the most attractive algorithmic schemes.

While the latter depends on each packet’s matching only a small number of source–destination

preﬁxes, it is still difﬁcult to characterize what assumptions or parameters inﬂuence the

performance of decision tree approaches.

Of the other general schemes, the bit vector scheme is suitable for hardware implementa-

tion for a modest number of rules (say, up to 10,000). Equivalenced cross-producting seems to

scale to roughly the same number of rules as the Lucent scheme but perhaps can be improved

to lower its memory consumption.

The author and his students have placed code for many of the algorithms described in this

chapter on a publicly available Web site [SBV04]. Packet classiﬁcation has stagnated because

300


C H A P T E R 1 2
Packet Classiﬁcation
of the lack of standard comparisons and freely available code. Readers are encouraged to

experiment with and contribute to this code base.

Although the schemes described in this chapter require some algorithmic thinking, they

make heavy use of the other principles we have stressed. The two-dimensional scheme makes

heavy use of precomputation; the Lucent scheme uses memory locality to turn what is essen-

tially linear search into a fast scheme for moderate rule sizes; all the other schemes rely on

some expected-case assumption about the structure of rules, such as the lack of general ranges

and the small number of classiﬁcation regions. Figure 12.1 summarizes the schemes and the

principles used in them.

Because best-matching preﬁx is a special case of lowest-cost matching rule, it is not

surprising that rule search schemes are generalizations of preﬁx search schemes. Thus, the grid

of tries and set-pruning tries generalize trie schemes for preﬁx matching. Multidimensional

range-matching schemes generalize preﬁx-matching schemes based on range matching. Tuple

search generalizes binary search on hash tables. While cross-producting is not a generalization

of an existing preﬁx-matching scheme, it can be specialized for preﬁx lookups as well.

The high-level message of this chapter is as follows. Applications such as QoS routing,

ﬁrewalls, virtual private networks, and DiffServ will require a more ﬂexible form of forwarding

based on multiple header ﬁelds. The techniques in this chapter indicate that such forwarding

ﬂexibility can go together with high performance using algorithmic solutions without relying

on ternary CAMs.

Returning to the quote at the start of this chapter, it should be easy to see how packet

classiﬁcation gets its name if the word deﬁnition is replaced with rule. Notice that classiﬁcation

in the sciences also encompasses overlapping deﬁnitions: Men belong to both the mammal and

Homo sapiens categories. However, it is hard to imagine a biological analog of the concept

of a lowest-cost matching rule, or the requirement to classify species several million times a

second!

12.14 EXERCISES
1. Range to Preﬁx Mappings: CAMs require the use of preﬁx ranges, but many rules use

general ranges. Describe an algorithm that converts an arbitrary range on, say, 16-bit

port number ﬁelds to a logarithmic number of preﬁx ranges. Describe the preﬁx ranges

produced by the arbitrary but common range of greater than 1024. Given a rule R with

arbitrary range speciﬁcations on port numbers, what is the worst-case number of CAM

entries required to represent R? Solutions to this problem are discussed in Refs.

SVSW98 and SSV99.

2. Worst-Case Storage for Set-Pruning Tries: Generalize the example of Figure 12.6 to

K ﬁelds to show that storage in set-pruning-trie approaches can be as bad as O(Nk/k).

3. Improvements to the Grid of Tries: In the grid of tries, the only role played by the

destination trie is in determining the longest-matching destination preﬁx. Show how to

use other lookup techniques to obtain a total search time of (log W + W ) for

destination–source rules instead of 2W .

4. Aggregate Bit Vector Search: Use 3-bit summaries in Figure 12.12 and determine the

improvement in the worst-case time by adding summaries, and compare it to the

12.14 Exercises
increase in storage for using summaries. Details of the algorithm, if needed, can be

found in Baboescu and Varghese [BV01].



301
5. Aggregate Bit Vector Storage: The use of summary bits appears to increase storage.

Show, however, a simple modiﬁcation in which the use of aggregates can reduce storage

if the bit vectors contain large strings of zeroes. Describe the modiﬁcations to the search

process to achieve this compression. Does it slow down search?

6. On-Demand Cross-Producting: Consider the database of Figure 12.3, and imagine a

series of Web accesses from an internal site to the external network. Suppose the

external destinations accessed are D1, . . . , DM. How many cache terms will these

headers produce in the case of full header caching versus on-demand cross-producting?

7. Equivalenced Cross-Producting: Why do the ﬁfth and eighth entries in Figure 12.14

have the same bitmaps? Check your answer two ways, ﬁrst by intersecting the

corresponding bitmaps for the two ﬁelds from Figure 12.12 and then by arguing directly

that they match the same set of rules.

8. Combining Trees for RFC: The equivalenced cross-producting idea in RFC leaves

unspeciﬁed how to choose a combining tree. One technique is to compute all possible

combining trees and then to pick the tree with the smallest storage. Describe an

algorithm based on dynamic programming to ﬁnd the optimal tree. Compare the running

times of the two algorithms.

9. Reducing Rule Databases Using Redundancy: If a smaller preﬁx has the same next

hop as a longer preﬁx, the longer preﬁx can be removed from an IP lookup table. Find

similar techniques to spot redundancies in classiﬁers. Compare your ideas with the

techniques described in Gupta and McKeown [GM99b]. Note that as in the case of IP

lookups, such techniques to remove redundancy are orthogonal to the classiﬁcation

scheme chosen and can be implemented in a separate preprocessing step.

10. Generalizing Linear Searching in HiCuts: In HiCuts, all the linear lists are at the

leaves. However, a rule with all wildcarded entries will be replicated at all leaves. This

suggests that such rules be placed once in a linear list at the root of the HiCuts tree.

Generalizing, one could place linear lists at any node to reduce storage. Describe a

bottom-up algorithm that starts with the base HiCuts decision tree and then hoists rules

to nodes higher up in the tree to reduce storage. Try to do so with minimal impact on the

search time.


Switching


C H A P T E R 13
I’d rather ﬁght than switch.



— Tareyton Cigarettes ad, quoted by Bartlett’s
In the early years of telephones, the telephone operator helped knit together the social fabric

of a community. If John wanted to talk to Martha, John would call the operator and ask for

Martha; the operator would then manually plug a wire into a patch panel that connected John’s

telephone to Martha’s. The switchboard, of course, allowed
parallel connections between

disjoint pairs. James could talk to Mary at the same time that John and Martha conversed.

However, each new call could be delayed for a small period while the operator ﬁnished putting

through the previous call.

When transistors were invented at Bell Labs, the fact that each transistor was basically a

voltage-controlled switch was immediately exploited to manufacture all-electronic telephone

switches using an array of transistors. The telephone operator was then relegated to functions

that required human intervention, such as making collect calls. The use of electronics greatly

increased the speed and reliability of telephone switches.

A router is basically an automated post ofﬁce for packets. Recall that we are using the

word router in a generic sense to refer to a general interconnection device, such as a gateway or

a SAN switch. Returning to the familiar model of a router in Figure 13.1, recall that in essence

a router is a box that switches packets from input links to output links. The lookup process

(B1 in Figure 13.1), which determines which output link a packet will be switched to, was

described in Chapter 11. The packet scheduling done at the outbound link (B3 in Figure 13.1)

is described in Chapter 14. However, the guts of a router remain its internal switching system

(B2 in Figure 13.1), which is discussed in this chapter.

This chapter is organized as follows. Section 13.1 compares router switches to telephone

switches. Section 13.2 details the simplicity and limitations of a shared memory switch.

Section 13.3 describes router evolution, from shared buses to crossbars. Section 13.4 presents

a simple matching algorithm for a crossbar scheduler that was used in DEC’s ﬁrst Gigaswitch

product. Section 13.5 describes a fundamental problem with DEC’s ﬁrst Gigaswitch and other

input-queued switches, called head-of-line (HOL) blocking, which occurs when packets wait-

ing for a busy output delay packets waiting for idle outputs. Section 13.6 covers the knockout

switch, which avoids HOL blocking, at the cost of some complexity, by queuing packets at

the output.

Section 13.7 presents a randomized matching scheme called PIM, which avoids HOL

blocking while retaining the simplicity of input queuing; this scheme was deployed in DEC’s

302

Input link i



ROUTER

B2
Switching

B1


B3


C H A P T E R 1 3
Switching
Output link

Scheduling



303
Address lookup

F I G U R E 13.1
Router model.

second Gigaswitch product. Section 13.8 describes iSLIP, a scheme that appears to emulate

PIM, but without the use of randomization. iSLIP is found in a number of router products,

including the Cisco GSR. Since iSLIP works well only for small switches of at most 64 ports,

Section 13.9 moves on to cover the use of more scalable switch fabrics. It ﬁrst describes the

Clos fabric, used by Juniper Networks T-series routers to build a 256-port router.

Section 13.9 also introduces the Benes fabric, which can scale to even larger numbers of

ports and handles multicast well. A Benes fabric is used in the Washington University WUGS

switch. Section 13.10 shows how to scale switches to faster link speeds by using bit-slice

parallelism and by using shorter fabric links as implemented in the Avici TSR.

The literature on switching is vast, and this chapter can hardly claim to be representative.

I have chosen to focus on switch designs that have been built, analyzed in the literature, and

actually used in the networking industry. While these choices clearly reﬂect the biases and

experience of the author, I believe the switches described in this chapter (DEC’s Gigaswitch,

Cisco’s GSR, Juniper’s T-series, and Avici’s TSR) provide a good ﬁrst introduction to both the

practical and the theoretical issues involved in switch fabrics for high-speed routers. A good

review of other, older work in switching can be found in Ahmadi and Denzel [AD89]. A more

modern review of architectural choices can be found in Turner and Yamanaka [TY98].

The switching techniques described in this chapter (and the corresponding principles

invoked) are summarized in Figure 13.2.

Q u i c k R e f e r e n c e G u i d e
Most of the switching algorithms described in this chapter have been built. However, for an imple-

mentor on a quick ﬁrst reading, we suggest ﬁrst reviewing the iSLIP algorithm, which is implemented in

the Cisco GSR (Section 13.8). While iSLIP works very well for moderate-size switch fabrics, Section 13.9

describes solutions that scale to large switches, including the Clos fabric used by Juniper Networks and

the Benes fabric from Washington University. The Washington University solution is distinguished by its

ability to handle multicast well.


304


C H A P T E R 1 3
Switching
Number


Principle


Switch
P5b
P13
P5a
P11
P15
P3
P13
P14
P15
P14
P3
P15
P3b
P15
P3a
P15
P13


Widen memory access for bandwidth

Distribute queue control via tickets

Schedule outputs and hunt groups in parallel

Optimize for at most k < N output contention

Use tree of randomized concentrators for fairness

Relax output buffer specification

Use per-output input queues

N2 communication feasible for small N
Use randomized iterative matching

PPEs for round-robin fairness feasible for small N
Relax specification of grant-accept dependency

Use a three-stage Clos network to reduce costs

Randomize load distribution to reduce k from 2n to n
Use a (log N)-stage Benes network to reduce costs

Use fast randomized routing scheme

Use copy-twice multicast and binary tree

Lay out grid using short wires



Datapath

Gigaswitch

Knockout

AN-2

iSLIP

Juniper T640

Growth fabric

Avici TSR

F I G U R E 13.2
Principles used in the various switches studied in this chapter.

13.1 ROUTER VERSUS TELEPHONE SWITCHES
Given our initial analogy to telephone switches, it is worthwhile outlining the major similarities

and differences between telephone and router switches. Early routers used a simple bus to

connect input and output links. A bus (Chapter 2) is a wire that allows only one input to send

to one output at a time. Today, however, almost every core router uses an internal crossbar that

allows disjoint link pairs to communicate in parallel, to increase effective throughput. Once

again, the electronics plays the role of the operator, activating transistor switches that connect

input links to output links.

In telephony, a phone connection typically lasts for seconds if not for minutes. However,

in Internet switches each connection lasts for the duration of a single packet. This is 8 nsec

for a 40-byte packet at 40 Gbps. Recall that caches cannot be relied upon to ﬁnesse lookups

because of the rarity of large trains of packets to the same destination. Similarly, it is unlikely

that two consecutive packets at a switch input port are destined to the same output port. This

makes it hard to amortize the switching overhead over multiple packets.

Thus to operate at wire speed, the switching system must decide which input and output

links should be matched in a minimum packet arrival time. This makes the control portion of

an Internet switch (which sets up connections) much harder to build than a telephone switch.

A second important difference between telephone switches and packet switches is the need

13.3 Router History: From Buses to Crossbars



305
for packet switches to support multicast connections. Multicast complicates the scheduling

problem even further because some inputs require sending to multiple outputs.

To simplify the problem, most routers internally segment variable-size packets into ﬁxed-

size cells before sending to the switch fabric. Mathematically, the switching component of

a router reduces to solving a bipartite matching problem: The router must match as many

input links as possible (to as many output links as possible) in a ﬁxed cell arrival time. While

optimal algorithms for bipartite matching are well known to run in milliseconds, solving

the same problem every 8 nsec at 40 Gbps requires some systems thinking. For example, the

solutions described in this chapter will trade accuracy for time (P3b), use hardware parallelism

(P5) and randomization (P3a), and exploit the fact that typical switches have 32–64 ports to

build fast priority queue operations using bitmaps (P14).

13.2 SHARED-MEMORY SWITCHES
Before describing bus- and crossbar-based switches, it is helpful to consider one of the simplest

switch implementations, based on shared memory. Packets are read into a memory from the

input links and read out of memory to the appropriate output links. Such designs have been

used as part of time slot interchange switches in telephony for years. They also work well for

networking for small switches.

The main problem is memory bandwidth. If the chip takes in eight input links and has

eight output links, the chip must read and write each packet or cell once. Thus the memory

has to run at 16 times the speed of each link. Up to a point, this can be solved by using a

wide memory access width. The idea is that the bits come in serially on an input link and are

accumulated into an input shift register. When a whole cell has been accumulated, the cell can

be loaded into the cell-wide memory. Later they can be read out into the output shift register

of the corresponding link and be shifted out onto the output link.

The Datapath switch design [Kan99, Kes97] uses a central memory of 4K cells, which

clearly does not provide adequate buffering. However, this memory can easily be implemented

on-chip and augmented using ﬂow control and off-chip packet buffers. Unfortunately, shared-

memory designs such as this do not scale beyond cell-wide memories because minimum-size

packets can be at most one cell in size. A switch that gets several minimum-size packets to

different destinations can pack several such packets in a single word, but it cannot rely on

reading them out at the same time.

Despite this, shared-memory switches can be quite simple for small numbers of ports. A

great advantage of shared-memory switches is that they can be memory and power optimal

because data is moved in and out of memory only once. Fabric- or crossbar-based switches,

which are described in the remainder of this chapter, almost invariably require buffering

packets twice, potentially doubling memory costs and power costs. It may even be possible

to extend the shared-memory idea to larger switches via the randomized DRAM interleaving

ideas described in Section 13.10.3.

13.3 ROUTER HISTORY: FROM BUSES TO CROSSBARS
Router switches have evolved from the simplest shared-medium (bus or memory) switches,

shown in part A of Figure 13.3, to the more modern crossbar switches, shown in part D of


306


C H A P T E R 1 3
Switching
Packet

Line card 1

Line card 2

Line card N



B

U

S



CPU



Packet

Line card 1

Line card 2

Line card N



B

U

S



CPU 1

CPU M

a) Paleozoic: Bus, Shared CPU
Routing

CPU(s)

Packet

CPU 1



b) Paleolithic: Bus, Shared CPUs
Routing

CPU(s)

Packet

FE 1

Line card 1

CPU 2

Line card 2

CPU N

Line card N


B

U

S


Line card 1

FE 2

Line card 2

FE N

Line card N

c) Neolithic: Bus, per-line-card CPUs


d) Modern: Crossbar, per-line-card
forwarding engines
F I G U R E 13.3
Evolution of network switches, from shared-bus switches with a shared CPU to

crossbar switches with a dedicated forwarding engine per line card. (Adapted from Ref. McK97).

Figure 13.3. A line card in a router or switch contains the interface logic for a data link, such

as a ﬁber-optic line or an Ethernet. The earliest switches connected all the line cards internally

via a high-speed bus (analogous to an internal local area network) on which only one pair of

line cards can communicate at a time. Thus if Line Card 1 is sending a packet to Line Card 2,

no other pair of line cards can communicate.

Worse, in more ancient routers and switches, the forwarding decision was relegated to a

shared, general-purpose CPU. General-purpose CPUs allow for simpler and easily changeable

forwarding software. However, general-purpose CPUs were often slow because of extra levels

of interpretation of general-purpose instructions. They also lacked the ability to control real-

time constraints on packet processing because of nondeterminism due to mechanisms such as

caches. Note also that each packet traverses the bus twice, once to go to the CPU and once to

go from the CPU to the destination. This is because the CPU is on a separate card reachable

only via the bus.

Because the CPU was a bottleneck, a natural extension was the addition of a group of

shared CPUs for forwarding, any of which can forward a packet. For example, one CPU can

forward packets from Line Cards 1 through 3, the second from Line Cards 4 through 6, and

so on. This increases the overall throughput or reduces the performance requirement on each

individual CPU, potentially leading to a lower-cost design. However, without care it can lead

to packet misordering, which is undesirable.

Despite this, the bus remains a bottleneck. A single shared bus has speed limitations

because of the number of different sources and destinations that a single shared bus has


13.4 The Take-a-Ticket Crossbar Scheduler


307
to handle. These sources and destinations add extra electrical loading that slows down signal

rise times and ultimately the speed of sending bits on the bus. Other electrical effects include

that of multiple connectors (from each line card) and reﬂections on the line [McK97].

The classical way to get around this bottleneck is to use a crossbar switch, as shown in

Figure 13.3, part d. A crossbar switch essentially has a set of 2N
parallel buses, one bus per

source line card and one bus per destination line card. If one thinks of the source buses as

being horizontal and the destination buses as being vertical, the matrix of buses forms what is

called a crossbar.

Potentially, this provides an N-fold speedup over a single bus, because in the best case all

N buses will be used in parallel at the same time to transfer data, instead of a single bus. Of

course, to get this speedup requires ﬁnding N
disjoint source–destination pairs at each time

slot. Trying to get close to this bound is the major scheduling problem studied in this chapter.

Although they do not necessarily go together, another design change that accompanied

crossbar switches designed between 1995 and 2002 is the use of special-purpose integrated

circuits (ASICs) as forwarding engines instead of general-purpose CPUs. These forwarding

engines are typically faster (because they are designed speciﬁcally to process Internet pack-

ets) and cheaper than general-purpose CPUs. Two disadvantages of such forwarding engines

include design costs for each such ASIC and the lack of programmability (which makes changes

in the ﬁeld difﬁcult or impossible). These problems have again led to proposals for faster but

yet programmable network processors (see Chapter 2).

13.4 THE TAKE-A-TICKET CROSSBAR SCHEDULER
The simplest crossbar is an array of N input buses and N output buses, as shown in Figure 13.4.

Thus if line card R wishes to send data to line card S, input bus R must be connected to output bus

S. The simplest way to make this connection is via a “pass” transistor, as shown in Figure 13.5.

For every pair of input and output buses, such as R and S, there is a transistor that when turned

on connects the two buses. Such a connection is known as a crosspoint. Notice that a crossbar

with N
inputs and N
outputs has N2crosspoints, each of which needs a control line from the

scheduler to turn it on or off.

Input 1

Input 2

Input 3

Output 1
Output 2
Output 3

F I G U R E 13.4
Basic crossbar switch.


308


C H A P T E R 1 3
Switching
Input R



Output S



Set to true to connect

Input R to Output S

F I G U R E 13.5
Connecting input from Line Card R to Line Card S by turning the pass transistor

connecting the two buses. Modern crossbars replace this simplistic design by multiplexer trees to reduce

capacitance.

While N2crosspoints seems large, easy VLSI implementation via transistors makes pin

counts, card connector technologies, etc., more limiting factors in building large switches.

Thus most routers and switches built before 2002 use simple crossbar-switch backplanes to

support 16–32 ports. Notice that multicast is trivially achieved by connecting input bus R to

all the output buses that wish to receive from R. However, scheduling multicast is tricky.

In practice, only older crossbar designs use pass transistors. This is because the over-

all capacitance (Chapter 2) grows very large as the number of ports increases. This in turn

increases the delay to send a signal, which becomes an issue at higher speeds. Modern imple-

mentations often use large multiplexer trees per output or tristate buffers [All02, Tur02].

Higher-performance systems even pipeline the data ﬂowing through the crossbar using some

memory (i.e., a gate) at the crosspoints.

Thus the design of a modern crossbar switch is actually quite tricky and requires careful

attention to physical layer considerations. However, crossbar-design issues will be ignored in

this chapter in order to concentrate on the algorithmic issues related to switch scheduling. But

what should scheduling guarantee?

For correctness, the control logic must ensure that every output bus is connected to at

most one input bus (to prevent inputs from mixing). However, for performance, the logic must

also maximize the number of line-card pairs that communicate in parallel. While the ideal

parallelism is achieved if all N output buses are busy at the same time, in practice parallelism

is limited by two factors. First, there may be no data for certain output line cards. Second, two

or more input line cards may wish to send data to the same output line card. Since only one

input can win at a time, this limits data throughput if the other “losing” input cannot send data.

Thus despite extensive parallelism, the major contention occurs at the output port. How

can contention for output ports be resolved while maximizing parallelism? A simple and

elegant scheduling scheme for this purpose was ﬁrst invented and used in DEC’s Gigaswitch.

An example of the operation of the so-called “take-a-ticket” algorithm [SKO+94] used there

is given in Figure 13.6.

The basic idea is that each output line card S essentially maintains a distributed queue for

all input line cards R waiting to send to S. The queue for S is actually stored at the input line

card itself (instead of being at S) using a simple ticket number mechanism like that at some

deli counters. If line card R wants to send a packet to line card S, it ﬁrst makes a request over

a separate control bus to S; S
then provides a queue number back to R over the control bus.

The queue number is the number of R’s position in the output queue for S.


Round 1


13.4 The Take-a-Ticket Crossbar Scheduler


309
3

3

4


2
1

2
1

3
1


A
B
C


Request

1

2

3

4


3

3

4


2

2

3


1

1

1


A
B

C



T1

T2

T3

Ticket grant

1

2

3

4


3

3

4


2

2

3


1

1

1


A

B

C



Connect

1

2

3

4

Round 2
3
2

3
2
1



A
B


1

2

3



3

3



2

2



1



A

B



T1



T2

T1



1

2

3



3

3



2

2



A

1B


1

2

3

4
3
1


C


Request

4


4


3


1


C



Ticket grant

4


4


3


1


C



Connect

4

Round 3
3



A



1



3



A


T1



T3



1



3



A


1

3

4


2

3 1


B

C


2

3

4


3

4


2

3 1


B
C


T2


T2
2

3

T1

4


3

4


2

3 1


B
C


2

3

4

Request

Ticket grant

Connect
F I G U R E 13.6
In the take-a-ticket scheduling mechanism, all input ports have a single input queue

that is labeled with the output port number to which each packet is destined. Thus in the top frame, inputs

A, B, and C send requests to output port 1. Output port 1 (top, middle) gives the ﬁrst number to A, the

second to B, etc., and these numbers are used to serialize access to output ports.

R then monitors the control bus; whenever S ﬁnishes accepting a new packet, S sends the

current queue number it is serving on the control bus. When R notices that its number is being

“served,” R places its packet on the input data bus for R. At the same time, S ensures that the

R–S crosspoint is turned on.

To see this algorithm in action, consider Figure 13.6, where in the top frame, input line

card A has three packets destined to outputs 1, 2, and 3, respectively. B has three similar packets

destined to the same outputs, while C
has packets destined to outputs 1, 3, and 4. Assume

the packets have the same size in this example (though this is not needed for the take-a-ticket

algorithm to work).

Each input port works only on the packet at the head of its queue. Thus the algorithm

begins with each input sending a request, via a control bus, to the output port to which the

packet at the head of its input queue is destined. Thus in the example each input sends a request

to output port 1 for permission to send a packet.

In general, a ticket number is a small integer that wraps around and is given out in order of

arrival, as in a deli. In this case, assume that A’s request arrived ﬁrst on the serial control bus,

followed by B, followed by C, though the top left picture makes it appear that the requests are

sent concurrently. Since output port 1 can service only one packet at a time, it serializes the

requests, returning T 1 to A, T 2 to B, and T 3 to C.


310


C H A P T E R 1 3
Switching
Thus in the middle picture of the top row, output port 1 also broadcasts the current ticket

number it is serving (T 1) on another control bus. When A sees it has a matching number for

input 1, in the picture on the top right, A then connects its input bus to the output bus of 1 and

sends its packet on its input bus. Thus by the end of the topmost row of pictures, A has sent the

packet at the head of its input queue to output port 1. Unfortunately, all the other input ports,

B and C, are stuck waiting to get a matching ticket number from output port 1.

The second row in Figure 13.6 starts with A sending a request for the packet that is now

at the head of its queue to output port 2; A is returned a ticket number, T 1, for port 2.1In the

middle picture of the second row, port 1 announces that it is ready for T 2, and port 2 announces

it is ready for ticket T 1. This results in the rightmost picture of the second row, where A is

connected to port 2 and B is connected to port 1 and the corresponding packets are transferred.

The third row of pictures in Figure 13.6 starts similarly with A and B sending a request

for ports 3 and 2, respectively. Note that poor C is still stuck waiting for its ticket number, T 3,

which it obtained two iterations ago, to be announced by output port 1. Thus C makes no more

requests until the packet at the head of its queue is served. A is returned T 1 for port 3, and B
is returned T 2 for port 2. Then port 1 broadcasts T 3 (ﬁnally!), port 2 broadcasts T 2, and port

3 broadcasts T 1. This results in the ﬁnal picture of the third row, where the crossbar connects

A and 3, B and 2, and C and 1.

The take-a-ticket scheme scales well in control state, requiring only two (log2N)-bit

counters at each output port to store the current ticket number being served and the highest

ticket number dispensed. This allowed the implementation in DEC’s Gigaswitch to scale easily

to 36 ports [SKO+94], even in the early 1990s, when on-chip memory was limited. The scheme

used a distributed scheduler, with each output port’s arbitration done by a so-called GPI chip

per line card; the GPI chips communicate via a control bus.

The GPI chips have to arbitrate for the (serial) control bus in order to present a request to

an output line card and to obtain a queue number. Because the control bus is a broadcast bus,

an input port can ﬁgure out when its turn comes by observing the service of those who were

before it, and it can then instruct the crossbar to make a connection.

Besides small control state, the take-a-ticket scheme has the advantage of being able to

handle variable-size packets directly. Output ports can asynchronously broadcast the next ticket

number when they ﬁnish receiving the current packet; different output ports can broadcast their

current ticket numbers at arbitrary times. Thus, unlike all the other schemes described later,

there is no header and control overhead to break up packets into “cells” and then do later

reassembly. On the other hand, take-a-ticket has limited parallelism because of head-of-line
blocking, a phenomenon we look at in the next section.

The take-a-ticket scheme also allows a nice feature called hunt groups. Any set of line

cards (not just physically contiguous line cards) can be aggregated to form an effectively

higher-bandwidth link called a hunt group. Thus three 100-Mbps links can be aggregated to

look like a 300-Mbps link.

The hunt group idea requires only small modiﬁcations to the original scheduling algorithm

because each of the GPI chips in the group can observe each other’s messages on the control

bus and thus keep local copies of the (common) ticket number consistent. The next packet

1Although not shown in the pictures, a ticket should really be considered a pair of numbers, a ticket number and

the output port number, so the same ticket number used at different output ports should cause no confusion at input

ports.


3
2



1



13.5 Head-of-Line Blocking
Time (in packet times)



311
3
2

4
3



1

1


A

B

C


1

2

3

4


A


B

A


C

B

A



B



C



C

F I G U R E 13.7
Example of head-of-line blocking caused by schemes like take-a-ticket. For each

output port, a horizontal time scale is drawn labeled with the input port that sent a packet to that output

port during the corresponding time period or a blank mark if there is none. Note the large number of

blanks, showing potentially wasted opportunities that limit parallelism.

destined to the group is served by the ﬁrst free output port in the hunt group, much as in a

delicatessen with multiple servers. While basic hunt groups can cause reordering of packets

sent to different links, a small modiﬁcation allows packets from one input to be sent to only

one output port in a hunt group via a simple deterministic hash. This modiﬁcation avoids

reordering, at the cost of reduced parallelism.

Since the Gigaswitch was a bridge, it had to handle LAN multicast. Because the take-a-

ticket scheduling mechanism uses distributed scheduling via separate GPI chips per output, it

is hard to coordinate all schedulers to ensure that every output port is free. Further, waiting for

all ports to have a free ticket for a multicast packet would result in blocking some ports that

were ready to service the packet early, wasting throughput. Hence multicast was handled by a

central processor in software and was thus accorded “second-class” status.

13.5 HEAD-OF-LINE BLOCKING
Forgetting about the internal mechanics of Figure 13.6, observe that there were nine potential

transmission opportunities in three iterations (three input ports and three iterations); but after

the end of the picture in the bottom right, there is one packet in B’s queue and two in C’s queue.

Thus only six of potentially nine packets have been sent, thereby taking limited advantage of

parallelism.

This focus on only input–output behavior is sketched in Figure 13.7. The ﬁgure shows the

packets sent in each packet time at each output port. Each output port has an associated time

line labeled with the input port that sent a packet during the corresponding time period, with a

blank if there is none. Note also that this picture continues the example started in Figure 13.6

for three more iterations, until all input queues are empty.

It is easy to see visually from the right of Figure 13.7 that only roughly half of the

transmission opportunities (more precisely, 9 out of 24) are used. Now, of course, no algorithm

can do better for certain scenarios. However, other algorithms, such as iSLIP (see Figure 13.11

in Section 13.8) can extract more parallel opportunities and ﬁnish the same nine packets in

four iterations instead of six.

In the ﬁrst iteration of Figure 13.7, all inputs have packets waiting for output 1. Since

only one (i.e., A) can send a packet to output 1 at a time, the entire queue at B (and C) is stuck

waiting for A to complete. Since the entire queue is held hostage by the progress of the head

of the queue, or line, this is called head-of-line (HOL) blocking. iSLIP and PIM get around

312


C H A P T E R 1 3
Switching
this limitation by allowing packets behind a blocked packet to make progress (for example,

the packet destined for output port 2 in the input queue at B can be sent to output port 2 in

iteration 1 of Figure 13.7) at the cost of a more complex scheduling algorithm.

The loss of throughput caused by HOL blocking can be analytically captured using a

simple uniform-trafﬁc model. Assume that the head of each input queue has a packet destined

for each of N outputs with probability 1/N . Thus if two or more input ports send to the same

output port, all but one input are blocked. The entire throughput of the other inputs is “lost”
due to head-of-line blocking.

More precisely, assume equal-size packets and one initial trial where a random process

draws a destination port at each input port uniformly from 1 to N. Instead of focusing on

input ports, let us focus on the probability that an output port O is idle. This is simply the

probability that none of the N input ports chooses O. Since each input port does not choose O
with probability 1 − 1/N, the probability that all N of them will not choose O is (1 − 1/N)N.

This expression rapidly converges to 1/e. Thus the probability that O is busy is 1 − 1/e, which

is 0.63. Thus the throughput of the switch is not N ∗ B, which is what it could be ideally if

all N output links are busy operating at B bits per second. Instead, it is 63% of this maximum

value, because 37% of the links are idle.

This analysis is simplistic and (incorrectly) assumes that each iteration is independent. In

reality, packets picked in one iteration that are not sent must be attempted in the next iteration

(without another random coin toss to select the destination). A classic analysis [KHM87] that

removes the independent-trials assumption shows that the actual utilization is slightly worse

and is closer to 58%.

But are uniform-trafﬁc distributions realistic? Clearly, the analysis is very dependent on

the trafﬁc distribution because no switch can do well if all trafﬁc is destined to one server port.

Simple analyses show that the effect of head-of-line blocking can be reduced by using hunt

groups, by using speedup in the crossbar fabric compared to the links, and by assuming more

realistic distributions in which a number of clients send trafﬁc to a few servers.

However, it should be clear that there do exist distributions where head-of-line blocking

can cause great damage to throughput. Imagine that every input link has B packets to port

1, followed by B packets to port 2, and so on, and ﬁnally B packets to port N. The same

distribution of input packets is present in all input ports. Thus clearly, when scheduling the

group of initial packets to port 1, essentially head-of-line blocking will limit the switch to

sending only one packet per input each time. Thus the switch reduces to 1/N of its possible

throughput if B is large enough. On the other hand, we will see that switches that use virtual

output queues (VOQs) (deﬁned later in this chapter) can, in the same situations, achieve nearly

100% throughput. This is because in such schemes each block of B packets stays in separate

queues at each input.

13.6 AVOIDING HEAD-OF-LINE BLOCKING VIA OUTPUT QUEUING
When HOL blocking was discovered, there was a slew of papers that proposed output queuing

in place of input queuing to avoid HOL blocking. Suppose that packets can somehow be sent

to an output port without any queuing at the input. Then it is impossible for packet P destined

for a busy output port to block another packet behind it. This is because packet P is sent off to

the queue at the output port, where it can only block packets sent to the same output port.

13.6 Avoiding Head-of-Line Blocking via Output Queuing


313
The simplest way to do this would be to run the fabric N times faster than the input links.

Then even if all N
inputs send to the same output in a given cell time, all N
cells can be sent

through the fabric to be queued at the output. Thus pure output queuing requires an N -fold

speedup within the fabric. This can be expensive or infeasible.

A practical implementation of output queuing was provided by the knockout [YHA87]

switch design. Suppose that receiving N cells to the same destination in any cell time is rare

and that the expected number is k, which is much smaller than N . Then the expected case can

be optimized (P11) by designing the fabric links to run k times as fast as an input link, instead

of N. This is a big savings within the fabric. It can be realized with hardware parallelism (P5)

by using k parallel buses.

Unlike the take-a-ticket scheme, all the remaining schemes in this chapter, including the

knockout scheme, rely on breaking up packets into ﬁxed-size cells. For the rest of the chapter,

cells will be used in place of packets, always understanding that there must be an initial stage

where packets are broken into cells and then reassembled at the output port.

Besides a faster switch, the knockout scheme needs an output queue that accepts cells k
times faster than the speed of the output link. A naive design that uses this simple speciﬁcation

can be built using a fast FIFO but would be expensive. Also, the faster FIFO is overkill, because

clearly the buffer cannot sustain a long-term imbalance between its input and output speeds.

Thus the buffer speciﬁcation can be relaxed (P3) to allow it to handle only short periods, in

which cells arrive k times as fast as they are being taken out. This can be handled by memory

interleaving and k parallel memories. A distributor (that does run k times as fast) sprays arriving

cells into k memories in round-robin order, and departing cells are read out in the same order.

Finally, the design has to fairly handle the case where the expected case is violated and

N
> k cells get sent to the same output at the same time. The easiest way to understand the

general solution is ﬁrst to understand three simpler cases.

Two contenders, one winner:
In the simplest case of k
=
1 and N
=
2, the arbiter

must choose one cell fairly from two choices. This can be done by building a primitive 2-by-2

switching element, called a concentrator, that randomly picks a winner and a loser. The winner

output is the cell that is chosen. The loser output is useful for the general case, in which several

primitive 2-by-2 concentrators are combined.

Many contenders, one winner: Now consider when k = 1 (only one cell can be accepted)

and N
> 2 (there are more than two cells that the arbiter must choose fairly from). A simple

strategy uses divide-and-conquer (P15, efﬁcient data structures) to create a knockout tree of

2-by-2 concentrators. As in the ﬁrst round of a tennis tournament, the cells are paired up using

N/2 copies of the basic 2-by-2 concentrator, each representing a tennis match. This forms

the bottom level of the tree. The winners of the ﬁrst round are sent to a second round of N /4

concentrators, and so on. The “tournament” ends with a ﬁnal, in which the root concentrator

chooses a winner. Notice that the loser outputs of each concentrator are still ignored.

Many contenders, more than one winner: Finally, consider the general case where k cells

must be chosen from N possible cells, for arbitrary values of k and N. A simple idea is to create

k separate knockout trees to calculate the ﬁrst k winners. However, to be fair, the losers of

knockout trees for earlier trees have to be sent to the knockout trees for the subsequent places.

This is why the basic 2-by-2 knockout concentrator has two outputs, one for the winner and

one for the loser, and not just one for the winner. Loser outputs are routed to the trees for later

positions.

314


C H A P T E R 1 3
Switching
Notice that if one had to choose four cells among eight choices, the simplest design would

assign the eight choices (in pairs) to four 2-by-2 knockout concentrators. This logic will pick

four winners, the desired quantity. While this logic is certainly much simpler than using four

separate knockout trees, it can be very unfair. For example, suppose two very heavy trafﬁc

sources, S1 and S2, happen to be paired up, while another heavy source, S3, is paired up with

a light source. In this case S1 and S2 would get roughly half the trafﬁc that S3 obtains. It is to

avoid these devious examples of unfairness that the knockout logic uses k separate trees, one

for each position.

The naive way to implement the trees is to begin running the logic for the Position j
tree strictly after all the logic for the Position j − 1 tree has completed. This ensures that all

eligible losers have been collected. A faster implementation trick is explored in the exercises.

Hopefully, this design should convince you that fairness is hard to implement correctly. This

is a theme that will be explored again in the discussion of iSLIP.

While the knockout switch is important to understand because of the techniques it intro-

duced, it is complex to implement and makes assumptions about trafﬁc distributions. These

assumptions are untrue for real topologies in which more than k clients frequently gang up to

concurrently send to a popular server. More importantly, researchers devised relatively simple

ways to combat HOL blocking without going to output queuing.

13.7 AVOIDING HEAD-OF-LINE BLOCKING BY USING PARALLEL ITERATIVE MATCHING
The main idea behind parallel iterative matching (PIM) [AOST93] is to reconsider input queu-

ing but to retroﬁt it to avoid head-of-line blocking. It does so by allowing an input port to

schedule not just the head of its input queue, but also other cells, which can make progress

when the head is blocked. At ﬁrst glance, this looks very hard. There could be a hundred

thousand cells in each queue; attempting to maintain even 1 bit of scheduling state for each

cell will take too much memory to store and process.

However, the ﬁrst signiﬁcant observation is that cells in each input port queue can be

destined for only N
possible output ports. Suppose cell P1 is before cell P2 in input queue

X and that both P1 and P2 are destined for the same output queue Y . Then to preserve FIFO

behavior,
P1 must be scheduled before P2 anyway. Thus there is no point in attempting to

schedule P2 before P1 is done. Thus obvious waste can be avoided (P1) by not scheduling

any cells other than the ﬁrst cell sent to every distinct output port.

Thus the ﬁrst step is to exploit a degree of freedom (P13) and to decompose the single input

queue of Figure 13.6 into a separate input queue per output at each input port in Figure 13.8.

These are called virtual output queues (VOQs). Notice that the top left picture of Figure 13.8

contains the same input cells as in Figure 13.7, except now they are placed in separate queues.

The second signiﬁcant observation is that communicating the scheduling needs of any

input port takes a bitmap of only N
bits, where N
is the size of the switch. In the bitmap,

a 1 in position i implies that there is at least one cell destined to output port i. Thus if each

of N input ports communicates an N-bit vector describing its scheduling needs, the scheduler

needs to process only N2bits. For small N
≤
32, this is not many bits to communicate via

control buses or to store in control memories.

The communicating of requests is indicated in the top left picture of Figure 13.8 by showing

a line sent from each input port to each output port for which it has a nonempty VOQ. Notice A

Round 1


13.7 Avoiding Head-of-line Blocking by Using Parallel Iterative Matching


315
1

2

3

1

2

3

1

3

4

Round 2
1

–
3

–
2

3

1

3


A

B

C

A

B

C



Request

1

2

3

4

1

2

3

4


1

2

3

1

2

3

1

3

4

1

–
3

–
2

3

1

3


A

B

C

A

B

C



Grant

1

2

3

4

1

2

3

4


1

2

3

1

2

3

1

3

4

1

–
3

–
2

3

1

3


A

B

C

a=1

A

B

C



Accept

1

2

3

4

1

2

3

4

–

a=1


Request

–

Grant

–

Accept
Round 3
1

–
–
–
–
3

–
3



A

B

C



1

2

3

4



1

–
–
–
–
3

–
3



A

B

C



1

2

3

4



1

–
–
–
–
3

–
3



A

B

C



1

2

3

4

–

a=1


Request

–

Grant

–

Accept
F I G U R E 13.8
The parallel iterative matching (PIM) scheme works by having all inputs send requests

in parallel to all outputs they wish to reach. PIM then uses randomization to do fair matching such that

outputs that receive multiple requests pick a random input, and inputs that receive multiple grants

randomly pick an output to send to. This three-round process can then be iterated to improve the size of

the matching.

does not have a line to port 4 because it has no cell for port 4. Notice also that input port C
sends a request for the cell destined for output port 4 in input port C, while the same cell is the

last cell in input queue C in the single-input-queue scenario of Figure 13.6.

What is still required is a scheduling algorithm that matches resources to needs. Although

the scheduling algorithm is clever, in the author’s opinion the real breakthrough was observing

that, using VOQs, input queue scheduling without HOL blocking is feasible to think about.

To keep the example in Figure 13.8 corresponding to Figure 13.6, assume that every packet in

the scenario of Figure 13.6 is converted into a single cell in Figure 13.8.

To motivate the scheduling algorithm used in PIM, observe that in the top left of

Figure 13.8, output port 1 gets three requests from A,
B, and C
but can service only one

in the next slot. A simple way to choose between requests is to choose randomly (P3a). Thus

in the Grant phase (top middle of Figure 13.8), output port 1 chooses B randomly. Similarly,

assume that port 2 randomly chooses A (from A and B), and port 3 randomly chooses A (from

A, B, and C). Finally, port 4 chooses its only requester, C.

However, resolving output-port contention is insufﬁcient because there is also input-

port contention. Two output ports can randomly grant to the same input port, which must

choose exactly one to send a cell to. For example, in the top middle of Figure 13.8, A has an


316


C H A P T E R 1 3
Switching
embarrassment of riches by getting grants from outputs 2 and 3. Thus a third, Accept, phase

is necessary, in which each input port chooses an output port randomly (since randomization

was used in the Grant phase, why not use it again?).

Thus in the top right picture of Figure 13.8, A randomly chooses port 2. B and C
have

no choice and choose ports 1 and 4, respectively. Crossbar connections are made, and the

packets from A to port 2, B to port 1, and C to to Port 4 are transferred. While in this case, the

corresponding match found was a maximal match (i.e., cannot be improved), in some cases

the random choices may result in a match that can be improved further. For example, in the

unlikely event that ports 1, 2, and 3 all choose A, the match size will only be of size 2.

In such cases, although not shown it in the ﬁgure, it may be worthwhile for the algorithm

to mask out all matched inputs and outputs and iterate more times (for the same forthcoming

time slot). If the match on the current iteration is not maximal, a further iteration will improve

the size of the match by at least 1. Note that subsequent iterations cannot worsen the match

because existing matches are preserved across iterations. While the worst-case time to reach a

maximal match for N inputs is N iterations, a simple argument shows that the expected number

of matches is closer to log N. The DEC AN-2 implementation [AOST93] used three iterations

for a 30-port switch.

Our example in Figure 13.8, however, uses only one iteration for each match. The middle

row shows the second match for the second cell time, in which, for example, A and C both ask

for port 1 (but not B, because the B-to-1 cell was sent in the last cell time). Port 1 randomly

chooses C, and the ﬁnal match is A, 3, B, 2, and C, 1. The third row shows the third match,

this time of size 2. At the end of the third match, only the cell destined to port 3 in input queue

B is not sent. Thus in four cell times (of which the fourth cell time is sparsely used and could

have been used to send more trafﬁc) all the trafﬁc is sent. This is clearly more efﬁcient than

the take-a-ticket example of Figure 13.6.

13.8 AVOIDING RANDOMIZATION WITH iSLIP
Parallel iterative matching was a seminal scheme because it introduced the idea that HOL could

be avoided at reasonable hardware cost. Once that was done, just as was the case when Roger

Bannister ﬁrst ran the mile in under 4 minutes, others could make further improvements. But

PIM has two potential problems. First, it uses randomization, and it may be hard to produce a

reasonable source of random numbers at very high speeds.2Second, it requires a logarithmic

number of iterations to attain maximal matches. Given that each of a logarithmic number

of iterations takes three phases and that the entire matching decision must be made within a

minimum packet arrival time, it would be better to have a matching scheme that comes close

to maximal matches in just one or two iterations.

iSLIP is a very popular and inﬂuential scheme that essentially “derandomizes” PIM and

also achieves very close to maximal matches after just one or two iterations. The basic idea is

extremely simple. When an input port or an output port in PIM experiences multiple requests,

it chooses a “winning” request uniformly at random, for the sake of fairness. Whereas Ethernet

2One can argue that schemes like RED require randomness anyway at routers. However, a poor-quality source

of random numbers in an RED implementation will be less noticed than poor-quality random numbers within a switch

fabric.

13.8 Avoiding Randomization with iSLIP


317
provides fairness with randomness, token rings do so using a round-robin pointer implemented

by a rotating token.

Similarly, iSLIP provides fairness by choosing the next winner among multiple contenders

in round-robin fashion using a rotating pointer. While the round-robin pointers can be initially

synchronized and cause something akin to head-of-line blocking, they tend to break free and

result in maximal matches over the long run, at least as measured in simulation. Thus the

subtlety in iSLIP is not the use of round-robin pointers but the apparent lack of long-term

synchronization among N such pointers running concurrently.

More precisely, each output (respectively input) maintains a pointer g initially set to the

ﬁrst input (respectively output) port. When an output has to choose between multiple input

requests, it chooses the lowest input number that is equal to or greater than g. Similarly, when

an input port has to choose between multiple output-port requests, it chooses the lowest output-

port number that is equal to or greater than a, where a is the pointer of the input port. If an

output port is matched to an input port X, then the output-port pointer is incremented to the

ﬁrst port number greater than X in circular order (i.e., g becomes X + 1, unless X was the last

port, in which case g wraps around to the ﬁrst port number).

This simple device of a “rotating priority” allows each resource (output port, input port)

to be shared reasonably fairly across all contenders at the cost of 2N
extra log2N pointers in

addition to the N2scheduling state needed on every iteration.

Figures 13.9 and 13.10 show the same scenario as in Figure 13.8 (and Figure 13.6), but

using a two-iteration iSLIP. Since each row is an iteration of a match, each match is shown

using two rows. Thus the three rows of Figure 13.9 show the ﬁrst 1.5 matches of the scenario.

Similarly, Figure 13.10 shows the remaining 1.5 matches.

The upper left picture of Figure 13.9 is identical to Figure 13.8, in that each input port

sends requests to each output port for which it has a cell destined. However, one difference

is that each output port has a so-called grant pointer g, which is initialized for all outputs to

be A. Similarly, each input has a so-called accept pointer called a, which is initialized for all

inputs to 1.

The determinism of iSLIP causes a divergence right away in the Grant phase. Compare

the upper middle of Figure 13.9 with the upper middle of Figure 13.8. For example, when

output 1 receives requests from all three input ports, it grants to A because A is the smallest

input greater than or equal to g1= A. By contrast, in Figure 13.8, port 1 randomly chose input

port B. At this stage the determinism of iSLIP seems a real disadvantage because A has sent

requests to output ports 3 and 4 as well. Because 3 and 4 also have grant pointers g3= g4= A,

ports 3 and 4 grant to A as well, ignoring the claims of B and C. As before, since C is the lone

requester for port 4, C gets the grant from 4.

When the popular A gets three grants back from ports 1, 2, and 3, A accepts 1. This is

because port 1 is the ﬁrst output equal to greater than A’s accept pointer, aA, which was equal

to 1. Similarly C chooses 4. Having done so, A increments aAto 2 and C increments aCto 1

(1 greater than 4 in circular order is 1). Only at this stage does output 1 increment its grant

pointer, g1, to B (1 greater than the last successful grant) and port 4 similarly increments to A
(1 greater than C in circular order).

Note that although ports 2 and 3 gave grants to A, they do not increment their grant pointers

because A spurned their grants. If they did, it would be possible to construct a scenario where

output ports keep incrementing their grant pointer beyond some input port I after unsuccessful

grants, thereby continually starving input port I. Note also that the match is only of size 2;


318


C H A P T E R 1 3
Switching
Round 1, Iteration 1
1



g
A



1



1



g
B

2

3

1

2


A

a
1

B


1

2


g
A

g
A


2

3

1

2


A

B


1

2


2

3

1


A

a
2

B


1

2


g
A

3


a
1


3


3


3


2

3


a
1


3gA

1

3

4


C

a
1



Request

4gA


1

3

4


C



Grant

4


1

3

4


C

a
1



Accept

4gA

Round 1, Iteration 2
1



1gB



1



1



1



A



1

2

3

1


A

a
2

B


2


g
A


2

3

1


A

B


2


2

3

1



B


2

2

3

1

3

4


a
1

C

a
1



Request

3gA

4gA


2

3

1

3

4



C



Grant

3

4


2

3

1

3

4



a
1



Accept

3

4

Round 2, Iteration 1
–


g
B



–


–


g
C

2

3

1


A

a
2

B


1

2


g
A


2

3

1


A

B


1

2


2

3

1


A

a
3

B


1

2


g
B

–
3

1

–

a
1

C

a
1



Request

3gA

g
A

4


–
3

1

–


C



Grant

3

4


–
3

1

–

a
2

C

a
1



Accept

3gA

g
A

4

F I G U R E 13.9
One and a half rounds of a sample iSLIP scenario.

thus, unlike Figure 13.8, this iSLIP scenario can be improved by a second iteration, shown

in the second row of Figure 13.9. Notice that at the end of the ﬁrst iteration the matched

inputs and outputs are not connected by solid lines (denoting data transfer), as shown at the

top right of Figure 13.8. This data transfer will await the end of the ﬁnal (in this case second)

iteration.

The second iteration (middle row of Figure 13.9) starts with only inputs unmatched on

previous iterations (i.e, B) requesting and only to hitherto unmatched outputs. Thus B requests

to 2 and 3 (and not to 1, though B has a cell destined for 1 as well). Both 2 and 3 grant B, and

B chooses 2 (the lowest one that is greater than or equal to its accept pointer of 1). One might

think that B should increment its accept pointer to 3 (1 plus the last accepted, which was 2).

However, to avoid starvation iSLIP does not increment pointers on iterations other than the

ﬁrst, for reasons that will be explained.

Thus even after B is connected to 2, 2’s grant pointer remains at A and 2’s accept pointer

remains at 1. Since this is the ﬁnal iteration, all matched pairs, including pairs, such as A, 1,

matched in prior iterations, are all connected and data transfer (solid lines) occurs.

The third row provides some insight into how the initial synchronization of grant and

accept pointers gets broken. Because only one output port has granted to A, that port (i.e., 1)

gets to move on and this time to provide priority to ports beyond A. Thus even if A
had a

second packet destined for 1 (which it does not in this example), 1 would still grant to B.

The remaining rows in Figure 13.9 and Figure 13.10 should be examined carefully by the

reader to check for the updating rules for the grant and accept pointers and to check which


Round 2, Iteration 2


13.8 Avoiding Randomization with iSLIP


319
–
2

3

1

–

A

a
3

B


1

2


g
C

g
B

g
A


–
2

3

1

–

A

B


1

2


–
2

3

1


A

a
3

B


1

2


g
C

g
B

3


a
2


3


3


3


–
3


a
2


3gA

1

3

–

C

a
1



Request

4gA


1

3

–

C



Grant

4


1

3

–

C

a
1



Accept

4gA

Round 3, Iteration 1
–


1gC



–


1



–


A



1gA

–
3

–

A

a
3

B


2


g
B


–
3

–

A

B


2


–
3

–

a
4

B


2


g
B

–
3

1

–
–

a
2

C

a
1



Request

3gA

4gA


–
3

1

–
–


C



Grant

3

4


–
3

1

–
–

a
2

C

a
2



Accept

3gB

4gA

Round 3, Iteration 2
–


g
A



–


–


g
A

–
3

–
–
3

1

–
–

A

a
4

B

a
2

C

a
2



Request

1

2

3

4


g
B

g
B

g
A


–
3

–
–
3

1

–
–

A

B

C



Grant

1

2

3

4


–
3

–
–
3

1

–
–

A

a
4

B

a
2

C

a
2



Accept

1

2

3

4


g
B

g
B

g
A

F I G U R E 13.10
Last one and a half rounds of the sample iSLIP scenario shown in Figure 13.9.

packets are switched at each round. The bottom line is that by the end of the third row of

Figure 13.10 the only cell that remains to be switched is the cell from B to 3. This can clearly

be done in a fourth cell time.

Figure 13.11 shows a summary of the ﬁnal scheduling (abstracting away from internal

mechanics) of the iSLIP scenario and should be compared in terms of scheduling density with

Figure 13.7. While these are just isolated examples, they do suggest that iSLIP (and similarly

PIM) tends to waste fewer slots by avoiding head-of-line blocking. Note that both iSLIP and

PIM ﬁnish the same input backlog in four cell times, as opposed to six.

Note also that when we compare Figure 13.9 with Figure 13.8, iSLIP looks worse than

PIM, because it required two iterations per match for iSLIP to achieve the same match sizes

Time (in cell slots)

3

3

4


2
1

2
1

3
1



A

B

C



1

2

3

4



A

B

C



B

A

C



C

A



B

F I G U R E 13.11
How iSLIP avoids HOL blocking to increase throughput in the scenario of

Figure 13.7.


320


C H A P T E R 1 3
Switching
as PIM does using one iteration per match. However, this is more illustrative of the startup

penalty that iSLIP pays rather than a long-term penalty. In practice, as soon as the iSLIP

pointers desynchronize, iSLIP does very well with just one iteration, and some commercial

implementations use just one iteration: iSLIP is extremely popular.

One might summarize iSLIP as PIM with the randomization replaced by round-robin

scheduling of input and output pointers. However, this characterization misses two subtle

aspects of iSLIP.

•
Grant pointers are incremented only in the third phase, after a grant is accepted:
Intuitively, if O grants to an input port I, there is no guarantee that I will accept. Thus if O
were to increment its grant pointer beyond O, it can cause trafﬁc from I to O to be

persistently starved. Even worse, McKeown et al. [Mea97] show that this simplistic

round-robin scheme reduces the throughput to just 63% (for Bernoulli arrivals) because

the pointers tend to synchronize and move in lockstep.

•
All pointers are incremented only after the ﬁrst iteration accept is granted: Once

again, this rule prevents starvation, but the scenario is more subtle, which the Exercises

will ask you to ﬁgure out.

Thus matches on iterations other than the ﬁrst in iSLIP are considered a “bonus” that

boosts throughput without being counted against a port’s quota.

13.8.1 Extending iSLIP to Multicast and Priority
iSLIP can be extended to handle priorities and multicast trafﬁc.

PRIORITIES
Priorities are useful to send mission-critical or real-time trafﬁc more quickly through the fabric.

For example, the Cisco GSR allows voice-over-IP trafﬁc, to be scheduled at a higher priority

than other trafﬁc, because it is rate limited and hence cannot starve other trafﬁc.

The Tiny Tera implementation handles four levels of priorities; thus each input port has

128 VOQs (one for each combination of 32 outputs and four priority levels). Thus each input

port supplies to the scheduler 128 bits of control input.

The iSLIP algorithm is modiﬁed very simply to handle priorities. First, each output port

keeps a separate grant pointer
gkfor priority level k, and each input port keeps a separate

accept pointer akfor each priority level k. In essence, the iSLIP algorithm is performed, with

each entity (input port, output port) performing the iSLIP algorithm on the highest-priority

level among inputs it sees.3
More precisely, each output port grants for only the highest-priority requests it receives;

similarly, each input port accepts only the highest-priority grant it receives. Notice that an input

port I may make a request at priority level 1 for output 5 and a request at priority level 2 for

output 6 because these are the highest-priority requests the port had for outputs 5 and 6. If both

outputs 5 and 6 grant to I , I does not choose between them based on accept pointers because

they are at different priorities; instead I chooses the highest-priority grant. On an accept in the

3Note that attempting to share the same pointer for all priority levels can cause low-priority trafﬁc from input I
to output J to be starved in the face of a combination of high-priority trafﬁc from I to J together with other low-priority

trafﬁc to J.

13.8 Avoiding Randomization with iSLIP


321
ﬁrst iteration for priority k between input I and output port O, the priority-k accept pointer at

I and the priority-k grant pointer at O are incremented.

MULTICAST
Because of applications such as video conferencing and protocols such as IP multicast, in which

routers replicate packets to more than one output port, supporting multicast in switches as a

ﬁrst-class entity is becoming important. Recall that the take-a-ticket scheme described earlier

handled multicast as a second-class entity by sending all multicast trafﬁc to a central entity (or

entities) that then sent the multicast trafﬁc on a packet-by-packet basis to the corresponding

outputs. The take-a-ticket mechanism wastes switch resources (control bandwidth, ports) and

provides lower performance (larger latency, less throughput) for multicast.

On the other hand, Figure 13.4 shows that the data path of a simple crossbar switch easily

supports multicasting. For example, if Input 1 in Figure 13.4 sends a message on its input

bus and the crosspoints are connected so that Input 1’s bus is connected to the vertical output

buses of Outputs 2 and 3, then Outputs 2 and 3 receive a copy of the packet (cell) at the same

time. However, with variable-size packets, the take-a-ticket distributed-control mechanism

must choose between waiting for all ports to free up at the same time and sending packets one

by one.

The iSLIP extension for multicast, called ESLIP, accords multicast almost the same status

as unicast. Ignoring priorities for the moment, there is one additional multicast queue per

input. While to avoid HOL blocking one would ideally like a separate queue for each possible

subset of output ports, that would require an impractical number of queues (216for 16 ports).

Thus multicast uses only one queue and, as such, is subject to some HOL blocking because a

multicast packet cannot begin to be processed unless the multicast packets ahead of it are sent.

Suppose input I
has packets for outputs O1,
O2, and O3 at the head of I’s multicast

queue.
I
is said to have a fanout of 3. Unlike in the unicast case, ESLIP maintains only a

shared multicast grant pointer and no multicast accept pointer at all, as opposed to separate

grant and accept pointers per port. Note that the use of a shared pointer implies a centralized

implementation, unlike the take-a-ticket scheduler. As shown later, the shared pointer allows

the entire switch to favor a particular input so that it can complete its fanout completely rather

than have several input ports send small portions of their multicast fanout at the same time.

Thus in the example I will send a multicast request to O1, O2, and O3. But output ports

like O2 may also receive unicast requests from other input ports, such as J. How should an

output port balance between multicast and unicast packets? ESLIP does so by giving multicast

and unicast trafﬁc higher priority in alternate cell slots. For example, in odd slots O2 may

choose unicast over multicast, and vice versa in even slots.

To continue our example, assume an odd time slot and assume that O2 has unicast trafﬁc

requests while O1 and O3 have no unicast requests. Then O2 will send a unicast grant, while

O1 and O3 will send multicast grants. O1 and O3 choose the input to grant to as the ﬁrst port

greater than or equal to the current shared multicast grant pointer, G. Assume that I is chosen,

and so O2 and O3 send multicast grants to I. Unlike unicast,
I
can accept all its multicast

grants.

However, unlike unicast scheduling, the grant pointer for multicast is not incremented to

1 past I until I
completes its fanout. Thus on the next cell slot, when the priority is given to

multicast, I will be able to transmit to O2. At that point, the fanout is completed, the multicast

grant pointer increments to I + 1, and the scheduler sends back a bit to I saying that the head

322


C H A P T E R 1 3
Switching
of its multicast queue has ﬁnished transmission so the next multicast packet can be worked on.

Notice that a single multicast is not necessarily completed in a single cell slot (which would

require all concerned outputs to be free), but by using fanout splitting across several slots.

Clearly, iSLIP can incur HOL blocking for multicast. Speciﬁcally, if the head of the

multicast queue P1 is destined for outputs O1 and O2 and both outputs are busy, but the next

packet P2 is destined for O3 and O4 and both are idle, P2 must wait for P1. It would be much

more difﬁcult to implement fanout splitting for packets other than the head of the queue. Once

again, this is because one cannot afford to keep a separate VOQ for each possible combination

of output-port destinations.

The ﬁnal ESLIP algorithm, which combines four levels of priority as well as multicasting,

is described somewhat tersely in McKeown [McK97]. It is implemented in Cisco’s GSR router.

13.8.2 iSLIP Implementation Notes
The heart of the hardware implementation of iSLIP is an arbiter that chooses between N
requests (encoded as a bitmap) to ﬁnd the ﬁrst one greater than or equal to a ﬁxed pointer. This

is what in Chapter 2 is called a programmable priority encoder; that chapter also described

an efﬁcient implementation that is nearly as fast as a priority encoder. Switch scheduling can

be done by one such grant arbiter for every output port (to arbitrate requests) and one accept

arbiter for every input port (to arbitrate between grants). Priorities and multicast are retroﬁtted

into the basic structure by adding a ﬁlter on the inputs before it reaches the arbiter; for example,

a priority ﬁlter zeroes out all requests except those at the highest-priority level.

Although in principle the unicast schedulers can be designed using a separate chip per

port, the state is sufﬁciently small to be handled by a single scheduler chip with control wires

coming in from and going to each of the ports. Also, the multicast algorithm requires a shared

multicast pointer per priority level, which also implies a centralized scheduler. Centralization,

however, implies a delay, or latency, to send requests and decisions from the port line cards to

and from the central scheduler.

To tolerate this latency, the scheduler [GM99a] works on a pipeline of m cells (8 in Tiny

Tera) from each VOQ and n cells (5 in Tiny Tera) from each multicast queue. This in turn

implies that each line card in the Tiny Tera must communicate 3 bits per unicast VOQ denoting

the size of the VOQ, up to a maximum of 8. With 32 outputs and four priority levels, each

input port has to send 384 bits of unicast information. Each line card also communicates the

fanout (32 bits per fanout) for each of ﬁve multicast packets in each of four priority levels,

leading to 640 bits. The 32 ∗ 1024 total bits of input information is stored in on-chip SRAM.

However, for speed the information about the heads of each queue (smaller state, for example,

only 1 bit per unicast VOQ) is stored in faster but less dense ﬂip-ﬂops.

Now consider handling multiple iterations. Note that the request phase occurs only on the

ﬁrst iteration and needs to be modiﬁed only on each iteration by masking off matched inputs.

Thus K iterations appear to take at least 2K time steps, because the grant and accept steps of

each iteration take one time step. At ﬁrst glance, the architecture appears to specify that the

grant phase of iteration k + 1 be started after the accept phase of iteration k. This is because

one needs to know whether an input port I has been accepted in iteration k so as to avoid doing

a grant for such an input in iteration k + 1.

What makes partial pipelining possible is a simple observation [GM99a]: If input I receives

any grant in iteration k, then I must accept exactly one and so be unavailable in iteration k + 1.

Thus the implementation speciﬁcation can be relaxed (P3) to allow the grant phase of iteration

13.9 Scaling to Larger Switches



323
k + 1 to start immediately after the grant phase of iteration k, thus overlapping with the accept

phase of iteration k. To do so, we simply use the OR of all the grants to input I (at the end of

iteration k) to mask out all of I’s requests (in iteration k + 1).

This reduces the overall completion time by nearly a factor of 2 time steps for k iterations

— from 2k to k + 1. For example, the Tiny Tera iSLIP implementation [GM99a] does three

iterations of iSLIP in 51 nsec (roughly OC-192 speeds) using a clock speed of 175 MHz; given

that each clock cycle is roughly 5.7 nsec, iSLIP has nine clock cycles to complete. Since each

grant and accept step takes two clock cycles, the pipelining is crucial in being able to handle

three iterations in nine cycles; the naive iteration technique would have taken at least 12 clock

cycles.

13.9 SCALING TO LARGER SWITCHES
So far this chapter has concentrated on fairly small switches that sufﬁce to build up to a 32-port

router. Most Internet routers deployed up to the point of writing have been in this category,

sometimes for good reasons. For instance, building wiring codes tend to limit the number of

ofﬁces that can be served from a wiring closet. Thus switches for local area networks [SP94]

located in wiring closets tend to be well served with small port sizes.

However, the telephone network has generally employed a few very large switches that

can switch 1000–10,000 lines. Employing larger switches tends to eliminate switch-to-switch

links, reducing overall latency and increasing the number of switch ports available for users

(as opposed to being used to connect to other switches). Thus, while a number of researchers

(e.g., Refs. Tur97 and CFFT97) have argued for such large switches, there was little large-scale

industrial support for such large switches until recently.

There are three recent trends that favor the design of large switches.

1.
DWDM: The use of dense wavelength-division multiplexing (DWDM) to effectively

bundle multiple wavelengths on optical links in the core will effectively increase the

number of logical links that must be switched by core routers.

2.
Fiber to the home: There is a good chance that in the near future even homes and ofﬁces

will be wired directly with ﬁber that goes to a large central ofﬁce–type switch.

3.
Modular, multichassis routers: There is increasing interest in deploying router clusters,

which consist of a set of routers interconnected by a high-speed network. For example,

many network access points connect up routers via an FDDI link or by a Gigaswitch (see

Section 13.4). Router clusters, or multichassis routers as they are sometimes called, are

becoming increasingly interesting because they allow incremental growth, as explained

later.

The typical lifetime of a core router is estimated [Sem02] to be 18–24 months, after which

trafﬁc increases often cause ISPs to throw away older-generation routers and wheel in new

ones. Multichassis routers can extend the lifetime of a core router to 5 years or more, by

allowing ISPs to start small and then to add routers to the cluster according to trafﬁc needs.

Thus at the time of writing, Juniper Networks led the pack by announcing its T-series

routers, which allow up to 16 single-chassis routers (each of which has up to 16 ports) to be

assembled via a fabric into what is effectively a 256-port router. At the heart of the multichassis


324


C H A P T E R 1 3
Switching
system is a scalable 256-by-256 switching system. Cisco Networks has recently announced

its own version, the CRS-1 Router.

13.9.1 Measuring Switch Cost
Before studying switch scaling, it helps to understand the most important cost metrics of a

switch. In the early days of telephone switching, crosspoints were electromagnetic switches,

and thus the N2crosspoints of a crossbar were a major cost. Even today this is a major cost for

very large switches of size 1000. But because crosspoints can be thought of as just transistors,

they take up very little space on a VLSI die.4
The real limits for electronic switches are pin limits on ICs. For example, given current

pin limits of around 1000, of which a large number of pins must be devoted to other factors,

such as power and ground, even a single bit slice of a 500-by-500 switch is impossible to

package in a single chip. Of course one could multiplex several crossbar inputs on a single

pin, but that would slow down the speed of each input to half the I/O speed possible on a pin.

Thus while the crossbar does indeed require N2crosspoints (and this indeed does matter

for large enough N), for values of N up to 200, much of the crosspoint complexity is contained

within chips. Thus one places the largest crossbar one can implement within a chip and then

one interconnects these chips to form a larger switch. Thus the dominant cost of the composite

switch is the cost of the pins and the number of links between chips. Since these last two are

related (most of the pins are for input and output links), the total number of pins is a reasonable

cost measure. More reﬁned cost measures take into account the type of pins (backplane, chip,

board, etc.) because they have different costs.

Other factors that limit the building of large monolithic crossbar switches are the capacitive

loading on the buses, scheduler complexity, and issues of rack space and power. First, if one

tries to build a 256-by-256 switch using the crossbar approach of 256 input and output buses,

the loading will probably result in not meeting the speed requirements for the buses. Second,

note that centralized algorithms, such as iSLIP, that require N2bits of scheduling state will not

scale well to large N.

Third, many routers are limited by availability requirements to placing only a few (often

one) ports in a line card. Similarly, for power and other reasons, there are often strict require-

ments on the number of line cards that can be placed in a rack. Thus a router with a large

port count is likely to be limited by packaging requirements to use a multirack, multichassis

solution consisting of several smaller fabrics connected together to form a larger, composite

router. The following subsections describe strategies for doing just this.

13.9.2 Clos Networks for Medium-Size Routers
Despite the lack of current focus on crosspoints in VLSI technology, our survey of scalable

fabrics for routers begins by looking at the historically earliest proposal for a scalable switch

fabric. Charles Clos ﬁrst proposed his idea in 1955 to reduce the expense of electromechanical

switching in telephone switches. Fortunately, the design also reduces the number of compo-

nents and links required to connect up a number of smaller switches. It is thus useful in a

present-day context. Speciﬁcally, a Clos network appears to be used in the Juniper Networks

T-series multichassis router product, introduced 47 years later, in 2002.

4However, in the wheel of time, the number of crosspoints again may begin to matter for optical switches!


N


n by k
n by k


NbyN
n
n
NbyN
n
n


13.9 Scaling to Larger Switches
k by n
k by n


N


325
inputs



n by k


NbyN
n
n
F I G U R E 13.12
Three-stage Clos network.




k by n

outputs

The basic Clos network uses a simple divide-and-conquer (P15) approach to reducing

crosspoints by switching in three stages, as shown in Figure 13.12. The ﬁrst stage divides the

N total inputs into groups of n inputs each, and each group of n inputs is switched to the second

stage by a small (n-by-k) switch. Thus there are N /n “small” switches in the ﬁrst stage.

The second stage consists of k switches, each of which is an N/n-by-N /n switch. Each of

the k outputs of each ﬁrst-stage switch is connected in order to all the k second-stage switches.

More precisely, output j of switch i in the ﬁrst stage is connected to input i of switch j in the

second stage. The third stage is a mirror reversal of the ﬁrst stage, and the interconnections

between the second and third stages are also the mirror reversal of those between the ﬁrst and

second stages. The view from outputs leftward to the middle stage is the same as the view

from inputs to the middle stage. More precisely, each of the N /n outputs of the ﬁrst stage is

connected in order to the inputs of the third stage.

A switch is said to be nonblocking if whenever the input and output are free, a connection

can be made through the switch using free resources. Thus a crossbar is always nonblocking

by selecting the crosspoint corresponding to the input–output pair, which is never used for any

other pair. On the other hand, in Figure 13.12, every input switch has only k connections to

the middle stage, and every middle stage has only one path to any particular switch in the third

stage. Thus, for small k it is easily possible to block a new connection because there is no path

from an input I to a middle-stage switch that has a free line to an output O.

CLOS NETWORKS IN TELEPHONY
Clos’s insight was to see that if k
≥
2n − 1, then the resulting Clos network could indeed

simulate a crossbar (i.e., is nonblocking) while still reducing the number of crosspoints to

be 5.6N
N
instead of N2. This can be a big savings for large N . Of course, to achieve this

crosspoint reduction, the Clos network has increased latency by two extra stages of switching

delay, but that is often acceptable.

The proof of Clos’s theorem is easy to see from Figure 13.13. If a hitherto-idle input

i wishes to be connected to an idle output o, then consider the ﬁrst-stage switch
S that
I
is


326


C H A P T E R 1 3
Switching
n
1

busy inputs
S
new input i



n
1 busy

switches



M


free

switch



T
n
1 busy

switches



O
F I G U R E 13.13
Proof that a Clos network with k = 2n − 1 is nonblocking.

connected to. There can be at most n − 1 other inputs in S that are busy (S is an n-by-k switch).

These n − 1 busy input links of S can be connected to at most n − 1 middle-stage switches.

Similarly, focusing on output o, consider the last-stage switch T
that o is connected to.

Then T
can have at most n − 1 other outputs that are busy, and each of these outputs can be

connected via at most n − 1 middle-stage switches. Since both S
and T
are connected to k
middle-stage switches, if k ≥ 2n − 1, then it is always possible to ﬁnd a middle-stage switch

M that has a free input link to connect to S and a free output link to connect to T . Since S
and T
are assumed to be crossbars or otherwise nonblocking switches, it is always possible to

connect i to the corresponding input link to M and to connect the corresponding output link of

M to o.

If k = 2n − 1 and n is set to its optimal value of


√
N/2, then the number of crosspoints

(summed across all smaller switches in Figure 13.12) becomes 5.6N
N. For example, for

N
= 512, this reduces the number of crosspoints from 4.2 million for a crossbar to 516,096

for a three-stage Clos switch. Larger telephone switches, such as the No. 1. ESS, which can

handle 65,000 inputs, use an eight-stage switch for further reductions in crosspoint size.

CLOS NETWORKS AND MULTICHASSIS ROUTERS
On the other hand, for networking using VLSI switches, what is important is the total number

of switches and the number of links interconnecting switches. Recall that the largest possible

switches are fabricated in VLSI and that their cost is a constant, regardless of their crosspoint

size. Juniper Networks, for example, uses a Clos network to form effectively a 256-by-256

multichassis router by connecting sixteen 16-x-16 T-series routers in the ﬁrst stage.

Using a standard Clos network for a fully populated multichassis router would require

16 routers in the ﬁrst stage, 16 in the third stage, and k
= 2 ∗ 16 − 1 = 31 switches in the


13.9 Scaling to Larger Switches



327
middle stage. Clearly, Juniper can (and does) reduce the cost of this conﬁguration by setting

k = n. Thus the Juniper multichassis router requires only 16 switches in the middle stage.

What happens to a Clos network when
k
reduces from 2n − 1 to
n? If
k
=
n, the

Clos network is no longer nonblocking. Instead, the Clos network becomes what is called

rearrangeably nonblocking. In other words, the new input i can be connected to o as long as

it’s possible to rearrange some of the existing connections between inputs and outputs to use

different middle-stage switches. A proof and possible switching algorithm is described in the

Appendix. It can be safely skipped by readers uninterested in the theory.

The bottom line behind all the math in Section A.3.1 in the Appendix is as follows. First,

k
=
n
is clearly much more economical than k
=
2n − 1 because it reduces the number

of middle-layer switches by a factor of 2. However, while the Clos network is rearrangably

nonblocking, deterministic edge-coloring algorithms for switch scheduling appear at this time

to be quite complex. Second, the matching proof for telephone calls assumes that all calls

appear at the inputs at the same time; when a new call arrives, existing calls have to be

potentially rearranged to ﬁt the new routes. So what does Juniper Networks do when faced

with this potential choice between economy (k = n) and complexity (for edge coloring and

rearrangement)?

While it’s not possible to be sure about what Juniper actually does, because their documen-

tation is (probably intentionally) vague, one can hazard some reasonable guesses. First, it is

clear they ﬁnesse the whole issue of rearrangement by replacing calls with packets and packets

by ﬁxed-size cells within the fabric. Thus in each cell time, cells appear at each input destined

to every output; each new cell time requires a fresh application of the matching algorithm,

unfettered by the past. Second, their documentation indicates that in place of doing a slow,

perfect job using edge coloring, they do a reasonable, but perhaps imperfect, job by distributing

the trafﬁc of each input across the middle switches using some form of load balancing.

The Juniper documentation claims that “dividing packets into cells and then distributing

them across the Clos fabric achieves the same effect as moving connections in a circuit-

switched network because all the paths are used simultaneously.” While this is roughly right

in a long-term sense, simple deterministic algorithms (in which each input chooses the middle

switch to send its next cell in round-robin order; see Exercises) can lead to hot spots in terms

of congested middle switches.

Thus it may be that the actual algorithm is deterministic and has possible cases of long-term

congestion (which can then be brushed aside by marketing as being pathological). However, it

may also be that the actual algorithm is randomized. In the simplest version, each input switch

picks a random middle switch (P3a) for each cell it wishes to transmit.

In a formal probabilistic sense, the expected number of cells each middle switch will

receive will be N /n, which is exactly the number of output links each middle switch has. Thus

if there is a stream of cells going to distinct outputs,5the switch fabric can be expected to

achieve 100% throughput in the expected case.

However, randomization is trickier to implement than it may sound. First, just as with

hash functions, there is a reasonable probability of “collisions,” where too many input switches

choose the same output switch. This can reduce throughput and may require buffering within

5If there are cells going to the same output, there is nothing anyone can do about the loss in throughput

anyway.


328


C H A P T E R 1 3
Switching
the switch (or a two-phase process in which inputs make requests to middle switches before

sending cells).

The reduced throughput can, of course, be compensated for by using a standard industry

trick: speeding up internal switch links slightly. Although not given adequate attention in this

chapter, speedup is a very important technique in real switches to allow simple designs while

retaining efﬁciency.

Second, one has to ﬁnd a good way to implement the randomization. Fortunately, while

there are many poor implementations in existing products, there are, in fact, some excel-

lent hardware random number generators. One good choice [All02] is the Tausworth [L’E96]

random number generator. It can be implemented easily using three linear feedback shift reg-

isters (LFSRs; see Chapter 9) that are XOR’ed together. Despite its compact implementation,

Tausworth passes many sophisticated tests for randomness, such as the diehard test [Mar02].

Third, the algorithms to reassemble cells into packets may be more complex when using

randomized load balancing than with deterministic load balancing; in the latter case, the

reassembly logic knows where to expect the next packet from.

13.9.3 Benes Networks for Larger Routers
Just as the No. 1. ESS telephone switch switches 65,000 input links, Turner [Tur97, CFFT97]

has made an eloquent case that the Internet should (at least eventually) be built of a few

large routers instead of several smaller routers. Such topologies can reduce the wasted links

for router-to-router connections between smaller routers and thus reduce cost; they can also

reduce the worst-case end-to-path length, reducing latency and improving user response times.

Essentially, a Clos network has roughly N
N scaling, in terms of crosspoint complexity

using just three stages. This trade-off and general algorithmic experience (P15) suggest that

one should be able to get N log N crosspoint complexity while increasing the switch depth to

log N. Such switching networks are indeed possible and have been known for years in theory,

in telephony, and in the parallel computing industry. Alternatives, such as Butterﬂy, Delta,

Banyan, and Hypercube networks, are well-known contenders.

While the subject is vast, this chapter concentrates only on the Delta and Benes networks.

Similar networks are used in many implementations. For example, the Washington University

Gigabit switch [CFFT97] uses a Benes network, which can be thought of as two copies of

a Delta network. Section A.4 in the Appendix outlines the (often small) differences between

Delta networks and others of the same ilk.

The easiest way to understand a Delta network is recursively. Imagine that there are

N
inputs on the left and that this problem is to be reduced to the problem of building two

smaller (N/2)-size Delta networks. To help in this reduction, assume a ﬁrst stage of 2-by-2

switches. A simple scheme (Figure 13.14) is to inspect the output that every input wishes to

speak to. If the output is in the upper half (MSB of output is 0), then the input is routed to the

upper N /2 Delta Network; if the output is in the lower half (i.e., MSB = 1), the input is routed

to the lower N /2 Delta network.

To economize on the ﬁrst stage of two-input switches, group the inputs into consecutive

pairs, each of which shares a two-input switch, as in Figure 13.14. Thus if the two input cells

in a pair are going to different output halves, they can be switched in parallel; otherwise,

one will be switched and the other is either dropped or buffered. Of course, the same process

can be repeated recursively for both of the smaller (N/2)-size Delta networks, breaking them

up into a layer of 2-by-2 switches followed by four N /4 switches, and so on. The complete


N


0

1

0

1

0

1



13.9 Scaling to Larger Switches
0

(N/2)-size

Delta network

Output MSB
0

N/2
1

N/2

(N/2)-size

Delta network

Output MSB
1

N
1



329
F I G U R E 13.14
Constructing a Delta network recursively by reducing the problem of constructing

an N-input Delta network to the problem of constructing two (N/2)-input Delta networks.

expansion of a Delta network is shown in the ﬁrst half of Figure 13.15. Notice how the recursive

construction in Figure 13.14 can be seen in the connections between the ﬁrst and second stages

in Figure 13.15.

Thus to reduce the problem to 2 Ч 2 switches takes log N stages; since each stage has N /2

crosspoints, the binary Delta network has N log N crosspoint and link complexity. Clearly, we

can also construct a Delta network by using d-by-d switches in the ﬁrst stage and breaking

up the initial network into d Delta networks of size N/d each. This reduces the number of

stages to logdN and link complexity to n logdN. Given VLSI costs, it is cheaper to construct

a switching chip with as large a value of d as possible to reduce link costs.

The Delta network, as do many of its close relatives (see Section A.4) such as the Banyan

and the Butterﬂy, has a nice property called the
self-routing
property. For a binary Delta

network, one can ﬁnd the unique path from a given input to a given output o = o1, o2, . . . , os
expressed in binary by following the link corresponding to the value of oiin stage i. This

should be clear from Figure 13.14, where we use the MSB at the ﬁrst stage, the second bit

at the second stage, and so on. For d
≥ 2, write the output address as a radix-d number, and

follow successive digits in a similar fashion.

An interesting property that one can intuitively see in Figure 13.14 is that the Delta network

is reversible. It is possible to trace a path from an output to an input by following bits of the

input in the same way. Thus in Figure 13.14 notice that in going from outputs to inputs, the

next-to-last bit of the input selects between two consecutive ﬁrst-stage switches, and the last

bit selects the input. This reversibility property is important because it allows the use of a

mirror-reversed version of the Delta (see second half of Figure 13.15) with similar properties

as the original Delta.

One problem with the Delta network is congestion. Since there is a unique path from

each input to each output, the Delta network is emphatically not a permutation network. For

example, if each successive pair of inputs wishes to send a cell to the same output half, only

half of the cells can proceed to second stage; if this repeats, only a quarter can proceed to


330


C H A P T E R 1 3
Switching
Distribute

1000

1111

1001

1011



Route and copy



1000

1001

1011

1111

F I G U R E 13.15
Doing multicast copy-twice routing using a Benes network, in which the ﬁrst half

distributes load and the second routes and copies. The ﬁrst half is a Delta network (Figure 13.14), and

the second half is a mirror-reversed Delta network.

the third stage; and so on. Thus there are combinations of output requests for which the Delta

network throughput can reduce to that of one link, as opposed to N links.

Clearly, one way to make the Delta network less susceptible to congestion for arbitrary per-

mutations of input requests is to add more paths between an input and an output. Generalizing

the ideas in a Clos network (Figure 13.12), one can construct a Benes network (Figure 13.15),

which consists of two (log N)-depth networks: The left half is a standard Delta network, and

the right half is a mirror-reversed Delta network. Look at the right half backwards, going left

from the outputs: Notice that the connections from the last stage to the next-to-last stage are

identical to those between the ﬁrst and second stages.

One can also visualize a Benes network recursively (P15) by extending Figure 13.14 by

adding a third stage of 2-by-2 switches and by connecting these third stages to the two (N/2)-

sized networks in the middle in the same way as the ﬁrst-stage switches are connected to the

two middle (N/2)-sized networks (Figure 13.16). Observe that this recursion can be used to

directly create Figure 13.15 without creating two separate Delta networks.

Observe the similarity between the recursive version of the Benes network in Figure 13.16

and the Clos network of Figure 13.12. This similarity can be exploited to prove that the Benes
can route any permutation of output requests in a manner similar to our proof (see earlier box)

of the rearrangably nonblocking property of a Clos network.

In each of two iterations, start by doing a perfect matching between the ﬁrst and last

stages of Figure 13.16, as before, and pick one of the two middle switches. However, rather

than stopping here as in the Clos proof, the algorithm must recursively follow the same

routing procedure in the (N/2)-sized Benes network. Alternatively, the whole process can


0

1



(N/2)-size



13.9 Scaling to Larger Switches



331
N


0

1

0

1


Benes network

(N/2)-size

Benes network

F I G U R E 13.16
Recursively constructing a Benes network.

be formulated using edge coloring. The ﬁnal message is that it is possible to perfectly route

arbitrary permutations in a Benes network; however, doing so is fairly complex and is unlikely

to be accomplished cheaply in a minimum packet arrival time.

However, recall the earlier argument that a randomized strategy works well, in an expected

sense, for Clos networks instead of a more complex and deterministic edge-coloring scheme.

Analagous to picking a random middle switch in the Clos network, returning to Figure 13.15

one can pick a random destination for each cell in the ﬁrst half. One can then route from the

random intermediate destination to the actual cell destination (using reverse Delta routing) in

the second half. The roots of this idea of using random intermediate destinations go back to

Valiant [Val90], who ﬁrst used it to route in a (single-copy) hypercube.

As in the case of a Clos network using a random choice of middle switches, it can be shown

that (in an expected sense) no internal link gets congested as long as no input or output link is

congested. Intuitively, the load-splitting half takes all the trafﬁc destined for any output link

from any input and spreads it evenly over all the N output links of the ﬁrst half of Figure 13.15.

In the second half, because of the mirror-image structure, all the trafﬁc of the link fans in back

to the destined output links.

For example, consider the upper link coming into the ﬁrst switch in the last stage of

Figure 13.15. An important claim is that this upper link will carry half of the trafﬁc to output

link 1. This is because this upper link carries all the trafﬁc destined for output link 1 from the

top half of the input nodes in the route-and-copy network (mirror-reversed Delta). And by the

load-splitting property of the distribute network (the ﬁrst half of the Delta network), this is

half of the trafﬁc destined for output link 1. Similarly, it is possible to argue that the upper link

carries half the trafﬁc going to output link 2. Thus if output links 1 and 2 are not saturated,

neither will the upper link to switch 1 in the last stage be. One can make a similar argument

for any internal link in the second half.

While some of these properties of a Benes network were known before, Turner [Tur97]

extended these ideas to include multicast. Notice that our previous example of a scalable switch

fabric, the Juniper Clos-based multichassis router, is silent about how multicast is handled.

Multicast is handled in a potentially second-class fashion using a server-based approach, as

332


C H A P T E R 1 3
Switching
in the take-a-ticket scheme. However, in the Washington University and Growth Network

switches [Tur97, CFFT97], Turner showed how to handle multicast trafﬁc in ﬁrst-class fashion.

Thus his vision is for large, scalable, multimedia switches that will need to handle multicast

trafﬁc (for, say, video conferencing) as the rule rather than the exception.

To extend the Benes routing ideas to multicast, Turner starts by devising a simpler form

of multicast, called copy-twice multicast. In this simpler problem, each input may specify two

outputs. It is the job of the network to send two copies of the input cell to the two speciﬁed

output ports. If this can be done and output links can be recycled back to inputs, then the two

copies created in the ﬁrst pass can be extended to four in the second pass and to 2icopies in i
passes through the Benes network.

In Figure 13.15 for example, the ﬁfth input link has a cell destined to 1000 (i.e., output 8)

and to 1111 (i.e., to output 15). In the ﬁrst half, the cell is randomly routed to input 7 of the

second half. In the second half, follow the bits of the real outputs, MSB ﬁrst, until the ﬁrst

point that the two output addresses differ. As usual, a 0 in the current bit is switched upward

and a 1 is switched downward. Thus in the ﬁrst stage of the copy network, the cell is routed to

the downlink because both output addresses start with 1.

Life gets more exciting at the second stage because in the second bit from the right, the

addresses differ. Thus the second-stage switch in the copy network (more precisely the fourth

switch from the top) now replicates the cell in two directions. The two output paths have

separated at the ﬁrst differing bit. From now each of the two cells (the single cell recall is now

two cells) follows the address of its corresponding output. Check that following the last two

bits of 1000 and 1111 will cause the two cells to reach outputs 8 and 15 in Figure 13.15.

Because of a very similar intuition, it can be shown that doing the copy at the ﬁrst

differing bit does not cause any internal link to be overloaded if the output and input links are

not overloaded [Tur97]. In fact, the same result would hold if a copy-3 network (i.e., a network

capable of producing three copies in one pass) was used. So why stop at two?

It turns out that when a cell comes into a switch it carries a multicast output-link speciﬁer

that has to be translated into two (or more) unicast speciﬁers for each pass. Similarly, each cell

must carry two (or more) addresses during its travels. Thus using a small number like 2 limits

the complexity of the port-mapping operation and the header overhead. Using larger numbers

would only decrease the number of passes to replicate a multicast cell.

One of the nice features of Turner’s multicast design is that larger multicast fanouts can

be handled by multiple iterations. This can be logically pictured as a multicast binary tree

(P15) across several Benes networks connected in series. Of course, in reality the same Benes

network is reused, reducing the cost. However, this mental picture indicates why adding a new

multicast connection is very efﬁcient. It simply involves adding a new leaf to the tree, with a

minimum of disturbance to existing multicast tree nodes or other connections [Tur97].

Thus the Turner switch tends to use resources optimally because of recycling. The design

allows resources (crosspoints, mapping tables, etc.) to scale as N log N, can handle any

conﬁguration of unicast and multicast trafﬁc, and can add or remove an endpoint from a

multicast tree in constant time. Competing switch architectures fail to satisfy all these con-

ditions, sometimes spectacularly. This means that in practice, they can handle only a very

limited amount of multicast trafﬁc. Of course, one can argue about the current importance of

multicast, which is certainly limited at the time of writing. However, with the rise of videocon-

ferencing over the Internet, one can clearly envision a future where large multimedia switches

are key.

13.10 Scaling to Faster Switches



333
Before ending this section, it is worth noting that just as with the Clos switch, the concep-
tual simplicity of a randomized load-balancing strategy for a Benes network comes with some

attendant implementation complexity. First, since randomized load balancing is not perfect,

the Turner switch needs buffers and ﬂow control. Second, it is important to get the randomiza-

tion done right. The ﬁrst prototype Washington University switch [CFFT97] used simple load

balancing based on a counter. However, when this switch was redesigned as part of a company

called Growth Networks [Tur02], the switch used a much more sophisticated randomizer to

deal with pathological input patterns. Finally, efﬁcient resequencing of cells takes special effort

in this architecture [Tur97].

13.10 SCALING TO FASTER SWITCHES
The preceding section focused on how switches can scale in size. This section studies how

switches can scale in
speed. Now, it may be that the speeds of individual ﬁber channels

level off at some point. Many pundits say that fundamental SRAM and optical limits will

limit individual ﬁber channels to OC-768 speeds. The capacity of ﬁber may then be used for

producing more individual channels (e.g., using multiple wavelengths) rather than higher-

speed individual channels. The use of more channels then affects switching only in terms of

increasing port count and can be handled using the techniques of the previous section.

While this is one viewpoint, the lessons of history should teach us that it is certainly pos-

sible for individual applications to increase their speed needs and for technology surprisingly

to keep pace by producing faster link speeds that increase from 40 Gbps today to 10 terabits

in, say, 5 years. Thus it is worthwhile to look for techniques to scale switches in speed. There

are three common techniques: bit slicing, the use of short links, and the use of randomized
memory sharing.

13.10.1 Using Bit Slicing for Higher-Speed Fabrics
The simplest way to cope with link speed increases is to use a faster clock rate to run the

switching electronics. Unfortunately, optical speeds increase exponentially, while ASIC clock

rates increase only at around 10% per year. However, by Moore’s law, the number of transistors

placed on a chip doubles every 18–24 months without a cost increase. Thus the simplest way

to cope with link speed increases is to use parallelism.
Suppose it were possible to build a crossbar where every link has speed S. Then to handle

links of speed kS for some constant k, a design could use k crossbar “slices.” For every group

of k bits coming from a link, one bit each is sent to each crossbar slice. Thus each slice sees a

reduced link speed of kS/k = S and thus can be feasibly implemented. Of course, this implies

that the reassembly logic can scale in speed.

If the bits are distributed to slices in deterministic fashion (i.e., bit 1 of the ﬁrst cell goes to

slice 1, bit 2 to slice 2, etc.), the reassembly logic can be simpliﬁed because it knows on which

slice to expect the next bit. However, care must be taken to avoid synchronization errors. The

scheduler can make the same decision for all slices, making the scheduler easy to build.

The Juniper T-series [Sem02] uses four active switch fabric planes (i.e., slices). It also uses

a ﬁfth plane as a hot-standby for redundancy. Since each plane uses a request-grant mechanism,

if a grant does not return within a timeout, a plane failure can be detected. At this point, only the


334


C H A P T E R 1 3
Switching
cells in transit within the failed plane are lost, the failed plane is swapped out for maintenance,

and the standby plane is swapped in.

While little discussed so far, redundancy and fault tolerance are crucial for large switch

designs because more is at stake. If a small, 8-port router fails, only a few users are affected.

But a large, 256-port-by-256-port router must work nearly always, with internal redundancy,

masking out faults. This is because external redundancy, in terms of a second such router,

is too expensive. Most ISPs require core routers to be NEBS (Network Equipment Building

System) [NEB02] compliant. Typically, large routers are expected to have at most 5 minutes

of downtime in a year.

13.10.2 Using Short Links for Higher-Speed Fabrics
One feature of interconnection networks ignored so far is the physical length of the links used

between stages. Links come in various forms, from serial links between chips, to backplane

traces, to cable connections between different line cards. Intuitively, the length matters because

long wires increase delay and decrease bit rate, unless compensated for using more expensive

signaling technology, such as optical signaling.

A look at the Delta and Clos networks shows that these networks use at least a few long

wires between stages, whose length scales as O(N ). There are, however, interconnect networks

that can be packaged with uniformly short wires. These are the so-called low-dimensional mesh

networks. Such mesh networks have a checkered history in parallel computing, being used by

Cray and Intel supercomputers.

The simplest low-dimensional mesh is the 1D torus, which is basically a line of nodes in

which the last node is also connected to the ﬁrst node to form a logical ring (Figure 13.17).

A 2D torus is basically a two-dimensional grid of nodes where the last node in each row or

column is also connected to the ﬁrst node in the same row or column. A 3D torus is the same

idea extended to a three-dimensional grid.

Even a 1D torus, which is logically a ring, appears to have one long wire that connects

the ﬁrst and last nodes (Figure 13.17). However, a clever way to amortize this long line length

A

A



B

D



C

B



D

One long wire

C

All short wires

F I G U R E 13.17
How a 1D torus can be packaged physically using short wires.

13.10 Scaling to Faster Switches



335
across all nodes is to use a simple degree of freedom (P13) and to lay out the ﬁrst half of the

nodes on the forward path of the ring (Figure 13.17) and the second half on the reverse path.

While the length of the A-to-B wire may have doubled, there are no long wires. The same idea

can be extended for 2D and 3D toruses by repeating this idea across rows and columns.

Like a Butterﬂy or Delta network, the problem with a 1D torus, however, is that it suffers

from congestion, because there are only two paths between two inputs. It also suffers from

high latency because some pairs of nodes have to travel O(N/2) hops. The congestion and

latency problems are relieved by using a 3D torus. For example, in a 3D torus that is 8 by 8

by 8, an average message can choose [Dal02] between 90 paths of six hops each.

The Avici TSR Router [Dal02] is an example of a router built using a 3D torus. It can

handle up to 560 line cards, and the use of short wires allows it to be packaged very neatly. A

260-line-card conﬁguration can be packaged without any cables by connecting only adjacent

backplanes using jumpers. The 560-line-card version uses one set of short cables between two

rows of racks [Dal02].

Besides the use of short links, the 3D mesh offers a large number of alternate paths

for fault tolerance and the ability to be incrementally upgraded with minimal extra cost. By

contrast, some interconnection networks tend to require scaling in powers of 2. The Avici TSR

router also handles the equivalent of head-of-line blocking by using separate virtual networks.

Each virtual network uses separate buffers essentially to create the illusion of several physical

switches, one of which can be used when another is blocked.

It appears that HOL blocking is handled by iSLIP, PIM, and the Avici TSR but not by the

Gigaswitch, the Turner Benes network, or the Clos network. However, switches with buffered

switch elements such as the Turner Benes network are not as susceptible to HOL blocking

when compared to switches (such as the Gigaswitch) that do not. Given that modern switches

can support thousands of cell buffers per crosspoint, HOL blocking may be a red herring for

fabrics with internal buffering.

13.10.3 Memory Scaling Using Randomization
In all the switches seen so far, packets have to be stored in buffers during periods of congestion.

The standard rule of thumb is for routers to have one RTT (Roundtrip Time) worth of buffering

to allow congestion-control algorithms to slow down without causing packet loss. While it may

be possible to get around this limit using better higher-level congestion-control algorithms,

it appears that the combination of TCP and RED today requires this amount of buffering.

Using 200 msec as a conservative estimate for round-trip delay, a 2-terabit router must have

0.4 terabit’s worth of packet buffers. Thus as link speeds increase, and assuming no congestion-

control innovations, the memory needs will also increase.

Consider an input-buffered switch and packets coming in at OC-768 speeds. Thus a

minimum-size packet arrives every 8 nsec and will require at least two accesses to memory:

the ﬁrst to store the packet and the second to read it out for transmission through the fabric.

Given that the fastest DRAM available at the time of writing has a cycle time of 50 nsec, it is

clear that the only way to meet the memory bandwidth needs using DRAM would be to use a

wider memory word.

Unfortunately, one cannot use a wider memory word size than that of a minimum-size

packet because it is not possible to guarantee that the next packet will be read out at the same

time. One could use SRAMs (at 4-nsec cycle times at the time of writing, this should be just


336


C H A P T E R 1 3
Switching
adequate), but then one would have to pay a cost premium of anywhere from a factor of 4 to

a factor of 10.6
One way out of this dilemma is to use parallel banks of DRAMs. It is possible to keep

up with link speeds using 12 DRAM banks working in parallel, each with a 40-byte access

width. Intuitively, this seems plausible. For any input stream of packets, send the ﬁrst packet

to DRAM 1, the second to DRAM 2, etc. Unfortunately, because of QoS and scheduling

algorithms, it is not clear in which order packets will be read out. Thus it may be that during

some period of time all the packets are read out from a few DRAMs only, causing memory

bandwidth contention and eventual packet loss.

Such memory contention problems are familiar to computer architects when using inter-

leaved memory. For example, if an array is laid out sequentially across memory banks, it is

possible that accesses that are spaced a certain stride apart (e.g., column accesses) may all

hit the same bank. One potentially clever way out of the contention problem is to steal a leaf

from the designers of the CYDRA-2 stride-insensitive memory [Rau91]. Their idea was to

pseudo-randomly interleave storage requests to memory such that with high probability any

access pattern (other than to the same word) would not cause hot spots.

In the router context, instead of sending packet 1 to DRAM 1 and so on, one would send

each packet to a randomly selected DRAM. Of course, as with all randomized interleaving

schemes (see the earlier Clos and Benes sections), reassembly gets more complicated, with

state having to be kept (in SRAM?) to resequence these packets.

An interesting variation on this theme and that of randomized routing a la Valiant [Val90]

is a technique that appears to be used by Juniper Networks in their M40 and M160 routers.

From what is possible to glean from their patents [SAFL99], when a packet enters a line card

in such a Juniper router it is (without any lookup) sent to a randomly selected other line card,

where it is looked up, stored, and ﬁnally switched to its correct destination line card.

Why in the world would a leading router company go through one level of randomized

indirection and take two passes though the fabric for every packet? One explanation may be

that this randomization reduces the amount of required DRAM at every input line card from a

“worst-case size” to a more “average size.” However, it would be nice to have some analysis

or simulations to support this thesis.

13.11 CONCLUSIONS
This chapter has surveyed techniques for building switches, from small shared-memory

switches to input-queued switches used in the Cisco GSR, to larger, more scalable switch

fabrics used in the Juniper T130 and Avici TSR Routers.

Since this is a book about algorithmics, it is important to focus on the techniques and not

get lost in the mass of product names. These are summarized in Figure 13.2. Fundamentally, the

major idea in PIM and iSLIP is to realize that by using VOQs one can feasibly (with O(N2) bits)

communicate all the desired communication patterns to avoid head-of-line blocking. These

schemes go further and show that maximal matching can be done in
N log N
time using

randomization (PIM) or approximately (iSLIP) using round-robin pointers per port for fairness.

While N log N
is a large number, by showing that this can be done in parallel by each

of N ports, the time reduces to log N
(in PIM) and to a small constant (in iSLIP). Given that

6The cost premium of DRAM versus SRAM is hard to pin down because DRAM prices sometimes fall

dramatically.

13.12 Exercises



337
log N is small, even this delay can be pipelined away to run in a minimum packet time. The

fundamental lesson is that even algorithms that appear complex, such as matching, can, with

randomization and hardware parallelism, be made to run in a minimum packet time. Further

scaling in speed can be done using bit slices.

Larger port counts are handled by algorithmic techniques based on divide-and-conquer. An

understanding of the actual costs of switching shows that even a simple three-stage Clos switch

works well for port sizes up to 256. However, for larger switch sizes, the Benes network, with

its combination of (2log N) depth Delta networks, is better suited for the job. The main issue in

both these scalable fabrics is scheduling. And in both cases, as in PIM, a complex deterministic

algorithm is ﬁnessed using simple randomization. In both the Clos and Benes networks, the

essential similarity of structure allows the use of an initial randomized load-balancing step

followed by deterministic path selection from the randomized intermediate destination.

Similar ideas are also used to reduce memory needs by either picking a random intermedi-

ate line card or a random choice of DRAM bank to send a given packet (cell) to. The knockout

switch uses trees of randomized 2-by-2 concentrators to provide k-out-of-N
fairness. Thus

randomization is a surprisingly important idea in switch implementations.

It is interesting to note that almost every new switch idea described in this chapter has

led to a company. For example, Kanakia worked on shared-memory switches at Bell Labs and

then left to found Torrent. Juniper seems to have been started with Sindhu’s idea for a new

fabric based, perhaps, on the use of staging via a random intermediate line card. McKeown

founded Abrizio after the success of iSLIP. Growth Networks was started by Turner, Parulkar,

and Cox to commercialize Turner’s Benes switch idea, and was later sold to Cisco. Dally took

his ideas for deadlock-free routing on low-dimensional meshes and moved them successfully

from Cray Computers to Avici’s TSR.

Thus if you, dear reader, have an idea for a new folded Banyan or an inverted Clos, you,

too, may be the founder of the next great thing in networking. Perhaps some venture capitalist

will soon be meeting you in a coffee shop in Silicon Valley to make you an offer you cannot

refuse.

In conclusion, for a router designer it’s better to switch than to ﬁght — with the difﬁculties

of designing a high-speed bus.

13.12 EXERCISES
1. Take-a-Ticket State Machine: Draw a state machine for take-a-ticket. Describe the state

machine using pseudocode, with a state machine for each sender and each receiver.

Extend the state machine to handle hunt groups.

2. Knockout Implementation: There are dependencies between the knockout trees. The

simplest implementation passes all the losers from the Position j − 1 tree to the Position j
tree. This would take k log N gate delays, because each tree takes log N gate delays. Find

a way to pipeline this process such that Tree j begins to work on each batch of losers as

they are determined by Tree j − 1, as opposed to waiting for all losers to be determined.

Draw your implementation using 2-by-2 concentrators as your building block and

estimate the worst-case delay in concentrator delays.

3. PIM unfairness: In the knockout example, using just one tree can lead to unfairness; a

collection of locally fair decisions can lead to global unfairness. Surprisingly, PIM can

lead to the some form of unfairness as well (but not to persistent starvation). Consider a

338


C H A P T E R 1 3
Switching
2-by-2 switch, where input 1 has unlimited trafﬁc to outputs 1 and 2, and input 2 has

unlimited trafﬁc to output 1.

• Show that, on average, input 1 will get two grants from outputs 2 and 1 for half the cell

slots and one grant (for output 2 only) for the remaining cell slots. What fraction of

output 2’s link should input 1 receive?

• Infer, based on the preceding fraction of output 1’s bandwidth, what input 1 receives on

average versus input 2. Is this fair?

4. Motivating the iSLIP Pointer Increment Rule: The following is one unfairness

scenario if pointers in iSLIP are incremented incorrectly. For example, suppose in

Figure 13.11 that input port A always has trafﬁc to output ports 1, 2, and 3, whose grant

pointers are initialized to A. Suppose also that input ports B and C also always have trafﬁc

to 2. Thus initially A, B, and C all grant to 1, who chooses A. In the second iteration, since

input port 2 has trafﬁc to B, 2 and B are matched.

• Suppose B increments its grant pointer to 3 based on this second iteration match.

Between which port pairs can trafﬁc be continually starved if this scenario persists?

• How does iSLIP prevent this scenario?

5. ESLIP: Answer the following questions about ESLIP.

• Describe a scenario where a multicast cell does not ﬁnish its fanout in one cycle despite

the use of a shared grant pointer and the fact that multicast has priority over unicast in

alternate time slots.

• Why is there no need for a shared multicast accept pointer?

6. Clos Proof Revisited: The Clos proof is based on a reduction that looks and is simple.

However, until you try a few twists that do not work, you may not appreciate its

simplicity. In our reduction, each iteration routed n pairs, one per input stage, using just

one middle switch. Suppose instead that any set of middle switches is used that had free

input and output links. Show, by counterexample, why the reduction does not work.

7. Benes Switch Load-Balancing Proof: In the Benes switch, the chapter argued that any

link one hop from the output cannot be overloaded, assuming perfect load balancing at

the ﬁrst stage. It is helpful to work out with some simple cases to provide intuition before

turning, if needed, to the proof provided in Turner [Tur97].

• Repeat the same proof for links one hop away from the network but this time for a

two-copy network. Does the proof change for a three-copy network?

• Repeat all the proofs for links two hops away. Do you see a pattern that can now be

stated algebraically [Tur97]?

8. Avici TSR and 3D Grid Layout: It seems a good bet that layout and packaging will be

increasingly important as switches scale up in speeds. Extend the layout drawing in

Figure 13.17 for a 1D torus to a 2D and a 3D torus. Then read Dally [Dal02] to learn how

the Avici TSR packages its 3D mesh in a box.


C H A P T E R 14
Scheduling Packets
A schedule defends from chaos and whim



— Annie Dillard

From arranging vacations to making appointments, we are constantly scheduling activ-

ities. A busy router is no exception. Routers must schedule the handling of routing updates,

management queries, and, of course, data packets. Data packets must be scheduled in real time

by the forwarding processors within each line card. This chapter concentrates on the efﬁcient

scheduling of data packets while allowing certain classes of data packets to receive different

service from other classes.

Returning to our picture of a router (Figure 14.1), recall that packets enter on input links

and are looked up using the address lookup component. Address lookup provides an output

link number, and the packet is switched to the output link by the switching system. Once

the packet arrives at the output port, the packet could be placed in a FIFO (ﬁrst in, ﬁrst out)

queue. If congestion occurs and the output link buffers ﬁll up, packets arriving at the tail of the

queue are dropped. Many routers use such a default output-link scheduling mechanism, often

referred to as FIFO with tail-drop.

However, there are certainly other options. First, we could place packets in multiple queues

based on packet headers and schedule these output queues according to some scheduling policy.

There are several policies, such as priority and round-robin, that can schedule packets in a

different order from FIFO. Second, even if we had a single queue, we need not always drop

from the tail when buffers overﬂow; we can, surprisingly, even drop a packet when the packet

buffer is not full.

Packet scheduling can be used to provide (to a ﬂow of packets) so-called quality of service
(QoS) guarantees on measures such as delay and bandwidth. We will see that QoS requires

packet scheduling together with some form of reservations at routers. We will only brieﬂy

sketch some reservation schemes, such as those underlying RSVP [Boy97] and DiffServ

[SWG], and we refer the reader to the speciﬁcations for more details. This is because the

other parts of the QoS picture, such as handling reservations, can be handled out of band at a

slower rate by a control processor in the router. Since this book concentrates on implementation

bottlenecks, this chapter focuses on packet scheduling.

We will brieﬂy examine the motivation for some popular scheduling choices. More impor-

tantly, we will use our principles to look for efﬁcient implementations. Since packet scheduling

is done in the real-time path, as is switching and lookup, it is crucial that scheduling decisions

can be made in the minimum interpacket times as links scale to OC-768 (40-gigabit) speeds

and higher.

339

340


C H A P T E R 1 4
Scheduling Packets
Input link i


ROUTER

B2
Switching

B1


B3


Output link

Scheduling

Address lookup

F I G U R E 14.1
Router model: This chapter concentrates on the third bottleneck, B3, scheduling of

data packets.

This chapter is organized as follows. Section 14.1 presents the motivation for providing

QoS guarantees. Section 14.2 describes random early detect (RED) schemes, which are better

suited to TCP congestion control than tail-drop. Section 14.3 offers a simple scheme to limit

the bandwidth and burstiness of a ﬂow, and Section 14.4 describes a basic priority scheme.

Section 14.5 provides a brief introduction to reservation protocols. Section 14.6 presents

simple techniques to apportion the available link bandwidth among competing ﬂows. The

section also brieﬂy describes how the accompanying reservations for ﬂow bandwidths can be

made. Section 14.7 shows how one can provide good delay guarantees for a ﬂow, at the cost of

sorting packet deadlines in real time. Section 14.8 describes several scalable schedulers that

are able to schedule a large number of ﬂows with little or no state.

The packet-scheduling techniques described in this chapter (and the corresponding

principles involved) are summarized in Figure 14.2.

Q u i c k R e f e r e n c e G u i d e
The most important scheduling algorithms that an Internet router must implement are RED (Sec-

tion 14.2), token buckets (Section 14.3), priority queueing (Section 14.4), Deﬁcit round-robin (DRR)

(Section 14.6.3), and DiffServ (for DiffServ, consult only the relevant portion of Section 14.8). Other

interconnect devices, such as SAN switches and gateways, are not required to implement RED; however,

implementing some form of QoS, such as DRR or token buckets, in such devices is also a good idea.

14.1 MOTIVATION FOR QUALITY OF SERVICE
We will be assigning packets ﬂows to queues and sometimes trying to give guarantees to ﬂows.

Though we have used the term earlier, we repeat the deﬁnition of a packet ﬂow. A ﬂow is a

stream of packets that traverses the same route from the source to the destination and that

requires the same grade of service at each router or gateway in the path. In addition, a ﬂow


Number


Principle


14.1 Motivation for Quality of Service
Scheduling
Technique


341
P7
P3
P3
P12
P7
P13
P15
P5
P5b


Use power of two parameters

Use policing, not shaping

Focus on bandwidth only

Maintain list of active queues

Use large enough quanta

Leap forward, not backward

Use a heap to sort tags

Use a sorting chip

Use a d-heap and wide memory



RED

Token bucket policing

DRR

Leap forward

Virtual clock

P3a
Aggregate by hashing flows



SFQ

P3c
P10


Shift work to edge routers

Pass class in TOS field



DiffServ

P10
Pass drop probability in header
Core stateless

F I G U R E 14.2
Summary of packet-scheduling techniques used in this chapter and the corresponding

principles.

must be identiﬁable using ﬁelds in a packet header; these ﬁelds are typically drawn from the

transport, routing, and data link headers only.

The notion of a ﬂow is general and applies to datagram networks (e.g., IP, OSI) and virtual

circuit networks (e.g., X.25, ATM). For example, in a virtual circuit network a ﬂow could be

identiﬁed by a virtual circuit identiﬁer, or VCI. On the other hand, in the Internet a ﬂow could

be identiﬁed by all packets (a) with a destination address that matches subnet A, (b) with a

source address that matches subnet B, and (c) that contain mail trafﬁc, where mail trafﬁc is

identiﬁed by having either source or destination port numbers equal to 25. We assume that

packet classiﬁcation (Chapter 12) can be used to efﬁciently identify ﬂows.

Why create complexity in going beyond FIFO with tail-drop? The following needs are

arranged roughly in order of importance.

•
Router Support for Congestion: With link speeds barely catching up with exponentially

increasing demand, it is often possible to have congestion in the Internet. Most trafﬁc is

based on TCP, which has mechanisms to react to congestion. However, with router support

it is possible to improve the reaction of TCP sources to congestion, improving the overall

throughput of sources.

•
Fair Sharing of Links among Competing Flows: With tail-drop routers, customers have

noticed that during a period of a backup across the network, important Telnet and e-mail

connections freeze. This is because the backup packets grab all the buffers at an output in

some router, locking out the other ﬂows at that output link.

•
Providing QoS Guarantees to Flows: A more precise form of fair sharing is to guarantee

bandwidths to a ﬂow. For example, an ISP may wish to guarantee a customer 10 Mbps of


342


C H A P T E R 1 4
Scheduling Packets
S


10

Linear
Fast



1



D
Threshold

Slow start


retransmit

Time



Timeout

F I G U R E 14.3
An illustration of TCP congestion control as a prelude to RED.

bandwidth as part of a virtual private network connecting customer sites. A more difﬁcult

task is to guarantee the delay through a router for a ﬂow such as a video ﬂow. Live video

will not work well if the network delay is not bounded.

None of these needs should be surprising when one looks at a time-sharing operating

system (OS) such as UNIX or Windows NT. Clearly, in times of overload the OS must decide

which load to shed; the OS often time-shares among a group of competing jobs for fairness;

ﬁnally, some operating systems provide delay guarantees on the scheduling of certain real-time

jobs, such as playing a movie.

14.2 RANDOM EARLY DETECTION
Random early detection (RED) is a packet-scheduling algorithm implemented in most modern

routers, even at the highest speeds, and it has become a de facto standard. In a nutshell, a

RED router monitors the average output-queue length; when this goes beyond a threshold, it

randomly drops arriving packets with a certain probability,
even though there may be space
to buffer the packet.
The dropped packet acts as a signal to the source to slow down early,

preventing a large number of dropped packets later.

To understand RED we must review the Internet-congestion-control algorithm. The top

of Figure 14.3 shows a network connecting source S and destination D. Imagine the network

had links with capacity 1 Mbps and that a ﬁle transfer can occur at 1 Mbps. Now suppose the

middle link is replaced by a faster, 10-Mbps link. Surely it can’t make things worse, can it?

Well, in the old days of the Internet it did. Packets arrived at a 10-Mbps rate at the second

router, which could only forward packets at 1 Mbps; this caused a ﬂood of dropped packets,

which led to slow retransmissions. This resulted in a very low throughput for the ﬁle transfer.

Fortunately, the dominant Internet transport protocol, TCP, added a mechanism called

TCP congestion control, which is depicted in Figure 14.3. The source maintains a window

of size W , which is the number of packets the source will send without an acknowledgment.

Controlling window size controls the source rate because the source is limited to a rate of W
packets in a trip delay to the destination. As shown in Figure 14.3, a TCP source starts W
at 1.




S
DECbit sets a

congestion bit



10



14.2 Random Early Detection
1

D
RED randomly

drops a packet



343
F I G U R E 14.4
RED is an early warning system that operates implicitly by packet dropping, instead

of explicitly by sending a bit as in the DECbit scheme.

Assuming no dropped packets, the source increases its window size exponentially, doubling

every round-trip delay, until W reaches a threshold. After this, the source increases W linearly.

If there is a single dropped packet (this can be inferred from a number of acknowledgments

with the same number), the “gap” is repaired by retransmitting only the dropped packet; this is

called fast retransmit. In this special case, the source detects some congestion and reduces its

window size to half the original size (Figure 14.3) and then starts trying to increase again. If

several packets are lost, the only way for the source to recover is by having a slow, 200-msec

timer expire. In this case, the source infers more drastic congestion and restarts the window

size at 1, as shown in Figure 14.3.

For example, with tail-drop routers, the example network shown at the top of Figure 14.3

will probably have the source ramp up until it drops some packets and then return to a window

size of 1 and start again. Despite this oscillation, the average throughput of the source is quite

good, because the retransmissions occur rarely as compared to the example without congestion

control. However, wouldn’t it be nicer if the source could drop to half the maximum at each

cycle (instead of 1) and avoid expensive timeouts (200 msec) completely? The use of a RED

router makes this more likely.

The main idea in a RED [FJ93] router (Figure 14.4) is to have the router detect congestion

early, before all its buffers are exhausted, and to warn the source. The simplest scheme, called

the DECbit scheme [RJ90], would have the router send a “congestion experienced” bit to the

source when its average queue size goes beyond a threshold. Since there is no room for such

a bit in current IPv4 headers, RED routers simply drop a packet with some small probability.

This makes it more likely that a ﬂow causing congestion will drop just a single packet, which

can be recovered by the the more efﬁcient fast retransmit instead of a drastic timeout.1
The implementation of RED is more complex than it seems. First, we need to calculate the

output-queue size using a weighted average with weight w. Assuming that each arriving packet

uses the queue size it sees as a sample, the average queue length is calculated by adding (1− w)

times the old average queue size to w times the new sample. In other words, if w is small,

even if the sample is large, it only increases the average queue size by a small amount. The

average queue size changes slowly as a result and needs a large number of samples to change

1But what of sources that do not use TCP and use UDP? Since the majority of trafﬁc is TCP, RED is still useful;

the RED drops also motivate UDP applications to add TCP-like congestion, a subject of active research. A more

potent question is whether RED helps small packet ﬂows, such as Web trafﬁc, which account for a large percentage

of Internet trafﬁc.


344


C H A P T E R 1 4
Scheduling Packets
1.0

MaxP

0



Min



Max

threshold


threshold

Average queue size

AverageQ
(1
W)*AverageQ
(W * SampleQsize)

F I G U R E 14.5
Calculating drop probabilities using RED thresholds.

value appreciably. This is done deliberately to detect congestion on the order of round-trip

delays (100 msec) rather than instantaneous congestion that can come and go. However, we

can avoid unnecessary generality (P7) by allowing the w to be only a reciprocal of a power of

2; a typical value is 1/512. There is a small loss in tunability as compared to allowing arbitrary

values of w. However, the implementation is more efﬁcient because the multiplications reduce

to easy bit shifting.

However, there’s further complexity to contend with. The drop probability is calculated

using the function shown in Figure 14.5. When the average queue size is below a minimum

threshold, the drop probability is zero; it then increases linearly to a maximum drop probability

at the maximum threshold; beyond this all packets are dropped. Once again, we can remove

unnecessary generality (P7) and use appropriate values, such as MaxThreshold being twice

MinThreshold, and MaxP a power of 2. Then the interpolation can be done with two shifts and

a subtract.

But wait, there’s more. The version of RED so far is likely to drop more than one packet

in a burst of closely spaced packets for a source. To make this less likely and fast retransmit

more likely to work, the probability calculated earlier is scaled by a function that depends on

the number of packets queued (see Peterson and Davy [PD00] for a pithy explanation) since

the last drop. This makes the probability increase with the number of nondropped packets,

making closely spaced drops less likely.

But wait, there’s even more. There is also the possibility of adding different thresholds for

different types of trafﬁc; for example, bursty trafﬁc may need a larger Minimum Threshold.

Cisco has introduced weighted RED, where the thresholds can vary depending on the TOS

bits in the IP header. Finally, there is the thorny problem of generating a random number at a

router. This can be done by grabbing bits from some seemingly random register on the router;

a possible example is the low-order bits of a clock that runs faster than packet arrivals. The net




14.3 Token Bucket Policing


345
result is that RED, which seems easy, takes some care in practice, especially at gigabit speeds.

Nevertheless, RED is quite feasible and is almost a requirement for routers being built today.

14.3 TOKEN BUCKET POLICING
So far with RED we assumed that all packets are placed in a single output queue; the RED drop

decision is taken at the input of this queue. Can we add any form of bandwidth guarantees for

ﬂows that are placed in a common queue without segregation? For example, many customers

require limiting the rate of trafﬁc for a ﬂow. More speciﬁcally, an ISP may want to limit NEWS

trafﬁc in its network to no more than 1 Mbps. A second example is where UDP trafﬁc is ﬂowing

from the router to a slow remote line. Since UDP sources currently do not react to congestion,

congestion downstream can be avoided by having a manager limit the UDP trafﬁc to be smaller

than the remote line speed. Fortunately, these examples of bandwidth limiting can easily be

accomplished by a technique called token bucket policing, which uses only a single queue and

a counter per ﬂow.

Token bucket policing is a simple derivative of another idea, called token bucket shaping.
Token bucket shaping [Tur86] is a simple way to limit the burstiness of a ﬂow by limiting its

average rate as well as its maximum burst size. For example, a ﬂow could be limited to sending

at a long-term average of 100 Kbps but could be allowed to send 4KB as fast as it wants. Since

most applications are bursty, it helps to allow some burstiness. Downstream nodes are helped

by leaky bucket shaping because bursts contribute directly to short-term congestion and packet

loss. The implementation is shown conceptually in Figure 14.6.

Tokens arrive at rate

R bits per second

Max burst size

B in bits

Input

Data

buffer



Test



Output

F I G U R E 14.6
Conceptual picture of token bucket shaping and policing.


346


C H A P T E R 1 4
Scheduling Packets
Input

link



Output

link



Demux

flows



Schedule

queue

Single output queue



Multiple queues

F I G U R E 14.7
A single outbound queue (left) versus multiple outbound queues (right). Disciplines

based on dropping (such as RED and policing) can be implemented with a single queue, but other

possibilities, such as round-robin and priority, are possible with multiple queues.

Imagine that one has a bucket per ﬂow that ﬁlls with “tokens” at the speciﬁed average rate

of R per second. The bucket size, however, is limited to the speciﬁed burst size of B tokens.

Thus when the bucket is full, all incoming tokens are dropped. When packets arrive for a ﬂow,

they are allowed out only if the bucket contains a number of tokens equal to the size of packet

in bits. If not, the packet is queued until sufﬁcient tokens arrive. Since there can be at most

B tokens, a burst is limited to at most B bits, followed by the more steady rate of R bits per

second. This can easily be implemented using a counter and a timer per ﬂow; the timer is used

to increment the counter, and the counter is limited never to grow beyond B. When packets

are sent out, the counter is decremented.

Unfortunately, token bucket shaping would require different queues for each ﬂow, because

some ﬂows may have temporarily run out of tokens and have to wait, while other, later-arriving

packets may belong to ﬂows that have accumulated tokens. If one wishes to limit oneself to

a single queue, a simpler technique is to limit oneself (P3, relax system requirements) to a

token bucket policer. The idea would be simply to drop any packet that arrives to ﬁnd the token

bucket empty. In other words, a policer is a shaper without the buffer shown in Figure 14.6. A

policer needs only a counter and a timer per ﬂow, which is simple to implement at high speeds

using the efﬁcient timer implementations of Chapter 7.

14.4 MULTIPLE OUTBOUND QUEUES AND PRIORITY
So far we have limited ourselves to one single queue for all outbound packets, as shown on

the left of Figure 14.7. Random early detection or token bucket policing (or both) can be used

to decide whether to drop packets before they are placed on this queue. We now transition to

examine scheduling disciplines that are possible with multiple queues. This is shown on the

right of Figure 14.7.

First, note that we now need to demultiplex packets based on packet headers to identify

which outbound queue to place a packet on. This can be done using the packet-classiﬁcation

techniques described in Chapter 12 or simpler techniques based on inspecting the TOS bits


14.5 A Quick Detour into Reservation Protocols


347
in the IP header. Second, note that we can still implement RED and token bucket policing by

dropping packets before they are placed on the appropriate outbound queue.

Third, note that we now have a new problem. If multiple queues have packets to send, we

have to decide which queue to service next, and when. If we limit ourselves to work-conserving
schemes2that never idle the link, then the only decision is which queue to service next when

the current packet transmission on the output link ﬁnishes.

As the simplest example of a multiple queue-scheduling discipline, consider strict priority.

For example, imagine two outbound queues, one for premium service and one for other packets.

Imagine that packets are demultiplexed to these two queues based on a bit in the IP TOS ﬁeld.

In strict priority, we will always service a queue with higher priority before one with lower

priority as long as there is a packet in the higher-priority queue. This may be an appropriate way

to implement the premium service speciﬁcation deﬁned in the emerging DiffServ architecture

[SWG].

14.5 A QUICK DETOUR INTO RESERVATION PROTOCOLS
This chapter focuses on packet-scheduling mechanisms. However, before we go deeper into

scheduling queues, it may help to see the big picture. Thus we brieﬂy discuss reservation

protocols that actually set up the parameters that control scheduling. While we do so to make

this chapter self-contained, the reader should refer to the original sources (e.g., Ref. Boy97)

for a more detailed description.

First, note that reservations are crucial for any form of absolute performance guarantee for

ﬂows passing through a router. Consider an ISP router with a 100-Mbs output link. If the ISP

wishes to provide some customer ﬂows with a 10-Mbps-bandwidth guarantee, it clearly cannot

provide this guarantee to more than 10 ﬂows. It follows that there must be some mechanism

to request the router for bandwidth guarantees for a given ﬂow. Clearly, the router must do

admission control and be prepared to reject further requests if further requests are beyond its

capacity.

Thus if we deﬁne quality of service (QoS) as the provision of performance guarantees

for ﬂows, it can be said that QoS requires reservation mechanisms and admission control (to

limit the set of ﬂows we provide QoS to) together with scheduling (to enforce performance

guarantees for the selected ﬂows).
Quality of service is a sufﬁciently vague term, and the

implied performance guarantees can refer to bandwidth, delay, or even variation in delay.

One way to make reservations is for a manager to make reservations for each router in the

path of a ﬂow. However, this is tedious and would require the work to be done each time the

route of the ﬂow changes and whenever the application that requires reservations is stopped and

restarted. One standard that has been proposed is the Resource Reservation Protocol (RSVP)

[Boy97], which allows applications to make reservations.

This protocol works in the context of a multicast tree between a sender and a set of receivers

(and works for one receiver). The idea is that the sender sends a periodic PATH message along

the tree that allows routers and receivers to know in which direction the sender is. Then

each receiver that wants a reservation of some resource (say, bandwidth) sends a Resource

Reservation Protocol (RSV) message up to the next router in the path. Each router accepts the

2Token bucket shaping is a commonly used example of a scheduling discipline that is not work conserving.

348


C H A P T E R 1 4
Scheduling Packets
RSV message if the reservation is feasible, merges the RSV messages of all receivers, and then

sends it to its parent router. This continues until all reservations have been set up or failure

notiﬁcations are sent back. Reservations are timed out periodically, so RSV messages must be

sent periodically if a receiver wishes to maintain its reservation.

While RSVP appears simple from this description, it has a number of tricky issues. First,

it can allow reservations across multiple senders and can include multiple modes of sharing.

For shared reservations, it improves scalability by allowing reservations to be merged; for

example, for a set of receivers that want differing bandwidths on the same link for the same

conference, we can make a single reservation for the maximum of all requests. Finally, we

have to deal with the possibility that the requests of a subset of receivers are too large but that

the remaining subset can be accommodated. This is handled by creating blockade state in the

routers. The resulting speciﬁcation is quite complex.

By contrast, the DiffServ speciﬁcation suggests that reservations be done by a so-called

bandwidth broker per domain instead of by each application. The bandwidth broker architecture

was still in a preliminary state at the time of this writing, but it appears potentially simpler

than RSVP. However, incompletely speciﬁed schemes always appear simpler than completely

speciﬁed schemes.

14.6 PROVIDING BANDWIDTH GUARANTEES
Given that reservations can be set up at routers for a subset of ﬂows, we now return to

the problem of schedulers to enforce these reservations. We will concentrate on bandwidth

reservations only in this section, and consider reservations for delay in the next section. We will

start with a metaphor in Section 14.6.1 that illustrates the problems; we move on to describe

a solution in Section 14.6.2.

14.6.1 The Parochial Parcel Service
To illustrate the issues, let us consider the story of a hypothetical parcel service called the

Parochial Parcel Service, depicted in Figure 14.8. Two customers, called Jones and Smith, use

the parcel service to send their parcels by truck to the next city.

In the beginning, all parcels were kept in a
single queue at the loading dock, as seen

in Figure 14.9. Unfortunately, it so happened that the loading dock was limited in size. It

also happened that during busy periods, Jones would send all his parcels just a little before

Smith sent his. The result was that when Smith’s parcels arrived during busy periods they were

refused; Smith was asked to retry some other time.

To solve this unfairness problem, the Parochial Parcel Service decided to use two queues

before the loading dock, one for Jones and one for Smith. When times were busy, some space

was left for Smith’s queue. The queues were serviced in round-robin order. Unfortunately, even

this did not work too well because the evil Jones (see Figure 14.10) cleverly used packages

that were consistently larger than those of Smith. Since two large packages of Jones could

contain seven of Smith’s packages, the net result was that Jones could get 3.5 times the service

of Smith during busy periods. Thus Smith was happier, but he was still unhappy.

Another idea that the Parochial Parcel Service brieﬂy toyed with was actually to cut

parcels into slices, such as unit cubes, that take a standard time to service. Then the company

could service a slice at a time for each customer. They called this slice-by-slice round-robin.


Jones



Smith



14.6 Providing Bandwidth Guarantees
To next package-

handling station

Parochial

Parcel

Service



349
Smith



F I G U R E 14.8
A hypothetical parcel service.

Jones

Jones

Jones

Jones



Loading

dock

F I G U R E 14.9
A FIFO queue for loading parcels that is, unfortunately, hogged by Jones.

When initial ﬁeld trials produced bitter customer complaints, the Parochial Parcel Service

decided they couldn’t
physically cut packages up into slices. However, they realized they

could calculate the time at which a package will leave in an imaginary slice-by-slice system.

They could then service packages in the order they would have left in the imaginary system.

Such a a system will indeed be fair for any combination of packet (oops, package) sizes.

Unfortunately, simulating the imaginary system is like performing a discrete event simu-

lation in real time. At the very least, this requires keeping the timestamps at which each head

package of each queue will depart and picking the earliest such timestamp to service next; thus

selection (using priority queues) takes time logarithmic in the number of queues. This must be

done whenever a package is sent.

Worse, when a new queue becomes active, potentially all the timestamps have to change.

This is shown in Figure 14.11. Jones has a package at the head of his queue that is due to depart


350


C H A P T E R 1 4
Scheduling Packets
Jones



Smith



Jones

Smith



Smith

F I G U R E 14.10
Two queues and round-robin make Smith happier . . . but not completely happy.

P3



P1

P2



Jones

Smith

Brown



Timestamp

queue

12
8

F I G U R E 14.11
Brown’s entry causes the timestamp of Jones and Smith to change. In general, when

a new ﬂow becomes active, the overhead is linear in the number of ﬂows.

at time 12; Smith has a package due to depart at time 8. Now imagine that Brown introduces

a packet. Since Brown’s package must be scanned once for every three slices scanned in the

imaginary slice-by-slice system, the speed of Smith and Jones has gone down from a speed of

one in every two slices, to one in every three slices. This potentially means that the arrival of

Brown can cause every timestamp to be updated, an operation whose complexity is linear in

the number of ﬂows.

14.6.2 Deﬁcit Round-Robin
What was all this stuff about a parcel service about? Clearly, parcels correspond to packets,

the parcel ofﬁce to a router, and loading docks to outbound links. More importantly, the

seemingly facetious slice-by-slice round-robin corresponds to a seminal idea, called bit-by-
bit round-robin, introduced by Demers, Keshav, and Shenker [DKS89]. Simulated bit-by-bit

round-robin provides provably fair bandwidth distribution and some remarkably tight delay

bounds; unfortunately, it is hard to implement at gigabit speeds. A considerable improvement

to bit-by-bit round-robin is made in the paper by Staliadis and Verma [SV96], which shows

how to reduce the linear overhead of the DKS scheme to the purely logarithmic overhead of

sorting. Sorting can be done at high speeds with hardware multiway heaps; however, it is still

more complex than deﬁcit round-robin for bandwidth guarantees.

14.6 Providing Bandwidth Guarantees


351
Now while bit-by-bit round-robin provides both bandwidth guarantees and delay bounds,

our ﬁrst observation is that many applications can beneﬁt from just bandwidth guarantees.

Thus an interesting question is whether there is a simpler algorithm that can provide merely

bandwidth guarantees. We are, of course, relaxing system requirements to pave the way for a

more efﬁcient implementation, as suggested by P3.

If we are only interested in bandwidth guarantees and would like a constant-time algorithm,

a natural point of departure is round-robin. So we ask ourselves: Can we retain the efﬁciency

of round-robin and yet add a little state to correct for the unfairness of examples such as

Figure 14.10?

A banking analogy motivates the solution. Each ﬂow is given a quantum, which is like a

periodic salary that gets credited to the ﬂow’s bank account on every round-robin cycle. As with

most bank accounts, a ﬂow cannot spend (i.e., send packets of the corresponding size) more

than is contained in its account; the algorithm does not allow bank accounts to be overdrawn.

However, perfectly naturally, the balance remains in the account for possible spending in the

next period. Thus any possible unfairness in a round is compensated for in subsequent rounds,

leading to long-term fairness.

More precisely, for each ﬂow i, the algorithm keeps a quantum size Qiand a deﬁcit counter

Di. The larger the quantum size assigned to a ﬂow, the larger the share of the bandwidth it

receives. On each round-robin scan, the algorithm will service as many packets as possible

for ﬂow i with size less than Qi+Di. If packets remain in ﬂow i’s queue, the algorithm stores

the “deﬁcit,” or remainder, in Di for the next opportunity. It is easy to prove that the algorithm

is fair in the long term for any combination of packet sizes and that it takes only a few more

instructions to implement than round-robin.

Consider the example illustrated in Figures 14.12 and 14.13. We assume that the quantum
size of all ﬂows is 500 and that there are four ﬂows. In Figure 14.12 the round-robin pointer

points to the queue of F1; the algorithm adds the quantum size to the deﬁcit counter of F1,

which is now at 500. Thus F 1 has sufﬁcient funds to send the packet at the head of its queue

(of size 200) but not the second packet, of size 750. Thus the remainder (300) is left in F1’s

deﬁcit account and the algorithm skips to F2, leaving the picture shown in Figure 14.13.

Thus in the second round, the algorithm will send the packet at the head of F2’s queue

(leaving a deﬁcit of 0), the packet at the head of F3’s queue (leaving a deﬁcit of 400), and the

packet at the head of F4’s queue (leaving a deﬁcit of 320). It then returns to F1’s queue. F1’s

deﬁcit counter now goes up to 800; this reﬂects a past account balance of 300 plus a fresh

deposit of 500. The algorithm then sends the packet of size 750 and the packet of size 20.

Assume that no more packets arrive to F1’s queue than are shown in Figure 14.13. Thus since

the F1 queue is empty, the algorithm skips to F2.

Curiously, when skipping to F2, the algorithm does not leave behind the deﬁcit of 800 −
750 − 20
= 30 in F1’s queue. Instead, it zeroes out F1’s deﬁcit counter. Thus the deﬁcit

counter is a somewhat curious bank account that is zeroed unless the account holder can prove

a “need” in terms of a nonempty queue. Perhaps this is analogous to a welfare account.

14.6.3 Implementation and Extensions of Deﬁcit Round-Robin
As described, DRR has one major implementation problem. The algorithm may visit a number

of queues that have no packets to send. This would be very wasteful if the number of possible

queues is much larger than the number of active queues. However, there is a simple way to

avoid idle skipping of inactive queues by adding redundant state for speed (P12).


352


C H A P T E R 1 4
Scheduling Packets


Round-robin

pointer



Deficit

F1
20

F2


Packet queues

750

500
500



200


counter

500

0

F3

F4



200

50



600

700



100

180



0

0

Quantum size

500

F I G U R E 14.12
Deﬁcit round-robin: At the start, all the deﬁcit variables are initialized to zero. The

round-robin pointer points to the top of the active list. When the ﬁrst queue is serviced, the quantum
value of 500 is added to the deﬁcit value. The remainder after servicing the queue is left in the deﬁcit
variable.

Round-robin

pointer

Deficit

F1
20

F2


Packet queues

750

500
500



200


counter

300

500

F3

F4



200

50



600

700



100

180



0

0

Quantum size

500

F I G U R E 14.13
Deﬁcit round-robin (2): After sending out a packet of size 200, F 1’s queue had 300

bytes of its quantum left. It could not use it in the current round, since the next packet in the queue is

750 bytes. Therefore, the amount 300 will carry over to the next round, when it can send packets of size

totaling 300 (deﬁcit from previous round) + 500 (quantum).

14.6 Providing Bandwidth Guarantees


353
More precisely, the algorithm maintains an auxiliary queue, ActiveList, which is a list

of indices of queues that contain at least one packet. In the example, F1, which was at the

head of ActiveList, is removed from ActiveList after its last packet is serviced. If F1’s packet

queue were nonempty, the algorithm would place F 1 at the tail of ActiveList and keep track of

any unused deﬁcit. Notice that this prevents a ﬂow from getting quantum added to its account

while the ﬂow is idle.

Note that DRR shares bandwidth among ﬂows in proportion to quantum sizes. For exam-

ple, suppose there are three ﬂows, F1, F2, and F3, with respective quantum sizes 2, 2, and
3, who have reservations. Then if all three are active, F2 should get a fraction2

2+ 2 +3=2/7

of the output-link bandwidth. If, for example,
F3 is idle, then F2 is guaranteed the frac-

tion2

2 + 2=1/2 of the output-link bandwidth. In all cases, a ﬂow is guaranteed a minimum
bandwidth, measured over the period the ﬂow is active, that is proportional to the ratio of its

quantum size to the sum of the quantum sizes of all other reservations.

How efﬁcient is the algorithm? The cost to dequeue a packet is a constant number of

instructions as long as each ﬂow’s quantum is greater than a maximum-size packet. This

ensures that a packet is sent every time a queue is visited. For example, if the quantum size of

a ﬂow is 1, the algorithm would have to visit a queue 100 times to send a packet of size 100.

Thus if the maximum packet size is 1500 and ﬂow F 1 is to receive twice the bandwidth as

ﬂow F2, we may arrange for the quantum of F1 to be 3000 and the quantum of F2 to be 1500.

Once again, in terms of our principles, we note that avoiding the generality (P7) of arbitrary

quantum settings allows a more efﬁcient implementation.

EXTENSIONS OF DEFICIT ROUND-ROBIN
We now consider two extensions of DRR: hierarchical DRR and DRR with a single priority

queue.

HIERARCHICAL DEFICIT ROUND-ROBIN
An interesting model for bandwidth sharing is introduced in the so-called class-based queuing
(CBQ) scheme [FJ95]. The idea is to specify a hierarchy of users that can share an output

link. For example, a transatlantic link may be shared by two organizations in proportion to the

amount each pays for the link. Consider two organizations, A and B, who pay, respectively,

70% and 30% of the cost of a link and so wish to have assured bandwidth shares in that

ratio. However, within organization A there are two main trafﬁc types: Web users and others.

Organization A wishes to limit Web trafﬁc to get only 40% of A’s share of the trafﬁc when

other trafﬁc from A is present. Similarly, B wishes video trafﬁc to take no more than 50% of

the total trafﬁc when other trafﬁc from B is present (Figure 14.14).

Suppose at a given instant organization A’s trafﬁc is only Web trafﬁc and organization

B has both video and other trafﬁc. Then A’s Web trafﬁc should get all of A’s share of the

bandwidth (say, 0.7 Mbps of a 1-Mbps link); B’s video trafﬁc should get 50% of the remaining

share, which is 0.15 Mbps. If other trafﬁc for A comes on the scene, then the share of A’s Web

trafﬁc should fall to 0.7 ∗ 0.4 = 0.28 Mbps. Class-based queuing is easy to implement using

a hierarchical DRR scheduler for each node in the CBQ tree. For example, we would use a

DRR scheduler to divide trafﬁc between A and B. When A’s queue gets visited, we run the

DRR scheduler for within A, which then visits the Web queue and the other trafﬁc queue and

serves them in proportion to their quanta.


354


C H A P T E R 1 4
Scheduling Packets
Organization A

(70%)



Organization B

(30%)

Web traffic

(40%)



Other

(60%)



Web traffic

(50%)



Other

(50%)

F I G U R E 14.14
Example of a class-based queuing speciﬁcation for bandwidth sharing.

Strict priority or

1
1
1

1
1
1
2
3

2
2
2

3
3
3



Alternate priority

1
2
1
3
1

Up to 8 queues selected by IP precedence

F I G U R E 14.15
Cisco’s modiﬁed DRR (MDRR) scheme.

DEFICIT ROUND-ROBIN PLUS PRIORITY
A simple idea implemented by Cisco systems (and called Modiﬁed DRR, or MDRR) is to

combine DRR with priority to allow minimal delay for voice over IP. The idea, depicted in

Figure 14.15, allows up to eight ﬂow queues for a router. A packet is placed in a queue based

on bits in the IP TOS ﬁelds called the IP precedence bits. However, queue 1 is a special queue

typically reserved for voice over IP. There are two modes: In the ﬁrst mode, Queue 1 is given

strict priority over the other queues. Thus in the ﬁgure, we would serve all three of queue 1’s

packets before alternating between queue 2 and queue 3. On the other hand, in alternating

priority mode, queue 1 visits alternate with visits to a DRR scan of the remaining queues. Thus

in this mode, we would ﬁrst serve queue 1, then queue 2, then queue 1, then queue 3, etc.

14.7 SCHEDULERS THAT PROVIDE DELAY GUARANTEES
So far we have considered only schedulers that provide bandwidth guarantees across multiple

queues. Our only exception is MDRR, which is an ad hoc solution. We now consider providing

delay bounds. The situation is analogous to a number of chefs sharing an oven, as shown in

Figure 14.16. The frozen-food chef (analogous to, say, FTP trafﬁc) cares more about throughput

and less about delay; the regular chef (analogous to, say, Telnet trafﬁc) cares about delay, but

for the fast-food chef (analogous to video or voice trafﬁc) a small delay is critical for business.

In practice, most routers implement some form of throughput sharing using algorithms

such as DRR. However, almost no commercial router implements schedulers that guarantee

delay bounds. The result is that video currently works well sometimes, badly at other times.

This may be unacceptable for commercial use. One answer to this problem is to have heavily


Frozen-food chef

Restaurant chef

Fast-food chef



14.7 Schedulers That Provide Delay Guarantees
Fast oven



355
F I G U R E 14.16
Three types of chefs sharing an oven, of whom only the fast-food chef needs bounded

delay.

Video 1

5

Video 2

Video 3



8

2



SHARED



15


Video 2

8



IDEAL



8

F I G U R E 14.17
Deﬁning what an ideal delay bound should be.

underutilized links and to employ ad hoc schemes like MDRR. This may work if bandwidth

becomes plentiful. However, trafﬁc does go up to compensate for increased bandwidth; witness

the spurt in trafﬁc due to MP3 and Napster trafﬁc.

In theory, the simulated bit-by-bit round-robin algorithm [DKS89] we have already men-

tioned guarantees isolation and delay bounds. Thus it was used as the basis for the IntServ

proposal as a scheduler that could integrate video, voice, and data. However, bit-by-bit round-

robin, or weighted fair queuing (WFQ), is currently very expensive to implement. Strict WFQ

takes O(n) time per packet, where n is the number of concurrent ﬂows. Recent approxima-

tions, which we will describe, take O(log(n)) time. The seminal results in reducing the overhead

from O(n) to O(log n) were due to Staliadis and Verma [SV96] and Bennett and Zhang [BZ96],

based on modiﬁcations to the bit-by-bit discipline. We will, however, present a version based

on another scheme, called virtual clock, which we believe is simpler to understand.

Before we study how to implement a delay bound, let us consider what an ideal delay

bound should be (Figure 14.17). The left ﬁgure shows three video ﬂows that traverse a common

output link; the ﬂows have reserved 5, 8, and 2 bandwidth units, respectively, of a 15-unit

output link. The right ﬁgure shows the ideal “view” of Video 2 if it had its own dedicated

router with an output link of 8 units. Thus the ideal delay bound is the delay that a ﬂow would

have received in isolation, assuming an output-link bandwidth equal to its own reservation.

Suppose the rate of ﬂow F is r. What is the departure time of a packet p of F arriving at

a router dedicated to F that always transmits at r bits per second? Well, if p arrives before the


356


C H A P T E R 1 4
Scheduling Packets
Packet 1
Packet 2

Deadline 2
Deadline 4

Flow 1
rate
0.5

Time

0

Flow 2
rate
0.5



Packet 100

Deadline 200

Time

100

Packet 1

Deadline 102



Time

150

Packet 50

Deadline 200

F I G U R E 14.18
Accumulated unfairness from the past can impair the fairness of Virtual Clock.

previous packet from ﬂow F (say, prev) is transmitted, then p has to wait for prev to depart;

otherwise p
gets transmitted right away. Thus in an ideal system, packet p
will depart by:

Maximum(Arrival Time(p), Departure Time(prev)) + Length(p)/r. This recursive equation

can easily be solved if we know the arrival times of all packets in ﬂow F up to and including

packet p.

Returning to Figure 14.17, if the shared system on the left must emulate the isolated

system, it must service every packet before its departure time in the ideal system. In other

words, as every packet arrives, we can calculate its deadline in the ideal system as in the

preceding paragraph. If the shared system meets all the ideal packet deadlines, then the shared

system is as good as or better than the isolated system on the right of Figure 14.17!

We may now consider using a very famous form of real-time scheduler called earliest
deadline ﬁrst. The classical idea is that if we wish to meet deadlines, we sort the deadlines of

all the packets at the head of each ﬂow queue and send the packet with the earliest deadline

ﬁrst. The corresponding packet scheduler, called virtual clock, was ﬁrst introduced by Lixia

Zhang [Zha91].

It was ﬁrst proved [FP95] that virtual clock does a ﬁne job of meeting deadlines. However,

it does not quite emulate the system at the right of Figure 14.17 in terms of bandwidth fairness

on short time scales. A ﬂow can be locked out for a large amount of time based on past behavior.

Consider the example shown in Figure 14.18. Two ﬂows, Flow 1 and Flow 2, are assigned

rates of half the link bandwidth each, where the link bandwidth is 1. Assume that Flow 1 has

a large supply of packets starting from time 0, while Flow 2’s queue is empty until time 100,

when it receives a large supply of packets. Thus from time 0 to time 100, since Flow 1 is the

only active queue, virtual clock will send 100 packets of size 1 each from Flow 1. The ﬁrst

packet of Flow 1 will have ideal deadline 2, the second 4, and the 100th will have deadline

200. Thus by the time we reach time 100, Flow 1’s 101st packet has ideal deadline 202.

If we now bring on 100 packets of Flow 2 at time 100, Flow 2’s packets have deadlines

102, 104, 106, . . . , and the 50th packet of Flow 2 has deadline 200. Thus during the period from

14.7 Schedulers That Provide Delay Guarantees


357
100 to 150, Flow 2 has taken all the link bandwidth, despite the presence of Flow 1 packets.

This hardly looks like the model of Figure 14.17, at least from time 100 to time 150. Notice

that packets are all sent within their ideal delays and that even the bandwidth given to both

ﬂows is equal across the period from 0 to 150. Unfortunately, we don’t want this behavior. We

don’t want Flow 1 to be penalized, because in the past, when other ﬂows were not present, it

took more bandwidth than it needed.

There is a very simple ﬁx for this problem, which was described concurrently in Cobb et

al. [CGE96] and Suri et al. [SVC97]. Let us start by calling a ﬂow oversubscribed if the ﬂow

sends at more than its reserved rates during short periods, as Flow 1 does in Figure 14.18.

One can see that an ordinary virtual clock has a throughput unfairness problem because the

deadlines of oversubscribed ﬂows can exceed real time by an unbounded amount. For example,

Flow 1’s deadline can grow without bound if we increase the time when Flow 1 is the only

active ﬂow in Figure 14.18.

A careful examination shows that to guarantee delay bounds for other ﬂows, we need only

ensure that oversubscribed ﬂow deadlines exceed real time by some threshold δ, where δ
is

the time taken to send a maximum-size packet at the smallest rate of any ﬂow. For example,

in Figure 14.18, this is 1/0.5, which is 2. Thus to guarantee delay bounds we only need ensure

that the virtual clock of an oversubscribed ﬂow is 2 more than real time. To make the difference

go up to 100, as in Figure 14.18, is overkill.

To implement this limited “overshoot,” we can pull all oversubscribed deadlines back

when time advances. Alternately, we can use a famous problem-solving technique and do a

mental reversal. This allows us to see another relativistic degree of freedom (P13). Instead

of pulling back a potentially large set of oversubscribed ﬂows, we can “leap forward” the

single counter representing real time. More precisely, we advance the real-time counter to be

within δ of the smallest deadline whenever the smallest deadline exceeds the real-time counter

by δ. Of course, now the “real-time” counter no longer represents “real-time,” but is only the

reference “clock” used to stamp deadlines for future packets. The single clock adjustment is

more efﬁcient than adjusting multiple deadlines.

For example, using this new mechanism in Figure 14.18, the deadline of the 101st packet

of Flow 1 at time 100 would become only 102, and not 202 as in the unmodiﬁed scheme.

This ensures that Flow 1 and Flow 2 will share the link evenly in the period from time 100 to

time 150.

The net result is that the leap-forward version of the virtual clock behaves just as well as

ideal bit-by-bit schemes, and it takes O(log(n)) work. The logarithmic overhead is needed only

for sorting deadlines using, say, a heap [CLR90]). Leaping forward is also efﬁcient because

we can access the element with the smallest tag directly from the top of the heap in constant

time. What is the cost of sorting using a heap?

Recall that a d-heap is a tree in which each node of the tree contains d children and each

node has a value smaller than the values contained in all its children. If the values in the

leaves of the tree are deadlines, then the root contains the earliest deadline. When the earliest

deadline ﬂow is scheduled, its leaf deadline value is updated. This can change its parent value,

and its parent’s parent value, and so on, up to the root. In software, a value of d greater than

2 is not much help, because each of the d
children of a node must be compared when any

child value changes. However, in hardware, if the d-children are stored in contiguous memory

locations, then for values of d up to, say, 32, the hardware can retrieve 32 consecutive memory

locations in a single wide memory access of around 1024 bits. Simple combinatorial logic

358


C H A P T E R 1 4
Scheduling Packets
within the chip can then calculate the minimum of these 32 values within the time for a memory

access.

Since an update can require changing all parent values in a path from the leaf to the

root, and changing each parent value takes one memory access to read and one to write, the

worst-case number of memory accesses is equal to twice the maximum height of a 32-way

heap, which is log32N, where N is the number of ﬂows. Thus for N less than 323= 32K,

the calculation of the minimum will take only six memory accesses. Thus the log N term per

packet can be made very small in practice by using a large radix for the logarithm.

In terms of our principles, we are using an efﬁcient data structure (P15) and are adding

hardware (P5) in the form of a special-purpose sorting chip. The chip in turn uses wide

memories and locality (P5b, exploit locality) to reduce memory access times.

A second technique to build heaps does not use wide words but uses pipelining. It is

described in the exercises for Chapter 2. Note that these two solutions to making a fast heap

represent two of the three memory subsystem design strategies (P5a, b, pipelining and wide

word parallelism) described in Chapters 3 and 2.

In the case of both DRR and virtual clock, the basic idea works ﬁne if all reserved rates are

within small multiples of each other. However, if rates can vary by orders of magnitude (from,

say, telemetry applications to video), both schemes introduce a peculiar form of burstiness

described in Bennett and Zhang [BZ96]. This burstiness can be ﬁxed using a technique of two

queues ﬁrst introduced in Bennett and Zhang [BZ96] and also used in Suri et al. [SVC97].

However, it adds implementation complexities of its own and may not be needed in practice.

If hardware is not available and the log n
cost is signiﬁcant, another possible approach

[SVC97] is to trade accuracy in deadlines for reduced computation (P3b). For example, sup-

pose your deadlines were originally 100.13, 115.27, 61 and we round up the deadlines (tags)

to whole numbers 101, 116, 61. This reduces the range of numbers to be sorted, which can be

exploited by bucket-sorting techniques to reduce sorting overhead. It can also be shown that

the reduced deadline accuracy introduces only a small additive penalty to the delay bound.

A second approach to reduce computation, by relaxing speciﬁcations (P3b), is described

in Ramabhadran and Pasquale [RP03]. While there are no worst-case delay guarantees, the

scheme appears to provide good delay bounds in most cases, with computation time that is

only slightly worse than for DRR.

14.8 SCALABLE FAIR QUEUING
Using multiple queues for each ﬂow, we have seen that: (i) a constant-time algorithm (DRR)

can provide bandwidth guarantees for QoS even using software and (ii) a logarithmic time-

overhead algorithm can provide bandwidth and delay guarantees; further, the logarithmic

overhead can be made negligible using extra hardware to implement a priority queue. Thus it

would seem that QoS is easy to implement in routers ranging from small edge routers to the

bigger backbone (core) routers.

Unfortunately, studies by Thompson et al. [TMW97] of backbone routers show there to

be around 250,000 concurrent ﬂows. With increasing trafﬁc, we expect this number to grow to

a million and possibly larger as Internet speed and trafﬁc increase. Keeping state for a million

ﬂows can be a difﬁcult task in backbone routers. If the state is kept in SRAM, the amount of

memory required can be expensive; if the state is kept in DRAM, state lookup could be slow.

14.8 Scalable Fair Queuing


359
More cogently, advocates of Internet scaling and aggregation point out that Internet routing

currently uses only around 150,000 preﬁxes for over 100 million nodes. Why should QoS

require so much state when none of the other components of IP do? In particular, while the

QoS state may be manageable today, it might represent a serious threat to the scaling of the

Internet. Just as preﬁxes aggregate routes for multiple IP addresses, is there a way to aggregate

ﬂow state?

Aggregation implies that backbone routers will treat groups of ﬂows in identical fashion.

Aggregation requires that (i) it must be reasonable for the members of the aggregated group

to be treated identically and (ii) there must be an efﬁcient mapping from packet headers to

aggregation groups. For example, in the case of IP routing, (i) a preﬁx aggregates a number of

addresses that share the same output link, often because they are in the same relative geographic

area, and (ii) longest matching preﬁx provides an efﬁcient mapping from destination addresses

in headers to the appropriate preﬁx.

There are three interesting proposals to provide aggregated QoS, which we describe brieﬂy:

random aggregation (stochastic fair queuing), aggregation at the network edge (DiffServ), and

aggregation at the network edge together with efﬁcient policing of misbehaving ﬂows (core

stateless fair queuing).

14.8.1 Random Aggregation
The idea behind stochastic fair queuing (SFQ) [McK91] is to employ principle P3a by trading

certainty in fairness for reduced state. In this proposal, backbone routers keep a ﬁxed set of

ﬂow queues that is affordable, say, 125,000, on which they do, say, DRR. When packets arrive,

some set of packet ﬁelds (say, destination, source, and the destination and source ports for

TCP and UDP trafﬁc) are hashed to a ﬂow queue. Thus assuming that a ﬂow is deﬁned by the

set of ﬁelds used for hashing, a given ﬂow will always be hashed to the same ﬂow queue. Thus

with 250,000 concurrent ﬂows and 125,000 ﬂow queues, roughly 2 ﬂows will share the same

ﬂow queue or hash bucket.

Stochastic fair queuing has two disadvantages. First, different backbone routers can hash

ﬂows into different groups because routers need to be able to change their hash function if the

hash distributes unevenly. Second, SFQ does not allow some ﬂows to be treated differently

(either locally within one router or globally across routers) from other ﬂows, a crucial feature

for QoS. Thus, SFQ only provides some sort of scalable and uniform bandwidth fairness.

14.8.2 Edge Aggregation
The three ideas behind the DiffServ proposal [SWG] are: relaxing system requirements (P3)

by aggregating ﬂows into classes at the cost of a reduced ability to discriminate between ﬂows;

shifting the mapping to classes from core routers to edge routers (P3c, shifting computation

in space); and passing the aggregate class information from the edge to core routers in the IP

header (P10, passing hints in protocol headers).

Thus, edge routers aggregate ﬂows into classes and mark the packet class by using a

standardized value in the IP TOS ﬁeld. The IP type-of-service (TOS) ﬁeld was meant for some

such use, but it was never standardized; vendors such as Cisco used it within their networks

to denote trafﬁc classes such as voice over IP, but there was no standard deﬁnition of trafﬁc

classes. The DiffServ group generalizes and standardizes such vendor behavior, reserving

values for classes that are being standardized. One class being discussed is so-called expedited

360


C H A P T E R 1 4
Scheduling Packets
Edge router



Core router CR

Flow
F 1
Flow
F 2

ER

Uncongested



Congested

F I G U R E 14.19
If ﬂows F 1 and F2 are aggregated by the time they reach the core router CR, how

can the core router realize that F1 is oversubscribing without keeping state for each (unaggregated) ﬂow?

service, in which a certain bandwidth is reserved for the class. Another is assured service,

which is given a lower drop probability for RED in output queues.

However, the key point is that backbone routers have a much easier job in DiffServ. First,

they map ﬂows to classes based on a small number of ﬁeld values in a single TOS ﬁeld.

Second, the backbone router has to manage only a small number of queues, mostly one for

each class and sometimes one for each subclass within a class; for example, assured service

currently speciﬁes three levels of service within the class. Edge routers, though, have to map

ﬂows to classes based on ACL-like rules and examination of possibly the entire header. This

is, however, a good trade-off because edge routers operate at slower speeds.

14.8.3 Edge Aggregation with Policing
Using edge aggregation, two ﬂows (say, F1 and F2) that have reserved bandwidth (say, B1 and

B2, respectively) could be aggregated into a class that has nominally reserved some bandwidth,

which is B ≥ B1+ B2for all ﬂows in the class. Consider Figure 14.19. Suppose F 1 decides

to oversubscribe and to send at a rate greater than
B. The edge router ER in Figure 14.19

may currently have sufﬁcient bandwidth to allow all packets of ﬂow
F1 and
F2 through.

Unfortunately, when this aggregated class reaches the backbone (core) router CR, suppose

the core router is limited in bandwidth and must drop packets. Ideally, CR should only drop

oversubscribed ﬂows like F1 and let all of F2’s packets through.

How, though, can CR tell which ﬂows are oversubscribed? It could do so by keeping state

for all ﬂows passing through, but that would defeat scaling. A clever idea, called core-stateless
fair queuing [SSZ], makes the observation that the edge router ER has sufﬁcient information

to distinguish the oversubscribed ﬂows. Thus ER can, using principle P10, pass information

in packet headers to CR.

How, though, should CR handle oversubscribed ﬂows? Dropping all such marked packets

may be too severe. If there is enough bandwidth for some oversubscribed ﬂows, it seems

reasonable for CR to drop in proportion to the degree a ﬂow is oversubscribed. Thus ER

should pass a value in the packet header of a ﬂow that is proportional to the degree a ﬂow is

oversubscribed. To implement this idea, CR can drop randomly (P3a), with a drop probability

that is proportional to the degree of oversubscription. While this has some error probability, it

is close enough. Most importantly, random dropping can be implemented without CR keeping

any state per ﬂow. In effect, CR is implementing RED, but with the drop probability computed

based on a packet header ﬁeld set by an edge router.

While core-stateless is a nice idea, we note that unlike SFQ (which can be implemented

in isolation without cooperation between routers) and DiffServ (which has mustered sufﬁcient

14.10 Exercises



361
support for its standardized use of the TOS ﬁeld), core-stateless fair queuing is, as of now,

only a research proposal [SSZ].

14.9 SUMMARY
In this chapter, we attacked another major implementation bottleneck for a router: scheduling

data packets to reduce the effects of congestion, to provide fairness, and to provide quality-

of-service guarantees to certain ﬂows. We worked our way upward from schemes, such as

RED, that provide congestion feedback to schemes that provide QoS guarantees in terms of

bandwidth and delay. We also studied how to scale QoS state to core routers using aggregation

techniques such as DiffServ.

A real router will often have to choose various combinations of these individual schemes.

Many routers today offer RED, token bucket policing, and multiple queues and DRR. However,

the major point is that all these schemes, with the exception of the schemes that provide delay

bounds, can be implemented efﬁciently; even schemes that provide delay bounds can be

implemented at the cost of fairly simple added hardware. A number of combination schemes

can also be implemented efﬁciently using the principles we have outlined. The exercises

explore some of these combinations.

To make this chapter self-contained, we devoted a great deal of the discussion to explana-

tions of topics, such as congestion control and resource reservation, that are really peripheral to

the main business of this book. What we really care about is the use of our principles to attack

scheduling bottlenecks. Lest that be forgotten, we remind you as always, of the summary, in

Figure 14.2 of the techniques used in this chapter and the corresponding principles.

14.10 EXERCISES
1.
Consider what happens if there are large variations in the reserved bandwidths of ﬂows,

for example, F1 with a rate of 1000 and F 2, . . . , Fn with a rate of 1. Assuming that all

ﬂows have the same minimum packet size, show that ﬂow F1 can be locked out for a long

period.

2.
Consider the simple idea of sending one packet for each queue with enabled quantum for

each round in DRR. In other words, we interleave the packets sent in various queues

during a DRR round rather than ﬁnishing a quantum’s worth for every ﬂow. Describe how

to implement this efﬁciently.

3.
Work out the details of implementing a hierarchical DRR scheme.

4.
Suppose an implementation wishes to combine DRR with token bucket shaping on the

queues as well. How can the implementation ensure that it skips empty queues (a DRR

scan should not visit a queue that has no token bucket credits)?

5.
Describe how to efﬁciently combine DRR with multiple levels of priority. In other words,

there are several levels of priority; within each level of priority, the algorithm runs DRR.

6.
Suppose that the required bandwidths of ﬂows vary by an order of magnitude in DRR.

What fairness problems can result? Suggest a simple ﬁx that provides better short-term

fairness without requiring sorting.


C H A P T E R 15
Routers as Distributed Systems
Come now and let us reason together.
— Isaiah 1:18, The Bible

Distributed systems are clearly evil things. They are subject to a lack of synchrony, a lack of

assurance, and a lack of trust. Thus in a distributed system the time to receive messages can

vary widely; messages can be lost and servers can crash; and when a message does arrive it

could even contain a virus. In Lamport’s well-known words a distributed system is “one in

which the failure of a computer you didn’t even know existed can render your own computer

unusable.”
Of course, the main reason to use a distributed system is that people are distributed. It

would perhaps be unreasonable to pack every computer on the Internet into an efﬁciency

apartment in upper Manhattan. But a router? Behind the gleaming metallic cage and the

ﬂashing lights, surely there lies an orderly world of synchrony, assurance, and trust.

On the contrary, this chapter argues that as routers (recall routers includes general inter-

connect devices such as switches and gateways as well) get faster, the delay between router

components increases in importance when compared to message transmission times. The

delay across links connecting router components can also vary signiﬁcantly. Finally, avail-

ability requirements make it infeasible to deal with component failures by crashing the entire

router. With the exception of trust — trust arguably exists between router components — a

router is a distributed system. Thus within a router it makes sense to use techniques developed

to design reliable distributed systems.

To support this thesis, this chapter considers three sample phenomena that commonly

occur within most high-performance interconnect devices — ﬂow control, striping, and asyn-

chronous data structure updates. In each case, the desire for performance leads to intuitively

plausible schemes. However, the combination of failure and asynchrony can lead to subtle

interactions.

Thus a second thesis of this chapter is that the use of distributed algorithms within routers

requires careful analysis to ensure reliable operation. While this is trite advice for protocol

designers (who ignore it anyway), it may be slightly more novel in the context of a router’s

internal microcosm.

The chapter is organized as follows. Section 15.1 motivates the need for ﬂow control on

long chip-to-chip links and describes solutions that are simpler than, say, TCP’s window ﬂow

control. Section 15.2 motivates the need for internal striping across links and fabrics to gain

throughput and presents solutions that restore packet ordering after striping. Section 15.3 details

362

Number


Principle


15.1 Internal Flow Control
Used In


363
P1
P13

Avoid waste caused by partitioned buffers
Internal flow control

Exploit degrees of freedom by decoupling
Internal striping

logical from physical reception

P3


Relax binary search requirements to

allow duplicate key values



Binary search

update

F I G U R E 15.1
Principles used in the various distributed systems techniques (for use within a router)

discussed in this chapter.

the difﬁculties of performing asynchronous updates on data structures that run concurrently

with search operations.

The techniques described in this chapter (and the corresponding principles invoked) are

summarized in Figure 15.1.

In all three examples in this chapter, the focus is not merely on performance, but on

the use of design and reasoning techniques from distributed algorithms to produce solutions

that gain performance without sacriﬁcing reliability. The techniques used to gain reliability

include periodic synchronization of key invariants and centralizing asynchronous computation

to avoid race conditions. Counterexamples are also given to show how easily the desire to gain

performance can lead, without care, to obscure failure modes that are hard to debug.

The sample of internal distributed algorithms presented in this chapter is necessarily

incomplete. An important omission is the use of failure detectors to detect and swap out failed

boards, switching fabrics, and power supplies.

Q u i c k R e f e r e n c e G u i d e
It is important for an implementor to learn how to make link ﬂow control reliable, as described in

Section 15.1.2. Implementors are increasingly turning to striping within networking devices and some

solutions for link striping are described in Section 15.2.

15.1 INTERNAL FLOW CONTROL
As said in Chapter 13, packaging technology and switch size are forcing switches to expand

beyond single racks. These multichassis systems interconnect various components with serial

links that span relatively large distances of 5–20 m. At the speed of light, a 20-m link con-

tributes a round-trip link delay of 60 nsec. On the other hand, at OC-768 speeds, a 40-byte

minimum-size packet takes 8 nsec to transmit. Thus, eight packets can be simultaneously in

transit on such a link.

Worse, link signals propagate slower than the speed of light; also, there are other delays,

such as serialization delay, that make the number of cells that can be in ﬂight on a single link


364


C H A P T E R 1 5
Routers as Distributed Systems
even larger. This is quite similar to a stream of packets in ﬂight on a transatlantic link. A single

router is now a miniature Internet.

TCP (Transmission Control Protocol) and other transport protocols already solve the

problem of ﬂow control. If the receiver has ﬁnite buffers, sender ﬂow control ensures that

any packet sent by the sender has a buffer available when it arrives at the receiver. Chip-to-

chip links also require ﬂow control. It is considered bad form to drop packets or cells (we will

use cells in what follows) within a router for reasons other than output-link congestion.

It is possible to reuse directly the TCP ﬂow control mechanisms between chips. But TCP

is complex to implement. Disentangling mechanisms, TCP is complex because it does error

control and ﬂow control, both using sequence numbers. However, within a chip-to-chip link,

errors on the link are rare enough for recovery to be relegated to the original source computer.

Thus, it is possible to apply fairly recent work on ﬂow control [OSV94, KCB94] that is not

intertwined with error control.

Figure 15.2 depicts a simple credit ﬂow control mechanism [OSV94] for a chip-to-chip

link within a router. The sender keeps a credit register that is initialized to the number of buffers

allocated at the receiver. The sender sends cells only when the credit register is positive and

decrements the credit register after a cell is sent. At the receiving chip, whenever a cell is

removed from the buffer, the receiver sends a credit to the sender. Finally, when a credit

message arrives, the sender increments the credit register.

15.1.1 Improving Performance
In Figure 15.2, if the number of buffers allocated is greater than the product of the line speed

and the round-trip delay (called the pipe size), then transfers can run at the full link speed.

One problem in real routers is that there are often several different trafﬁc classes that share

the link. One way to accommodate all classes is to strictly partition destination buffers among

classes. This can be wasteful because it requires allocating the pipe size (say, 10 cell buffers)

to each class. For a large number of classes, the number of cell buffers will grow alarmingly,

potentially pushing the amount of on-chip SRAM required beyond feasible limits. Recall that

ﬁeld programmable gate arrays (FPGAs) especially have smaller on-chip SRAM limits.

Upstream

node U

Credit
register


1
X


Receive X credits


Downstream

node D

Send credits
F I G U R E 15.2
Basic credit-based ﬂow control.

15.1 Internal Flow Control


365
But allocating the full pipe size to all classes at the same time is obvious waste (P1)

because if every class were to send cells at the same time, each by itself would get only a

fraction of the link throughput. Thus it makes sense to share buffers. The simplest approach

to buffer sharing is to divide the buffer space physically into a common pool together with a

private pool for each class.

A naive method to do so would mark data cells and credits as belonging to either the

common or the private pools to prevent interference between classes. The naive scheme also

requires additional complexity to guarantee that a class does not exceed, say, a pipe size worth

of buffers.

An elegant way to achieve the allow buffer sharing without marking cells is described in

Ozveren et al. [OSV94]. Conceptually, the entire buffer space at the receiver is partitioned so

that each class has a private pool of Min buffers; in addition there is a common pool of size

(B − N ∗ Min) buffers, where N is the number of classes and B is the total buffer space. Let

Max denote the pipe size.

The protocol runs in two modes: congested and uncongested. When congested, each class

is restricted to Min outstanding cells; when uncongested, each class is allowed the presumably

larger amount of Max outstanding cells. All cell buffers at the downstream node are anonymous;

any buffer can be assigned to the incoming cells of any class. However, by carefully restricting

transitions between the two modes, we can allow buffer sharing while preventing deadlock

and cell loss.

To enforce the separation between private pools without marking cells, the sender keeps

track of the total number of outstanding cells S, which is the number of cells sent minus the

number of credits received. Each class i also keeps track of a corresponding counter Si, which

is the number of cells outstanding for class i. When S
< N · Min (i.e., the private pools are in

no danger of depletion), then the protocol is said to be uncongested and every class i can send

as long as Si≤ Max.

However, when S
≥ N · Min, the link is said to be congested and each class is restricted

to a smaller limit by ensuring that Si≤ Min. Intuitively, this buffer-sharing protocol performs

as follows. During light load, when there are only a few classes active, each active class gets

Max buffers and goes as fast as it possibly can. Finally, during a continuous period of heavy

loading when all classes are active, each class is still guaranteed Min buffers.

Hysteresis can be added to prevent oscillation between the two modes. It is also possible

to extend the idea of buffer sharing for credit-based ﬂow control to rate sharing for rate-based

ﬂow control using, say, leaky buckets (Chapter 14).

15.1.2 Rescuing Reliability
The protocol sketched in the last subsection uses limited receiver SRAM buffers very efﬁciently

but is not robust to failures. Before understanding how to make the more elaborate ﬂow control

protocol robust against failures, it is wiser to start with the simpler credit protocol portrayed

in Figure 15.2.

Intuitively, the protocol in Figure 15.2 is like transferring money between two banks: The

“banks” are the sender and the receiver, and both credits and cells count as “money.” It is

easy to see that in the absence of errors the total “money” in the system is conserved. More

formally, let CR be the credit register, M the number of cells in transit from sender to receiver,

366


C H A P T E R 1 5
Routers as Distributed Systems
C the number of credits in transit in the other direction, and Q the number of cell buffers that

are occupied at the receiver.

Then it is easy to see that (assuming proper initialization and that no cells or credits are lost

on the link), the protocol maintains the following property at any instant: CR + M + Q + C =

B, where B is the total buffer space at the receiver. The relation is called an invariant because

it holds at all times when the protocol works correctly. It is the job of protocol initialization to

establish the invariant and the job of fault tolerance mechanisms to maintain the invariant.

If this invariant is maintained at all times, then the system will never drop cells, because

the number of cells in transit plus the number of stored cells is never more than the number of

buffers allocated.

There are two potential problems with a simple hop-by-hop ﬂow control scheme. First, if

initialization is not done correctly, then the sender can have too many credits, which can lead

to cell’s being dropped. Second, credits or cells for a class can be lost due to link errors. Even

chip-to-chip links are not immune from infrequent bit errors; at high link speeds, such errors

can occur several times an hour. This second problem can lead to slowdown or deadlock.

Many implementors can be incorrectly persuaded that these problems can be ﬁxed by

simple mechanisms. One immediate response is to argue that these cases won’t happen or will

happen rarely. Second, one can attempt to ﬁx the second problem by using a timer to detect

possible deadlock. Unfortunately, it is difﬁcult to distinguish deadlock from the receiver’s

removing cells very slowly. Worse, the entire link can slow down to a crawl, causing router

performance to fall; the result will be hard to debug.

The problems can probably be cured by a router reset, but this is a Draconian solution.

Instead, consider the following resynchronization scheme. For clarity, the scheme is presented

using a series of reﬁnements depicted in Figure 15.3.

In the simplest synchronization scheme (Scheme 1, Figure 15.3), assume that the protocol

periodically sends a specially marked cell called a marker. Until the marker returns, the sender

stops sending data cells. At the receiver, the marker ﬂows through the buffer before being sent
back to the upstream node. It is easy to see that after the marker returns, it has “ﬂushed” the

pipe of all cells and credits. Thus at the point the marker returns, the protocol can set the credit

register (CR) to the maximum value (B). Scheme 1 is simple but requires the sender to be idled

periodically in order to do resynchronization.

So Scheme 2 (Figure 15.3) augments Scheme 1 by allowing the sender to send cells after

the marker has been sent; however, the sender keeps track of the cells sent since the marker was

launched in a register, say, CSM (for “cells sent since marker”). When the marker returns, the

sender adjusts the correction to take into account the cells sent since the marker was launched

and so sets CR = B − CSM.

The major ﬂaw in Scheme 2 is the inability to bound the delay that it takes the marker to

go through the queue at the receiver. This causes two problems. First, it makes it hard to bound

how long the scheme takes to correct itself. Second, in order to make the marker scheme itself

reliable, the sender must periodically retransmit the marker. Without a bound on the marker

round-trip delay, the sender could retransmit too early, making it hard to match a marker

response to a marker request without additional complexity in terms of sequence numbers.

To bound the marker round-trip delay, Scheme 3 (Figure 15.3) lets the marker bypass the

receiver queue and “reﬂect back” immediately. However, this requires the marker to return

with the number of free cell buffers F in the receiver at the instant the marker was received.

Then when the marker returns, the sender sets the credit register CR = F − CSM.


UPSTREAM NODE

Stop

sending

Set credits
B
Measure cells

sent since mark (CSM)

Set credits
B −CSM
Measure cells

sent since mark (CSM)

Set credits
F −CSM


F


15.1 Internal Flow Control
DOWNSTREAM NODE

Time

Scheme 1
Scheme 2
Free space F
Scheme 3


367
F I G U R E 15.3
Three steps to a marker algorithm.

The marker scheme is a special instance of a classical distributed systems technique called

a snapshot. Informally, a snapshot is a distributed audit that produces a consistent state of a

distributed system. Our marker-based snapshot is slightly different from the classical snapshot

described in Chandy and Lamport [CL85]. The important point, however, is that snapshots can

be used to detect incorrect states of any distributed algorithm and can be efﬁciently implemented

in a two-node subsystem to make any such protocol robust. In particular, the same technique

can be used [OSV94] to make the fancier ﬂow control of Section 15.1.1 equally robust.

In particular, the marker protocol makes the credit-update protocol self-stabilizing; i.e., it

can recover from arbitrary errors, including link errors, and also hardware errors that corrupt

registers. This is an extreme form of fault tolerance that can greatly improve the reliability of

subsystems without sacriﬁcing performance.

368


C H A P T E R 1 5
Routers as Distributed Systems
In summary, the general technique for a two-node system is to write down the protocol

invariants and then to design a periodic snapshot to verify and, if necessary, correct the

invariants. Further techniques for protocols that work on more than two nodes are describe in

Awerbuch et al. [APV91]; they are based on decomposing, when possible, multinode protocols

into two-node subsystems and repeating the snapshot idea.

An alternative technique for making a two-node credit protocol fault tolerant is the FCVC

idea of Kung et al. [KCB94], which is explored in the exercises. The main idea is to use

absolute packet numbers instead of incremental updates; with this modiﬁcation the protocol

can be made robust by the technique of periodically resending control state on the two links

without the use of a snapshot.

15.2 INTERNAL STRIPING
Flow control within routers is motivated by the twin forces of increasingly large interconnect

length and increasing speeds. On the other hand, internal striping or load balancing within a

router is motivated by slow interconnect speeds. If serial lines are not fast enough, a designer

may resort to striping cells internally across multiple serial links.

Besides serial link striping, designers often resort to striping across slow DRAM banks, to

gain memory bandwidth, and across switch fabrics, to scale scheduling algorithms like iSLIP.

We saw these trends in Chapter 13. In each case, the designer distributes cells across multiple

copies of a slow resource, called a channel.

In most applications, the delay across each channel is variable; there is some large skew

between the fastest and slowest times to send a packet on each channel. Thus the goals of a

good striping algorithm are FIFO delivery in the face of arbitrary skew — routers should not

reorder packets because of internal mechanisms — and robustness in the face of link bit errors.

To understand why this combination of goals may be difﬁcult, consider round-robin strip-

ing. The sender sends packets in round-robin order on the channels. Round-robin, however,

does not provide FIFO delivery without packet modiﬁcation. The channels may have varying

skews, and so the physical arrival of packets at the receiver may differ from their logical

ordering. Without sequencing information, packets may be persistently misordered.

Round-robin schemes can be made to guarantee FIFO delivery by adding a packet sequence

number that can be used to resequence packets at the receiver. However, many implementations

would prefer not to add a sequence number because it adds to cell overhead and reduces the

effective throughput of the router.

15.2.1 Improving Performance
To gain ordering without the expense of sequence numbers, the main idea is to exploit a hidden

degree of freedom (P13) by decoupling physical reception from logical reception. Physical

reception is subject to skew-induced misordering. Logical reception eliminates misordering

by using buffering and by having the receiver remove cells using the same algorithm as the

sender.

For example, suppose the sender stripes cells in round-robin order using a round-robin

pointer that walks through the sending channels. Thus cell A is sent on Channel 1, after which

the round-robin pointer at the sender is incremented to 2. The next cell, B, is sent on Channel

2, and so on.


R1

R1



B



A



Lost



R1



R2



G



H



15.2 Internal Striping
R2



R2



369
Skip

R1

R2


C



Scene 1, Loss
E



D


R0

R0

R1


R2

R2


I



Scene 4, Skipping

E
R1

F
R1

G
R2

R2

R1

R2

R2

R2



Scene 2, Waiting
(marker)

R2

F

Scene 3, Misordering

B
R0

C
R0

R1

E
R1

C
R1


I



Scene 5, Restoration
Scene 6, Finale

H
R2

F
R2

R3

G

H
R2

I
R2

F I G U R E 15.4
Misordering and Recovery: A Play in Six Scenes. The ﬁnal output at the receiver is D, B, C, E,

F, G, H, I, and synchronization is achieved after the logical reception of E.

The receiver buffers received cells but does not dequeue a cell when it arrives. Instead,

the receiver also maintains a round-robin pointer that is initialized to Channel 1. The receiver

waits at Channel 1 to receive a cell; when a cell arrives, that cell is dequeued and the receiver

moves on to wait for Channel 2. Thus if skew causes cell B (that was sent on Channel 2 after

cell A was sent on Channel 1) to arrive before cell 1, the receiver will not dequeue cell B before

cell A. Instead, the receiver will wait for cell A to arrive; after dequeuing cell A, the receiver

will move on to Channel 2, where it will dequeue the waiting cell, B.

15.2.2 Rescuing Reliability
Synchronization between sender and receiver can be lost due to the loss of a single cell. In

the round-robin example shown earlier, if cell A is lost in a large stream of cells sent over

three links (Figure 15.4), the receiver will deliver the packet sequence D, B, C, G, E, F, … and

permanently reorder cells.

For switch fabrics and some links, one may be able to assume that cell loss is very rare

(say, once a year). Still, such an assumption should make the designer queasy, especially if

one loss can cause permanent damage from that point on. To prevent permanent damage after

a single cell loss, the sender must periodically resynchronize with the receiver.

To do so, deﬁne a round as a sequence of visits to consecutive channels before returning to

the starting channel. In each round, the sender sends data over all channels. Similarly, in each

round, the receiver receives data from all channels. To enable resynchronization, the sender

maintains the round number (initialized to R0) of all channels, and so does the receiver.

370


C H A P T E R 1 5
Routers as Distributed Systems
Thus in Figure 15.4, after sending A, B, and C, all the sender channel numbers are at

R1. However, only channel 1 at the receiver is at R1, while the other channels are at R0

because the second and third channels have not been visited in the ﬁrst round-robin scan at the

receiver. When the round-robin pointer increments to a channel at the sender or receiver, the

corresponding round number is incremented.

Effectively, round numbers can be considered to be implicit per-channel sequence num-

bers. Thus A can be considered to have sequence number R1, the next cell, D, sent on Channel

1 can be considered to have sequence number R2, etc.

Thus in Scene 2 of Figure 15.4, the sender has marched on to send D on Channel 1 and E

on Channel 2. The receiver is still waiting for a cell on Channel 1, which it ﬁnally receives.

At this point, the play shifts to Scene 3, where the receiver outputs D and B (in that order) and

moves to Channel 3, where it eventually receives cell C.

Basically, the misordering problem in Scene 2 is caused by the receiver’s dequeuing a

cell sent in Round R2 (i.e., D) in Round R1 at the receiver. This suggests a simple strategy to

synchronize the round numbers in channels: Periodically, the sender should send its current

round number on each channel to the receiver. To reduce overhead, such a marker cell should

be sent after hundreds of data cells are sent, at the cost of having potentially hundreds of cells

misordered after a loss.

Because brevity is the soul of wit, the play in Figure 15.4 assumes a marker is sent after D

on Channel 1; the sending of markers on other channels is not shown. Thus in Scene 3, notice

that a marker is sent on channel 1 with the current round number, R2, at the sender.

In Scene 4, the receiver has output D, B, and C, in that order, and is now waiting for

Channel 1 again. At this point, the marker containing R2 arrives.

A marker is processed at the receiver only when the marker is at the head of the buffer and

the round-robin pointer is at the corresponding channel. Processing is done by the following

four rules. (1) If the round number in the marker is strictly greater than the current receiver

round number, the marker has arrived too early; the round-robin pointer is incremented. (2) If

the round numbers are equal, any subsequent cells will have higher round numbers; thus the

round-robin pointer is incremented, and the marker is also removed (but not sent to the output).

(3) If the round number in the marker is 1 less than the current channel round number,

this is the normal error-free case; the subsequent cell will have the right round number. In this

case, the marker is removed but the round-robin pointer at the receiver is not incremented.

(4) If the round number in the marker is
k
>
1 less than the current channel round num-

ber, a serious error (other than cell loss) has occurred and the sender and receiver should

reinitialize.

Thus in Scene 4, Rule 2 applies: The marker is destroyed and the round-robin pointer

incremented. At this point, it is easy to see that the sender and receiver are now in perfect

synchronization, because for each channel at the receiver, the round number when that channel

is reached is equal to the round number of the next cell. Thus the play ends with E’s being

(correctly) dequeued in Scene 4, then F in Scene 5, and ﬁnally G in Scene 6. Order is restored,

morality is vindicated.

Thus the augmented load-balancing algorithm recovers from errors very quickly (time

between sending the marker plus a one-way propagation delay). The general technique

underlying the method of Figure 15.4 is to detect state inconsistency on each channel by

periodically sending a marker one-way.

15.3 Asynchronous Updates



371
One-way sending of periodic state (unlike, say, Figure 15.3) sufﬁces for load balancing

as well as for the FCVC protocol (see Exercises) because the invariants of the protocol are

one-way. A one-way invariant is an invariant that involves only variables at the two nodes

and one link. By contrast, the ﬂow control protocol of Figure 15.2 has an invariant that uses

variables on both links.

Periodic sending of state has been advocated as a technique for building reliable Internet

protocols, together with timing out state that has not been refreshed for a speciﬁed period

[Cla88]. While this is a powerful technique, the example of Figure 15.2 shows that perhaps the

soft state approach — at least as currently expressed — works only if the protocol invariants

are one-way.

For load balancing, besides the one-way invariants on each channel that relate sender and

receiver round numbers, there is also a global invariant that ensures that, assuming no packet

loss, channel round numbers never differ by more than 1. This node invariant is enforced, after

a violation due to loss, by skipping at the receiver.

Even in the case when sequence numbers can be added to cells, logical reception can

help simplify the resequencing implementation. Some resequencers use fast parallel hardware

sorting circuits to reassemble packets. If logical reception is used, this circuitry is overkill.

Logical reception is adequate for the expected case, and a slow scan looking for a matching

sequence number is sufﬁcient in the rare error case. Recall that on chip-to-chip links, errors

should be very rare. Notice that if sequence numbers are added, FIFO delivery is guaranteed,

unlike the protocol of Figure 15.4.

15.3 ASYNCHRONOUS UPDATES
Atomic updates that work concurrently with fast search operations are a necessary part of all

the incremental algorithms in Chapters 11 and 10. For example, assume that trie node X points

to node Z. Often inserting a preﬁx requires adding a new node Y
so that X
points to Y
and

Y
points to Z . Since packets are arriving concurrently at wire speed, the update process must

minimally block the search process. The simplest way to do this without locks is to ﬁrst build

Y
completely to point to Z
and then, in a single atomic write, to swing the pointer at X
to

point to Y .

In general, however, there are many delicacies in such designs, especially when faced with

complications such as pipelining. To illustrate the potential pitfalls and the power of correct

reasoning, consider the following example taken from the ﬁrst bridge implementation.

In the ﬁrst bridge product studied in Chapter 10, the bridge used binary search. Imagine we

had a long list of distinct keys B, C, D, E, . . . and with all the free space after the last (greatest

key). Consider the problem of adding a new entry, say, A. There are two standard ways to

handle this.

The ﬁrst was is to mimic the atomic update techniques of databases and keep to two copies

of the binary search table. When A is inserted, search works on the old copy while A is inserted

into a second copy. Then in one atomic operation, update ﬂips a pointer (which the chip uses

to identify the table to be searched) to the second copy.

However, this doubles the storage needed, especially if memory is SRAM, and is expen-

sive. Hence many designers prefer a second option: Create a hole for A by moving all elements

B and greater one position downward.


372


C H A P T E R 1 5
Routers as Distributed Systems
15.3.1 Improving Performance
To reduce memory needs, update must work on the same binary search table on which search

works. To insert element A in, say, Figure 15.5, update must move the elements B, C, and D
one element down.

If the update and search designers are different, the normal speciﬁcation for the update

designer is always to ensure that the search process sees a consistent binary search table

consisting of distinct keys. It appears to be very hard to meet this speciﬁcation without allowing

any search to take place until a complete update has terminated. Since an update can take a

long time for a bridge database with 32,000 elements, this is unacceptable.

Thus, one could consider relaxing the speciﬁcation (P3) to allow a consistent binary search

table that contains duplicates of key values. After all, as long as the table is sorted, the presence

of two or more keys with the same value cannot affect the correctness of binary search.

Thus the creation of a hole for A in Figure 15.5 is accomplished by creating two entries

for D, then two entries for C, and then two entries for B, each with a single write to the table.

In the last step, A is written in place of the ﬁrst copy of B.

To keep the binary search chip simple (see Chapter 10), a route processor was responsible

for updates while the chip worked on searches. The table was stored in a separate off-chip

memory; all three devices (memory, processor, and chip) can communicate with each other

via a common bus. Abstractly, separate search and update processes are concurrently making

accesses to memory. Using locks to mediate access to the memory is infeasible because of the

consequent slowdown of memory.

Given that the new speciﬁcation allows duplicates, it is tempting to get away with the

simplest atomicity in terms of reads and writes to memory. Search reads the memory and update

reads and writes; the memory operations of search and update can arbitrarily interleave. Some

implementors may assume that because binary search can work correctly even with duplicates,

this is sufﬁcient.

Unfortunately, this does not work, as shown in Figure 15.5.1At the start of the scenario

(leftmost picture), only B, C, and D are in the ﬁrst, second, and third table entries. The fourth

entry is free. A search for B begins with the second entry; a comparison with C indicates that

binary search should move to the top half, which consists of only entry 1.

B

C

D

-



B

C

D

D



B

C

C

D



B

B

C

D



A

B

C

D



A

B

C

D

Search for

B starts



Update
Update
Update
Insert A
Search for

B ends

F I G U R E 15.5
Concurrent search and update to a binary tree can lead to incorrect search results. A

binary search for B fails, although B is in the table. This is because B moves out of the search range

during an update that occurs in between search steps.

1This example is due to Cristi Estan.

15.4 Conclusions



373
Next, search is delayed while update begins to go through the process of inserting A by

writing duplicates from the bottom up. By the time update is ﬁnished, B has moved down to

the second entry. When search ﬁnishes up by examining the ﬁrst entry, it ﬁnds A and concludes

(wrongly) that B is not in the table.

A simple attempt at reasoning correctly exposes this sort of counterexample directly. The

standard invariant for binary search is that either the element being searched for (e.g., B) is in

the current binary search range or B is not in the table. The problem is that update can destroy

this invariant by moving the element searched for outside the current range.

In the bridge application, the only consequence of this failure is that a packet arriving at

a known destination may get ﬂooded to all ports. This will worsen performance only slightly

but is unlikely to be noticed by external users!

15.3.2 Rescuing Reliability
A panic reaction to the counterexample of Figure 15.5 might be to jettison single-copy update

and retreat to the safety of two copies. However, all the counterexample demonstrates is

that a search must complete without intervening update operations. If so, the binary search

invariants hold and correctness follows. The counterexample does not imply the converse: that

an entire update must complete without intervening search operations. The converse property

is restrictive and would considerably slow down search.

There are simple ways to ensure that a search completes without intervening updates. The

ﬁrst is to change the architectural model — algorithmics, after all, is the art of changing the

problem to ﬁt our limited ingenuity — so that all update writes are centralized through the search

chip. When update wishes to perform a write, it posts the write to search and waits for an

acknowledgment. After ﬁnishing its current search cycle, search does the required write and

sends an acknowledgment. Search can then work on the next search task.

A second way, more consonant with the bridge implementation, is to observe that the route

processor does packet forwarding. The route processor asks the chip to do search, and it waits

for a few microseconds to get the answer. Finally, the route processor does updates only when

no packets are being forwarded and hence no searches are in progress. Thus an update can be

interrupted by a search, but not vice versa.

The ﬁnal solution relies on search tolerating duplicates, and it avoids locking by changing

the model to centralize updates and searches. Note that centralizing updates is insufﬁcient by

itself (without also relaxing the speciﬁcation to allow duplicates) because this would require

performing a complete update without intervening searches.

15.4 CONCLUSIONS
The routing protocol BGP (Border Gateway Protocol) controls the backbone of the Internet. In

the last few years, careful scrutiny of BGP has uncovered several subtle ﬂaws. Incompatible

policies can lead to routing loops [VGE00], and attempts to make Internal BGP scale using route

reﬂectors also lead to loops [GW02]. Finally, mechanisms to thwart instability by damping

ﬂapping routes can lead to penalizing innocent routes for up to an hour [MGVK02].

While credit must go to the BGP designers for designing a protocol that deals with

great diversity while making the Internet work most of the time, there is surely some dis-

comfort at these ﬁndings. It is often asserted that such bugs rarely manifest themselves in

374


C H A P T E R 1 5
Routers as Distributed Systems
operational networks. But there may be a Three Mile Island incident waiting for us — as in the

crash of the old ARPANET [Per92], where a single unlikely corner case capsized the network

for a few days.

Even worse, there may be a slow, insidious erosion of reliability that gets masked by

transparent recovery mechanisms. Routers restart, TCPs retransmit, and applications retry.

Thus failures in protocols and router implementations may only manifest themselves in terms

of slow response times, frozen screens, and rebooting computers.

Jeff Raskin says, “Imagine if every Thursday your shoes exploded if you tied them the usual

way. This happens to us all of the time with computers, and nobody thinks of complaining.”
Given our tolerance for pain when dealing with networks and computers, a lack of reliability

ultimately translates into a decline of user productivity.

The examples in this chapter ﬁt this thesis. In each case, incorrect distributed algorithm

design leads to productivity erosion, not Titanic failures. Flow control deadlocks can be

masked by router reboots, and cell loss can be masked by TCP retransmits. Failure to preserve

ordering within an internal striping algorithm leads to TCP performance degradation, but not

to loss. Finally, incorrect binary search table updates lead only to increased packet ﬂooding.

But together, the nickels and dimes of every reboot, performance loss, and unnecessary ﬂood

can add up to signiﬁcant loss.

Thus this chapter is a plea for care in the design of protocols between routers and also

within routers. In the quest for performance that has characterized the rest of the book, this

chapter is a lonely plea for rigor. While full proofs may be infeasible, even sketching key

invariants and using informal arguments can help ﬁnd obscure failure modes. Perhaps if we

reason together, routers can become as comfortable and free of surprises as an ordinary pair

of shoes.

15.5 EXERCISES
1. FCVC Flow Control Protocol: The FCVC ﬂow control protocol of Kung et al. [KCB94]

provides an important alternative to the credit protocols described in Section 15.1. In the

FCVC protocol, shown in Figure 15.6, the sender keeps a count of cells sent H while the

receiver keeps a count of cells received R and cells dequeued D. The receiver periodically

sends its current value of D, which is stored at the sender as estimate L. The sender is

allowed to send if H − L > Max. More importantly, if the sender periodically sends H to

the receiver, the receiver can deal with errors due to cell loss.

• Assume cells are lost and that the sender periodically sends H to the receiver. How can

the receiver use the values of H and R to detect how many cells have been lost?

• How can the receiver use this estimate of cell loss to ﬁx D in order to correct the sender?

• Can this protocol be made self-stabilizing without using the full machinery of a

snapshot and reset?

• Compare the general features of this method of achieving reliability to the method used

in the load-balancing algorithm described in the chapter.

2. Load Balancing with Variable-Size Packets: Load balancing within a router is typically

at the granularity of cells. However, load balancing across routers is often at the


H
L


Send if

H
L > Max



R


15.5 Exercises
D


375
F I G U R E 15.6
The FCVC protocol uses a count H of cells sent by sender and an estimate L of the

cells dequeued at receiver; ﬂow control is achieved by limiting the difference between H and L. More

importantly, the use of absolute packet numbers instead of incremental credits allows the periodic sending

of counts to ﬁx errors due to cell loss.

granularity of (variable-sized) packets. Thus simple round-robin striping may not balance

load equally because all the large packets may be sent on one link and the small ones on

another. Modify the load-balancing algorithm without sequence numbers (using ideas

suggested by the deﬁcit round-robin (DRR) algorithm described in Chapter 14) to balance

load evenly even while striping variable-size packets. Extend the fault-tolerance ma-

chinery to handle this case as well.

3. Concurrent Compaction and Search: In many lookup applications, routers must use

available on-chip SRAM efﬁciently and may have to compact memory periodically to

avoid ﬁlling up memory with unusably small amounts of free space. Imagine a sequence

of N trie nodes of size-4 words that are laid out contiguously in SRAM memory after

which there is a hole of size-2 words. As a fundamental operation in compaction, the

update algorithm needs to move the sequence of N nodes two words to the right to ﬁll the

hole. Unfortunately, moving a node two steps to the right can overwrite itself and its

neighbor. Find a technique for doing compaction for update with minimal disruption to a

concurrent search process. Assume that when a node X is moved, there is at most one

other node Y that points to X and that the update process has a fast technique for ﬁnding Y
given X (see Chapter 11). Use this method to ﬁnd a way to compact a sequence of trie

nodes arbitrarily laid out in memory into a conﬁguration where all the free space is at one

end of memory and there are no “holes” between nodes. Of course, the catch is that the

algorithm should work without locking out a concurrent search process for more than one

write operation every K search operations, as in the bridge binary search example.


P A R T IV
Endgame
Daring ideas are like chessmen moved forward. They may be beaten, but they may
start a winning game.
— Goethe

We didn’t lose the game; we just ran out of time.
— Vince Lombardi

The last part of the book applies network algorithmics to the emerging ﬁelds of security

and measurement. As the Internet matures, we believe that good abstractions for secu-

rity and measurement will be key to well-engineered networks. While the problems

(e.g., detecting a DoS attack at a high-speed router) seem hard, some remarkable ideas

have been proposed. The ﬁnal chapter reaches closure by distilling the underlying uni-

ties behind the many different techniques surveyed in this book and by surveying the

future of network algorithmics.


C H A P T E R 16
Measuring Network Traffic
Not everything that is counted counts, and not everything that counts can be counted.
— Albert Einstein

Every graduate with a business degree knows that the task of optimizing an organization or

process begins with measurement. Once the bottlenecks in a supply chain are identiﬁed and the

major cost factors are outlined, improvements can be targeted. The situation is no different in

computer networks. For example, in service provider networks, packet counting and logging

provide powerful tools for the following.

Capacity Planning: Internet service providers (ISPs) need to determine the trafﬁc matrix, or

the trafﬁc between all source and destination subnets they connect. This knowledge can

be used on short time scales (say, hours) to perform trafﬁc engineering by reconﬁguring

optical switches; it can also be used on longer time scales (say, months) to upgrade link

capacity.

Accounting: Internet service providers implement complex service level agreements (SLAs)

with customers and peers. Simple accounting arrangements based on overall trafﬁc can

easily be monitored by a single counter; however, more sophisticated agreements based

on trafﬁc type require a counter per trafﬁc type. Packet counters can also be used to decide

peering relationships. Suppose ISP A is currently sending packets to ISP C via ISP B and

is considering directly connecting (peering) with B; a rational way for A to decide is to

count the trafﬁc destined to preﬁxes corresponding to B.

Trafﬁc Analysis:
Many network managers monitor the relative ratio of one packet type to

another. For example, a spike in peer-to-peer trafﬁc, such as to Kazaa, may require rate

limiting. A spike in ICMP messages may indicate a Smurf attack.

Once causes — such as links that are unstable or have excessive trafﬁc — are identiﬁed,

network operators can take action by a variety of means. Thus measurement is crucial not just

to characterize the network but to better engineer its behavior.

There are several control mechanisms that network operators currently have at their dis-

posal. For example, operators can tweak Open Shortest Path First (OSPF) link weights and

BGP policy to spread load, can set up circuit-switched paths to avoid hot spots, and can simply

buy new equipment. This chapter focuses only on network changes that address the measure-

ment problem — i.e., changes that make a network more observable. However, we recognize

379

380


C H A P T E R 1 6
Measuring Network Trafﬁc
that making a network more controllable, for instance, by adding more tuning knobs, is an

equally important problem we do not address here.

Despite its importance, trafﬁc measurement, at ﬁrst glance, does not appear to offer any

great challenges or have much intellectual appeal. As with mopping a ﬂoor or washing dishes,

trafﬁc measurement appears to be a necessary but mundane chore.

The goal of this chapter is to argue the contrary: that measurement at high speeds is

difﬁcult because of resource limitations and lack of built-in support; that the problems will

only grow worse as ISPs abandon their current generation of links for even faster ones; and that

algorithmics can provide exciting alternatives to the measurement quandary by focusing on

how measurements will ultimately be used. To develop this theme, it is worth understanding

right away why the general problem of measurement is hard and why even the speciﬁc problem

of packet counting can be difﬁcult.

This chapter is organized as follows. Section 16.1 describes the challenges involved in

measurement. Section 16.2 shows how to reduce the required width of an SRAM counter using

a DRAM backing-store. Section 16.3 details a different technique for reducing counter widths

by using randomized counting, which trades accuracy for counter width. Section 16.4 presents

a different approach to reducing the number of counters required (as opposed to the width)

by keeping track of counters only above a threshold. Section 16.5 shows how to reduce the

number of counters even further for some applications by counting only the number of distinct

ﬂows.

Techniques in prior sections require computation on every packet. Section 16.6 takes a

different tack by describing the sampled NetFlow technique for reducing packet processing; in

NetFlow only a random subset of packets is processed to produce either a log or an aggregated

set of counters. Section 16.7 shows how to reduce the overhead of shipping NetFlow records

to managers. Section 16.8 explains how to replace the independent sampling method of Net-

Flow with a consistent sampling technique in all routers that allow packet trajectories to be

traced.

The last three sections of the chapter move to a higher-level view of measurement. In

Section 16.9 we describe a solution to the accounting problem. This problem is of great interest

to ISPs, and the solution method is in the best tradition of the systems approach advocated

throughout this book. In Section 16.10 we describe a solution to the trafﬁc matrix problem

using the same concerted systems approach. Section 16.11 presents a very different approach

to measurement called passive measurement, that treats the network as a black box. It includes

an example of the use of passive measurement to compute the loss rate to a Web server.

The implementation techniques for the measurement primitives described in this chapter

(and the corresponding principles used) are summarized in Figure 16.1.

Q u i c k R e f e r e n c e G u i d e
Section 16.2 may be of interest to a network device implementor seeking to implement a large number

of counters at high speeds. Section 16.5 describes a useful mechanism for quickly counting the list of

distinct identiﬁers in a stream of received packets without keeping large hash tables. Section 16.9 presents

a solution proposed by Juniper Networks for accounting. Section 16.10 covers inferring trafﬁc matrices

and is useful for implementors building tools for monitoring ISPs.


Number


Principle


16.1 Why Measurement Is Hard
Used In


381
P5c
Low-order counter bits in SRAM, all bits in DRAM
LCF algorithm

P15
Update only counters above threshold

P3b
Randomized counting

P3a
Multiple hashed counters to detect heavy flows

P3b
Flow counting by hashing flows to bitmaps

P3a
Packet sampling to collect representative logs

P3a
Sampling flows proportional to size


LR algorithm

Morris algorithm

Multistage filters

Multiresolution

bitmap

Sampled NetFlow

Sampled charging

P3

P4


Aggregating prefixes into buckets

Routing protocol helps color prefixes



Juniper’s DCU  

P4
Using TCP semantics for measurement


Sting

F I G U R E 16.1
Principles used in the implementation of the measurement primitives discussed in this

chapter.

16.1 WHY MEASUREMENT IS HARD
Unlike the telephone network, where observability and controllability were built into the

design, the very simplicity of the successful Internet service model has made it difﬁcult to

observe [DG00]. In particular, there appears to be a great semantic distance between what users

(e.g., ISPs) want to know and what the network provides. In this tussle [CWSB02] between

user needs and the data generated by the network, users respond by distorting [CWSB02]

existing network features to obtain desired data.

For example, Traceroute uses the TTL ﬁeld in an admittedly clever but distorted way, and

the Path MTU discovery mechanism is similar. Tools like Sting [Sav99] use TCP in even more

baroque fashion to yield end-to-end measures. Even tools that make more conventional use

of network features to populate trafﬁc matrices (e.g., Refs. FGea00 and ZRDG03) bridge the

semantic gap by correlating vast amounts of spatially separated data and possibly inconsistent

conﬁguration information. All this is clever, but it may not be engineering.1Perhaps much of

this complexity could be removed by providing measurement features directly in the network.

One of the fundamental tools of measurement is counting: counting the number of packets

or events of a given type. It is instructive to realize that even packet counting is hard as we

show next.

16.1.1 Why Counting Is Hard
Legacy routers provide only per-interface counters that can be read by the management protocol

SNMP. Such counters count only the aggregate of all counters going on an interface and make

1Recall the comment by hardened battle veterans on the heroic Charge of the Light Brigade: “It is beautiful, but

is it war?”
382


C H A P T E R 1 6
Measuring Network Trafﬁc
it difﬁcult to estimate trafﬁc AS-AS matrices that are needed for trafﬁc engineering. They

can also be used only for crude forms of accounting, as opposed to more sophisticated forms

of accounting that count by trafﬁc type (e.g., real-time trafﬁc may be charged higher) and

destination (some destinations may be routed through a more expensive upstream provider).

Thus vendors have introduced ﬁlter-based accounting, where customers can count trafﬁc

that matches a rule specifying a predicate on packet header values. Similarly, Cisco provides

NetFlow-based accounting [Net], where sampled packets can be logged for later analysis, and

5-tuples can be aggregated and counted on the router. Cisco also provides Express Forwarding

commands, which allow per-preﬁx counters [Cis].

Per-interface counters can easily be implemented because there are only a few counters

per interface, which can be stored in chip registers. However, doing ﬁlter-based or per-preﬁx

counters is more challenging because of the following.

•
Many counters: Given that even current routers support 500,000 preﬁxes and that future

routers may have a million preﬁxes, a router potentially needs to support millions of

real-time counters.

•
Multiple counters per packet: A single packet may result in updating more than one

counter, such as a ﬂow counter and a per-preﬁx counter.

•
High speeds: Line rates have been increasing from OC-192 (10 Gbps) to OC-768

(40 Gbps). Thus each counter matched by a packet must be read and written in the

time taken to receive a packet at line speeds.

•
Large widths: As line speeds get higher, even 32-bit counters overﬂow quickly. To

prevent the overhead of frequent polling, most vendors now provide 64-bit counters.

One million counters of 64 bits each requires a total of 64 Mbits of memory; while two

counters of 64 bits each every 8 nec requires 16 Gbps of memory bandwidth. The memory

bandwidth needs require the use of SRAM, but the large amount of memory needed makes

SRAM of this size too expensive. Thus maintaining counters or packet logs at wire speeds is

as challenging as other packet-processing tasks, such as classiﬁcation and scheduling; it is the

focus of much of this chapter.

In summary, this section argues that: (i) packet counters and logs are important for net-

work monitoring and analysis; (ii) naive implementations of packet counting and logs require

potentially infeasible amounts of fast memory. The remainder of this chapter describes the

use of algorithmics to reduce the amount of fast memory and processing needed to implement

counters and logs.

16.2 REDUCING SRAM WIDTH USING DRAM BACKING STORE
The next few sections ignore the general measurement problem and concentrate on the speciﬁc

problem of packet counting. The simplest way to implement packet counting is shown in

Figure 16.2. One SRAM location is used for each of, say, 1 million 64-bit counters. When a

packet arrives, the corresponding ﬂow counter (say, based on destination) is incremented.

Given that such large amounts of SRAM are expensive and infeasible, is it required? If

a packet arrives, say, every 8 nsec, some SRAM counter must be accessed — as opposed to,


D



16.2 Reducing SRAM Width Using DRAM Backing Store
M = 64 bits

Increment

N = 1 million

counters, 1

per prefix



383
OC-192 or -768 speed



Core router

F I G U R E 16.2
Basic model for packet counting at high speeds using a large-width counter for each

of a large number of ﬂows.

Increment

D

OC-192 or -768 speed



c bits



Dump &

reset

every b
accesses



M = 64 bits



N
SRAM


DRAM

F I G U R E 16.3
Using large DRAM counters as a backing store for small SRAM counters, reducing

overall cost. For correctness, an SRAM counter must be backed up to DRAM before it overﬂows.

say, 40-nsec DRAM. However, intuitively keeping a full 64-bit SRAM location is obvious

waste (P1).

Instead, the best hardware features of DRAM and SRAM can be combined (P5c). DRAM

is at least four times cheaper and often as much as 10 times cheaper, depending on market

conditions. On the other hand, DRAM is slow. This is exactly analogous to the memory

hierarchy in a computer. The analogy suggests that DRAM and SRAM can be combined to

provide a solution that is both cheap and fast.

Observe that if the router keeps a 64-bit DRAM backing location for each counter and

a much smaller width (say, 12 bits) for each SRAM counter, then the counter system will

be accurate as long as every SRAM counter is backed up to DRAM before the smaller SRAM
counter overﬂows. This scheme is depicted in Figure 16.3. What is missing, however, is a

good algorithm (P15) for deciding when and how to back up SRAM counters.

Assume that the chip maintaining counters is allowed to dump some SRAM counter to

DRAM every b SRAM accesses. b is chosen to be large enough that b SRAM access times

correspond to 1 DRAM access time. In terms of the smallest SRAM width required, Shah

et al. [SIPM02] show that the optimal counter-management algorithm is to dump the largest
SRAM counter. With this strategy Shah et al. [SIPM02] show that the SRAM counter width c
can be signiﬁcantly smaller than M, the width of a DRAM counter.

More precisely, they show that 2c≈loglog(bb(/Nb−−1)1) , where N is the total number of counters.

Note that this means that the SRAM counter width grows approximately as log log bN , since

b/b − 1 can be ignored for large b. For example, with three 64-bit counters every 8 nsec

(OC-768) for N
equal to a million requires only 8 Mbit of 2.5 µsec SRAM with 51.2 µsec

DRAM. Note that in this case the value of b is 51.2/2.5 ≈ 21.

384


C H A P T E R 1 6
Measuring Network Trafﬁc
The bottom line is that the naive method would have required 192 Mbit of SRAM compared

to 8 Mbit, a factor of 24 savings in expensive SRAM. Overall, this provides roughly a factor

of 4 savings in cost, assuming DRAM is four times cheaper than SRAM.

But this begs the question. How does the chip processing counters ﬁnd the the largest

counter? Bhagwan and Lin [BL00] describe an implementation of a pipelined heap structure

that can determine the largest value at a fairly high expense in hardware complexity and

space. Their heap structure requires pointers of size log2N for each counter just to identify

the counter to be evicted. Unfortunately, log2N additional bits per counter can be large (20

for N = 1 million) and can defeat the overall goal, which was to reduce the required SRAM

bits from 64 to say 10.

The need for a pointer per heap value seems hard to avoid. This is because the counters

must be in a ﬁxed place to be updated when packets arrive, but values in a heap must keep

moving to maintain the heap property. On the other hand, when the largest value arrives at the

top of the heap, one has to correlate it to the counter index in order to reset the appropriate

counter and to banish its contents to DRAM. Notice also that all values in the heap, including

pointers and values, must be in SRAM for speed.

The following LR algorithm [RV03] simpliﬁes the largest count ﬁrst (LCF) algorithm of

Shah et al. [SIPM02] and is easier to implement. Let j be the index of the counter with the

largest value among the counters incremented in the last cycle of b updates to SRAM. Ties

may be broken arbitrarily. If cj
≥ b, the algorithm updates counter cj
to DRAM. If cj
< b,

the algorithm updates any counter with value at least b to DRAM. If no such counter exists,

LR(T ) updates counter Cj
to DRAM.

It can be shown that LR [RV03] is also optimal and produces SRAM counter width c,

which is equal to that of LCF. The maintaining of all counters above the threshold b can be

done using a size-N bitmap in which a 1 implies that the corresponding position has a counter

no less than b.

This leaf structure can be augmented with a simple tree that maintains the position of

the ﬁrst 1 (see Exercises). The tree can be easily pipelined for speed, and only roughly 2 bits

per counter are required for this additional data structure; thus c is increased from its optimal

value, say, x to x + 2, a reasonable cost.

Thus the ﬁnal LR algorithm is a better algorithm (P15) and one that is easier to implement,

provides a new data structure to efﬁciently ﬁnd the ﬁrst bit set in a bitmap (P15), and adds

pipelining hardware (P5) to gain speed.

The overall approach could be considered superﬁcially similar to the usual use of the

memory hierarchy, in which a faster memory acts as a cache for a slower memory. However,

unlike a conventional cache this design ensures worst-case performance and not expected case

performance. The goals of the two algorithms are also different: Counter management stores

an entry for all items but seeks to reduce the width of cache entries, while standard caching

stores full widths for only some frequent items.

16.3 REDUCING COUNTER WIDTH USING RANDOMIZED COUNTING
The DRAM backing-store approach trades off reduced counter widths for more processing and

complexity. A second approach is to trade accuracy and certainty (P3a, b) for reduced counter

widths. For many applications described earlier, approximate counters may sufﬁce.


16.4 Reducing Counters Using Threshold Aggregation


385
Increment

D

OC-192 or -768 speed



I

J

K



Compress

out entries

< threshold



I, valI

J, valJ

K, valK

F I G U R E 16.4
Using threshold compression to reduce the number of counters stored.

The basic idea is as follows. If we increment a b-bit counter only with probability 1/c,

then when the counter saturates, the expected number of counted events is 2b· c. Thus a b-bit

randomized counter can count c times more events than a deterministic version. But once the

notion of approximate counting is accepted, it is possible to do better.

Notice that in the basic idea, the standard deviation (i.e., the expected value of the counter

error) is a few c’s, which is small at counter values
c. R. Morris’s idea for randomized

counting is to notice that for higher counter values, one can tolerate higher absolute values of

the error. For example, if the standard deviation is equal to the counter, the real value is likely

to be within half to twice the value determined by the counter. Allowing the error to scale with

counter values in turn allows a smaller counter width.

To achieve this, Morris’s scheme increments a counter with nonconstant probability that
depends on counter value, so expected error scales with counter size. Speciﬁcally, the algorithm

increments a counter with probability 1/2x, where x is the value of the counter. At the end, a

counter value of x represents an expected value of 2x. Thus the number of bits required for

such a counter is log log Max, where Max is the maximum value required for the counter.

While this is an interesting scheme, its high standard deviation and the need to pick

accurate small numbers, especially for high values of the counter, are clear disadvantages.

Randomized counting is an example of using P3b, trading accuracy for storage (and time).

16.4 REDUCING COUNTERS USING THRESHOLD AGGREGATION
The last two schemes reduce the width of the SRAM counter table shown in Figure 16.2. The

next two approaches reduce the height of the SRAM counter table. They rely on the quote

from Einstein (which opened the chapter) that not all the information in the ﬁnal counter table

may be useful to an application, at least for some applications. Effectively, by relaxing the

speciﬁcation (P3), the number of counters that need to be maintained can be reduced.

One simple way to compress the counter table is shown in Figure 16.4. The idea is to pick

a threshold, say, 0.1% of the trafﬁc, that can possibly be sent in the measurement interval and

to keep counters only for such “large” ﬂows. Since, by deﬁnition, there can be at most 1000

such ﬂows, the ﬁnal table reduces to 1000 ﬂow ID, counter pairs, which can be indexed using

a CAM. Note that small CAMs are perfectly feasible at high speed.

This form of compression is reasonable for applications that only want counters above a

threshold. For example, just as most cell phone plans charge a ﬁxed price up to a threshold

and a usage-based fee beyond the threshold, a router may only wish to keep track of the

trafﬁc sent by large ﬂows. All other ﬂows are charged a ﬁxed price. Similarly, ISPs wishing to


386


C H A P T E R 1 6
Measuring Network Trafﬁc
Stage 1

h1(F )

Stage 2

Packet with
h2(F )

flow ID F
h3(F )

Stage 3



All large?



Flow

memory

F I G U R E 16.5
In a parallel multistage ﬁlter, a packet with a ﬂow ID F is hashed using hash function

h1 into a Stage 1 hash table, h2 into a Stage 2 hash table, etc. Each of the hash buckets contains a counter

that is incremented by the packet size. If all the hash bucket counters are above the threshold (shown

bolded), then ﬂow F is passed to the ﬂow memory for more careful observation.

reroute trafﬁc hot spots or detect attacks are only interested in large, “elephant” ﬂows and not

the “mice.”
However, this idea gives rise to a technical problem. How can a chip detect the elephants

above the threshold without keeping track of all ﬂows? The simplest approach would be to

keep a counter for all ﬂows, as in Figure 16.2, in order to determine which ﬂows are above the

threshold. However, doing so does not save any memory.

A trick [EV02] to directly compute the elephants together with the trafﬁc sent by each

elephant is shown in Figure 16.5. The building blocks are hash stages that operate in parallel.

First, consider how the ﬁlter operates if it had only one stage. A stage is a table of counters

indexed by a hash function computed on a packet ﬂow ID; all counters in the table are initialized

to 0 at the start of a measurement interval.

When a packet comes in, a hash on its ﬂow ID is computed and the size of the packet is

added to the corresponding counter. Since all packets belonging to the same ﬂow hash to the

same counter, if a ﬂow F sends more than threshold T , F ’s counter will exceed the threshold.

If we add to the ﬂow memory all packets that hash to counters of T or more, we are guaranteed

to identify all the large ﬂows (no false negatives).

Unfortunately, since the number of counters we can afford is signiﬁcantly smaller than

the number of ﬂows, many ﬂows will map to the same counter. This can cause false positives

in two ways: ﬁrst, small ﬂows can map to counters that hold large ﬂows and get added to ﬂow

memory; second, several small ﬂows can hash to the same counter and add up to a number

larger than the threshold.

To reduce this large number of false positives, the algorithm uses multiple stages. Each

stage (Figure 16.5) uses an independent hash function. Only the packets that map to counters

of T
or more at all stages get added to the ﬂow memory. For example, in Figure 16.5, if a

packet with a ﬂow ID F arrives that hashes to counters 3, 1, and 7, respectively, at the three

stages, F will pass the ﬁlter (counters that are over the threshold are shown darkened).

16.5 Reducing Counters Using Flow Counting


387
On the other hand, a ﬂow G that hashes to counters 7, 5, and 4 will not pass the ﬁlter because

the second-stage counter is not over the threshold. Effectively, the multiple stages attenuate

the probability of false positives exponentially in the number of stages. This is shown by the

following simple analysis.

Assume a 100-MB/sec link, with 100,000 ﬂows. We want to identify the ﬂows above 1%

of the link during a 1-second measurement interval. Assume each stage has 1000 buckets and

a threshold of 1 MB. Let’s see what the probability is for a ﬂow sending 100 KB to pass the

ﬁlter. For this ﬂow to pass one stage, the other ﬂows need to add up to 1 MB − 100 KB =

900 KB.

There are at most 99,900/900 = 111 such buckets out of the 1000 at each stage. Therefore,

the probability of passing one stage is at most 11.1%. With four independent stages, the

probability that a small ﬂow no larger than 100 KB passes all four stages is the product of the

individual stage probabilities, which is at most 1.52 ∗ 10−4.
Note the potential scalability of the scheme. If the number of ﬂows increases to 1 million,

we simply add a ﬁfth hash stage to get the same effect. Thus to handle 100,000 ﬂows requires

roughly 4000 counters and a ﬂow memory of approximately 100 memory locations; to handle

1 million ﬂows requires roughly 5000 counters and the same size of ﬂow memory. This is

logarithmic scaling.

The number of memory accesses at packet arrival time performed by the ﬁlter is exactly

one read and one write per stage. If the number of stages is small enough, this is affordable,

even at high speeds, since the memory accesses can be performed in parallel, especially in

a chip implementation. A simple optimization called conservative update (see Exercises) can

improve the performance of multistage ﬁltering even further. Multistage ﬁlters can be seen

as an application of Principle P3a, trading certainty (allowing some false positives and false

negatives) for time and storage.

16.5 REDUCING COUNTERS USING FLOW COUNTING
A second way to reduce the number of counters even further, beyond even threshold compres-

sion, is to realize that many applications do not even require identifying ﬂows above a threshold.

Some only need a count of the number of ﬂows. For example, the Snort (www.snort.org)

intrusion-detection tool detects port scans by counting all the distinct destinations sent to by a

given source and alarming if this amount is over a threshold.

On the other hand, to detect a denial-of-service attack, one might want to count the number

of sources sending to a destination, because many such attacks use multiple forged addresses.

In both examples, it sufﬁces to count ﬂows, where a ﬂow identiﬁer is a destination (port scan)

or a source (denial of service).

A naive method to count source–destination pairs would be to keep a counter together

with a hash table (such as Figure 16.2 except without the counter) that stores all the distinct

64-bit source–destination address pairs seen thus far. When a packet arrives with source and

destination addresses S , D, the algorithm searches the hash table for S, D; if there is no match,

the counter is incremented and S, D is added to the hash table. Unfortunately, this solution

takes too much memory.

An algorithm called probabilistic counting [FM85] can considerably reduce the memory

needed by the naive solution, at the cost of some accuracy in counting ﬂows. The intuition

388


C H A P T E R 1 6
Measuring Network Trafﬁc
behind probabilistic counting is to compute a metric of how uncommon a certain pattern within

a ﬂow ID is. It then keeps track of the degree of “uncommonness” across all packets seen. If

the algorithm sees very uncommon patterns, the algorithm concludes it saw a large number of

ﬂows.

More precisely, for each packet seen, the algorithm computes a hash function on the ﬂow

ID. It then counts the number of consecutive zeroes, starting from the least signiﬁcant position

of the hash result; this is the measure of uncommonness used. The algorithm keeps track of X,

the largest number of consecutive zeroes seen (starting from the least signiﬁcant position) in

the hashed ﬂow ID values of all packets seen so far.

At the end of the interval, the algorithm converts X, the largest number of trailing zeroes

seen, into an estimate 2Xfor the number of ﬂows. Intuitively, if the stream contains two distinct

ﬂows, on average one ﬂow will have the least signiﬁcant bit of its hashed value equal to zero;

if the stream contains eight ﬂows, on average one ﬂow will have the last three bits of its hashed

value equal to zero — and so on.

Note that hashing is essential for two reasons. First, implementing the algorithm directly

on the sequence of ﬂow IDs itself could make the algorithm susceptible to ﬂow ID assignments

where the trafﬁc stream contains a ﬂow ID F with many trailing zeroes. If F is in the trafﬁc

stream, then even if the stream has only a few ﬂows, the algorithm without hashing will

wrongly report a large number of ﬂows. Notice that adding multiple copies of the same ﬂow

ID to the stream will not change the algorithm’s ﬁnal result, because all copies hash to the

same value.

A second reason for hashing is that accuracy can be boosted using multiple independent

hash functions. The basic idea with one hash function can guarantee at most 50% accuracy.

By using N
independent hash functions in parallel to compute N separate estimates of X,

probabilistic counting greatly reduces the error of its ﬁnal estimate. It does so by keeping the

average value of X (as a ﬂoating point number, not an integer) and then computing 2X. Better

algorithms for networking purposes are described in Estan et al. [EVF02].

The bottom line is that a chip can count approximately the number of ﬂows with small

error but with much less memory than required to track all ﬂows. The computation of each

hash function can be done in parallel. Flow counting can be seen as an application of Principle

P3b, trading accuracy in the estimate for low storage and time.

16.6 REDUCING PROCESSING USING SAMPLED NETFLOW
So far we have restricted ourselves to packet counting. However, several applications might

require packet logs. Packet logs are useful for analysts to retrospectively analyze for patterns

and attacks.

In networking, there are general-purpose trafﬁc measurement systems, such as Cisco’s

NetFlow [Net], that report per-ﬂow records for very ﬁne grained ﬂows, where a ﬂow is

identiﬁed by a TCP or UDP connection. Unfortunately, the large amount of memory needed

to store packet logs requires the use of DRAM to store the logs. Clearly, writing to DRAM on

every packet arrival is infeasible for high speeds, just as it was for counter management.

Basic NetFlow has two problems.

1. Processing Overhead: Updating the DRAM slows down the forwarding rate.


(Reduced processing)

Add 1 in X packets to log

D3

OC-192 or -768 speed



16.7 Reducing Reporting Using Sampled Charging
Can also aggregate log via hash table

(Bandwidth)

D3
D1
D3
D1
D3
D1
D3

(Memory)
Periodically

read by

management

station



389
F I G U R E 16.6
Using sampling to reduce packet processing while maintaining a packet log for later

analysis.

2. Collection Overhead: The amount of data generated by NetFlow can overwhelm the

collection server or its network connection. Feldman et al. [FGea00] report loss rates of

up to 90% using basic NetFlow.

Thus, for example, Cisco recommends the use of sampling (see Figure 16.6) at speeds

above OC-3: Only the sampled packets result in updates to the DRAM ﬂow cache that keeps

the per-ﬂow state. For example, sampling 1 in 16 packets or 1 in 1000 packets is common. The

advantage is that the DRAM must be written to at most 1 in, say, 16 packets, allowing the

DRAM access time to be (say) 16 times slower than a packet arrival time. Sampling introduces

considerable inaccuracy in the estimate; this is not a problem for measurements over long

periods (errors average out) and if applications do not need exact data.

The data-collection overhead can be alleviated by having the router aggregate the log

information into counters (e.g., by source and destination autonomous systems (AS) numbers)

as directed by a manager. However, Fang and Peterson [FP99] show that even the number of

aggregated ﬂows is very large. For example, collecting packet headers for Code Red trafﬁc on a

class A network [Moo01] produced 0.5 GB per hour of compressed NetFlow data. Aggregation

reduced this data only by a factor of 4.

Sampling is an example of using
P3a, trading certainty for storage (and time), via a

randomized pruning algorithm.

16.7 REDUCING REPORTING USING SAMPLED CHARGING
A technique called sampled charging [DLT01] can be used to reduce the collection overhead of

NetFlow, at the cost of further errors. The idea is to start with a NetFlow log that is aggregated

by TCP or UDP connections and to reduce the overhead of sending this data to a collection

station. The goal is to reduce collection bandwidth and processing, as opposed to reducing the

size of the router log.

The idea, shown in Figure 16.7, is at ﬁrst glance similar to threshold compression,

described in Section 16.4. The router reports only ﬂows above a threshold to the collec-

tion station. The only additional twist is that the router also reports a ﬂow with size s that is

less than the threshold with probability proportional to s.

Thus the difference between this idea and simple threshold compression is that the ﬁnal

transmitted bandwidth is still small, but some attention is paid to ﬂows below the threshold

as well. Why might this be useful? Suppose all TCP individual connections in the aggregated


390


C H A P T E R 1 6
Measuring Network Trafﬁc



(Reduced

bandwidth)

Add 1 in X packets to log

D3

OC-192 or -768 speed


D3
D1
D3
D1
D3
D1
D3

Report all flows

> threshold T
and flows < T
with probability proportional to size

F I G U R E 16.7
Using Sampled Charging to only report all large ﬂows over a threshold and report

ﬂows below a threshold with probability proportional to their size.

log are small and below threshold but that 50% of the connections are from subnet
A
to

subnet B.

If the router reported only the connections above threshold, the router would report no

ﬂows, because no individual TCP ﬂow is large. Thus the collection agency would be unable to

determine this unusual pattern in the destination and source addresses of the TCP connections.

On the other hand, by reporting ﬂows below threshold with a probability proportional to their

size, on average half the ﬂows the router will report will be from A to B. Thus the collection

station can determine this unusual trafﬁc pattern and take steps (e.g., increase bandwidth

between these two) accordingly.

Thus the advantage of sampled charging over simple threshold compression is that it allows

the manager to infer potentially interesting trafﬁc patterns that are not decided in advance while

still reducing the bandwidth sent to the collection node.

For example, sampled charging could also be used to detect an unusual number of packets

sent by Napster using the same data sent to the collection station. Its disadvantage is that it still

requires a large DRAM log. The large DRAM log scales poorly in size or accuracy as speeds

increase.

On the other hand, threshold compression removes the need for the large DRAM log while

directly identifying the large trafﬁc ﬂows. However, unless the manager knew in advance that

he was interested in trafﬁc between source and destination subnets, one cannot solve the

earlier problem. For example, one cannot use a log that is threshold compressed with respect

to TCP ﬂows to infer that trafﬁc between a pair of subnets is unusually large. Thus threshold

compression has a more compact implementation but is less ﬂexible than sample charging.

√
More formally, it can be shown that the multistage memory solution in Figure 16.5 requires

M memory, where M is the memory required by NetFlow or sampled charging for the same

relative error. On the other hand, this solution requires more packet processing. Threshold

compression is also less ﬂexible than NetFlow and sampled charging in terms of being able to

mine trafﬁc patterns after the fact.

Sampled charging is an example of using P3b, trading certainty for bandwidth (and time).

16.8 CORRELATING MEASUREMENTS USING TRAJECTORY SAMPLING
A ﬁnal technique for router measurement is called trajectory sampling [DG00]. It is orthogonal

to the last two techniques and can be combined with them. Recall that in sampled NetFlow


Interface



16.8 Correlating Measurements Using Trajectory Sampling


391
Incoming

packets


Input buffer

Sampling subsystem

+
div

+
div



g
h
comp

Sampling

range r



Labels



To switching

fabric

To measurement

system

F I G U R E 16.8
Trajectory sampling ensures that all routers sample a packet or do not by using the

same hash function (as opposed to a random coin) to decide when to sample a packet.

and sampled charging, each router independently samples a packet. Thus the set of packets

sampled at each router is different even when a set of routers sees the same stream of packets.

The main idea in trajectory sampling is to have routers in a path make
correlated
packet-sampling decisions using a common hash function. Figure 16.82shows packets enter-

ing a router line card. The stream is “tapped” before it goes to the switch fabric. For every

packet, a hash function h is used to decide whether the packet will be sampled by comparing

the hashed value of the packet to a speciﬁed range. If the packet is sampled, a second hash

function, g, on the packet is used to store a packet label in a log.

Trajectory sampling allows managers to correlate packets on different links. In order to

ensure this, two more things are necessary. First, all routers must use the same values of g
and h. Second, since packets can change header ﬁelds from router to router (e.g., TTL is

decremented, data link header ﬁelds change), the hash functions are applied only to portions

of the network packet that are invariant. This is achieved by computing the hash on header

ﬁelds that do not change from hop to hop together with a few bytes of the packet payload.

A packet that is sampled at one router will be sampled at all routers in the packet’s trajectory

or path. Thus a manager can use trajectory sampling to see path effects, such as packet looping,

packet drops, and multiple shortest paths, that may not be possible to discern using ordinary

sampled NetFlow.

In summary, the two differences between trajectory sampling and sampled NetFlow are:

(1) the use of a hash function instead of a random number to decide when to sample a packet;

(2) the use of a second hash function on invariant packet content to represent a packet header

more compactly.

2The picture is courtesy of Dufﬁeld and Grossglauser [DG00].


392


C H A P T E R 1 6
Measuring Network Trafﬁc
16.9 A CONCERTED APPROACH TO ACCOUNTING
In moving from efﬁcient counter schemes to trajectory sampling, we moved from schemes that

required only local support at each router to a scheme (i.e., trajectory sampling) that enlists the

cooperation of multiple routers to extract more useful information. We now take this theme

a step further by showing the power of concerted schemes that can involve all aspects of

the network system (e.g., protocols, routers) at various time scales (e.g., route computation,

forwarding). We provide two examples: an accounting example based on a scheme proposed

by Juniper networks (described in this section) and the problem of trafﬁc matrices (described

in the next section).

The speciﬁc problem being addressed in this section is that of an ISP wishing to collect

trafﬁc statistics on trafﬁc sent by a customer in order to charge the customer differently depend-

ing on the type of trafﬁc and the destination of the trafﬁc. Refer to Figure 16.9, which depicts

a small ISP, Z, for the discussion that follows.

In the ﬁgure, assume that ISP Z
wishes to bill Customer A at one rate for all trafﬁc that

exits via ISP X
and at a different rate for all trafﬁc that exits via ISP Y . One way to do this

would be for router R1 to keep a separate counter for each preﬁx that represents trafﬁc sent to

that preﬁx. In the ﬁgure, R1 would have to keep at least 30,000 preﬁx counters. Not only does

this make implementation more complex, but it is also unaligned with the user’s need, which

will eventually aggregate the 30,000 preﬁxes into two tariff classes. Further, if routes change

rapidly, the preﬁxes advertised by each ISP may change rapidly, requiring constant update of

this mapping by the tool.

Instead, the Juniper DCU solution [Sem02] has two components.

1. Class Counters: Each forwarding table entry has a 16-bit class ID. Each bit in the class

ID represents one of 16 classes. Thus if a packet matches preﬁx P with associated class

ID C and C has bits set in bits 3, 6, and 9, then the counters corresponding to all three set

bits are incremented. Thus there are only 16 classes supported, but a single packet can

cause multiple class counters to be incremented. The solution aligns with hardware

design realities because 16 counters per link is not much harder than one counter, and

10,000 prefixes

ISP Z boundary

ISP X
E2

R1

E1


11

12


R2

15

R3



13

14


R4

16

R5


Customer B
E4

Customer C
E5

Customer A

E3

ISP Y
20,000 prefixes

F I G U R E 16.9
Example of an ISP with customer and peer links to other ISPs, X and Y .


16.10 Computing Trafﬁc Matrices



393
incrementing in parallel is easily feasible if the 16 counters are maintained on-chip in a

forwarding ASIC. The solution also aligns with real user needs because it cheaply

supports the use of up to 16 destination-sensitive3counters.

2. Routing Support: To attack the problem of changing preﬁx routes (which would result in

the tool’s having to constantly map each preﬁx into a different class), the DCU solution

enlists the help of the routing protocol. The idea is that all preﬁxes advertised by ISP X
are given a color (which can be controlled using a simple route policy ﬁlter), and preﬁxes

advertised by ISP Y are given a different color. Thus when a router such as R1 gets a route

advertisement for preﬁx P with color c, it automatically assigns preﬁx P to class c. This

small change in the routing protocol greatly reduces the work of the tool.

Juniper also has other schemes [Sem02], including counters based on packet classiﬁers

and counters based on MPLS tunnels. These are slightly more ﬂexible than DCU accounting

because they can take into account the source address of a packet in determining its class. But

these other schemes do not have the administrative scalability of DCU accounting because

they lack routing support.

The DCU accounting scheme is an example of P4, leveraging off existing system com-

ponents, and
P3, relaxing system requirements (e.g., only a small number of aggregate

classes).

16.10 COMPUTING TRAFFIC MATRICES
While the DCU solution is useful only for accounting, a generalization of some of the essential

ideas can help in solving the trafﬁc matrix problem. This is a problem of great interest to

many ISPs.

To deﬁne the trafﬁc matrix problem, consider a network (e.g,
Z
in Figure 16.9) such

as those used by ISPs Sprint and AT&T. The network can be modeled as a graph with links

connecting router nodes. Some of the links from a router in ISP Z
go to routers belonging to

other ISPs (E2, E3) or customers (E1, E4, E5). Let us call such links external links. Although

we have lumped them together in Figure 16.9, external links directed toward the ISP router are

called input links, and external links directed away from an ISP router are called output links.

The trafﬁc matrix of a network enumerates the amount of trafﬁc that was sent (in some

arbitrary period, say, a day) between every pair of input and output links of the network. For

example, the trafﬁc matrix could tell managers of ISP Z in Figure 16.9 that 60 Mbits of trafﬁc

entered during the day from Customer A, of which 20 Mbits exited on the peering link E2 to

ISP X, and 40 Mbps left on link E5 to Customer B.

Network operators ﬁnd trafﬁc matrices (over various time scales ranging from hours to

months) indispensable. They can be used to make more optimal routing decisions (working

around suboptimal routing by changing OSPF weights or setting up MPLS tunnels), for

knowing when to set up circuit-switched paths (avoiding hot spots), for network diagnosis

(understanding causes of congestion), and for provisioning (knowing which links to upgrade

on a longer time scale of months).

Unfortunately, existing legacy routers provide only a single aggregate counter (the SNMP

link byte counter) of all trafﬁc traversing a link, which aggregates trafﬁc sent between all

3It can also be made sensitive to the type of service by also using the DiffServ byte to determine the class.


394


C H A P T E R 1 6
Measuring Network Trafﬁc
pairs of input and output links that traverse the link. Inferring the trafﬁc matrix from such

data is problematic because there are O(V2) possible trafﬁc pairs in the matrix (where V is

the number of external links), and many sparse networks may have only, say, O(V) links (and

hence O(V ) counters). Even after knowing how trafﬁc is routed, one has O(V ) equations for

O(V2) variables, which makes deterministic inference (of all trafﬁc pairs) impossible. This

dilemma has led to two very different solution approaches. We now describe these two existing

solutions and a proposed new approach.

16.10.1 Approach 1: Internet Tomography
This approach (see Refs. MTea02 and ZRDG03 for good reviews of past work) recognizes the

impossibility of deterministic inference from SNMP counters cited earlier, and instead attempts

statistical inference, with some probability of error. At the heart of the inference technique

is some model of the underlying trafﬁc distribution (e.g., Gaussian, gravity model) and some

statistical (e.g., maximum likelihood) or optimization technique (e.g., quadratic programming

[ZRDG03]4).

Early approaches based on Gaussian distributions did very poorly [MTea02], but a new

approach based on gravity models does much better, at least on the AT&T backbone. The great

advantage of tomography is that it works without retroﬁtting existing routers, and it is also

clearly cheap to implement in routers. A possible disadvantage of this method is the potential

errors in the method (off by as large as 20% in Zhang et al. [ZRDG03]), its sensitivity to

routing errors (a single link failure can throw an estimate off by 50%), and its sensitivity to

topology.

16.10.2 Approach 2: Per-Preﬁx Counters
Designers of modern routers have considered other systems solutions to the trafﬁc matrix

problem based on changes to router implementations and (sometimes) changes to routing

protocols (see DCU scheme described earlier). For example, one solution being designed into

some routers built at Cisco [Cis] and some start-ups is to use per-preﬁx counters. Recall that

preﬁxes are used to aggregate route entries for many millions of Internet addresses into, say,

100,000–150,000 preﬁxes at the present time.

A router has a forwarding engine for each input line card that contains a copy of the

forwarding preﬁx table. Suppose each preﬁx P has an associated counter that is incremented

(by the number of bytes) for each packet entering the line card that matches P. Then by pooling

the per-preﬁx counters kept at the routers corresponding to each input link, a tool can reconstruct

the trafﬁc matrix. To do so, the tool must associate preﬁx routes with the corresponding output

links using its knowledge of routes computed by a protocol such as OSPF. In Figure 16.9, if

R1 keeps per-preﬁx counters on trafﬁc entering from link E1, it can sum the 10,000 counters

corresponding to preﬁxes advertised by ISP X to ﬁnd the trafﬁc between Customer A and ISP X.

One advantage of this scheme is that it provides perfect trafﬁc matrices. Asecond advantage

is that it can be used for differential trafﬁc charging based on destination address, as in the DCU

proposal. The two disadvantages are the implementation complexity of maintaining per-preﬁx

counters (and the lack thereof in legacy routers) and the large amount of data that needs to be

collected and synthesized from each router to form trafﬁc matrices.

4Some authors limit the term tomography to the use of statistical models; thus Zhang et al. [ZRDG03] refer to

their work as tomogravity. But this is splitting hairs.

16.10.3 Approach 3: Class Counters


16.11 Sting as an Example of Passive Measurement



395
Our idea is that each preﬁx is mapped to a small class ID of 8–14 bits (256–16,384 classes)

using the forwarding table. When an input packet is matched to a preﬁx P, the forwarding

entry for P maps the packet to a class counter that is incremented. For up to 10,000 counters,

the class counters can easily be stored in on-chip SRAM on the forwarding ASIC, allowing

the increment to occur internally in parallel with other functions.

For accounting, the DCU proposal (Section 16.9) already suggests that routers use policy

ﬁlters to color routes by tariff classes and to pass the colors using the routing protocol. These

colors can then be used to automatically set class IDs at each router. For the trafﬁc matrix,

a similar idea can be used to colorize routes based on the matrix equivalence class (e.g., all

preﬁxes arising from same external link or network in one class).

How can class counters be used? For example, many ISPs have points of presence (or

PoPs) in major cities, and just calculating the the aggregate PoP-to-PoP trafﬁc matrix is very

valuable [BDJT01]. Today this is done by aggregating the complete router-to-router matrix to

ﬁnd this. This can be done directly by classes by setting each PoP into a separate class. For

example, in Figure 16.9, R4 and R5 may be part of the same PoP, and thus E4 and E5 would be

mapped to the same class. Measurement data from 2003 [SMW02] indicates a great reduction

in the number of classes, with 150 counters sufﬁcing to handle the largest ISP.

The class counter scheme is an example of Principle P4, leveraging off existing system

components. It is also an example of Principle P3, relaxing system requirements (e.g., using

only a small number of aggregate classes).

16.11 STING AS AN EXAMPLE OF PASSIVE MEASUREMENT
So far this chapter has dealt exclusively with router measurement problems that involve

changes to router implementations and to other subsystems, such as routing protocols. While

such changes can be achieved with the cooperation of a few dominant router vendors, they do

face the difﬁculty of incremental deployment. By contrast to the schemes already described,

passive measurement focuses on the ability to trick a network into providing useful measure-

ment data without changing network internals. The basic idea is to get around the lack of

measurement support provided by the Internet protocol suite.

Imagine you are no longer an ISP but a network manager at the Acme Widget Company.

An upstart ISP is claiming to provide better service than your existing ISP. You would like to

conduct a test to see whether this true. To do so, you want to determine end-to-end performance

measurements from your site to various Web servers across the country using both ISPs in turn.

The standard solution is to use tools, such as Ping and Traceroute, that are based on sending

ICMP messages. The difﬁculty with these tools is that ISPs regularly ﬁlter or rate-limit such

messages because of their use by hackers.

An idea that gets around this limitation was introduced by the Sting [Sav99] tool, invented

by Stefan Savage. The main idea is to send measurement packets in the clothing of TCP

packets; ISPs and Web servers cannot drop or rate-limit such packets without penalizing good

clients. Then every protocol mechanism of TCP becomes a degree of freedom (P13) for the

measurement tool.

Consider the problem of determining the loss probability between a source and a distant

Web server. This may be useful to know if most of the trafﬁc is sent in only one direction, as

396


C H A P T E R 1 6
Measuring Network Trafﬁc
in a video broadcast. Even if Ping were not rate-limited, Ping only provides the combined loss

probability in both directions.

The Sting idea to ﬁnd the loss probability from the source to the server is as follows. The

algorithm starts by making a normal TCP connection to the server and sending N data packets

to the server in sequence. Acknowledgments are ignored; after all, it’s measurements we are

after, not data transfer.

After the data-seeding stage, the algorithm moves into a second stage, called hole ﬁlling.

Hole ﬁlling starts with sending a single data packet with sequence number 1 greater than the

last packet sent in the ﬁrst phase. If an acknowledgment is received, all is well; no data packets

were lost.

If not, after sufﬁcient retransmission, the receiver will respond with the highest number,

X, received in sequence. The sender tool now sends only the segment corresponding to X + 1.

Eventually, an updated acknowledgment arrives with the next highest received in sequence.

The receiver ﬁlls in this next hole and marches along until all “holes” are ﬁlled. At the end of

the second phase, the sender knows exactly which data packets were lost in the ﬁrst phase and

can compute the loss rate.

It is more of a challenge to compute the reverse loss rate, because the receiver TCP may

batch acknowledgments. However, once it is grasped that the tool is not limited to behaving

like a normal TCP connection, all the stops can be loosed. By sending packets out of order in

the ﬁrst phase and a series of bizarre ploys, the receiver is conned into providing the required

information.

At this point, the theoretician may shake his head sadly and say, “It’s a bunch of tricks.

I always knew these network researchers were not quite the thing.” Indeed, Sting employs a

collection of tricks to compute its particular metrics. But the idea of using TCP’s venerable

protocol mechanisms as a palette for measurement is perhaps an eye-opener. It inﬂuenced later

measurement tools, such as TBIT [PF01], which used the same general idea to measure the

extent to which new TCP features were deployed.

Of course, the idea is not limited to TCP but applies to any protocol. Any protocol,

including BGP, can be subverted for the purposes of measurement. Philosophically, this is,

however, dangerous ground, because the tools used by the measurement maven (presumably

on the side of the angels) are now the same as used by the hacker (presumably on the dark side).

For example, denial-of-service attacks exploit the same inability of a server to discriminate

between standard usages of a protocol and adaptations thereof.

While Sting is less of an exercise in efﬁcient implementation than it is an exercise in

adding features, it can be regarded as an example of P4, leveraging off features of existing

TCP implementations.

16.12 CONCLUSION
This chapter was written to convince the reader that measurement is an exciting ﬁeld of

endeavor. Many years ago, the advice to an ambitious youngster was, “Go West, young man”
because the East was (supposedly) played out.

Similarly, it may be that protocol design is played out while protocol measurement is not.

After all, TCP and IP have been cast in stone these many years; despite some confusion as to its

16.13 Exercises



397
parentage, one can only invent the Internet once. Reinventing the Internet is even harder, if one

follows the fate of the next-generation Internet proposal. But there will always be new ways

to understand and measure the Internet, especially using techniques that depend on minimal

cooperation.

The ﬁrst part of the chapter focused on the problems of the most basic measurement issue

at high speeds: packet counting. This is a real problem faced by every high-speed-router vendor

as they deal, on the one hand, with increasing ISP demands for for observability, and, on the

other hand, with hardware limitations. Algorithmics can help by clever uses of memories (P5c),

by changing the speciﬁcation to focus only on large counters or ﬂow counts (P3), by unusual

uses of sampling (P3a), and ﬁnally by determining real user needs to reduce the space of

counters required by aggregation for accounting or trafﬁc matrices (P7). Figure 16.1 presents

a summary of the techniques used in this chapter together with the major principles involved.

The chapter concluded with a small excursion into the ﬁeld of passive measurement.

Unlike all the other schemes described in this chapter, passive measurement schemes do not

require implementation or protocol changes and hence are likely to continue to be a useful

source of measurement data. Thus it seems ﬁtting to end this chapter with Savage’s summary

of the main idea behind Sting: “Stop thinking of a protocol as a protocol. Think of it as … an

opportunity.”
16.13 EXERCISES
1. Using DRAM-Backed Up Counters: This chapter only described the implementation of

packet counting, not byte counting. Suggest extensions to byte counting.

2. Finding the First Set Bit: Using the techniques and assumptions stated in Chapter 2, ﬁnd

a fast parallel implementation of the ﬁnd-ﬁrst-bit-set operation for a large (say, of length

1 million) bit vector in the context of the counter-management algorithm described in

the text.

3. Conservative Update of Multistage Hash Counting: In the multistage ﬁlter, there is

obvious waste (P1) in the way counters are incremented. Supposes a ﬂow F, of size 2,

hashes into three buckets whose counters are 15, 16, and 40. The naive method increases

the counters to 17, 18, and 42. However, to avoid false negatives it sufﬁces to increase

only the smallest counter to 17 and to ensure that all other counters are at least as large.

Thus, with this more conservative update strategy [EV02], the counters become 17, 17,

and 40. Argue why this optimization does not cause false negatives and can only improve

the false-positive rate.

4. Trajectory Sampling: Extend trajectory sampling to the case where different routers

wish to have the ﬂexibility to store a different number of packet labels because of

different storage capabilities. Describe a mechanism that accommodates this and how this

affects the potential uses for trajectory sampling.

5. Passive Measurement and Denial of Service: In SYN ﬂooding attacks, an attack sends

TCP SYN packets to a destination D it wishes to attack using a series of ﬁctitious source

addresses. When D replies to the (often) ﬁctitious host, these packets are not replied to.

Thus D accumulates a backlog of connections that are “half-open” and eventually refuses

398


C H A P T E R 1 6
Measuring Network Trafﬁc
to accept new connections. Assume you are working at a university and you have an

unused Class A address space. How might you use this address space to infer

denial-of-service attacks going on to various destinations on the Internet? Assume that

attackers pick fake source addresses randomly from the 32-bit address space. More

details for the curious reader can be found in [MVS01].


C H A P T E R 17
Network Security
Hacking is an exciting and sometimes scary phenomenon, depending on which side
of the battlements you happen to be standing.
— Marcus J. Ranum

From denial-of-service to Smurf attacks, hackers that perpetrate exploits have captured both

the imagination of the public and the ire of victims. There is some reason for indignation and

ire. A survey by the Computer Security Institute placed the cost of computer intrusions at an

average of $970,000 per company in 2000.

Thus there is a growing market for intrusion detection, a ﬁeld that consists of detecting and

reacting to attacks. According to IDC, the intrusion-detection market grew from $20 million to

$100 million between 1997 and 1999 and is expected to reach $518 million by 2005 [Ger99].

Yet the capabilities of current intrusion detection systems are widely accepted as inade-

quate, particularly in the context of growing threats and capabilities. Two key problems with

current systems are that they are slow and that they have a high false-positive rate. As a result of

these deﬁciencies, intrusion detection serves primarily a monitoring and audit function rather

than as a real-time component of a protection architecture on par with ﬁrewalls and encryption.

However, many vendors are working to introduce real-time intrusion detection systems. If

intrusion detection systems can work in real time with only a small fraction of false positives,

they can actually be used to respond to attacks by either deﬂecting the attack or tracing the

perpetrators.

Intrusion detection systems (IDSs) have been studied in many forms since Denning’s clas-

sic statistical analysis of host intrusions [Den87]. Today, IDS techniques are usually classiﬁed

as either signature detection or anomaly detection. Signature detection is based on matching

events to the signatures of known attacks.

In contrast, anomaly detection, based on statistical or learning theory techniques, identiﬁes

aberrant events, whether known to be malicious or not. As a result, anomaly detection can

potentially detect new types of attacks that signature-based systems will miss. Unfortunately,

anomaly detection systems are prone to falsely identifying events as malicious. Thus this

chapter does not address anomaly-based methods.

Meanwhile signature-based systems are highly popular due to their relatively simple

implementation and their ability to detect commonly used attack tools. The lightweight detec-

tion system Snort [Roe99] is one of the more popular examples because of its free availability

and efﬁciency.

399

400


C H A P T E R 1 7
Network Security
Given the growing importance of real-time intrusion detection, intrusion detection fur-

nishes a rich source of packet patterns that can beneﬁt from network algorithmics. Thus this

chapter samples three important subtasks that arise in the context of intrusion detection. The

ﬁrst is an analysis subtask, string matching, which is a key bottleneck in popular signature-

based systems such as Snort. The second is a response subtask, traceback, which is of growing

importance given the ability of intruders to use forged source addresses. The third is an analysis
subtask to detect the onset of a new worm (e.g., Code Red) without prior knowledge.

These three subtasks only scratch the surface of a vast area that needs to be explored. They

were chosen to provide an indication of the richness of the problem space and to outline some

potentially powerful tools, such as Bloom ﬁlters and Aho–Corasick trees, that may be useful in

more general contexts. Worm detection was also chosen to showcase how mechanisms studied

earlier in the book can be combined in powerful ways.

This chapter is organized as follows. The ﬁrst few sections explore solutions to the impor-

tant problem of searching for suspicious strings in packet payloads. Current implementations

of intrusion detection systems such as Snort (www.snort.org) do multiple passes through

the packet to search for each string. Section 17.1.1 describes the Aho–Corasick algorithm

for searching for multiple strings in one pass using a trie with backpointers. Section 17.1.2

describes a generalization of the classical Boyer–Moore algorithm, which can sometimes act

faster by skipping more bits in a packet.

Section 17.2 shows how to approach an even harder problem — searching for approximate
string matches. The section introduces two powerful ideas: min-wise hashing and random

projections. This section suggests that even complex tasks such as approximate string matching

can plausibly be implemented at wire speeds.

Section 17.3 marks a transition to the problem of responding to an attack, by introducing

the IP traceback problem. It also presents a seminal solution using probabilistic packet marking.

Section 17.4 offers a second solution, which uses packet logs and no packet modiﬁcations;

the logs are implemented efﬁciently using an important technique called a Bloom ﬁlter. While

these traceback solutions are unlikely to become deployed when compared to more recent

standards, they introduce a signiﬁcant problem and invoke important techniques that could be

useful in other contexts.

Section 17.5 explains how algorithmic techniques can be used to extract automatically the

strings used by intrusion detection systems such as Snort. In other words, instead of having

these strings be installed manually by security analysts, could a system automatically extract

the suspicious strings? We ground the discussion in the context of detecting worm attack

payloads.

The implementation techniques for security primitives described in this chapter (and the

corresponding principles) are summarized in Figure 17.1.

Q u i c k R e f e r e n c e G u i d e
Sections 17.1.1 and 17.1.2 show how to speed up searching for multiple strings in packet payloads,

a fundamental operation for a signature-based IDS. The Aho–Corasick algorithm of Section 17.1.1 can

easily be implemented in hardware. While the traceback ideas in Section 17.4 are unlikely to be useful in

the near future, the section introduces an important data structure, called a Bloom ﬁlter, for representing


Number
P15

P3a, 5a

P3a

P3a

P3a



17.1 Searching for Multiple Strings in Packet Payloads
Principle
Used In
Integrated string matching using Aho–Corasick
Snort

Approximate string match using min-wise hashing
Altavista

Path reconstruction using probabilistic marking
Edge sampling

Efficient packet logging via Bloom filters
SPIE

Worm detection by detecting frequent content
EarlyBird



401
F I G U R E 17.1
Principles used in the implementation of the various security primitives discussed in

this chapter.

sets and also describes a hardware implementation. Bloom ﬁlters have found a variety of uses and

should be part of the implementor’s bag of tricks. Section 17.5 explains how signatures for attacks

can be automatically
computed, reducing the delay and difﬁculty required to have humans generate

signatures.

17.1 SEARCHING FOR MULTIPLE STRINGS IN PACKET PAYLOADS
The ﬁrst few sections tackle a problem of detecting an attack by searching for suspicious

strings in payloads. A large number of attacks can be detected by their use of such strings.

For example, packets that attempt to execute the Perl interpreter have perl.exe in their pay-

load. For example, the arachNIDS database [Vis] of vulnerabilities contains the following

description.

An attempt was made to execute perl.exe. If the Perl interpreter is available to Web
clients, it can be used to execute arbitrary commands on the Web server. This can be
used to break into the server, obtain sensitive information, and potentially compromise
the availability of the Web server and the machine it runs on. Many Web server
administrators inadvertently place copies of the Perl interpreter into their Web server
script directories. If perl is executable from the cgi directory, then an attacker can
execute arbitrary commands on the Web server.
This observation has led to a commonly used technique to detect attacks in so-called

signature-based intrusion detection systems such as Snort. The idea is that a router or monitor

has a set of rules, much like the classiﬁers in Chapter 12. However, the Snort rules go beyond

classiﬁers by allowing a 5-tuple rule specifying the type of packet (e.g., port number equal to

Web trafﬁc) plus an arbitrary string that can appear anywhere in the packet payload.

Thus the Snort rule for the attempt to execute perl.exe will specify the protocol (TCP)

and destination port (80 for Web) as well as the string “perl.exe” occurring anywhere in the

payload. If a packet matches this rule, an alert is generated. Snort has 300 such augmented

rules, with 300 possible strings to search for.


402


C H A P T E R 1 7
Network Security
b
a
b
a
b
a
r
.     .     .
(Packet payload)

b

not b from most nodes

a

r
b from most other nodes

b

n

b

babar



r


a



e



y

barney

F I G U R E 17.2
The Aho–Corasick algorithm builds an alphabetical trie on the set of strings to be

searched for. A search for the string “barney” can be found by following the “b” pointer at the root,

the “a” pointer at the next node, etc. More interestingly, the trie is augmented with failure pointers that

prevent restarting at the top of the trie when failure occurs and a new attempt is made to match, shifted

one position to the right.

Early versions of Snort do string search by matching each packet against each Snort rule

in turn. For each rule that matches in the classiﬁer part, Snort runs a Boyer–Moore search on

the corresponding string, potentially doing several string searches per packet. Since each scan

through a packet is expensive, a natural question is: Can one search for all possible strings in

one pass through packet?

There are two algorithms that can be used for this purpose: the Aho–Corasick algorithm

[AC75] and a modiﬁed algorithm due to Commentz-Walter [CW79], which we describe next.

17.1.1 Integrated String Matching Using Aho–Corasick
Chapter 11 used a trie to search for matching preﬁxes. Clearly, a trie can also be used to search

for a string that starts at a known position in a packet. Thus Figure 17.2 contains a trie built

on the set of two strings “babar” and “barney”; both are well-known characters in children’s

literature. Unlike in Chapter 11, the trie is built on characters and not on arbitrary groups of

bits. The characters in the text to be searched are used to follow pointers through the trie until

a leaf string is found or until failure occurs.

The hard part, however, is looking for strings that can start anywhere in a packet payload.

The naivest approach would be to assume the string starts at byte 1 of the payload and then

traverse the trie. Then if a failure occurs, one could start again at the top of trie with the

character that starts at byte 2.

However, if packet bytes form several “near misses” with target strings, then for each

possible starting position, the search can traverse close to the height of the trie. Thus if the

payload has L bytes and the trie has maximum height h, the algorithm can take L · h memory

references.


17.1 Searching for Multiple Strings in Packet Payloads


403
For example, when searching for “babar” in the packet payload shown in Figure 17.2, the

algorithm jogs merrily down the trie until it reaches the node corresponding to the second “a”
in “babar.” At that point the next packet byte is a “b” and not the “r” required to make progress

in the trie. The naive approach would be to back up to the start of the trie and start the trie

search again from the second byte “a” in the packet.

However, it is not hard to see that backing up to the top is obvious waste (P1) because the

packet bytes examined so far in the search for “babab” have “bab” as a sufﬁx, which is a preﬁx

of “babar.” Thus, rather than back up to the top, one can precompute (much as in a grid of

tries; see Chapter 12) a failure pointer corresponding to the failing “b” that allows the search

to go directly to the node corresponding to path “bab” in the trie, as shown by the leftmost

dotted arc in Figure 17.2.

Thus rather than have the ﬁfth byte (a “b”) lead to a null pointer, as it would in a normal

trie, it contains a failure pointer that points back up the trie. Search now proceeds directly from

this node using the sixth byte “a” (as opposed to the second byte) and leads after seven bytes

to “babar.”
Search is easy to do in hardware after the trie is precomputed. This is not hard to believe

because the trie with failure pointers essentially forms a state machine. The Aho–Corasick

algorithm has some complexity that ensues when one of the search strings, R, is a sufﬁx of

another search string, S. However, in the security context this can be avoided by relaxing the

speciﬁcation (P3). One can remove string S from the trie and later check whether the packet

matched R or S.

Another concern is the potentially large number of pointers (256) in the Aho–Corasick

trie. This can make it difﬁcult to ﬁt a trie for a large set of strings in cache (in software) or

in SRAM (in hardware). One alternative is to use, say, Lulea-style encoding (Chapter 11) to

compress the trie nodes.

17.1.2 Integrated String Matching Using Boyer–Moore
The exercises at the end of Chapter 3 suggest that the famous Boyer–Moore [BM77] algorithm

for single-string matching can be derived by realizing that there is an interesting degree of

freedom that can be exploited (P13) in string matching: One can equally well start comparing

the text and the target string from the last character as from the ﬁrst.

Thus in Figure 17.3 the search starts with the ﬁfth character of the packet, a “b,” and

matches it to the ﬁfth character of, say, “babar” (shown below the packet), an “r.” When this

fails, one of the heuristics in the Boyer–Moore algorithm is to shift the search template of

“babar” two characters to the right to match the rightmost occurrence of “b” in the template.1
Boyer–Moore’s claim to fame is that in practice it skips over a large number of characters,

unlike, say, the Aho–Corasick algorithm.

To generalize Boyer–Moore to multiple strings, imagine that the algorithm concurrently

compares the ﬁfth character in the packet to the ﬁfth character, “e,” in the other string, “barney”
(shown above the packet). If one were only doing Boyer–Moore with “barney,” the “barney”
search template would be shifted right by four characters to match the only “b” in barney.

1There is a second heuristic in Boyer–Moore [CLR90], but studies have shown that this simple Horspool

variation works best in practice.


404


C H A P T E R 1 7
Network Security



b
a
r
n
e

Shift right by 4

b
a
r
n
e

b
a
b
a
b
a
r
.     .     . (Packet payload)

b
a
b
a
r

Shift right by 2

b
a
b
a
r

F I G U R E 17.3
Integrated Boyer–Moore by shifting a character.

When doing a search for both “barney” and “babar” concurrently, the obvious idea is to

shift the search template by the smallest shift proposed by any string being compared for. Thus

in this example, we shift the template by two characters and do a comparison next with the

seventh character in the packet.

Doing a concurrent comparison with the last character in all the search strings may seem

inefﬁcient. This can be taken care of as follows. First, chop off all characters in all search strings

beyond L, the shortest search string. Thus in Figure 17.3, L is 5 and “barney” is chopped down

to “barne” to align in length with “babar.”
Having aligned all search string fragments to the same length, now build a trie starting

backwards from the last character in the chopped strings. Thus, in the example of Figure 17.3

the root node of the trie would have an “e” pointer pointing toward “barne” and an “r” pointer

pointing towards “babar.” Thus comparing concurrently requires using only the current packet

character to index into the trie node.

On success, the backwards trie keeps being traversed. On failure, the amount to be shifted

is precomputed in the failure pointer. Finally, even if a backward search through the trie

navigates successfully to a leaf, the fact that the ends may have been chopped off requires

an epilogue, in terms of checking that the chopped-off characters also match. For reasonably

small sets of strings, this method does better than Aho–Corasick.

The generalized Boyer–Moore was proposed by Commentz-Walter [CW79]. The appli-

cation to intrusion detection was proposed concurrently by Coit, Staniford, and McAlerney

[CSM01] and Fisk and Varghese [FV01]. The Fisk implementation [FV01] has been ported to

Snort.

Unfortunately, the performance improvement of using either Aho–Corasick or the inte-

grated Boyer–Moore is minimal, because many real traces [CSM01, FV01] have only a few

packets that match a large number of strings, enabling the naive method to do well. In fact,

the new algorithms add somewhat more overhead due to slightly increased code complexity,

which can exhibit cache effects, as shown in Chapter 3.

While the code as it currently stands needs further improvement, it is clear that at least the

Aho–Corasick version does produce a large improvement for worst-case traces, which may be

crucial for a hardware implementation. The use of Aho–Corasick and integrated Boyer–Moore

can be considered straightforward applications of efﬁcient data structures (P15).


17.2 Approximate String Matching
b
a
b
a
r

b
a
b
a
b
a
d .     .     .
(Packet payload)



405
F I G U R E 17.4
Checking for matching with a random projection of the target string “babar” allows

the detecting of similar strings with substitution errors in the payload.

17.2 APPROXIMATE STRING MATCHING
This section brieﬂy considers an even harder problem, that of approximately detecting strings

in payloads. Thus instead of settling for an exact match or a preﬁx match, the speciﬁcation now

allows a few errors in the match. For example, with one insertion “p-erl.exe” should match

“perl.exe” where the intruder may have added a character.

While the security implications of using the mechanisms described next need much more

thought, the mechanisms themselves are powerful and should be part of the arsenal of designers

of detection mechanisms.

The ﬁrst simple idea can handle substitution errors. A substitution error is a replacement

of one or more characters with others. For example, “parl.exe” can be obtained from “perl.exe”
by substituting “a” for “e.” One way to handle this is to search not for the complete string but

for one or more random projections of the original string.

For example, in Figure 17.4, instead of searching for “babar” one could search for the

ﬁrst, third, and fourth characters in “babar.” Thus the misspelled string “babad” will still be

found. Of course, this particular projection will not ﬁnd a misspelled string such as “rabad.”
To make it hard for an adversary, the scheme in general can use a small set of such random

projections. This simple idea is generalized greatly in a set of papers on locality-preserving
hashing (e.g., Ref. IM97).

Interestingly, the use of random projections may make it hard to efﬁciently shift one

character to the right. One alternative is to replace the random projections by deterministic

projections. For example, if one replaces every string by its two halves and places each half in

an Aho–Corasick trie, then any one substitution error will be caught without slowing down the

Aho–Corasick processing. However, the ﬁnal efﬁciency will depend on the number of false

alarms.

The simplest random projection idea, described earlier, does not work with insertions or

deletions that can displace every character one or more steps to the left or right. One simple and

powerful way of detecting whether two or more sets of characters, say, “abcef” and “abfecd,”
are similar is by computing their resemblance [Bro98].

The resemblance of two sets of characters is the ratio of the size of their intersection to the

size of their union. Intuitively, the higher the resemblance, the higher the similarity. By this

deﬁnition, the resemblance of “abcef” and “abfecd” is 5/6 because they have ﬁve characters

in common.

Unfortunately, resemblance per se does not take into account order, so “abcef” completely

resembles “fecab.” One way to ﬁx this is to rewrite the sets with order numbers attached so that

“abcef” becomes “1a2b3c4e5f” while “fecab” now becomes “1f2e3c4a5b.” The resemblance,

406


C H A P T E R 1 7
Network Security
using pairs of characters as set elements instead of characters, is now nil. Another method that

captures order in a more relaxed manner is to use shingles [Bro98] by forming the two sets to

be compared using as elements all possible substrings of size k of the two sets.

Resemblance is a nice idea, but it also needs a fast implementation. A naive implementation

requires sorting both sets, which is expensive and takes large storage. Broder’s idea [Bro98]

is to quickly compare the two sets by computing a random (P3a, trade certainty for time)

permutation on two sets. For example, the most practical permutation function on integers of

size at most m − 1 is to compute P(X ) = ax + b mod m, for random values of a and b and

prime values of the modulus m.

For example, consider the two sets of integers {1, 3, 5} and {1, 7, 3}. Using the random

permutation {3 x + 5 mod 11}, the two sets become permuted to {8, 3, 9} and {8, 4, 3}.

Notice that the minimum values of the two randomly permuted sets (i.e., 3) are the same.

Intuitively, it is easy to see that the higher the resemblance of the two sets, the higher the

chance that a random permutation of the two sets will have the same minimum. Formally, this

is because the two permuted sets will have the same minimum if and only if they contain the

same element that gets mapped to the minimum in the permuted set. Since an ideal random

permutation makes it equally likely for any element to be the minimum after permutation, the

more elements the two sets have in common, the higher the probability that the two minimums

match.

More precisely, the probability that two minimums match is equal to the resemblance.

Thus one way to compute the resemblance of two sets is to use some number of random

permutations (say, 16) and compute all 16 random permutations of the two sets. The frac-

tion of these 16 permutations in which the two minimums match is a good estimate of the

resemblance.

This idea was used by Broder [Bro98] to detect the similarity of Web documents. How-

ever, it is also quite feasible to implement at high link speeds. The chip must maintain, say,

16 registers to keep the current minimum using each of the 16 random hash functions. When a

new character is read, the logic permutes the new character according to each of the 16 func-

tions in parallel. Each of the 16 hash results is compared in parallel with the corresponding

register, and the register value is replaced if the new value is smaller.

At the end, the 16 computed minima are compared in parallel against the 16 minima for

the target set to compute a bitmap, where a bit is set for positions in which there is equality.

Finally, the number of set bits is counted and divided by the size of the bitmap by shifting left

by 4 bits. If the resemblance is over some speciﬁed threshold, some further processing is done.

Once again, the moral of this section is not that computing the resemblance is the solution

to all problems (or in fact to any speciﬁc problem at this moment) but that fairly complex

functions can be computed in hardware using multiple hash functions, randomization, and

parallelism. Such solutions interplay principle P5 (use parallel memories) and principle P3a
(use randomization).

17.3 IP TRACEBACK VIA PROBABILISTIC MARKING
This section transitions from the problem of detecting an attack to responding to an attack.

Response could involve a variety of tasks, from determining the source of the attack to stopping

the attack by adding some checks at incoming routers.

17.3 IP Traceback via Probabilistic Marking


407
The next two sections concentrate on traceback, an important aspect of response, given the

ability of attackers to use forged IP source addresses. To understand the traceback problem it

helps ﬁrst to understand a canonical denial-of-service (DOS) attack that motivates the problem.

In one version of a DOS attack, called SYN ﬂooding, wily Harry Hacker wakes up one

morning looking for fun and games and decides to attack CNN. To do so he makes his computer

ﬁre off a large number of TCP connection requests to the CNN server, each with a different

forged source address. The CNN server sends back a response to each request R and places R
in a pending connection queue.

Assuming the source addresses do not exist or are not online, there is no response. This

effect can be ensured by using random source addresses and by periodically resending connec-

tion requests. Eventually the server’s pending-connection queue ﬁlls up. This denies service to

innocent users like you who wish to read CNN news because the server can no longer accept

connection requests.

Assume that each such denial-of-service attack has a trafﬁc signature (e.g., too many TCP

connection requests) that can be used to detect the onset of an attack. Given that it is difﬁcult

to shut off a public server, one way to respond to this attack is to trace such a denial-of service

back to the originating source point despite the use of fake source addresses. This is the IP

traceback problem.

The ﬁrst and simplest systems approach (P3, relax system requirements) is to ﬁnesse the

problem completely using help from routers. Observe that when Harry Hacker sitting in an IP

subnetwork with preﬁx S sends a packet with fake source address H, the ﬁrst router on the

path can detect this fact if H does not match S. This would imply that Harry’s packet cannot

disguise its subnetworks, and offending packets can be traced at least to the right subnetwork.

There are two difﬁculties with this approach. First, it requires that edge routers do more

processing with the source address. Second, it requires trusting edge routers to do this pro-

cessing, which may be difﬁcult to ensure if Harry Hacker has already compromised his ISP.

There is little incentive for a local ISP to slow down performance with extra checks to prevent

DOS attacks to a remote ISP.

A second and cruder systems approach is to have managers that detect an attack call their

ISP, say,
A. ISP A
monitors trafﬁc for a while and realizes these packets are coming from

prior-hop ISP B, who is then called. B then traces the packets back to the prior-hop provider

and so on until the path is traced. This is the solution used currently.

A better solution than manual tracing would be automatic tracing of the packet back to the

source. Assume one can modify routers for now. Then packet tracing can be trivially achieved

by having each router in the path of a packet P write its router IP address in sequence into P’s

header. However, given common route lengths of 10, this would be a large overhead (40 bytes

for 10 router IDs), especially for minimum-size acknowledgments. Besides the overhead, there

is the problem of modifying IP headers to add ﬁelds for path tracing. It may be easier to steal

a small number of unused message bits.

This leads to the following problem. Assuming router modiﬁcations are possible, ﬁnd a

way to trace the path of an attack by marking as few bits as possible in a packet’s header.

For a single-packet attack, this is very difﬁcult in an information theoretic sense. Clearly,

it is impossible to construct a path of 10 32-bit router IDs from, say, a 2-byte mark in a packet.

One can’t make a silk purse from a sow’s ear.

However, in the systems context one can optimize the expected case (P11), since most

interesting attacks consist of hundreds of packets at least. Assuming they are all coming from


408


C H A P T E R 1 7
Network Security
Overwrite R1 to

R3 with probability p


R1, 1 sample

R1


R2



R1


R3


Victim


R2, 2 samples

R3, 6 samples

Sampled nodes

sorted by sample frequency

F I G U R E 17.5
Reconstructing an attack path by having each router stamp its ID independently, with

probability p, into a single node ID ﬁeld. The receiver reconstructs order by sorting, assuming that closer

routers will produce more samples.

the same physical source, the victim can shift the path computation over time (P2) by making

each mark contribute a piece of the path information.

Let’s start by assuming a single 32-bit ﬁeld in a packet that can hold a single router ID.

How are the routers on the path to synchronize access to the ﬁeld so that each router ID gets a

chance, over a stream of packets, to place its ID in the ﬁeld?

A naive solution is shown in Figure 17.5. The basic idea is that each router independently

writes its ID into a single node ID ﬁeld in the packet with probability p, possibly overwriting a

previous router’s ID. Thus in Figure 17.5, the packet already has R1 in it and can be overwritten

by R3 to R1 with probability p.

The hope, however, is that over a large sequence of packets from the attacker to the victim,

every router ID in the path will get a chance to place its ID without being overwritten. Finally,

the victim can sort the received IDs by the number of samples. Intuitively, the nodes closer to

the victim should have more samples, but one has to allow for random variation.

The two problems with this naive approach is that too many samples (i.e., attack packets)

are needed to deal with random variation in inferring order. Also, the attacker, knowing

this scheme, can place malicious marks in the packet to fool the reconstruction scheme into

believing that ﬁctitious nodes are close to the victim because they receive extra marks.

To foil this threat,
p must be large, say, 0.51. But in this case, the number of packets

required to receive the router IDs far away from the victim becomes very large. For example,

with p
= 0.5 and a path of length L
= 15, the number of packets required is the reciprocal

of the probability that the router furthest from the victim sends a mark that survives. This is

p(1 − p)L−1
= 2−15, because it requires the furthest router to put a mark and the remaining

L − 1 routers not to. Thus the average number of packets for this to happen is2−115=32, 000.

Attacks have a number of packets, but not necessarily this many.

The straightforward lesson from the naive solution is that randomization is good for

synchronization (to allow routers to independently synchronize access to the single node ID

ﬁeld) but not to reconstruct order. The simplest solution to this problem is to use a hop count

(the attacker can initialize each packet with a different TTL, making the TTL hard to use) as

well as a node ID. But a hop count by itself can be confusing if there are multiple attacks going

on. Clearly a mark of node X with hop count 2 may correspond to a different attack path from

a mark of node Y with hop count 1.

The solution provided in the seminal paper [SWKA00] avoids the aliasing due to hop

counts by conceptually starting with a pair of consecutive node IDs and a hop count to form a

triple (R, S, h), as shown in Figure 17.6.


R1



R2



Overwrite R3, –, 0

with probability p
R3



17.4 IP Traceback via Logging
R1, R2, 2

Victim
R2, R3, 1

R3, Victim, 0



409
R1, R2, 1


Sampled path edges

sorted by edge distance

F I G U R E 17.6
Edge sampling improves on node sampling by sampling edges and not nodes. This

allows trivial order reconstruction based on edge distance and not sample frequency.

When a router
R receives a packet with triple (X, Y , h),
R generates a random number

between 0 and 1. If the number is less than the sampling probability p, router R writes its own

ID into the mark triple, rewriting it as (R, −, 0), where the − character indicates that the next

router in the path has still to be determined. If the random number is greater than p, then R
must maintain the integrity of the previously written mark. If h = 0, R writes R to the second

ﬁeld because R is the next router after the writer of the mark. Finally, if the random number is

greater than p, R increments h.

It should be clear that by assuming that every edge gets sampled once, the victim can

reconstruct the path. Note also that the attacker can only add ﬁctitious nodes to the start of the

path. But how many packets are required to ﬁnd all edges? Given that ordering is explicit, one

can use arbitrary values of p.

In particular, if p is approximately 1/L, where L is the path length to the furthest router,

the probability we computed before of the furthest router sending an edge mark that survives

becomes p(1 − p)L−1
≈ p/(1 − p)e, where e is the base of natural logarithms. For example,

for p = 1/25, this is roughly 1/70, which is fairly large compared to the earlier attempt.

What is even nicer is that if we choose
p
=
1/50 based on the largest path lengths

encountered in practice on the Internet (say, 50), the probability does not grow much smaller

even for much smaller path lengths. This makes it easy to reconstruct the path with hundreds

of packets as opposed to thousands.

Finally, one can get rid of obvious waste (P1) and avoid the need for two node IDs by

storing only the Exclusive-OR of the two ﬁelds in a single ﬁeld. Working backwards from the

last router ID known to the victim, one can Exclusive-OR with the previous edge mark to get

the next router in the path, and so on. Finally, by viewing each node as consisting of a sequence

of a number of “pseudonodes,” each with a small fragment (say, 8 bits) of the node’s ID, one

can reduce the mark length to around 16 bits total.

17.4 IP TRACEBACK VIA LOGGING
A problem with the edge-sampling approach of the previous section is that it requires changes

to the IP header to update marks and does not work for single-packet attacks like the Teardrop

attack. The following approach, traceback via logging [SPea01], avoids both problems by

adding more storage at routers to maintain a compressed packet log.

As motivations, neither of the difﬁculties the logging approach gets around are very

compelling. This is because the logging approach still requires modifying router forwarding,

even though it requires no header modiﬁcation. This is due to the difﬁculty of convincing


410


C H A P T E R 1 7
Network Security
S2S3
S1R1
R4
R6


S5
R8


R7
V


A
R5
R9


R2


R3


S4
F I G U R E 17.7
Using a packet log to trace an attack packet P backwards from the victim V
to the

attacker A by having the currently traced node ask all its neighbors (the dotted lines) if they have seen P
(solid line).

vendors (who have already committed forwarding paths to silicon) and ISPs (who wish to

preserve equipment for, say, 5 years) to make changes. Similarly, single-packet attacks are not

very common and can often be ﬁltered directly by routers.

However, the idea of maintaining compressed searchable packet logs may be useful as a

general building block. It could be used, more generally, for, say, a network monitor that wishes

to maintain such logs for forensics after attacks. But even more importantly it introduces an

important technique called Bloom ﬁlters.

Given an efﬁcient packet log at each router, the high-level idea for traceback is shown in

Figure 17.7. The victim V
ﬁrst detects an attack packet P; it then queries all its neighboring

routers, say, R8and R9, to see whether any of them have P in their log of recently sent packets.

When R9replies in the afﬁrmative, the search moves on to R9, who asks its sole neighbor, R7.

Then R7asks its neighbors R5and R4, and the search moves backward to A.

The simplest way to implement a log is to reuse one of the techniques in trajectory sampling

(Chapter 16). Instead of logging a packet we log a 32-bit hash of invariant content (i.e., exclude

ﬁelds that change from hop to hop, such as the TTL) of the packet. However, 32 bits per packet

for all the packets sent in the last 10 minutes is still huge at 10 Gbps. Bloom ﬁlters, described

next, allow a large reduction to around 5 bits per packet.

17.4.1 Bloom Filters
Start by observing that querying either a packet log or a table of allowed users is a set member-
ship query, which is easily implemented by a hash table. For example, in a different security


H1 (Jonas)

H2 (Jonas)



Allowed

users

1

1

1

1 bit



17.4 IP Traceback via Logging
H1 (John)

H1 (Cathy)

H2 (John)



411
Is Jonas an allowed user?

F I G U R E 17.8
A Bloom ﬁlter represents a set element by setting k bits in a bitmap using k independent

hash functions applied to the element. Thus the element John sets the second (using H1) and next-to-last

(using H2) bits. When searching for Jonas, Jonas is considered a member of the set only if all bit positions

hashed to by Jonas have set bits.

context, if John and Cathy are allowed users and we wish to check if Jonas is an allowed user,

we can use a hash table that stores John and Cathy’s IDs but not Jonas.

Checking for Jonas requires hashing Jonas’s ID into the hash table and following any lists

at that entry. To handle collisions, each hash table entry must contain a list of IDs of all users

that hash into that bucket. This requires at least W bits per allowed user, where W
is the length

of each user ID. In general, to implement a hash table for a set of identiﬁers requires at least

W bits per identiﬁer, where W is the length of the smallest identiﬁer.

Bloom ﬁlters, shown in Figure 17.8, allow one to reduce the amount of memory for set

membership to a few bits per set element. The idea is to keep a bitmap of size, say, 5N, where

N is the number of set elements. Before elements are inserted, all bits in the bitmap are cleared.

For each element in the set, its ID is hashed using k independent hash functions (two in

Figure 17.8, H1 and H2) to determine bit positions in the bitmap to set. Thus in the case of a

set of valid users in Figure 17.8, ID John hashes into the second and next-to-last bit positions.

ID Cathy hashes into one position in the middle and also into one of John’s positions. If two

IDs hash to the same position, the bit remains set.

Finally, when searching to see if a speciﬁed element (say, Jonas) is in the set, Jonas is

hashed using all the k hash functions. Jonas is assumed to be in the set if all the bits hashed

into by Jonas are set. Of course, there is some chance that Jonas may hash into the position

already set by, say, Cathy and one by John (see Figure 17.8). Thus there is a chance of what

is called a false positive: answering the membership query positively when the member is not

in the set.

Notice that the trick that makes Bloom ﬁlters possible is relaxing the speciﬁcation (P3). A

normal hash table, which requires W
bits per ID, does not make errors! Reducing to 5 bits per

ID requires allowing errors; however, the percentage of errors is small. In particular, if there

is an attack tree and set elements are hashed packet values, as in Figure 17.7, false positives

mean only occasionally barking up the wrong tree branch(es).


412


C H A P T E R 1 7
Network Security
Line cards

FIFO

S32



RAM

MUX



2K-bit RAM



SPIE card

(or box)



Ring buffer DRAM

t
S32

S32

S32

S32


Sk



Readout

every

R msec



+



Time

= t


Readout

by

control

processor

Signature taps



Signature aggregation



History memory

F I G U R E 17.9
Hardware implementation of packet logging using Bloom ﬁlters. Note the use of

two-level memory: SRAM for random read-modify-writes and DRAM for large row writes.

More precisely, the false-positive rate for an
m-size bitmap to store n members using

k hash functions is

k
(1 − (1 − 1/m)kn)
≈ (1 − ekn/m)k
The equation is not as complicated as it may appear: (1 − 1/m)knis the probability that any bit

is not set, given n elements that each hashes k times to any of m bit positions. Finally, to get a

false positive, all of the k bit positions hashed onto by the ID that causes a false positive must

be set.

Using this equation, it is easy to see that for k = 3 (three independent hash functions) and

5 bits per member (m/n = 5), the false-positive rate is roughly 1%. The false-positive rate can

be improved up to a point by using more hash functions and by increasing the bitmap size.

17.4.2 Bloom Filter Implementation of Packet Logging
The Bloom ﬁlter implementation of packet logging in the SPIE system is shown in Figure 17.9

(the picture is courtesy of Sanchez et al. [SMea01]). Each line card calculates a 32-bit hash

digest of the packet and places it in a FIFO queue. To save costs, several line cards share, via

a RAM multiplexor, a fast SRAM containing the Bloom ﬁlter bitmap.

As in the case of counters in Chapter 16, one can combine the best features of SRAM

and DRAM to reduce expense. One needs to use SRAM for fast front-end random access to


17.5 Detecting Worms



413
the bitmap. Unfortunately, the expense of SRAM would allow storing only a small number of

packets. To allow a larger amount, the Bloom ﬁlter bitmaps in SRAM are periodically read out

to a large DRAM ring buffer. Because these are no longer random writes to bits, the write to

DRAM can be written in DRAM pages or rows, which provide sufﬁcient memory bandwidth.

17.5 DETECTING WORMS
It would be remiss to end this chapter without paying some attention to the problem of detecting

worms. A worm (such as Code Red, Nimda, Slammer) begins with an exploit sent by an attacker

to take over a machine. The exploit is typically a buffer overﬂow attack, which is caused by

sending a packet (or packets) containing a ﬁeld that has more data than can be handled by

the buffer allocated by the receiver for the ﬁeld. If the receiver implementation is careless, the

extra data beyond the allocated buffer size can overwrite key machine parameters, such as the

return address on the stack.

Thus with some effort, a buffer overﬂow can allow the attacking machine to run code

on the attacked machine. The new code then picks several random IP addresses2and sends

similar packets to these new victims. Even if only a small fraction of IP addresses respond to

these attacks, the worm spreads rapidly.

Current worm detection technology is both retroactive
(i.e., only after a new worm is

ﬁrst detected and analyzed by a human, a process that can take days, can the containment

process be initiated) and manual (i.e., requires human intervention to identify the signature

of a new worm). Such technology is exempliﬁed by Code Red and Slammer, which took days

of human effort to identify, following which containment strategies were applied in the form of

turning off ports, applying patches, and doing signature-based ﬁltering in routers and intrusion

detection systems.

There are difﬁculties with these current technologies.

1.
Slow Response: There is a proverb that talks about locking the stable door after the horse

has escaped. Current technologies ﬁt this paradigm because by the time the worm

containment strategies are initiated, the worm has already infected much of the network.

2.
Constant Effort: Every new worm requires a major amount of human work to identify,

post advisories, and ﬁnally take action to contain the worm. Unfortunately, all evidence

seems to indicate that there is no shortage of new exploits. And worse, simple binary

rewriting and other modiﬁcations of existing attacks can get around simple signature-

based blocking (as in Snort).

Thus there is a pressing need for a new worm detection and containment strategy that is real

time (and hence can contain the worm before it can infect a signiﬁcant fraction of the network)

and is able to deal with new worms with a minimum of human intervention (some human

intervention is probably unavoidable to at least catalog detected worms, do forensics, and ﬁne-

tune automatic mechanisms). In particular, the detection system should be content agnostic.

The detection system should not rely on external, manually supplied input of worm signatures.

2By contrast, a virus requires user intervention, such as opening an attachment, to take over the user machine.

Viruses also typically spread by using known addresses, such as those in the mail address book, rather than random

probing.


414


C H A P T E R 1 7
Network Security
Instead, the system should automatically extract worm signatures, even for new worms that

may arise in the future.

Can network algorithmics speak to this problem? We believe it can. First, we observe that

the only way to detect new worms and old worms with the same mechanism is to abstract the

basic properties of worms.

As a ﬁrst approximation, deﬁne a worm to have the following abstract features, which are

indeed discernible in all the worms we know, even ones with such varying features as Code

Red (massive payload, uses TCP, and attacks on the well-known HTTP port) and MS SQL

Slammer (minimal payload, uses UDP, and attacks on the lesser-known MS SQL port).

1.
Large Volume of Identical Trafﬁc: These worms have the property that at least at an

intermediate stage (after an initial priming period but before full infection), the volume of

trafﬁc (aggregated across all sources and destinations) carrying the worm is a signiﬁcant

fraction of the network bandwidth.

2.
Rising Infection Levels: The number of infected sources participating in the attack

steadily increases.

3.
Random Probing: An infected source spreads infection by attempting to communicate to

random IP addresses at a ﬁxed port to probe for vulnerable services.

Note that detecting all three of these features may be crucial to avoid false positives. For

example, a popular mailing list or a ﬂash crowd could have the ﬁrst feature but not the third.

An algorithmics approach for worm detection would naturally lead to the following detec-

tion strategy, which automatically detects each of these abstract features with low memory and

small amounts of processing, works with asymmetric ﬂows, and does not use active probing.

The high-level mechanisms3are:

1.
Identify Large Flows in Real Time with Small Amounts of Memory: In Section 16.4 we

showed how to describe mechanisms to identify ﬂows with large trafﬁc volumes for any

deﬁnition of a ﬂow (e.g., sources, destinations). A simple twist on this deﬁnition is to

realize that the content of a packet (or, more efﬁciently, a hash of the content) can be a

valid ﬂow identiﬁer, which by prior work can identify in real time (and with low memory)

a high volume of repeated content. An even more speciﬁc idea (which distinguishes

worms from valid trafﬁc such as peer-to-peer) is to compute a hash based on the content

as well as the destination port (which remains invariant for a worm).

2.
Count the Number of Sources: In Section 16.5 we described mechanisms using simple

bitmaps of small size to estimate the number of sources on a link using small amounts of

memory and processing. These mechanisms can easily be used to count sources

corresponding to high trafﬁc volumes identiﬁed by the previous mechanism.

3.
Determine Random Probing by Counting the Number of Connection Attempts to Unused
Portions of the IP Address: One could keep a simple compact representation of portions

of the IP address space known to be unused. One example is the so-called Bogon list,

which lists unused 8-bit preﬁxes (can be stored as a bitmap of size 256). A second

3Each of these mechanisms needs to be modulated to handle some special cases, but we prefer to present the

main idea untarnished with extraneous details.

17.7 Exercises



415
example is a secret space of IP addresses (can be stored as single preﬁx) known to an ISP

to be unused. A third is a set of unused 32-bit addresses (can be stored as a Bloom ﬁlter).

Of course, worm authors could defeat this detection scheme by violating any of these

assumptions. For example, a worm author could defeat Assumption 1 by using a very slow

infection rate and by mutating content frequently. Assumption 3 could be defeated using

addresses known to be used. For each such attack there are possible countermeasures. More

importantly, the scheme described seems certain to detect at least all existing worms we know

of, though they differ greatly in their semantics. In initial experiments at UCSD as part of

what we call the EarlyBird system, we also found very few false positives where the detection

mechanisms complained about innocuous trafﬁc.

17.6 CONCLUSION
Returning to Marcus Ranum’s quote at the start of this chapter, hacking must be exciting

for hackers and scary for network administrators, who are clearly on different sides of the

battlements. However, hacking is also an exciting phenomenon for practitioners of network

algorithmics — there is just so much to do. Compared to more limited areas, such as accounting

and packet lookups, where the basic tasks have been frozen for several years, the creativity

and persistence of hackers promise to produce interesting problems for years to come.

In terms of technology currently used, the set string–matching algorithms seem useful

and may be ignored by current products. However, other varieties of string matching, such

as regular expression matches, are in use. While the approximate matching techniques are

somewhat speculative in terms of current applications, past history indicates they may be

useful in the future.

Second, the traceback solutions only represent imaginative approaches to the problem.

Their requirements for drastic changes to router forwarding make them unlikely to be used

for current deployment as compared to techniques that work in the control plane. Despite this

pessimistic assessment, the underlying techniques seem much more generally useful.

For example, sampling with a probability inversely proportional to a rough upper bound

on the distance is useful for efﬁciently collecting input from each of a number of participants

without explicit coordination. Similarly, Bloom ﬁlters are useful to reduce the size of hash

tables to 5 bits per entry, at the cost of a small probability of false positives. Given their beauty

and potential for high-speed implementation, such techniques should undoubtedly be part of

the designer’s bag of tricks.

Finally, we described our approach to content-agnostic worm detection using algorithmic

techniques. The solution combines existing mechanisms described earlier in this book. While

the experimental results on our new method are still preliminary, we hope this example gives

the reader some glimpse into the possible applications of algorithmics to the scary and exciting

ﬁeld of network security. Figure 17.1 presents a summary of the techniques used in this chapter,

together with the major principles involved.

17.7 EXERCISES
1. Traceback by Edge Sampling: Extend the IP traceback edge-sampling idea to reduce the

space required. As described in the text, try to do this by chopping the node ID required in

416


C H A P T E R 1 7
Network Security
the base scheme into smaller (say, 8-bit) fragments. It may help to consider each of the

fragment IDs to be the IDs of four virtual nodes that are housed in a single physical node,

thus effectively extending the path and the number of samples needed for reconstruction.

2. Bloom Filters and Trajectory Sampling: Can you use Bloom ﬁlters to improve the label

storage required by trajectory sampling in Chapter 16? Explain.

3. Sampling and Packet Logging: Can you use packet sampling to reduce the amount of

memory required by the logging traceback solution? What are the disadvantages and

advantages?

4. Traceback by Packet Logging: Why does the implementation in Figure 17.9 go through

the indirection of a hash to 32 bits (as in trajectory sampling) and then to a Bloom ﬁlter?

5. Aho–Corasick as a State Machine: In many applications, one may wish to ignore

certain padding characters that can be inserted by an intruder to make strings hard to

detect. How might you extend Aho–Corasick to ignore these padding characters while

searching for suspicious strings?

6. Resemblance and Min-wise Hashing: Generalize the Broder methods to approximately

search for multiple strings and return the string with highest resemblance.

7. Approximate Matching and Worm Detection: Could the methods for approximate

search generalize to detecting worms that mutate?


Conclusions


C H A P T E R 18
The end of a matter is better than its beginning.



— Ecclesiastes, The Bible

We began the book by setting up the rules of the network algorithmics game. The second part

of the book dealt with server implementations and the third part with router implementations.

The fourth and last part of the book dealt with current and future issues in measurement and

security.

The book covers a large number of speciﬁc techniques and a variety of settings — there

are techniques for fast server design versus techniques for fast routers, techniques speciﬁc to

operating systems versus techniques speciﬁc to hardware. While all these topics are part of

the spectrum of network algorithmics, there is a risk that the material can appear to degenerate

into a patchwork of assorted topics that are not linked together in any coherent way.

Thus as we draw to a close, it is appropriate to try and reach closure by answering the

following questions in the next four sections.

•
What has the book been about? What were the main problems, and how did they arise?

What are the main techniques? While endnode and router techniques appear to be different

when considered superﬁcially, are there some underlying characteristics that unite these

two topics? Can these unities be exploited to suggest some cross-fertilization between

these areas? (Section 18.1)

•
What is network algorithmics about? What is the underlying philosophy behind network

algorithmics, and how does it differ from algorithms by themselves? (Section 18.2)

•
Is network algorithmics used in real systems? Are the techniques in this book exercises in

speculation, or are there real systems that use some of these techniques? (Section 18.3)

•
What is the future of network algorithmics? Are all the interesting problems already

solved? Are the techniques studied in this book useful only to understand existing work or

to guide new implementations of existing tasks? Or are there always likely to be new

problems that will require fresh applications of the principles and techniques described in

this book? (Section 18.4)

417
418


C H A P T E R 1 8
Conclusions
18.1 WHAT THIS BOOK HAS BEEN ABOUT
The main problem considered in this book is bridging the performance gap between good

network abstractions and fast network hardware. Abstractions — such as modular server code

and preﬁx-based forwarding — make networks more usable, but they also exact a performance

penalty when compared to the capacity of raw transmission links, such as optical ﬁber. The

central question tackled in this book is whether we can have our cake and eat it too: retain the

usability of the abstractions and yet achieve wire speed performance for the fastest-transmission

links.

To make this general assertion more concrete, we review the main contents of this book

in two sub-sections: Section 18.1.1 on endnode algorithmics and Section 18.1.2 on router

algorithmics. This initial summary is similar to that found in Chapter 1. However, we go

beyond the description in Chapter 1 in Section 18.1.3, where we present the common themes

in endnode and router algorithmics and suggest how these unities can potentially be exploited.

18.1.1 Endnode Algorithmics
Chapters 5–9 of this book concentrate on endnode algorithmics, especially for servers. Many

of the problems tackled under endnode algorithmics involve getting around complexities due

to software and structure — in other words, complexities of our own making as opposed

to necessarily fundamental complexities. These complexities arise because of the following

characteristics of endnodes.

•
Computation versus Communication: Endnodes are about general-purpose computing and

must handle possible unknown and varied computational demands, from database queries

to weather prediction. By contrast, routers are devoted to communication.

•
Vertical versus Horizontal Integration: Endnodes are typically horizontally integrated,

with one institution building boards, another writing kernel software, and another writing

applications. In particular, kernels have to be designed to tolerate unknown and potentially

buggy applications to run on top of them. Today, routers are typically vertically integrated,

where the hardware and all software is assembled by a single company.

•
Complexity of Computation: Endnode protocol functions are more complex (application,

transport) as compared to the corresponding functions in routers (routing, data link).

As a consequence, endnode software has three important artifacts that seem hard to avoid,

each of which contributes to inefﬁciencies that must be worked around or minimized.

1.
Structure: Because of the complexity and vastness of endnode software, code is

structured and modular to ease software development. In particular, unknown

applications are allowed using a standard application programming interface (API)

between the core operating system and the unknown application.

2.
Protection: Because of the need to accommodate unknown applications, there is a need to

protect applications from each other and to protect the operating system from applications.

3.
Generality: Core routines such as buffer allocators and the scheduler are written with the

most general use (and the widest variety of applications) in mind and thus are unlikely to

be as efﬁcient as special-purpose routines.


Bottleneck
Copying

Context



Chapter
5



Cause
Protection, structure



18.1 What This Book Has Been About
Sample Solution
Passing by reference

optimized by caching (IO-Lite)

User-level protocols, event-



419
switching

System calls

Slow select

Timers

Demuxing

Buffer allocation

Checksums/


6
Complex scheduling

6
Protection, structure

6
Scaling with number of clients

7
Scaling with number of timers

8
Scaling with number of classifiers

9
Generality

9
Generality


driven Web servers

Application device channels

Kernel keeps state across calls

Timing wheels

Generalized tries (Pathfinder)

Linear buffers

Multibit computation

CRCs

Protocol code


Scaling with link speeds

9
Generality



Header prediction

F I G U R E 18.1
Endnode bottlenecks covered in this book. Associated with each bottleneck is the

chapter in which the material is reviewed, the underlying cause, and one or more sample solutions.

In addition, since most endnodes were initially designed in an environment where the

endnode communicated with only a few nodes at a time, there is little surprise that when these

nodes were retroﬁtted as servers, a fourth artifact was discovered.

4.
Scalability: By scalability, we often mean in terms of the number of concurrent

connections. A number of operating systems use simple data structures that work

well for a few concurrent connections but become major bottlenecks in a server

environment, where there is a large number of connections.

With this list of four endnode artifacts in mind, Figure 18.1 reviews the main endnode

bottlenecks covered in this book, together with causes and workarounds. This picture is a more

detailed version of the corresponding ﬁgure in Chapter 1.

18.1.2 Router Algorithmics
In router algorithmics, by contrast, the bottlenecks are caused not by structuring artifacts (as

in some problems in endnode algorithmics) but by the scaling problems caused by the need

for global Internets, together with the fast technological scaling of optical link speeds. Thus

the global Internet puts pressure on router algorithmics because of both population scaling and

speed scaling.

For example, simple caches worked ﬁne for route lookups until address diversity and the

need for CIDR (both caused by population scaling) forced the use of fast longest-matching

preﬁx. Also, simple DRAM-based schemes sufﬁced for preﬁx lookup (e.g., using expanded

tries) until increasing link speeds forced the use of limited SRAM and compressed tries.

Unlike endnodes, routers do not have protection issues, because they largely execute one code

base. The only variability comes from different packet headers. Hence protection is less of

an issue.


420


C H A P T E R 1 8
Conclusions
Bottleneck
Chapter
Prefix
11



Cause
CIDR, link speed scaling,



Sample Solution
Expanded multibit tries

lookups


Prefix database size scaling
Compressed multibit tries

Packet

classification

Switching

Fair

queuing


12

13

14


Service differentiation

Link speed and size scaling

Electrical scaling of buses

Scaling in bandwidth

Head-of-line blocking

Scalability in number of

ports

Service differentiation

in resource scheduling

Link speed scaling

Memory scaling


Decision trees and heuristics

Hardware parallelism (CAMs)

Crossbar switches

VOQs, fast approximate matches

Hierarchical fabrics, randomized

resource-contention algorithms

Weighted fair queuing

DRR, fast heaps

SFQ, DiffServ, Core stateless

Measurement
16
Link speed scaling,

number of counters


Low-order bits in SRAM + DRAM

Juniper’s DCU

Security


17
Scaling in number and

intensity of attacks


Traceback with Bloom filters

Frequent content-based

worm detection

F I G U R E 18.2
Router bottlenecks covered in this book. Associated with each bottleneck is the chapter

in which the material is reviewed, the underlying cause, and one or more sample solutions.

With the two main drivers of router algorithmics in mind, Figure 18.2 reviews the main

router bottlenecks covered in this book together with causes and workarounds. This picture is

a more detailed version of the corresponding ﬁgure in Chapter 1.

While we have talked about routers as the canonical switching device, many of the tech-

niques discussed in this book apply equally well to any switching device, such as a bridge

(Chapter 10 is devoted to lookups in bridges) or a gateway. It also applies to intrusion detec-

tion systems, ﬁrewalls, and network monitors who do not switch packets but must still work

efﬁciently with packet streams at high speeds.

18.1.3 Toward a Synthesis
In his book The Character of Physical Law, Richard Feynman argues that we have a need to

understand the world in “various hierarchies, or levels.” Later, he goes on to say that “all the

sciences, and not just the sciences but all the efforts of intellectual kinds, are an endeavor to

see the connections of the hierarchies . . . and in that way we are gradually understanding this

tremendous world of interconnecting hierarchies.”
We have divided network algorithmics into two hierarchies: endnode algorithmics and

router algorithmics. What are the connections between these two hierarchies? Clearly, we

have used the same set of 15 principles to understand and derive techniques in both areas. But

are there other unities that can provide insight and suggest new directions?

There are differences between endnode and router algorithmics. Endnodes have large,

structured, and general-purpose operating systems that require work arounds to obtain high

performance; routers, by contrast, have fairly primitive operating systems (e.g., Cisco IOS)

18.1 What This Book Has Been About



421
that bear some resemblance to a real-time operating system. Most endnodes’ protocol functions

are implemented (today) in software, while the critical performance functions in a router are

implemented in hardware. Endnodes compute, routers communicate. Thus routers have no ﬁle

system and no complex process scheduling.

But there are similarities as well between endnode and router algorithmics.

•
Copying in endnodes is analogous to the data movement orchestrated by switching in

routers.

•
Demultiplexing in endnodes is analogous to classiﬁcation in routers.

•
Scheduling in endnodes is analogous to fair queuing in routers.

Other than packet classiﬁcation, where the analogy is more exact, it may seem that the

other correspondences are a little stretched. However, these analogies suggest the following

potentially fruitful directions.

1. Switch-based endnode architectures: The analogy between copying and switching, and

the clean separation between I/O and computation in a router, suggests that this may also be a

good idea for endnodes. More precisely, most routers have a crossbar switch that allows parallel

data transfers using dedicated ASICs or processors; packets meant for internal computation

are routed to a separate set of processors. While we considered this brieﬂy in Chapter 2, we

did not consider very deeply the implications for endnode operating systems.

By dedicating memory bandwidth and processing to I/O streams, the main computational

processors can compute without interruptions, system calls, or kernel thread, because I/O is

essentially serviced and placed in clean form by a set of I/O processors (using separate memory

bandwidth that does not interfere with the main processors) for use by the computational

processors when they switch computational tasks. With switch-based bus replacements such

as Inﬁniband, and the increasing use of protocol ofﬂoad engines such as TCP chips, this vision

may be realizable in the near future. However, while the hardware elements are present, there

is need for a fundamental restructuring of operating systems to make this possible.

2. Generalized endnode packet classiﬁcation: Although there seems to be a direct corre-

spondence between packet classiﬁcation in endnodes (Chapter 8) and packet classiﬁcation in

routers (Chapter 12), the endnode problem is simpler because it works only for a constrained

set of classiﬁers, where all the wildcards are at the end. Router classiﬁers, on the other hand,

allow arbitrary classiﬁers, requiring more complicated algorithmic machinery or CAMs.

It seems clear that if early demultiplexing is a good idea, then there are several possible

deﬁnitions of a path (ﬂow in router terminology), other than a TCP connection. For example,

one might want to devote resources to all trafﬁc coming from certain subnets or to certain

protocol types. Such ﬂexibility is not
allowed by current classiﬁers, such as BPF and DPF

(Chapter 8). It may be interesting to study the extra beneﬁts provided by more general classiﬁers

in return for the added computational burden.

3. Fair queuing in endnodes: Fair queuing in routers was originally invented to provide

more discriminating treatment to ﬂows in times of overload and (later) to provide quality of

service to ﬂows in terms of, say, latency. Both these issues resonate in the endnode environment.

For example, the problem of receiver livelock (Chapter 6) requires discriminating between

ﬂows during times of overload. The use of early demultiplexing and separate IP queues per ﬂow

in lazy receiver processing seems like a ﬁrst crude step toward fair queuing. Similarly, many


422


C H A P T E R 1 8
Conclusions
endnodes do real-time processing, such as running MPEG players, just as routers have to deal

with the real-time constraints of, say, voice-over-IP packets.

Thus, a reasonable question is whether the work on fair schedulers in the networking com-

munity can be useful in an operating system environment. When a sending TCP is scheduling

between multiple concurrent connections, could it use a scheduling algorithm such as DRR for

better fairness? At a higher level, could a Web server use worst-case weighted fair queuing to

provide better delay bounds for certain clients? Some work following this agenda has begun

to appear in the operating system community, but it is unclear whether the question has been

fully explored.

So far, we have suggested that endnodes could learn from router design in overall I/O

architecture and operating system design. Routers can potentially learn the following from

endnodes.

1. Fundamental Algorithms:
Fundamental algorithms for endnodes, such as selection,

buffer allocation, CRCs, and timers, are likely to be useful for routers, because the router

processor is still an endnode, with very similar issues.

2. More Structured Router Operating Systems: While the internals of router operating

systems, such as Cisco’s IOS and Juniper’s JunOS, are hidden from public scrutiny, there is

at least anecdotal evidence that there are major software engineering challenges associated

with such systems as time progresses (leading to the need to be compatible with multiple past

versions) and as customers ask for special builds. Perhaps routers can beneﬁt from some of

the design ideas behind existing operating systems that have stood the test of time.

While protection may be fundamentally unnecessary (no third-party applications running

on a router), how should a router operating system be structured for modularity? One approach

to building a modular but efﬁcient router operating system can be found in the router plugins

system [DDPP98] and the Click operating system [KMea00].

3. Vertically Integrated Routers: The components of an endnode (applications, operating

system, boxes, chips) are often built by separate companies, thus encouraging innovation.

The interface between these components is standardized (e.g., the API between applications

and operating system), allowing multiple companies to supply new solutions. Why should a

similar vision not hold for routers some years from now when the industry matures? Currently,

this is more of a business than a technical issue because existing vendors do not want to open

up the market to competitors. However, this was true in the past for computers and is no longer

true; thus there is hope.

We are already seeing router chips being manufactured by semiconductor companies.

However, a great aid to progress would be a standardized router operating system that is

serious and general enough for production use by several, if not all, router companies.1Such

a router operating system would have to work across a range of router architectures, just as

operating systems span a variety of multiprocessor and disk architectures.

Once this is the case, perhaps there is even a possibility of “applications” that run on

routers. This is not as far-fetched as it sounds, because there could be a variety of security and

measurement programs that operate on a subset of the packets received by the router. With

the appropriate API (and especially if the programs are operating on a logged copy of the

1Click is somewhat biased toward endnode bus-based routers as opposed to switch-based routers with ASIC

support.


18.2 What Network Algorithmics Is About



423
router packet stream), such applications could even be farmed out to third-party application

developers. It is probably easy to build an environment where a third-party application (working

on logged packets) cannot harm the main router functions, such as forwarding and routing.

18.2 WHAT NETWORK ALGORITHMICS IS ABOUT
Chapter 1 introduced network algorithmics with the following deﬁnition.

Deﬁnition: Network algorithmics is the use of an interdisciplinary systems approach,

seasoned with algorithmic thinking, to design fast implementations of network processing

tasks.

The deﬁnition stresses the fact that network algorithmics is interdisciplinary, requires systems

thinking, and can sometimes beneﬁt from algorithmic thinking. We review each of these three

aspects (interdisciplinary thinking, systems thinking, algorithmic thinking) in turn.

18.2.1 Interdisciplinary Thinking
Network algorithmics represents the intersection of several disciplines within computer sci-

ence that are often taught separately. Endnode algorithmics is a combination of networking,

operating systems, computer architecture, and algorithms. Router algorithmics is a combina-

tion of networking, hardware design, and algorithms. Figure 18.3 provides examples of uses

of these disciplines that are studied in the book.

For example, in Figure 18.3 techniques such as header prediction (Chapter 9) require a

deep networking knowledge of TCP to optimize the expected case, while internal link striping

(Chapter 15) requires knowing how to correctly design a striping protocol. On the other hand,

application device channels (Chapter 6) require a careful understanding of the protection issues

in operating systems.

Similarly, locality-driven receiver processing requires understanding the architectural

function and limitations of the instruction cache. Finally, in router algorithmics it is crucial to

understand hardware design. Arbiters like iSLIP and PIM were designed to allow scheduling

decisions in a minimum packet arrival time.

Later in this chapter we argue that other disciplines, such as statistics and learning theory,

will also be useful for network algorithmics.

Endnode algorithmics


Router algorithmics
Discipline


Example


Discipline


Example
Networking
Header prediction


Networking
Link striping

Operating

systems


(Chapter 6)

Application device channels

(Chapter 6)



Hardware

design


(Chapter 15)

Switch arbiters

(Chapters 2 and 13)

Computer

architecture

Algorithms


Locality-driven receiver

processing (Chapter 5)

Timing wheels

(Chapter 7)


Algorithms
Fast IP lookup

(Chapter 11)

F I G U R E 18.3
Examples of disciplines used in this book along with sample applications.

424


C H A P T E R 1 8
Conclusions
18.2.2 Systems Thinking
Systems thinking is embodied by Principles P1 though P10. Principles P1 through P5 were

described earlier as systems principles. Systems unfold in space and time: in space, through

various components (e.g., kernel, application), and in time, through certain key time points

(e.g., application initialization time, packet arrival time). Principles P1 through P5 ask that a

designer expand his or her vision to see the entire system and then to consider moving functions

in space and time to gain efﬁciency.

For example, Principle P1, avoiding obvious waste, is a clichй by itself. However, our

understanding of systems, in terms of separable and modular hierarchies, often precludes the

synoptic eye required to see waste across system hierarchies. For example, the number of

wasted copies is apparent only when one broadens one’s view to that of a Web server (see

I/O-Lite in Chapter 5). Similarly, the opportunities for dynamic code generation in going from

Pathﬁnder to DPF (see Chapter 8) are apparent only when one considers the code required to

implement a generic classiﬁer.

Similarly, Principle P4 asks the designer to be aware of existing system components that

can be leveraged. Fbufs (Chapter 5) leverage off the virtual memory subsystem, while timing

wheels (Chapter 7) leverage off the existing time-of-day computation to amortize the overhead

of stepping through empty buckets. Principle P4 also asks the designer to be especially aware

of the underlying hardware, whether to exploit local access costs (e.g., DRAM pages, cache

lines), to trade memory for speed (either by compression, if the underlying memory is SRAM,

or by expansion, if memory is DRAM), or to exploit other hardware features (e.g., replacing

multiplies by shifts in RED calculations in Chapter 14).

Principle P5 asks the designer to be even bolder and to consider adding new hardware

to the system; this is especially useful in a router context. While this is somewhat vague,

Principles 5a (parallelism via memory interleaving), P5b (parallelism via wide words), and

P5c (combining DRAM and SRAM to improve overall speed and cost) appear to underlie

many clever hardware designs to implement router functions. Thus memory interleaving and

pipelining can be used to speed up IP lookups (Chapter 11), wide words are used to improve

the speed of the Lucent classiﬁcation scheme (Chapter 12), and DRAM and SRAM can be

combined to construct an efﬁcient counter scheme (Chapter 16).

Once the designer sees the system and identiﬁes wasted sequences of operations together

with possible components to leverage, the next step is to consider moving functions in time (P2)

and space (P3c). Figure 18.4 shows examples of endnode algorithmic techniques that move

functions between components. Figure 18.5 shows similar examples for router algorithmics.

Besides moving functions in space, moving functions in time is a key enabler for efﬁcient

algorithms. Besides the more conventional approaches of precomputation (P2a), lazy evalu-

ation (P2b), and batch processing (P2c), there are subtler examples of moving functions to

different times at which the system is instantiated. For example, in fbufs (Chapter 5), common

VM mappings between the application and kernel are calculated when the application ﬁrst

starts up. Application device channels (Chapter 6) have the kernel authorize buffers (on behalf

of an application) to the adaptor when the application starts up. Dynamic packet ﬁlter (DPF)

(Chapter 8) specializes code when a classiﬁer is updated. Tag switching (Chapter 11) moves

the work of computing labels from packet-forwarding time to route-computation time.

Finally, Principles P6 through P10 concern the use of alternative system structuring tech-

niques to remove inefﬁciences.
P6 suggests considering specialized routines or alternative

interfaces; for example, Chapter 6 suggests that event-driven APIs may be more efﬁcient than


Application



Kernel



18.2 What Network Algorithmics Is About
VM system
Adaptor
Incoming packet



425
(receive buffer specification)

RDMA

(copying)

fbufs

(protection)

ADCs

(scheduling)

Event-driven servers

F I G U R E 18.4
Endnode algorithmics: examples of moving functions in space.

Forwarding

engine



Route

processor



Previous

router



Edge

router



Source

(precomputing lookup table)

IP Lookups

(labels)

Tag Switching, MPLS



(handling bits, rates)

(computing packet size)


DiffServ, Core Stateless

Path MTU approach to fragmentation

F I G U R E 18.5
Router algorithmics: examples of moving functions in space.

the state-based interface of the select() call. P7 suggests designing interfaces to avoid unnec-

essary generality; for example, in Chapter 5, fbufs map the fbuf pages into the same locations

in all processes, avoiding the need for a further mapping when moving between processes.

P8 suggests avoiding being unduly inﬂuenced by reference implementations; for example, in

Chapter 9, naive reference implementations of checksums have poor performance.

Principles P9 and P10 suggest keeping existing interfaces but adding extra information to

interfaces (P9) or packet headers (P10). For example, efﬁciently reimplementing the select()
call (Chapter 6) requires passing information between the protocol module and the select

module. Passing information in packet headers, on the other hand, has a huge array of examples,

including RDMA (Chapter 5), MPLS (Chapter 11), DiffServ, and core stateless fair queuing

(Chapter 14).

18.2.3 Algorithmic Thinking
Algorithmic thinking refers to thinking about networking bottlenecks the way algorithm design-

ers approach problems. Overall, algorithmic approaches are less important than other systems

approaches, as embodied by Principles P1 through P10. Also, it is dangerous to blindly reuse

existing algorithms.


426


C H A P T E R 1 8
Conclusions
The ﬁrst problem that must be confronted in using algorithmic thinking is how to frame

the problem that must be solved. By changing the problem, one can often ﬁnd more effective

solutions. Consider the following problem, which we avoided in Chapter 11.

◆ Example : Pipelining and Memory Allocation.
A lookup engine is using a trie. The lookup

engine must be pipelined for speed. The simplest solution is to pipeline the trie by level. The

root is at the ﬁrst stage, the children of the root are assigned to the second stage, the nodes at

height 2 to the third stage, etc. Unfortunately, the memory needs for each stage can vary as

preﬁxes are inserted and deleted. There are the following spectrum of approaches.

•
Centralized memory: All the processing stages share a single memory. Memory allocation

is easy, but the centralized memory becomes a bottleneck.

•
One memory per stage: Each processing stage has its own memory, minimizing memory

contention. However, since the memory is statically allocated at fabrication time, any

memory unused by a stage cannot be used by another stage.

•
Dynamically allocate small 1-port memories to stages: As suggested in Chapter 11,

on-chip memory is divided into M SRAMs, which are connected to stage processors via a

crossbar. As a processor requires more or less memory, crossbar connections can be

changed to allocate more or fewer memories to each stage. This scheme requires large M
to avoid wasting memory, but large M can lead to high capacitive loads.

•
Dynamically allocate medium-size 2-port memories to stages: The setting is identical to

the last approach, except that each memory is now a 2-port memory that can be allocated

to two processors. Using this it is is possible to show that N memories are sufﬁcient for

N processors, with almost no memory wastage.

•
Dynamically change the starting point in the pipeline: In a conventional linear pipeline, all

lookups start at the ﬁrst stage and leave at the last. Florin Baboescu has suggested an

alternative: Using a lookup table indexed on the ﬁrst few bits, assign each address to a

different ﬁrst processor in the pipeline. Thus different addresses have different start and

end processors. However, this gives considerably more ﬂexibility in allocating memory to

processors by changing the assignment of addresses to processors.

•
Pipeline by depth: Instead of pipelining a tree by height, consider pipelining by depth. All

leaves are assigned to the last stage, K , all parents of the leaves to stage K − 1, etc.

These approaches represent the interplay between principles P13 (optimizing degrees of

freedom) and P5 (add hardware). However, each approach results in a different algorithmic

problem! Thus a far more important skill than solving a hard problem is the skill required to

frame the right problems that balance overall system needs.

Principles P11 and P13 help choose the right problem to solve. The pipelining example

shows that choosing the degrees of freedom (P13) can change the algorithmic problem solved.

Similarly, Principle P11, optimizing the expected case, can sometimes help decide what

the right measure is to optimize. This in turn inﬂuences the choice of algorithm. For example,

simple TCP header prediction (Chapter 9) optimizes the expected case when the next packet is

from the same connection and is the next data packet or ack. If this is indeed the expected case,

there is no need for fancy connection lookup structures (a simple one-element cache) or fancy

structures to deal with sequence number bookkeeping. However, if there are several concurrent

connections, as in a server, a hash table may be better for connection lookup. Similarly, if

18.3 Network Algorithmics and Real Products


427
packets routinely arrive out of order, then more fancy sequence number bookkeeping schemes

[TVHS92] may be needed.

Principle P12, adding state for speed, is a simple technique used often in standard algo-

rithmic design. However, it is quite common for just this principle by itself (without fancy

additional algorithmic machinery) to help remove systems bottlenecks. For example, the major

bottleneck in the select() call implementation is the need to repeatedly check for data in network

connections known not to be ready. By simply keeping state across calls, this key bottleneck

can be removed. By contrast, the bottlenecks caused by the bitmap interface can be removed

by algorithmic means, but these are less important.

Having framed the appropriate problem using P11, P12, and P13, principles P14 and P15
can be used to guide the search for solutions.

Principle P14 asks whether there are any important special cases, such as the use of

ﬁnite universes, that can be leveraged to derive a more efﬁcient algorithm. For example, the

McKenney buffer-stealing algorithm of Chapter 9 provides a fast heap with O(1) operations

for the special case when elements to the heap change by at most 1 on each call.

Finally, principle P15 asks whether there are algorithmic methods that can be adapted

to the system. It is dangerous to blindly adapt existing algorithms because of the following

possibilities that can mislead the designer.

•
Wrong Measures: The measure for most systems implementations is the number of

memory accesses and not the number of operations. For example, the fast ufalloc()
operation uses a selection tree on bitmaps instead of a standard heap, leveraging off the

fact that a single read can access W bits, where W is the size of a word. Again, the

important measure in many IP lookup algorithms is search speed and not update speed.

•
Asymptotic Complexity: Asymptotic complexity hides constants that are crucial in systems.

When every microsecond counts, surely constant factors are important. Thus the switch

matching algorithms in Chapter 13 have much smaller constants than the best bipartite

matching algorithms in the literature and hence can be implemented.

•
Incorrect Cost Penalties: In timing wheels (Chapter 7), a priority heap is implemented

using a bucket-sorting data structure. However, the cost of strolling through empty

buckets, a severe cost in bucket sort, is unimportant because on every timer tick, the

system clock must be incremented anyway. As a second example, the dynamic program-

ming algorithm to compute optimal lookup strides for multibit tries (Chapter 11) is

O(N ∗ W2), where N is the number of preﬁxes and W is the address width. While this

appears to be quadratic, it is linear in the important term N (100,000 or more) and

quadratic in the address width (32 bits, and the term is smaller in practice).

In spite of all these warnings, algorithmic methods are useful in networking, ranging from

the use of Pathﬁnder-like tries in Chapter 8 to the use of tries and binary search (suitably

modiﬁed) in Chapter 11.

18.3 NETWORK ALGORITHMICS AND REAL PRODUCTS
Many of the algorithms used in this book are found in real products. The following is a quick

survey.

428


C H A P T E R 1 8
Conclusions
Endnode Algorithmics: Zero-copy implementations of network stacks are quite common,

as are implementations of memory-mapped ﬁles; however, more drastic changes, such as IO-

Lite, are only used more rarely, such as by the iMimic server software. The RDMA speciﬁcation

is well developed. Event-driven Web servers are quite common, and many operating systems

other than UNIX (such as Windows NT) have fast implementations of select() equivalents.

The VIA standard avoids system calls using ideas similar to ADCs.

Most commercial systems for early demultiplexing still rely on BPF, but that is because

few systems require so many classiﬁers that they need the scalability of a Pathﬁnder or a

DPF. Some operating systems use timing wheels, notably Linux and FreeBSD. Linux uses fast

buffer-manipulation operations on linear buffers. Fast IP checksum algorithms are common,

and so are multibit CRC algorithms in hardware.

Router Algorithmics: Binary search lookup algorithms for bridges were common in prod-

ucts, as were hashing schemes (e.g., Gigaswitch). Multibit trie algorithms for IP lookups are

very common; recently, compressed versions, such as the tree bitmap algorithm, have become

popular in Cisco’s latest CRS-1 router. Classiﬁcation is still generally done by CAMs, and

thus much of Chapter 12 is probably more useful for software classiﬁcation.

In some chapters, such as the chapter on switching (Chapter 13), we provided a real

product example for every switching scheme described (see Figure 13.2, for example). In fair

queuing, DRR, RED, and token buckets are commonly implemented. General weighted fair

queuing, virtual clock, and core stateless fair queuing are hardly ever used. Finally, much of

the measurement and security chapters is devoted to ideas that are not part of any product

today.

It is useful to see many of these ideas come together in a complete system. While it is

hard to ﬁnd details of such systems (because of commercial secrecy), the following two large

systems pull together ideas in endnode and router algorithmics.

SYSTEM EXAMPLE 1: FLASH WEB SERVER
The Flash [PDZ99a] Web server was designed at Rice University and undoubtedly served as

the inspiration (and initial code base) for a company called iMimic. A version of Flash called

Flash-lite uses the following ideas from endnode algorithmics.

•
Fast copies: Flash-lite uses IO-Lite to avoid redundant copies.

•
Process scheduling: Flash uses an event-driven server with helper processes to minimize

scheduling and maximize concurrency.

•
Fast select: Flash uses an optimized implementation of the select() call.

•
Other optimizations: Flash caches response headers and ﬁle mappings.

SYSTEM EXAMPLE 2: CISCO 12000 GSR ROUTER
The Cisco GSR [Sys] is a popular gigabit router and uses the following ideas from router

algorithmics.

•
Fast IP lookups: The GSR uses a multibit tree to do IP lookups.

•
Fast switching: The GSR uses the iSLIP algorithm for fast bipartite matching of VOQs.

•
Fair queuing: The GSR implements a modiﬁed form of DRR called MDRR, where one

queue is given priority (e.g., for voice-over-IP). It also implements a sophisticated form of

18.4 Network Algorithmics: Back to the Future


429
RED called weighted RED and token buckets. All these algorithms are implemented in

hardware.

18.4 NETWORK ALGORITHMICS: BACK TO THE FUTURE
The preceding three sections of this chapter talked of the past and the present. But are all the

ideas played out? Has network algorithmics already been milked to the point where nothing new

is left to do? We believe this is not the case. This is because we believe network algorithmics

will be enriched in the near future in three ways: new abstractions that require new solutions

will become popular; new connecting
disciplines will provide new approaches to existing

problems; and new
requirements will require rethinking existing solutions. We expand on

each of these possibilities in turn.

18.4.1 New Abstractions
This book dealt with the fast implementation of the standard networking abstractions: TCP

sockets at endnodes and IP routing at routers. However, new abstractions are constantly being

invented to increase user productivity. While these abstractions make life easier for users,

unoptimized implementations of these abstractions can exact a severe performance penalty.

But this only creates new opportunities for network algorithmics. Here follow some examples

of such abstractions.

•
TCP ofﬂoad engines: While the book has concentrated on software TCP implementations,

movements such as iSCSI have made hardware TCP ofﬂoad engines more interesting.

Doing TCP in hardware and handling worst-case performance at 10 Gbps and even 40 Gbps

is very challenging. For example, to do complete ofﬂoad, the chip must even handle

out-of-order packets and packet fragments (see Chapter 9) without appreciable slowdown.

•
HTML and Web server processing: There have been a number of papers trying to improve

Web server performance that can be considered an application of endnode algorithmics.

For example, persistent HTTP [Mog95] can be considered an application of P1 to the

problem of connection overhead. A more speculative approach to reduce DNS lookup

times in Web accesses by passing hints (P10) is described in Chandranmenon and

Varghese [CV01].

•
Web services: The notion of Web services, by which a Web page is used to provide a

service, is getting increasingly popular. There are a number of protocols that underly Web

services, and standard implementations of these services can be slow.

•
CORBA: The common object request broker architecture is popular but quite slow.

Gokhale and Schmidt [GS98] apply to the problem four of the principles described in this

book (eliminating waste, P1, optimizing the expected case, P11, passing information

between layers, P9, and exploiting locality for good cache behavior, P4a). They show that

such techniques from endnode algorithmics can improve the performance of the SunSoft

Inter-Orb protocol by a factor of 2–4.5, depending on the data type. Similar optimizations

should be possible in hardware.

•
SSL and other encryption standards: Many Web servers use the secure socket layer (SSL)

for secure transactions. Software implementations of SSL are quite slow. There is an

increasing interest in hardware implementations of SSL.


430


C H A P T E R 1 8
Conclusions
•
XML processing: XML is rapidly becoming the lingua franca of the Web. Parsing and

converting from XML to HTML can be a bottleneck.

•
Measurement and security abstractions: Currently, SNMP and NetFlow allow very

primitive measurement abstractions. The abstraction level can be raised only by a tool that

integrates all the raw measurement data. Perhaps in the future routers will have to

implement more sophisticated abstractions to help in measurement and security analysis.

•
Sensor networks: A sensor network may wish to calculate new abstractions to solve such

speciﬁc problems as ﬁnding high concentrations of pollutants and ascertaining the

direction of a forest ﬁre.

If history is any guide, every time an existing bottleneck becomes well studied, a new

abstraction appears with a new bottleneck. Thus after lookups became well understood, packet

classiﬁcation emerged. After classiﬁcation, came TCP ofﬂoad; and now SSL and XML are

clearly important. Many pundits believe that wire speed security solutions (as implemented

in a router or an intrusion detection system) will be required by the year 2006. Thus it seems

clear that future abstractions will keep presenting new challenges to network algorithmics.

18.4.2 New Connecting Disciplines
Earlier we said that a key aspect of network algorithmics is its interdisciplinary nature. Solu-

tions require a knowledge of operating systems, computer architecture, hardware design,

networking, and algorithms. We believe the following disciplines will also impinge on network

algorithmics very soon.

•
Optics: Optics has been abstracted away as a link layer technology in this book. Currently,

optics provides a way to add extra channels to existing ﬁber using dense wavelength-

division multiplexing. However, optical research has made amazing strides. There are

undoubtedly exciting possibilities to rethink router design using some combination of

electronics and optics.2
•
Network processor architecture: While this ﬁeld is still in its infancy as compared to

computer architecture, there are surely more imaginative approaches than current

approaches that assign packets to one of several processors. One such approach, described

in Sherwood et al. [SVC03], uses a wide word state machine as a fundamental building

block.

•
Learning theory: The ﬁelds of security and measurement are crying out for techniques to

pick out interesting patterns from massive trafﬁc data sets. Learning theory and data

mining have been used for these purposes in other ﬁelds. Rather than simply reusing, say,

standard clustering algorithms or standard techniques such as hidden Markov models, the

real breakthroughs may belong to those who can ﬁnd variations of these techniques that

can be implemented at high speeds with some loss of accuracy. Similarly, online analytical

processing (OLAP) tools may be useful for networking, with twists to ﬁt the networking

milieu. An example of a tool that has an OLAP ﬂavor in a uniquely network setting can be

found in Estan et al. [ESV03].

2Electronics still appears to be required today because of the lack of optical buffers and the difﬁculty of optical

header processing.

18.5 The Inner Life of a Networking Device
•
Databases: The ﬁeld of databases has a great deal to teach networking in terms of

systematic techniques for querying for information. Recently, an even more relevant

trend has been the subarea of continuous queries. Techniques developed in databases

can be of great utility to algorithmics.



431
•
Statistics: The ﬁeld of statistics will be of even more importance in dealing with large data

sets. Already, NetFlow and other tools have to resort to sampling. What inferences can

safely be made from sampled data? As we have seen in Chapter 16, statistical methods are

already used by ISPs to solve the trafﬁc matrix problem from limited SNMP data.

18.4.3 New Requirements
Much of this book has focused on processing time as the main metric to be optimized while

minimizing dollar cost. Storage was also an important consideration because of limited on-chip

storage and the expense of SRAM. However, even minimizing storage was related to speed,

in order to maximize the possibility of storing the entire data structure in high-speed storage.

The future may bring new requirements. Two important such requirements are (mechani-

cal) space and power. Space is particularly important in PoPs and hosting centers, because rack

space is limited. Thus routers with small form factors are crucial. It may be that optimizing

space is mostly a matter of mechanical design together with the use of higher and higher levels

of integration. However, engineering routers (and individual sensors in sensor networks) for

power may require attention to algorithmics

Today power per rack is limited to a few kilowatts, and routers that need more power do so

by spreading out across multiple racks. Power is a major problem in modern router design. It

may be possible to rethink lookup, switching, and fair queuing algorithms in order to minimize

power. Such power-conscious designs have already appeared in the computer architecture and

operating systems community. It is logical to expect this trend to spread to router design.

18.5 THE INNER LIFE OF A NETWORKING DEVICE
We have tried to summarize in this chapter the major themes of this book in terms of the tech-

niques described and the principles used. We have also tried to argue that network algorithmics

is used in real products and is likely to ﬁnd further application in the future because of new

abstractions, new connecting disciplines, and new requirements. While the speciﬁc techniques

and problems may change, we hope the principles involved remain useful.

Besides the fact that network algorithmics is useful in building better and faster network

devices, we hope this book makes the case that network algorithmics is also intellectually
stimulating. While it may lack the depth of hard problems in theoretical computer science or

physics, perhaps what can be most stimulating is the breadth, in terms of the disciplines it

encompasses.

An endnode, for instance, may appear as a simple processing state machine at the highest

level of abstraction. A more detailed inspection would see a Web request packet arriving at

a server interface, the interrupt ﬁring, and the protocol code being scheduled via a software

interrupt. Even within the protocol code, each line of code has to be fetched, hopefully from

the i-cache, and each data item has to go through the VM system (via the TLB hopefully)

and the data cache. Finally, the application must get involved via a returned system call and a

process-scheduling operation. The request may trigger ﬁle system activity and disk activity.

432


C H A P T E R 1 8
Conclusions
A router similarly has an interesting inner life. Reﬂecting the macrocosmos of the Internet

outside the router is a microcosmos within the router consisting of major subsystems, such as

line cards and the switch fabric, together with striping and ﬂow control across chip-to-chip

links.

Network algorithmics seeks to understand these hidden subsystems of the Internet to

make the Internet faster. This book is a ﬁrst attempt to begin understanding — in Feynman’s

phrase — this “tremendous world of interconnected hierarchies” within routers and endnodes.

In furthering this process of understanding and streamlining these hierarchies, there are still

home runs to be hit and touchdowns to be scored as the game against networking bottlenecks

continues to be played.


A P P E N D I X
Detailed Models
This appendix contains further models and information that can be useful for some readers of

this book. For example, the protocols section may be useful for hardware designers who wish

to work in networking but need a quick self-contained overview of protocols such as TCP and

IP to orient themselves. On the other hand, the hardware section provides insights that may

be useful for software designers without requiring a great deal of reading. The switch section

provides some more details about switching theory.

A.1 TCP AND IP
To be self-contained, Section A.1.1 provides a very brief sketch of how TCP operates, and

Section A.1.2 brieﬂy describes how IP routing operates.

A.1.1 Transport Protocols
When you point your Web browser to www.cs.ucsd.edu, your browser ﬁrst converts the

destination host name (i.e., cs.ucsd.edu) into a 32-bit Internet address, such as 132.239.51.18,

by making a request to a local DNS name server [Per92]; this is akin to dialing directory

assistance to ﬁnd a telephone number. A 32-bit IP address is written in dotted decimal form

for convenience; each of the four numbers between dots (e.g., 132) represents the decimal

value of a byte. Domain names such as cs.ucsd.edu appear only in user interfaces; the Internet

transport and routing protocols deal only with 32-bit Internet addresses.

Networks lose and reorder messages. If a network application cares that all its messages

are received in sequence, the application can subcontract the job of reliable delivery to a

transport protocol such as transmission control protocol (TCP). It is the job of TCP to provide

the sending and receiving applications with the illusion of two shared data queues in each

direction — despite the fact that the sender and receiver machines are separated by a lossy

network. Thus whatever the sender application writes to its local TCP send queue should

magically appear in the same order at the local TCP receive queue at the receiver, and vice

versa.

Since Web browsers care about reliability, the Web browser at sender S (Figure A.1) ﬁrst

contacts its local TCP with a request to set up a connection to the destination application. The

destination application is identiﬁed by a well-known port number (such as 80 for Web trafﬁc)

at the destination IP address. If IP addresses are thought of as telephone numbers, port numbers

can be thought of as extension numbers. A connection is the shared state information — such

433

434


A P P E N D I X
Detailed Models
Sender S
Application TCP

Connect to D


Internet



Receiver D
TCP Application

Send GET

(20 bytes)



SYN-ACK X, Y
Ack 20 bytes


SYN (start connection) X
Send 20 bytes

Send 1500 bytes

Ack 1500 bytes

Send 500 bytes

Resend 500 bytes

Ack 2000 bytes


Send RESPONSE

(2000 bytes)

ACK (of FIN)

FIN



FIN (finish connection)

ACK (of FIN)

F I G U R E A.1
Time–space ﬁgure of a possible scenario for a conversation between Web client S and

Web server D as mediated by the reliable transport protocol TCP. Assume that the ack to the SYN-ACK

is piggybacked on the 20-byte GET message.

as sequence numbers and timers — at the sender and receiver TCP programs that facilitate

reliable delivery.

Figure A.1 is an example of a time–space ﬁgure, with time ﬂowing downward and space

represented horizontally. A line from S to D that slopes downward represents the sending of a

message from S to D, which arrives at a later time.

To set up a connection, the sending TCP (Figure A.1) sends out a request to start the

connection, called a SYN message, with a number X the sender has not used recently. If all

goes well, the destination will send back a SYN-ACK to signify acceptance, along with a

number Y
that the destination has not used before. Only after the SYN-ACK is the ﬁrst data

message sent.

The messages sent between TCPs are called TCP segments. Thus to be precise, the fol-

lowing models will refer to TCP segments and to IP packets (often called datagrams in IP

terminology).

In Figure A.1, the sender is a Web client, whose ﬁrst message is a small (say) 20-byte

HTTP GET message for the Web page (e.g., index.html) at the destination. To ensure message

delivery, TCP will retransmit all segments until it gets an acknowledgment. To ensure that data


A.1 TCP and IP



435
is delivered in order and to correlate acks with data, each byte of data in a segment carries a

sequence number. In TCP only the sequence number of the ﬁrst byte in a segment is carried

explicitly; the sequence numbers of the other bytes are implicit, based on their offset.

When the 20-byte GET message arrives at the receiver, the receiving TCP delivers it

to the receiving Web application. The Web server at
D may respond with a Web page of

(say) 1900 bytes that it writes to the receiver TCP input queue along with an HTTP header

of 100 bytes, making a total of 2000 bytes. TCP can choose to break up the 2000-byte

data arbitrarily into segments; the example of Figure A.1 uses two segments of 1500 and

500 bytes.

Assume for variety that the second segment of 500 bytes is lost in the network; this is

shown in a time–space picture by a message arrow that does not reach the other end. Since the

receiver does not receive an ACK, the receiver retransmits the second segment after a timer

expires. Note that ACKs are cumulative: A single ACK acknowledges the byte speciﬁed and

all previous bytes. Finally, if the sender is done, the sender begins closing the connection with

a FIN message that is also acked (if all goes well), and the receiver does the same.

Once the connection is closed with FIN messages, the receiver TCP keeps no sequence

number information about the sender application that terminated. But networks can also cause

duplicates (because of retransmissions, say) of SYN and DATA segments that appear later and

confuse the receiver. This is why the receiver in Figure A.1 does not believe any data that is in

a SYN message until it is validated by receiving a third message containing the unused number

Y
the receiver picked. If Y
is echoed back in a third message, then the initial message is not

a delayed duplicate, since Y was not used recently. Note that if the SYN is a retransmission

of a previously closed connection, the sender will not echo back Y , because the connection is

closed.

This preliminary dance featuring a SYN and a SYN-ACK is called TCP’s three-way

handshake. It allows TCP to forget about past communication, at the cost of increased latency to

send new data. In practice, the validation numbers X andY do double duty as the initial sequence

numbers of the data segments in each direction. This works because sequence numbers need

not start at 0 or 1 as long as both sender and receiver use the same initial value.

The TCP sequence numbers are carried in a TCP header contained in each segment. The

TCP header contains 16 bits for the destination port (recall that a port is like a telephone

extension that helps identify the receiving application), 16 bits for the sending port (analogous

to a sending application extension), a 32-bit sequence number for any data contained in the

segment, and a 32-bit number acknowledging any data that arrived in the reverse direction.

There are also ﬂags that identify segments as being SYN, FIN, etc. A segment also carries a

routing header1and a link header that changes on every link in the path.

If the application is (say) a videoconferencing application that does not want reliability

guarantees, it can choose to use a protocol called UDP (user datagram protocol) instead of

TCP. Unlike TCP, UDP does not need acks or retransmissions, because it does not guarantee

reliability. Thus the only sensible ﬁelds in the UDP header corresponding to the TCP header

are the destination and source port numbers. Like ordinary mail versus certiﬁed mail, UDP is

cheaper in bandwidth and processing but offers no reliability guarantees. For more information

about TCP and UDP, Stevens [Ste94] is highly recommended.

1The routing header is often called the Internet protocol, or IP, header.


436


A P P E N D I X
Detailed Models
Source

S
R1



R2



R3



R4



R5



Destination

D
Sender domain



Internet service provider



Receiver domain

F I G U R E A.2
A sample network topology corresponding to the Internet of Figure A.1.

A.1.2 Routing Protocols
Figure A.2 shows a more detailed view of a plausible network topology between Web client

S and Web server D of Figure A.1. The source is attached to a local area network such as an

Ethernet, to which is also connected a router, R1. Routers are the automated post ofﬁces of the

Internet, which consult the destination address in an Internet message (often called a packet)

to decide on which output link to forward the message.

In the ﬁgure, the source S belongs to an administrative unit (say, a small company) called

a domain. In this simple example, the domain of S consists only of an Ethernet and a router,

R1, that connects to an Internet service provider (ISP) through router R2. Our Internet service

provider is also a small outﬁt, and it consists only of three routers, R2, R3, and R4, connected

by ﬁber-optic communication links. Finally, R4 is connected to router R5 in D’s domain, which

leads to the destination, D.

Internet routing is broken into two conceptual parts, called forwarding and routing. First

consider forwarding, which explains how packets move from S
to D
through intermediate

routers.

When S sends a TCP packet to D, it ﬁrst places the IP address of D in the routing header

of the packet and sends it to neighboring router, R1. Forwarding at endnodes such as S and D
is kept simple and consists of sending the packet to an adjoining router. R1 realizes it has no

information about D and so passes it to ISP router R2. When it gets to R2, R2 must choose to

send the packet to either R3 or R4. R2 makes its choice based on a forwarding table at R2 that

speciﬁes (say) that packets to D should be sent to R4. Similarly, R4 will have a forwarding

entry for trafﬁc to D that points to R5. A description of how forwarding entries are compressed

using preﬁxes can be found in Section 2.3.2. In summary, an Internet packet is forwarded to

a destination by following forwarding information about the destination at each router. Each

router need not know the complete path to D, but only the next hop to get to D.

While forwarding must be done at extremely high speeds, the forwarding tables at each

router must be built by a routing protocol. For example, if the link from R2 to R4 fails, the

routing protocol within the ISP domain should change the forwarding table at R2 to forward

packets to D to R3. Typically, each domain uses its own routing protocol to calculate shortest-

path routes within the domain. Two main approaches to routing within a domain are distance
vector and link state.

In the distance vector approach, exempliﬁed by the protocol RIP [Per92], the neighbors

of each router periodically exchange distance estimates for each destination network. Thus

in Figure A.2, R2 may get a distance estimate of 2 to D’s network from R3 and a distance

A.2 Hardware Models



437
estimate of 1 from R4. Thus R2 picks the shorter-distance neighbor, R4, to reach D. If the link

from R2 to R4 fails, R2 will time-out this link, set its estimate of distance to D through R4

to inﬁnity, and then choose the route through R3. Unfortunately, distance vector takes a long

time to converge when destinations become unreachable [Per92].

Link state routing [Per92] avoids the convergence problems of distance vector by having

each router construct a link state packet listing its neighbors. In Figure A.2, for instance, R3’s

link state packet (LSP) will list its links to R2 and R4. Each router then broadcasts its LSP to

all other routers in the domain using a primitive ﬂooding mechanism; LSP sequence numbers

are used to prevent LSPs from circulating forever. When all routers have each other’s LSP,

every router has a map of the network and can use Dijkstra’s algorithm [Per92] to calculate

shortest-path routes to all destinations. The most common routing protocol used within ISP

domains is a link state routing protocol called open shortest path ﬁrst (OSPF) [Per92].

While shortest-path routing works well within domains, the situation is more complex for

routing between domains. Imagine that Figure A.2 is modiﬁed so that the ISP in the middle,

say, ISP A, does not have a direct route to D’s domain but instead is connected to ISPs C and

E, each of which has a path to D’s domain. Should ISP A send a packet addressed to D to ISP C
or E? Shortest-path routing no longer makes sense because ISPs want to route based on other

metrics (e.g., dollar cost) or on policy (e.g., always send data through a major competitor, as

in so-called “hot potato” routing).

Thus interdomain routing is a more messy kettle of ﬁsh than routing within a domain.

The most commonly used interdomain protocol today is called the border gateway protocol
(BGP) [Ste99], which uses a gossip mechanism akin to distance vector, except that each route

is augmented with the path of domains instead of just the distance. The path ostensibly makes

convergence faster than distance vector and provides information for policy decisions.

To go beyond this brief sketch of routing protocols, the reader is directed to Intercon-
nections by Radia Perlman [Per92] for insight into routing in general and to BGP-4 by John

Stewart [Ste99] as the best published textbook on the arcana of BGP.

A.2 HARDWARE MODELS
For completeness, this section contains some details of hardware models that were skipped in

Chapter 2 for the sake of brevity. These detailed models are included in this section to provide

somewhat deeper understanding for software designers.

A.2.1 From Transistors to Logic Gates
The fundamental building block of the most complex network processor is a
transistor
(Figure A.3). A transistor is a voltage-controlled switch. More precisely, a transistor is a

device with three external attachments (Figure A.3): a gate, a source, and a drain. When an

input voltage I is applied to the gate, the source–drain path conducts electricity; when the input

voltage is turned off, the source–drain path does not conduct. The output O voltage occurs at

the drain. Transistors are physically synthesized on a chip by having a polysilicon path (gate)

cross a diffusion path (source–drain) at points governed by a mask.

The simplest logic gate is an inverter (also known as a NOT gate). This gate is formed

(Figure A.3) by connecting the drain to a power supply and the source to ground (0 volts). The

circuit functions as an inverter because when I is a high voltage (i.e., I
= 1), the transistor


438


A P P E N D I X
Detailed Models
Input

I


Power

supply

Drain

Gate

Source

Ground



Output

O
F I G U R E A.3
A transistor is a voltage-controlled switch allowing the source-to-drain path to conduct

current when the gate voltage is high. An inverter is a transistor whose source is connected to ground

and whose drain is connected to a power supply.

Power

supply

Output

O
Input

I1
Input

I2
Ground

F I G U R E A.4
Using two transistors in series to create a NAND gate.

turns on, “pulling down” the output to ground (i.e., O = 0). On the other hand, when I
= 0,

the transistor turns off, “pulling up” the output to the power supply (i.e.,
O
=
1). Thus an

inverter output ﬂips the input bit, implementing the NOT operation. Although omitted in our

pictures, real gates also add a resistance in the path to avoid “shorting” the power supply when

I = 1, by connecting it directly to ground.

The inverter generalizes to a NAND gate (Figure A.4) of two inputs I1and I2using two

transistors whose source–drain paths are connected in series. The output O is pulled down to

ground if and only if both transistors are on, which happens if and only if both I1and I2are 1.

Similarly, a NOR gate is formed by placing two transistors in parallel.


A.2.2 Timing Delays


A.2 Hardware Models



439
Figure A.3 assumes that the output changed instantaneously when the input changed. In prac-

tice, when I is turned from 0 to 1, it takes time for the gate to accumulate enough charge to

allow the source–drain path to conduct. This is modeled by thinking of the gate input as charg-

ing a gate capacitor (C) in series with a resistor (R). If you don’t remember what capacitance

and resistance are, think of charge as water, voltage as water pressure, capacitance as the size

of a container that must be ﬁlled with water, and resistance as a form of friction impeding

water ﬂow. The larger the container capacity and the larger the friction, the longer the time to

ﬁll the container. Formally, the voltage at time t after the input I is set to V
is V(1 − e−t/RC).
The product RC
is the charging time constant; within one time constant the output reaches

1 − 1/e = 66% of its ﬁnal value.

In Figure A.3, notice also that if I is turned off, output O pulls up to the power supply

voltage. But to do so the output must charge one or more gates to which it is connected, each

of which is a resistance and a capacitance (the sum of which is called the output load). For

instance, in a typical 0.18-micron process,2the delay through a single inverter driving an

output load of four identical inverters is 60 picoseconds.

Charging one input can cause further outputs to charge further inputs, and so on. Thus

for a combinatorial function, the delay is the sum of the charging and discharging delays over

the worst-case path of transistors. Such path delays must ﬁt within a minimum packet arrival

time. Logic designs are simulated to see if they meet timing using approximate analysis as

well as accurate circuit models, such as Spice. Good designers have intuition that allows them

to create designs that meet timing. A formalization of such intuition is the method of logical

effort [SSH99], which allows a designer to make quick timing estimates. Besides the time to

charge capacitors, another source of delay is wire delay.

A.2.3 Hardware Design Building Blocks
This section describes some standard terminology for higher-level building blocks used by

hardware designers that can be useful to know.

PROGRAMMABLE LOGIC ARRAYS AND PROGRAMMABLE ARRAY LOGICS
A programmable logic array (PLA) has the generality of a software lookup table but is more

compact. Any binary function can be written as the OR of a set of product terms, each of

which is the AND of a subset of (possibly complemented) inputs. The PLA thus has all the

inputs pass through an AND plane, where the desired product terms are produced by making

the appropriate connections. The products are then routed to an OR plane. A designer produces

speciﬁc functions by making connections within the PLA. A more restrictive but simpler form

of PLA is a PAL (programmable array logic).

STANDARD CELLS
Just as software designers reuse code, so also do hardware designers reuse a repertoire of

commonly occurring functions, such as multiplexors and adders.

The functional approach to design is generally embodied in standard cell libraries and

gate array technologies, in which a designer must map his or her speciﬁc problem to a set

2Semiconductor processes are graded by the smallest gate lengths they can produce. Shrinking process width

decreases capacitances and resistances and so increases speed.


440


A P P E N D I X
Detailed Models


Write



Refresh

enable

Write

input


enable



Stored

bit

F I G U R E A.5
To store the output of an inverter indeﬁnitely in the absence of writes, the output is fed

back to the input after a second inversion. Two further transistors are used to allow writes and to block

the feedback refresh.

of building blocks offered by the technology. At even higher abstraction levels, designers use

synthesis tools to write higher-level language code in Verilog or VHDL for the function they

wish to implement. The VHDL code is then synthesized into hardware by commercial tools.

The trade-off is reduced design time, at some cost in performance. Since a large fraction of

the design is not on the critical path, synthesis can greatly reduce time to market. This section

ends with a networking example of the use of reduction for a critical path function.

A.2.4 Memories: The Inside Scoop
This section brieﬂy describes implementation models for registers, SRAMs, and DRAMs.

REGISTERS
How can a bit be stored such that in the absence of writes and power failures, the bit stays

indeﬁnitely? Storing a bit as the output of the inverter shown in Figure A.3 will not work,

because, left to itself, the output will discharge from a high to a low voltage via “parasitic”
capacitances. A simple solution is to use feedback: In the absence of a write, the inverter output

can be fed back to the input and “refresh” the output. Of course, an inverter ﬂips the input

bit, and so the output must be inverted a second time in the feedback path to get the polarity

right, as shown in Figure A.5. Rather than show the complete inverter (Figure A.3), a standard

triangular icon is used to represent an inverter.

Input to the ﬁrst transistor must be supplied by the write input when a write is enabled

and by the feedback output when a write is disabled. This is accomplished by two more “pass”
transistors. The pass transistor whose gate is labeled “Refresh Enable” is set to high when a

write is disabled, while the pass transistor whose gate is labeled “Write Enable” is set to high

when a write is enabled. In practice, refreshes and writes are done only at the periodic pulses

of a systemwide signal called a clock. Figure A.5 is called a ﬂip-ﬂop.

A register
is an ordered collection of ﬂip-ﬂops. For example, most modern processors

(e.g., the Pentium series) have a collection of 32- or 64-bit on-chip registers. A 32-bit register

contains 32 ﬂip-ﬂops, each storing a bit. Access from logic to a register on the same chip is

extremely fast, say, 0.5–1 nsec. Access to a register off-chip is slightly slower because of the

delay to drive larger off-chip loads.


Read/write

input



Read/write

enable



Stored

bit



A.2 Hardware Models
Large

capacitance



441
F I G U R E A.6
A DRAM cell stores a bit using charge on a capacitor that leaks away slowly and must

be refreshed periodically.

STATIC RAM
A static random access memory (SRAM) contains
N
registers addressed by log N
address

bits A. SRAM is so named because the underlying ﬂip-ﬂops refresh themselves and so are

“static.” Besides ﬂip-ﬂops, an SRAM needs a decoder that decodes A into a unary value used

to select the right register. Accessing an SRAM on-chip is only slightly slower than accessing

a register because of the added decode delay. At the time of writing, it was possible to obtain

on-chip SRAMs with 0.5-nsec access times. Access times of of 1–2 nsec for on-chip SRAM

and 5–10 nsec for off-chip SRAM are common. On-chip SRAM is limited to around 64 Mbits

today.

DYNAMIC RAM
The SRAM bit cell of Figure A.5 requires at least ﬁve transistors. Thus SRAM is always

less dense or more expensive than memory technology based on dynamic RAM (DRAM). In

Figure A.6, a DRAM cell uses only a single transistor connected to an output capacitance. The

transistor is only used to connect the write input to the output when the write enable signal on

the gate is high. The output voltage is stored on the output capacitance, which is signiﬁcantly

larger than the gate capacitance; thus the charge leaks, but slowly. Loss due to leakage is ﬁxed

by refreshing the DRAM cell externally within a few milliseconds.

To obtain high densities, DRAMs use “pseudo-three-dimensional trench or stacked capac-

itors” [FPCe97]; together with the factor of 5–6 reduction in the number of transistors, a DRAM

cell is roughly 16 times smaller than an SRAM cell [FPCe97].

The compact design of a DRAM cell has another important side effect: A DRAM cell

requires higher latency to read or write than the SRAM cell of Figure A.5. Intuitively, if the

SRAM cell of Figure A.5 is selected, the power supply quickly drives the output bit line to the

appropriate threshold. On the other hand, the capacitor in Figure A.6 has to drive an output

line of higher capacitance. The resulting small voltage swing of a DRAM bit line takes longer

to sense reliably. In addition, DRAMs need extra delay for two-stage decoding and for refresh.

DRAM refreshes are done automatically by the DRAM controller’s periodically enabling RAS

for each row R, thereby refreshing all the bits in R.

A.2.5 Chip Design
Finally, it may be useful for networking readers to understand how chips for networking

functions are designed.

442


A P P E N D I X
Detailed Models
After partitioning functions between chips, the box architect creates a design team for each

chip and works with the team to create chip speciﬁcation. For each block within a chip, logic

designers write software register transfer level (RTL) descriptions using a hardware design

language such as Verilog or VHDL. Block sizes are estimated and a crude ﬂoor plan of the

chip is done in preparation for circuit design.

At this stage, there is a fork in the road. In synthesized design, the designer applies synthesis

tools to the RTL code to generate hardware circuits. Synthesis speeds the design process but

generally produces slower circuits than custom-designed circuits. If the synthesized circuit

does not meet timing (e.g., 8 nsec for OC-768 routers), the designer redoes the synthesis after

adding constraints and tweaking parameters. In custom design, on the other hand, the designer

can design individual gates or drag-and-drop cells from a standard library. If the chip does not

meet timing, the designer must change the design [SSH99]. Finally, the chip “tapes out,” and

is manufactured, and the ﬁrst yield is inspected.

Even at the highest level, it helps to understand the chip design process. For example,

systemwide problems can be solved by repartitioning functions between chips. This is easy

when the chip is being speciﬁed, is an irritant after RTL is written, and causes blood feuds after

the chip has taped out. A second “spin” of a chip is something that any engineering manager

would rather work around.

INTERCONNECTS, POWER, AND PACKAGING
Chips are connected using either point-to-high connections known as high-speed serial links,

shared links known as buses, or parallel arrays of buses known as crossbar switches. Instead

of using N2point-to-point links to connect N chips, it is cheaper to use a shared bus. A bus is

similar to any shared media network, such as an Ethernet, and requires an arbitration protocol

often implemented (unlike an Ethernet) using a centralized arbiter. Once a sender has been

selected in a time slot, other potential senders must not send any signals. Electrically, this is

done by having transmitters use a tristate output device that can output a 0 or a 1 or be in a

high-impedance state. In high-impedance state, there is no path through the device to either the

power supply or ground. Thus the selected transmitter sends 0’s or 1’s, while the nonselected

transmitters stay in high-impedance state.

Buses are limited today to around 20 Gb/sec. Thus many routers today use parallel buses

in the form of crossbar switches (Chapter 13). A router can be built with a small number

of chips, such as a link interface chip, a packet-forwarding chip, memory chips to store

lookup state, a crossbar switch, and a queuing chip with associated DRAM memory for packet

buffers.

A.3 SWITCHING THEORY
This section provides some more details about matching algorithms for Clos networks and the

dazzling variety of interconnection networks.

A.3.1 Matching Algorithms for Clos Networks with k = n
A Clos network can be proved to be rearrangably nonblocking for k = n. The proof uses Hall’s
theorem and the notion of perfect matchings. A bipartite graph is a special graph with two sets

of nodes I and O; edges are only between a node in I and a node in O. A perfect matching is a


A.4 The Interconnection Network Zoo



443
subset E of edges in this graph such that every node in I is the endpoint of exactly one edge in

E, and every node in O is also the endpoint of exactly one edge in E. A perfect match marries

every man in I to every woman in O while respecting monogamy. Hall’s theorem states that a

necessary and sufﬁcient condition for a perfect matching is that every subset X of I of size d
has at least d edges going to d distinct nodes in O.

To apply Hall’s theorem to prove the Clos network is nonblocking, we show that any

arrangement of N inputs that wish to go to N different outputs can be connected via the Clos

network. Use the following iterative algorithm. In each iteration, match input switches (set I)

to output switches (set O) after ignoring the middle switches. Draw an edge between an input

switch i and an output switch o if there is at least one input of i that wishes to send to an output

directly reachable through o.

Using this deﬁnition of an edge, here is Claim 1: Every subset X of d input switches in

I
has edges to at least d
output switches in O. Suppose Claim 1 were false. Then the total

number of outputs desired by all inputs in X would be strictly less than nd (because each edge

to an output switch can correspond to at most n outputs). But this cannot be so, because d input

switches with n inputs each must require exactly nd outputs.

Claim 1 and Hall’s theorem can be used to conclude that there is a perfect matching

between input switches and output switches. Perform this matching, after placing back exactly
one middle switch M . This is possible because every middle switch has a link to every input

switch and a link to every output switch. This allows routing one input link in every input

switch to one output link in every switch. It also makes unavailable all the n links from each

input switch to the middle switch M and all output links from M .

Thus the problem has been reduced from having to route n inputs on each input switch

using n middle switches to having to route n − 1 inputs per input switch using n − 1 middle

switches. Thus n
iterations are sufﬁcient to route all inputs to all outputs without causing

resource conﬂicts that lead to blocking.

Thus a simple version of this algorithm would take n perfect matches; the best existing

algorithm for perfect matching [HK73] takes O(N /n1.5) time. A faster approach is via edge

coloring; each middle switch is assigned a color, and we color the edges of the demand

multigraph between input switches and output switches so that no two edges coming out of a

node have the same color.3However, edge coloring can be done directly (without n iterations

as before) in around O(N log N) time [CH82].

A.4 THE INTERCONNECTION NETWORK ZOO
There is a dazzling variety of (log N )-depth interconnection networks, all based on the same

idea of using bits in the output address to steer to the appropriate portion, starting with the

most signiﬁcant bit. For example, one can construct the famous Butterﬂy network in a very

similar way to the recursive construction of the Delta network of Figure 13.14. In the Delta

network, all the inputs to the top (N/2)-size Delta network come from the 0 outputs of the ﬁrst

stage in order. Thus the 0 output of the ﬁrst ﬁrst-stage switch is the ﬁrst input, the 0 output of

the second switch is the second input, etc.

3Intuitively, each set of edges colored with a single color corresponds to one matching and one middle switch,

as in our ﬁrst algorithm.

444


A P P E N D I X
Detailed Models
By contrast, in a Butterﬂy, the second input of the upper N/2 switch is the 0 output of the

middle switch of the ﬁrst stage (rather than the second switch of the ﬁrst stage). The 0 output of

the second switch is then the third input, while the 0 output of the switch following the middle

switch gets the fourth input, etc. Thus the two halves are interleaved in the Butterﬂy but not

in the Delta, forming a classic bowtie or butterﬂy pattern. However, even with this change it

is still easy to see that the same principle is operative: outputs with MSB 0 go to the top half,

while outputs with MSB 1 go to to the bottom.

Because the Butterﬂy can be created from the Delta by renumbering inputs and outputs,

the two networks are said to be isomorphic. Butterﬂies were extremely popular in parallel

computing [CSG99], gaining fame in the BBN Butterﬂy, though they seem to have lost ground

to low-dimensional meshes (see Section 13.10) in recent machines.

There is also a small variant of the Butterﬂy, called the Banyan, that involves pairing the

inputs even in the ﬁrst stage in a more shufﬂed fashion (the ﬁrst input pairs with the middle

input, etc.) before following Butterﬂy connections to the second stage. Banyans enjoyed a

brief resurgence in the network community when it was noticed that if the outputs for each

input are in sorted order, then the Banyan can route without internal blocking. An important

such switch was the Sunshine switch [Gea91]. Since sorting can be achieved using Batcher

sorting networks [CLR90], these were called Batcher–Banyan networks. Perhaps because

much the same effect can be obtained by randomization in a Benes or Clos network without

the complexity of sorting, this approach has not found a niche commercially.

Finally, there is another popular network called the hypercube. The networks described

so far use d -by-d building block switches, where d
is a constant such as 2, independent of

the size of N. By contrast, hypercubes use switches with log N links per switch. Each switch

is assigned a binary address from 1 to N
and is connected to all other switches that differ

from it in exactly one bit. Thus, in a very similar fashion to traversing a Delta or a Butterﬂy,

one can travel from input switch to an output switch by successively correcting the bits that

are different between output and input addresses, in any order. Unfortunately, the log N link

requirement is onerous for large N and can lead to an “impractical number of links per line

card” [Sem02].


AC75
AD89
AD99
Adi98
All02



B I B L I O G R A P H Y
A. Aho and M. Corasick. Efﬁcient string matching: An aid to bibliographic search. Communications
of the ACM, 18(6):333–343, 1975.

H. Ahmadi and W. Denzel. A survey of modern high-performance switching techniques. IEEE Journal
on Selected Areas in Communication, 7(9):1091–1103, 1989.

M. Aron and P. Druschel. Soft timers: Efﬁcient microsecond timer support for network processing.

In Proceedings of the 17th Symposium on Operating System Principles (SOSP), 1999.

H. Adisheshu.
Services for next-generation routers. Ph.D. dissertation, Washington University

Computer Science Department, 1998.

B. Alleyne. Personal communication. 2002.

AMO93
R. Ahuja, T. Magnanti, and J. Orlin. Network Flows. Upper Saddle River, NJ: Prentice-Hall, 1993.

AOST93
T. Anderson, S. Owicki, J. Saxe, and C. Thacker. High-speed switch scheduling for local area

networks. ACM Transactions on Computer Systems, 11(4):319–352, 1993.

APV91
AR90
AS00
Assa
Assb
Bar04

B. Awerbuch, B. Patt-Shamir, and G. Varghese. Self-stabilization by local checking and correction. In

Proceedings of the 32nd IEEE Symposium on Foundations of Computer Science, Oct. 1991.

G. Albertengo and S. Riccardo. Parallel CRC generation. IEEE Micro, Oct. 1990.

Inﬁniband Architecture Speciﬁcation. Inﬁniband Speciﬁcation, Oct. 2000.

Inﬁniband Trade Assocation. Inﬁniband architecture. At http://www.inﬁnibandta.org/home.

Web Polygraph Association. Web polygraph. At http://www.web-polygraph.org/.

I. Barile. I/O multiplexing and scalable socket servers. Dr. Dobbs Journal, Feb. 2004.

BDJT01
S. Bhattacharyya, C. Diot, J. Jetcheva, and N. Taft. Pop-level and access-link trafﬁc dynamics in a

Tier-1 pop. In SIGCOMM Internet Measurement Workshop, 2001.

Be82
Bel86
Ben82
Ben95
BG85

A. Birell et al. Grapevine: An exercise in distributed computing. Comm. of the ACM, 25(4):202–208,

1982.

E. T. Bell. Men of Mathematics: reissue ed. New York: Touchstone Books, 1986.

J. L. Bentley. Writing efﬁcient programs. Upper Saddle River, NY: Prentice Hall, 1982.

A. Benner. Fiber Channel: Gigabit Communications and I/O for Computer Networks. New York:

McGraw-Hill, 1995.

W. Bux and D. Grillo. Flow control in local-area networks of interconnected token rings.
IEEE
Transactions on Communications, COM-33(10):1058–1066, Oct. 1985.

445
446


Bibliography
BGC02
P. Buonadonna, A. Geweke, and D. Culler. An implementation and analysis of the Virtual Interface

Architecture. In SC98: High-Performance Networking and Computing Conference, San Jose, CA,

2002.

BGP+94
M. Bailey, B. Gopal, M. Pagels, L. Peterson, and P. Sarkar. PATHFINDER: A pattern-based packet

classiﬁer. In Proceedings of the First Symposium on Operating Systems Design and Implementation
(OSDI), pages 115–123, 1994.

BL00
Bla96
BM77
BM98

R. Bhagwan and W. Lin. Fast and scalable priority queue architecture for high-speed network switches.

In IEEE INFOCOM, pages 538–547, 2000.

T. Blackwell. Speeding up protocols for small messages. In Proceedings of ACM SIGCOMM, 1996.

R. S. Boyer and J. S. Moore. A fast string searching algorithm.
Communications of the ACM,

20(10):762–772, Oct. 1977.

G. Banga and J. Mogul. Scalable kernel performance for Internet servers under realistic loads. In

USENIX Annual Technical Conference, New Orleans, 1998.

BMD99
G. Banga, J. Mogul, and P. Druschel. A scalable and explicit event delivery mechanism for UNIX.

In USENIX Annual Technical Conference, pages 253–265, June 1999.

BMK88
D. R. Boggs, J. C. Mogul, and C. A. Kent. Measured capacity of an Ethernet: Myths and reality. In

Proceedings ACM SIGCOMM, vol. 18, pages 222–234, 1988.

BMP94
L. Brakmo, S. O. Malley, and L. Peterson. TCP Vegas: New techniques for congestion detection and

avoidance. In Proceedings ACM SIGCOMM, 1994.

Boy97
BP93
Bra98
Bro98
Bru99
BS96
BSV95
BSV03
BV01
BZ96
Car96
CB95
CC95

J. Boyle. Internet draft: RSVP extensions for CIDR aggregated data ﬂows. In Internic, 1997.

D. Banks and M. Prudence. A high-performance network architecture for a PA-RISC workstation. In

IEEE Journal on Selected Areas in Communications, February 1993.

H. W. Braun. Characterizing trafﬁc workload. At www.caida.org, 1998.

A. Broder. On the resemblance and containment of documents. In Sequences ’91, 1998.

J. Brustoloni. Interoperation of copy avoidance in network and ﬁle I/O. In Proceedings IEEE Infocom,

New York, March 1999.

J. Brustoloni and P. Steenkiste. Effects of buffering semantics on I/O performance. In Proceedings of
the 2nd USENIX Symposium on Operating Systems Design and Implementation, October 1996.

S. Boecking, V. Seidel, and P. Vindeby. Channels — a run-time system for multimedia protocols. In

ICCCN, 1995.

F. Baboescu, S. Singh, and G. Varghese. Packet classiﬁcation for core routers: Is there an alternative

to CAMs? In Proceedings IEEE INFOCOM, 2003.

F. Baboescu and G. Varghese. Scalable packet classiﬁcation. In Proceedings ACM SIGCOMM, 2001.

J. Bennett and H. Zhang. Hierarchical packet fair queuing algorithms. In Proceedings SIGCOMM,

1996.

A. Carlton. An explanation of the SPEC Web96 Benchmark. Standard Performance Evaluation

Corporation white paper, 1996. At http://www.specbench.org/, November 1996.

W. Cheswick and S. Bellovin.
Firewalls and Internet Security. Reading, MA: Addison-Wesley,

1995.

M. Crovella and R. Carter. Dynamic server selection in the internet. In Proceedings of HPCS ’95,

August 1995.

CDea96
A. Chankhunthod, P. Danzig, et al. A hierarchical Internet object cache. In USENIX Annual Technical
Conference, pages 153–164, 1996.

Bibliography


447
CFFT97
T. Chaney, A. Fingerhut, M. Flucke, and J. Turner. Design of a gigabit ATM switch. In Proceedings
IEEE INFOCOM, pages 2–11, 1997.

CGE96
J. Cobb, M. Gouda, and A. El Nahas, Time-shift scheduling: Fair scheduling of ﬂows in high-speed

networks. In Proceedings of ICNP, 1996.

CH82
CH98

R. Cole and J. Hopcroft. On edge-coloring bipartite graphs. SIAM Journal of Computation, 11:540–546,

1982.

A. Choudhury and E. Hahne. Dynamic queue length thresholds for shared-memory packet switches.

IEEE/ACM Transactions on Networking, 6(2):130–140y, 1998.

Cha90a
B. Chazelle. Lower bounds for orthogonal range searching. I: The reporting case. In Journal of the
ACM, 37, 1990.

Cha90b
B. Chazelle. Lower bounds for orthogonal range searching. II: The arithmetic model. In Journal of the
ACM, 37, 1990.

Cha97
Che89
Che01
CIC97
Cis

IETFMPLS Charter. Multiprotocol Label Switching. At
http://www.ietf.org/html-charters/mpls-
charter.html, 1997.

G. Chesson. XTP/PE design considerations. In IFIP Workshop on Protocols for High-Speed Networks,

1989.

B. Chelf. Dynamic memory management. In Linux Magazine. At http://www.linux-mag.com/2001-
06/compile_03.html, June 2001.

Compaq, Intel, and Microsoft Corporations. Virtual Interface Architecture Speciﬁcation. At

http://www.viaarch.org, 1997.

Cisco express forwarding commands. At http://www.cisco.com.

CJRS89
D. D. Clark, V. Jacobson, J. Romkey, and H. Salwen. An analysis of TCP processing overhead. IEEE
Communications, 27(6):23–29, 1989.

CL85
Cla85
Cla88

K. M. Chandy and L. Lamport. Distributed snapshots: Determining global states of distributed systems.

ACM Transactions on Computer Systems, 3(1):63–75, Febuary 1985.

D. D. Clark. Structuring of systems using upcalls. In Proceedings of the 10th ACM Symposium on
Operating Systems Principles (SOSP), pages 171–180, December 1985.

D. D. Clark. The design philosophy of the DARPA Internet protocols. In Proceedings ACM SIGCOMM,

pages 106–114, August 1988.

CLR90
T. Cormen, C. Leiserson, and R. Rivest.
Introduction to Algorithms. Cambridge, MA: MIT

Press/McGraw-Hill, 1990.

Cona
Conb
Cox96
CP98
CP99

RDMA Consortium.
Architectural speciﬁcations for RDMA over TCP/IP. At
http://www.
rdmaconsortium.org/home.

SPEC Consortium. Specweb99 benchmark. At http://www.specbench.org/osg/web99/.

A. Cox. Kernel Korner: Network buffers and memory management. In
Linux journal. At

www.linuxjournal.com, Oct. 1996.

T. Chiueh and P. Pradhan. High-performance IP routing table lookup using CPU caching. In IEEE
INFOCOM, 1998.

T. Chiueh and P. Pradhan. High-performance IP routing table lookup using CPU caching. In Proceedings
IEEE INFOCOM, pages 1421–1428, 1999.

CSG99
D. Culler, J. Singh, and A. Gupta. Parallel Computer Architecture: A Hardware/Software Approach.
San Francisco: Morgan Kaufmann, 1999.

448


Bibliography
CSM01
C. Coit, S. Staniford, and J. McAlerney. Towards faster pattern matching for intrusion detection

or exceeding the speed of snort. In
Proceedings of the 2nd DARPA Information Survivability
Conference and Exposition (DISCEX II), June 2001.

CT90
CV96
CV98a
CV98b
CV01
CW79

D. Clark and D. Tennenhouse. Architectural considerations for a new generation of protocols. In

Proceedings of ACM SIGCOMM, 1990.

G. Chandranmenon and G. Varghese. Trading packet headers for packet processing, In ACM/IEEE
Transactions Networking, 17(1), April 1996.

G. Chandranmenon and G. Varghese. Reconsidering fragmentation and reassembly. In Symposium on
Principles of Distributed Computing, pages 21–29, 1998.

A. Costello and G. Varghese: Redesigning the BSD callout and timeout facilities. In Software Practice
and Experience, July 1998.

G. Chandranmenon and G. Varghese. Reducing Web latencies using precomputed hints. In Proceedings
IEEE INFOCOM, 2001.

B. Commentz-Walter. A string matching algorithm fast on the average. In Proceedings of the 6th
International Colloquium on Automata, Languages and Programming, vol. 71. New York: Springer,

July 1979.

CWSB02
D. Clark, J. Wroclawski, K. Sollins, and R. Braden. Tussle in cyberspace: Deﬁning tomorrow’s Internet.

In Proceedings ACM SIGCOMM, 2002.

Dal02
Dav89
DB96

W. Dally. Scalable switching fabrics for Internet routers. In
Avici Networks White Paper. At

http://www.avici.com/technology/whitepapers, 2002.

G. Davison. Calendar p’s and q’s. In Communications of the ACM, 32(10):1241–1242, Oct. 1989.

P. Druschel and G. Banga. Lazy receiver processing: A network subsystem architecture for server

systems. In Proceedings of the UNIX 2nd OSDI Conference, 1996.

DBCP97
M. Degermark, A. Brodnik, S. Carlsson, and S. Pink. Small forwarding tables for fast routing lookups.

In Proceedings ACM SIGCOMM, pages 3–14, 1997.

DCea87
W. Dally, L. Chao, et al. Architecture of a message-driven processor. In Proceedings of the International
Symposium on Computer Architecture (ISCA), June 1987.

DDP94

P. Druschel, B. Davie, and L. Peterson. Experiences with a high-speed network adapter: A software

perspective. In Proceedings ACM SIGCOMM, Sept. 1994.

DDPP98
D. Decasper, Z. Dittia, G. Parulkar, and B. Plattner. Router plugins: A software architecture for

next-generation routers. In Proceedings ACM SIGCOMM, Sept. 1998.

Den87
DG00

D. Denning. An intrusion-detection model. IEEE Transactions on Software Engineering, 13(2):222–
232, Feb. 1987.

N. Dufﬁeld and M. Grossglauser. Trajectory sampling for direct trafﬁc observation. In Proceedings
ACM SIGCOMM, pages 271–282, Aug. 2000.

DKea88
M. Dietzfelbinger, A. Karlin, et al. Dynamic perfect hashing: Upper and lower bounds. In 29th IEEE
Symposium on the Foundations of Computer Science (FOCS), 1988.

DKS89
A. Demers, S. Keshav, and S. Shenker. Analysis and simulation of a fair queueing algorithm. Proceed-
ings of the Sigcomm ’89 Symposium on Communications Architectures and Protocols, 19(4): 1–12,

Sept. 1989. Part of ACM Sigcomm Computer Communication Review.

DKVZ99
R. Draves, C. King, S. Venkatachary, and B. Zill. Constructing optimal IP routing tables. In Proceedings
IEEE INFOCOM, 1999.

DLT01

N. Dufﬁeld, C. Lund, and M. Thorup. Charging from sampled network usage. In SIGCOMM Internet
Measurement Workshop, November 2001.

Bibliography


449
DP93
DPJ97
Eat
EDV
EK96



P. Druschel and L. Peterson. Fbufs: A high-bandwidth cross-domain transfer facility. In Proceedings of
the Fourteenth ACM Symposium on Operating System Principles, pages 189–202, December 1993.

Z. D. Dittia, G. M. Parulkar, and J. R. Cox, Jr. The APIC approach to high-performance network

interface design: Protected DMA and other techniques. In Proceedings of IEEE INFOCOM, 1997.

W. Eatherton. Hardware-based Internet protocol preﬁx lookups. University of Washington Electrical

Engineering Department, MS thesis, 1995.

W. Eatherton, Z. Dittia, and G. Varghese. Tree bitmap: Hardware software IP lookups with incremental

updates. At http://www-cse.ucsd.edu/users/varghese/PAPERS/willpaper.pdf.
D. Engler and M. F. Kaashoek. DPF: Fast, ﬂexible message demultiplexing using dynamic code

generation. In Proceedings ACM SIGCOMM, pages 53–59, 1996.

EKO95
D. Engler, F. Kaashoek, and J. O’Toole. Exokernel: An operating system architecture for application-

level resource management. In Symposium on Operating Systems Principles, pages 251–266, 1995.

Eng96
ESV03
EV02
EVF02

D. Engler. VCODE: A retargetable, extensible, very fast dynamic code generation system. In SIGPLAN
Conference on Programming Language Design and Implementation, pages 160–170, 1996.

C. Estan, S. Savage, and G. Varghese. Automatically inferring patterns of resource consumption in

network trafﬁc. Proceedings ACM SIGCOMM, 2003.

C. Estan, G. Varghese. New directions in trafﬁc measurement and accounting. In Proceedings of ACM
SIGCOMM, August 2002.

C. Estan, G. Varghese and M. Fisk.
Counting the Number of Active Flows on a High-speed Link.

Technical Report 0705, CSE Department, UCSD, May 2002.

FGea00
A. Feldmann, A. Greenberg, et al. Deriving trafﬁc demands for operational IP networks: Methodology

and experience. In Proceedings ACM SIGCOMM, pages 257–270, Aug. 2000.

FJ93
FJ95

S. Floyd and V. Jacobson. Random early detection gateways for congestion avoidance. In ACM/IEEE
Transactions Networking, 1993.

S. Floyd and V. Jacobson. Link-sharing and resource management models for packet networks. In

ACM/IEEE Transactions Networking, 1995.

FJM+95
S. Floyd, V. Jacobson, S. McCanne, C. Liu, and L. Zhang. A reliable multicast framework for light-

weight sessions and application-level framing. In Proceedings ACM SIGCOMM, 1995.

FM85

P. Flajolet and G. Martin. Probabilistic counting algorithms for database applications.
Journal of
Computer and System Sciences, 31(2):182–209, Oct. 1985.

FMM+99
S. Floyd, J. Mahdavi, M. Mathis, M. Podolsky, and A. Romanow. An extension to the selective

acknowledgment (SACK) option for TCP, 1999.

FP93
FP95
FP99

K. Fall and J. Pasquale. Exploiting in-kernel data paths to improve I/O throughput and CPU availability.

In USENIX Winter, pages 327–334, 1993.

N. Figueira and J. Pasquale. Leave-in-time: A new service discipline for real-time communications in

a packet-switching network. In Proceedings ACM SIGCOMM, Sept. 1995.

W. Fang and L. Peterson. Inter-AS trafﬁc patterns and their implications. In
Proceedings of IEEE
GLOBECOM, Dec. 1999.

FPCe97
R. Fromm, S. Perissakis, N. Cardwell, et al. The energy efﬁciency of IRAM architectures. In

International Symposium on Computer Architecture (ISCA ’97), June 1997.

FV01
Gea91

M. Fisk and G. Varghese.
Fast Content-Based Packet Handling for Intrusion Detection. UCSD

Technical Report CS2001-0670, April 2001.

J. Giacopelli et al. Sunshine: A high-performance self-routing packet switch architecture. IEEE Journal
on Selected Areas in Communication, 9(8), Oct. 1991.

450
Ger99



Bibliography
A. Germanow. Plugging the Holes in Ecommerce: The market for Intrusion Detection and Vulnerability
Assessment Software, 1999–2003.Technical Report B19538, International Data Corporation, 1999.

GLM98
P. Gupta, S. Lin, and N. McKeown. Routing lookups in hardware at memory access speeds. In IEEE
INFOCOM, April 1998.

GM99a
P. Gupta and N. McKeown. Designing and implementing a fast crossbar scheduler. In IEEE Micro,

Feb. 1999.

GM99b
P. Gupta and N. McKeown. Packet classiﬁcation on multiple ﬁelds. In Proceedings ACM SIGCOMM,

pages 147–160, 1999.

GM01
GS98
GW02
HK73
HP91
HP96
HS78
IEE97
IM97
Jac88
Jac93
Kan99

P. Gupta and N. McKeown. Algorithms for packet classiﬁcation. In IEEE Network, 15:2, 2001.

A. Gokhale and D. Schmidt. Principles for optimizing CORBA Internet inter-ORB protocol

performance. In Hawaiian International Conference on System Sciences, 1998.

T. Grifﬁn and G. Wilfong. On the correctness of IBGP conﬁguration. In Proceedings ACM SIGCOMM,

pages 17–30, 2002.

J. Hopcroft and R. Karp. An n5/2algorithm for maximum matchings in bipartite graphs. SIAM Journal
on Computation, 2:225–231, 1973.

N. C. Hutchinson and L. L. Peterson. The x-kernel: An architecture for implementing network protocols.

IEEE Transactions on Software Engineering, 17(1):64–76, 1991.

J. Hennessey and D. Patterson.
Computer Architecture: A Quantitative Approach, 2nd ed.

San Francisco, CA: Morgan Kaufmann, 1996.

E. Horowitz and S. Sahni. Fundamentals of Computer Algorithms. Rockville, MD: Computer Science

Press, 1978.

IEEE. Media access control (MAC) bridging of Ethernet v2.0 in local area networks. At

http://standards.ieee.org/reading/ieee/std/lanman/802.1H-1997.pdf, 1997.

P. Indyk, R. Motwani, et al. Locality-preserving hashing in multidimensional spaces. In Proceedings
of the 29th ACM Symposium on Theory of Computing, pages 618–625, 1997.

V. Jacobson. Congestion avoidance and control. In Proceedings ACM SIGCOMM, 1988.

V. Jacobson. TCP in 30 instructions. In Message sent to comp.protocols.tcp newsgroup, Sept. 1993.

H. Kanakia. Datapath switch. ATT Bell Labs Internal Memorandum, 1999.

KCB94
H. T. Kung, A. Chapman, and T. Blackwell. The FCVC credit-based ﬂow control protocol. In

Proceedings ACM SIGCOMM, Sept. 1994.

Kes91
Kes97

S. Keshav. On the efﬁcient implementation of fair queueing. In
Internetworking: Research and
Experience, vol. 2, pp. 157–173, Sept. 1991.

S. Keshav. Computer Networks: An Engineering Approach. Reading, MA: Addison-Wesley, 1997.

KHM87
M. Karol, M. Hluchyj, and S. Morgan. Input versus output queuing on a space division switch. IEEE
Transactions on Communications, pages 1347–1356, Dec. 1987.

KLS86
KM87

N. Kronenberg, H. Levy, and W. Strecker. Vaxclusters: A closely coupled distributed system. In ACM
Transactions on Computer Systems, 4(2), 1986.

C. A. Kent and J. C. Mogul. Fragmentation considered harmful.
Proceedings ACM SIGCOMM,

Aug. 1987.

KMea00
E. Kohler, R. Morris, et al. The Click modular router.
ACM Transactions on Computer Systems,

Aug. 2000.

Knu73

D. Knuth. Fundamental Algorithms. Vol 3: Sorting and searching. Reading, MA: Addison-Wesley,

1973.

Bibliography


451
KP93
Kur
Lam89
LB96
L’E96



J. Kay and J. Pasquale. The importance of non-data touching processing overheads in TCP/IP. In

Proceedings ACM SIGCOMM, Sept. 1993.

R. Kurzweil.
What’s creativity and who’s creative?
At
http://www.closertotruth.com/topics/
creativitythinking/103/103transcript.html.
B. Lampson. Hints for computer system design. In Proceedings of the 9th ACM Symposium on Operating
Systems Principles (SOSP) 1989, 1989.

K. Lai and M. Baker. A performance comparison of UNIX operating systems on the Pentium. In

Proceedings of the 1996 USENIX Conference, San Diego, CA, Jan. 1996.

P. L’Ecuyer. Maximally equidistributed combined Tausworth generators. Mathematics of Computation,

65:203–213, 1996.

LMJ97
C. Labovitz, G. Malan, and F. Jahanian. Internet routing instability. In Proceedings ACM SIGCOMM,

Oct. 1997.

LS98
LSV98
Mar02
MB93
MC80

T. V. Lakshman and D. Stidialis. High-speed policy-based packet forwarding using efﬁcient

multidimensional range matching. In Proceedings ACM SIGCOMM, Sept. 1998.

B. Lampson, V. Srinivasan, and G. Varghese. IP lookups using multiway and multicolumn search. In

Proceedings of IEEE INFOCOM, April 1998.

G. Marsaglia. Diehard Web page. At http://stat.fsu.edu/ geo/diehard.html, 2002.

C. Maeda and B. Bershad. Protocol service decomposition for high-performance networking. In

Proceedings of the 14th ACM Symposium on Operating Systems Principles (SOSP), 1993.

C. Mead and L. Conway. Introduction to VLSI Systems. Reading, MA: Addison-Wesley, 1980.

McC92
S. McCanne. A distributed whiteboard for network conferencing. In UC Berkeley CS 268 Computer
Networks Term Project, 1992.

McK91
P. McKenney. Stochastic fairness queueing. In
Internetworking: Research and Experience, vol. 2,

pp. 113–131, Jan. 1991.

MD92

P. McKenney and K. Dove. Efﬁcient demultiplexing of incoming TCP packets. In Proceedings ACM
SIGCOMM, 1992.

McK97
N. McKeown. A fast switched backplane for a gigabit switched router.
Business Communications
Review, 27(12), Dec. 1997.

McQ97
J. McQuillan. Layer 4 switching. In Data Communications, Oct. 1997.

Mea97
Mer

N. McKeown et al. The tiny tera: A packet switch core. In IEEE Micro, Jan. 1997.

Merit. Routing table snapshot at the Mae-East NAP. At ftp://ftp.merit.edu/statistics/ipma.

MGVK02
Z. Mao, R. Govindan, G. Varghese, and R. Katz. Route ﬂap damping can exacerbate BGP convergence.

In Proceedings ACM SIGCOMM, pages 221–234, 2002.

MJ93
MJ98
MM02
Mog95
Moo01

S. McCanne and V. Jacobson. The BSD packet ﬁlter: A new architecture for user-level packet capture.

In USENIX Winter Conference, pages 259–270, 1993.

G. Malan and F. Jahanian. An extensible probe architecture for network protocol measurement. In

Proceedings ACM SIGCOMM, Sept. 1998.

P. Molinero-Fernandez and N. McKeown. TCP switching: Exposing circuits to IP.
IEEE Micro
Magazine, 22(1):82–89, Jan./Feb. 2002.

J. Mogul. The case for persistent-connection http. Proceedings ACM SIGCOMM, 1995.

D. Moore.
Personal conversation.
Also see CAIDA Analysis of Code Red,
2001.
At

http://www.caida.org/analysis/security/code-red/.
452
MP96



Bibliography
D. Mosberger and L. Peterson. Making paths explicit in the Scout operating system. In Proceedings of
the USENIX Symposium on Operating Systems Design and Implementation, pages 153–167, 1996.

MPBM96
D. Mosberger, L. Peterson, P. Bridges, and S. O’Malley. Analysis of techniques to improve protocol

latency. In Proceedings of ACM SIGCOMM, 1996.

MR97

J. Mogul and K. K. Ramakrishnan. Eliminating receive livelock in an interrupt-driven kernel. In ACM
Transactions on Computer Systems, pages 303–313, Aug. 1997.

MRA87
J. Mogul, R. Rashid, and M. Accetta. The packet ﬁlter: An efﬁcient mechanism for user-level network

code. In Proceedings of the 11th ACM Symposium on Operating Systems Principles (SOSP), vol. 21,

pages 39–51, 1987.

MRG97
C. Maltzahn, K. Richardson, and D. Grunwald. Performance issues of enterprise-level Web proxies. In

Measurement and Modeling of Computer Systems, pages 13–23, 1997.

MTea02
A. Medina, N. Taft, et al. Trafﬁc matrix estimation: Existing techniques and new directions. In

Proceedings ACM SIGCOMM, 2002.

MVS01
D. Moore, G. Voelker, and S. Savage. Inferring denial-of-service activity. In Proceedings of the 2001
USENIX Security Symposium.

Myh
NEB02
Net
NK98

B. Myhrhaug. Sequencing set efﬁciency. In Pub. A9, Norwegian Computing Center.

NEBS. Network Equipment Building System (NEBS) requirements. At http://www.telecordia.com,

2002.

Cisco netﬂow. At http://www.cisco.com/warp/public/732/Tech/netﬂow.

S. Nilsson and G. Karlsson. Fast address lookup for Internet routers. In Proceedings of IEEE Broadband
Communications ’98, April 1998.

NMH97
P. Newman, G. Minshall, and L. Huston. IP switching and gigabit routers. In IEEE Communications
Magazine, Jan. 1997.

OSV94
Par93
Par96

C. Ozveren, R. Simcoe, and G. Varghese. Reliable and efﬁcient hop-by-hop ﬂow control. InProceedings
ACM SIGCOMM, Sept. 1994.

C. Partridge. Gigabit Networking. Reading, MA: Addison-Wesley, 1993.

C. Partridge. Locality and route caches. In
NSF Workshop on Internet Statistics Measurement,

San Diego, Feb. 1996.

PBW04
C. Partridge, S. Blumenthal, and D. Walden. Data networking at BBN. In IEEE Annals of Computing,

to appear.

PD00

L. Peterson and B. Davy. Computer Networking: A Systems Approach, 2 ed. San Francisco: Morgan-

Kaufmann, 2000.

PDZ99a
V. Pai, P. Druschel, and W. Zwaenepoel. Flash: An efﬁcient and portable Web server. In USENIX 1999
Annual Technical Conference, 1999.

PDZ99b
V. Pai, P. Druschel, and W. Zwaenepoel. I/O-Lite: A uniﬁed I/O buffering and caching system. In

Proceedings of the 3rd USENIX Symposium on Operating Systems Design and Implementation,

Feb. 1999.

Pe95
Per92
PF01

H. Patterson et al. Informed prefetching and caching. In Proceedings of the 15th ACM Symposium of
Operating Systems Principles (SOSP), Dec. 1995.

R. Perlman. Interconnections: Bridges and Routers. Reading, MA: Addison-Wesley, 1992.

J. Padhye and S. Floyd. On inferring TCP behavior. In Proceedings ACM SIGCOMM, pages 271–282,

Aug. 2001.

PKC97
S. Pakin, V. Karamcheti, and A. A. Chien. Fast messages: Efﬁcient, portable communication for

workstation clusters and MPPs. In IEEE Concurrency, April 1997.

Pol57



Bibliography
G. Polya. How to Solve it, 2nd ed. Princeton, NJ: Princeton University Press, 1957.




453
PP93
PS85
PTS95

C. Partridge and S. Pink. A faster UDP. IEEE/ACM Transactions on Networking, 1(4), Aug. 1993.

F. Preparata and M. Shamos. Computational Geometry: An Introduction. New York: Springer-Verlag,

1985.

G. Parulkar, J. Turner, and D. Schmidt. IP over ATM: A new strategy for integrating IP and ATM.

In Proceedings ACM SIGCOMM, Aug. 1995.

QVS01
L. Qiu, G. Varghese, and S. Suri. Fast ﬁrewall implementations for software- and hardware-based

routers. In Proceedings of the 9th International Conference on Network Protocols (ICNP), Nov. 2001.

Rau91
Rea96
Ric01
Rij94
RJ90
RL96
Rob74
Roe99
RP03
RV03

B. Rau. Pseudo-randomly interleaved memory. In Proceedings of the International Symposium on
Computer Architecture (ISCA), 1991.

Y. Rekhter et al. Tag switching architecture overview Internet draft. At
http://www-kr.cisco.com/
warp/public/732/tag/switarc_draft.html, 1996.

F. Riccardi. Posted note. In Linux Kernel Archive, April 2001.

A. Rijsinghani. Computation of the Internet checksum via incremental update. In
RFC 1624,
www.ietf.org/rfc/rfc1624.txt, May 1994.

K. K. Ramakrishnan and R. Jain. A binary feedback scheme for congestion avoidance in computer

networks. In ACM Transactions on Computer Systems, 1990.

Y. Rekhter and T. Li. An architecture for IP address allocation with CIDR. In RFC 1518, 1996.

J. M. Robson. Bounds for some functions concerning dynamic storage allocation. In Journal of the
Association for Computing Machinery, July 1974.

M. Roesch. Snort — Lightweight intrusion detection for networks. In Proceedings of the 13th Systems
Administration Conference. USENIX, 1999.

S. Ramabhadran and J. Pasquale. A low-complexity packet scheduler with bandwidth fairness and

delay bounds. In Proceedings ACM SIGCOMM, Aug. 2003.

S. Ramabhadran and G. Varghese. Efﬁcient implementation of a statistics counter architecture. In

Proceedings ACM SIGMETRICS, 2003.

SAFL99
P. Sindhu, R. Anand, D. Ferguson, and B. Liencres. High-Speed Switching Device, U.S. Patent 5905725,

1999.

Sar88
Sav99
SBV04
Sem02
SG01

D. Sarwate. Computation of cyclic redundancy checks by table lookup. Communications of the ACM,

31(8), 1988.

S. Savage. Sting: A TCP-based network measurment tool. In
USENIX Symposium on Intenet
Technologies and Systems, 1999.

S. Singh, F. Baboescu, and G. Varghese. Packet classiﬁcation using multidimensional cutting. In

Proceedings ACM SIGCCOMM, 2004.

C. Semeria. T-series routing platforms: System and forwarding architecture. In Juniper Networks White
Paper, Part Number 200027-001, 2002.

D. Shah and P. Gupta. Fast updates on ternary CAMs for packet lookups and classiﬁcation. In IEEE
Micro, 21(1), Jan. 2001.

SIPM02
D. Shah, S. Iyer, B. Prabhakar, and N. McKeown. Maintaining statistics counters in router line cards.

In IEEE Micro, Jan. 2002.

SKO+94
R. Souza, P. Krishnakumar, C. Ozveren, R. Simcoe, B. Spinney, R. Thomas, and R. Walsh. GIGAswitch:

A high-performance packet switching platform. In Digital Technical Journal, 6(1):9–22, Winter

1994.

454
SKP00



Bibliography
T. Spalink, S. Karlin, and L. Peterson. Evaluating Network Processors in IP Forwarding. Computer

Science Technical Report TR-626-00, Princeton University, Nov. 2000.

SMC01
C. Shannon, D. Moore, and K. Claffy. Characteristics of fragmented IP trafﬁc on Internet links.

In ACM SIGCOMM Internet Measurement Workshop, Nov. 2001.

SMea01
L. Sanchez, W. Milliken, et al. Hardware support for hash-based IP traceback. In Proceedings of the
2nd DARPA Information Survivability Conference and Exposition. DISCEX, 2001.

SMW02
N. Spring, R. Mahajan, and D. Wetherall. Measuring ISP topologies using RocketFuel. In Proceedings
ACM SIGCOMM, 2002.

SN89
Sno
SP94
SP00

K. Sabnani and A. Netravali. A high-speed transport protocol for datagram/virtual circuit networks.

In Proceedings ACM SIGCOMM, Sept. 1989.

Snort. The Open Source Network Intrusion Detection System. At http://www.snort.org/.

R. Simcoe and T. Pei. Perspectives on ATM switch architecture and the inﬂuence of trafﬁc pattern

assumptions on switch design. In ACM Computer Communication Review, 1994.

J. Stone and C. Partridge. When the CRC and TCP checksum disagree. In
Proceedings ACM
SIGCOMM, pages 309–319, 2000.

SPea01
A. Snoeren, C. Partridge, et al. Hash-based IP traceback. In Proceedings ACM SIGCOMM, pages

295–306, 2001.

SSH99

I. Sutherland, R. Sproull, and D. Harris. Logical Effort, Designing Fast CMOS Circuits. San Diego:

Morgan Kaufmann, 1999.

SSMe01
J. Satran, D. Smith, K. Meth, et al. iSCSI. At Internet Draft draft-ietf-ips-iSCSI-07.txt, July 2001.

SSV99
SSZ
ST
Ste94
Ste98
Ste99
SV96
SV99
SV00
SVC97
SVC03

V. Srinivasan, S. Suri, and G. Varghese. Packet classiﬁcation using tuple space search. In Proceedings
ACM SIGCOMM, pages 135–146, 1999.

I. Stoica, S. Shenker, and H. Zhang. Core-stateless fair queuing: Achieving approximately fair

bandwidth allocations in high-speed networks. In Proceedings ACM SIGCOMM, 1998.

J. Smith and B. Traw. Operating systems support for end-to-end Gbps networking. Technical report,

Distributed Systems Laboratory, University of Pennsylvania.

W. R. Stevens. TCP/IP Illustrated, Vol. 1. Reading, MA: Addison-Wesley, 1994.

W. R. Stevens. UNIX Network Programming. Upper Saddle River, NJ: Prentice Hall, 1998.

J. W. Stewart. BGP-4: Interdomain Routing in the Internet. Reading, MA: Addison-Wesley, 1999.

D. Staliadis and A. Varma. Frame-based fair queueing: A new trafﬁc scheduling algorithm for packet-

switched networks. In Proceedings ACM SIGMETRICS, 1996.

V. Srinivasan and G. Varghese. Faster IP lookups using controlled preﬁx expansion. In
ACM
Transactions on Computer Systems, Feb. 1999.

S. Sikka and G. Varghese. Memory-efﬁcient state lookups. In Proceedings ACM SIGCOMM, Aug.

2000.

S. Suri, G. Varghese, and G. Chandranmenon. Leap forward virtual clock: A new fair queuing scheme

with guaranteed delays and throughput fairness. In Proceedings of Infocom ’97, 1997.

T. Sherwood, G. Varghese, and B. Calder. A pipelined memory architecture for high-throughput

network processors. International Symposium on Computer Architecture, 2003.

SVSW98
V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel. Fast scalable level-four switching. In

Proceedings of SIGCOMM ’98, Sept. 1998.

SWG

Differentiated
Services
Working
Group.
Differentiated
Services
(diffserv)
Charter.
At

http://www.ietf.org/html.charters/diffserv-charter.html.

Bibliography


455
SWKA00
S. Savage, D. Wetherall, A. Karlin, and T. Anderson. Practical network support for IP traceback. In

Proceedings ACM SIGCOMM, pages 295–306, 2000.

Sys
Tan81
Tan92
TC72
TK95

Cisco Systems. Cisco 12000 Series Internet Routers. At http://www.cisco.com/warp/public/cc/pd/rt/
12000/tech/index.shtml.

A. S. Tanenbaum. Computer Networks. Englewood Cliffs, NJ: Prentice Hall, 1981.

A. Tanenbaum. Modern Operating Systems. Upper Saddle River, NJ: Prentice Hall, 1992.

A. Toynbee and J. Caplan. A Study of History, abridged version. New York: Oxford University Press,

1972.

M. N. Thadani and Y. A. Khalidi. An Efﬁcient Zero-Copy I/O Framework for UNIX. Technical Report

SMLI TR-95-39, Sun Microsystems Laboratories, May 1995.

TMW97
K. Thompson, G. Miller, and R. Wilder. Wide-area trafﬁc patterns and characterizations. In
IEEE
Network, Dec. 1997.

TNML93
C. Thekkath, T. Nguyen, E. Moy, and E. Lazowska. Implementing network protocols at user level.

In Proceedings ACM SIGCOMM, 1993.

TP96
Tsu
Tur86
Tur97
Tur02

J. Touch and B. Parham. Implementing the Internet checksum in hardware. In
RFC 1936,
www.ietf.org/rfc/rfc1936.txt, April 1996.

P. Tsuchiya. A search algorithm for table entries with noncontiguous wildcarding. In Unpublished
report, Bellcore.

J. S. Turner. New directions in communications (or Which way to the information age?). In
IEEE
Communications, 1986.

J. Turner. Design of a gigabit ATM switch. In Proceedings IEEE INFOCOM, Oct. 1997.

J. Turner. Personal communication. 2002.

TVHS92
R. Thomas, G. Varghese, G. Harvey, and R. Souza. Method for keeping track of sequence numbers in

a large space. U.S. Patent 5,086,428, Sept. 1992.

TY98

J. Turner and N. Yamanaka. Architectural choices in large scale ATM switches. In IEICE Transactions,

1998.

UNH01
UNH Interoperability Lab. FDDI tutorials. At http://www.iol.unh.edu/training/fddi.html, 2001.

Val90

L. Valiant. A bridging model for parallel computation. Communications of the ACM, 33(8), 1990.

vCGS92
T. von Eicken, D. Culler, S. Goldstein, and K. Schauser. Active messages: A mechanism for integrated

communication and computation. In Proceedings of the 19th International Symposium on Computer
Architecture (ISCA), pages 256–266, 1992.

VD75

J. G. Vaucher and P. Duval. A comparison of simulation event list algorithms. In CACM 18, 1975.

vEBea95
T. von Eicken, A. Basu, et al. U-Net: A user-level network interface for parallel and distributed

computing. In Proceedings of the 15th ACM Symposium on Operating Systems Principles (SOSP),

1995.

vECea92
T. von Eicken, D. Culler, et al. Active messages: A mechanism for integrated communication

and computation. In 19th International Symposium on Computer Architecture, pages 256–266,

1992.

VGE00
K. Varadhan, R. Govindan, and D. Estrin. Persistent route oscillations in interdomain routing. Computer
Networks, 32(1):1–16, 2000.

Vis

Max Vision. Advanced reference archive of current heuristics for network intrusion detection systems

(arachNIDS). At http://www.whitehats.com/ids/.

456
VL87



Bibliography
G. Varghese and A. Lauck. Hashed and hierarchical timing wheels: Data structures for the efﬁcient

implementation of a timer facility. In Proceedings of the 11th ACM Symposium on Operating Systems
Principles (SOSP), 1987.

WCB01
M. Welsh, D. E. Culler, and E. A. Brewer. SEDA: An architecture for well-conditioned, scalable

Internet services. In Proceedings of the 22nd Symposium on Operating Systems Principles (SOSP),

pages 230–243, 2001.

WH00
Wil92

J. Wang and C. Huang. A high-speed single-phase-clocked CMOS priority encoder. In
IEEE
International Symposium on Circuits and Systems, May 2000.

P. Wilson. Uniprocessor garbage collection techniques. In Springer-Verlag Lecture Notes in Computer
Science, number 637, Sept. 1992.

WJea95
P. Wilson, M. Johnstone, et al. Dynamic storage allocation: A survey and critical review. In Proceedings
of the International Workshop on Memory Management, Kinross, Scotland, 1995.

Woo00
WS95

T. Woo. A modular approach to packet classiﬁcation: Algorithms and results. In Proceedings IEEE
INFOCOM, 2000.

G .R. Wright and W. R. Stevens. TCP/IP Illustrated, vol. 2. Reading, MA: Addison-Wesley, 1995.

WSV01a
P. Warkhede, S. Suri, and G. Varghese. Fast packet classiﬁcation for two-dimensional conﬂict-free

ﬁlters. In Proceedings IEEE INFOCOM, pages 1434–1443, 2001.

WSV01b
P. Warkhede, S. Suri, and G. Varghese. Multiway range trees: Scalable IP lookups with fast updates.

In IEEE Globecom 2001 Internet Symposium, Nov. 2001.

WVTP01
M. Waldvogel, G. Varghese, J. Turner, and B. Plattner. Scalable high-speed IP routing lookups. In

ACM Transactions on Computer Systems, Nov. 2001.

XSD00

J. Xu, M. Singhal, and J. Degroat. A novel cache architecture to support layer-four packet classiﬁcation

at memory access speeds. In Proceedings IEEE INFOCOM, pages 1445–1454, 2000.

YHA87
Y. Yeh, M. Hluchyj, and A. Acampora. The Knockout Switch: A simple modular architecture

for high-performance packet switching.
IEEE Journal on Selected Areas in Communication,

pages 1426–1435, Oct. 1987.

Zha91

L. Zhang. Virtual clock: A new trafﬁc control algorithm for packet-switched networks. In ACM
Transactions on Computer Systems, 1991.

ZRDG03
Y. Zhang, M. Roughan, N. Dufﬁeld, and A. Greenberg. Fast, accurate computation of large-scale

IP matrices from link loads. In Proceedings ACM SIGMETRICS, 2003.


I N D E X
Acknowledgments (ack), withholding, 96–98

Active messages, 162

Adaptor memory, 111–113

Addresses, Internet, 235–236

Address lookup, 236

Address Resolution Protocol (ARP), 37

Afterburner approach, 112–113

Aggregation

edge, 359–361

random, 359

threshold, 385–387

Aho-Corasick algorithm, 402–403

Algorithms versus algorithmics, 54–55

American National Standards Institute

(ANSI), 123

Anomaly intrusion detection, 399

Apache Web server, 149

API

speeding up select() by changing, 158–159

speeding up select() without changing,

157–158

Appletalk, 37, 223

Application code, 140

Application device channels (ADCs), 161–162

buffer validation of, 74–76

Architecture

endnode, 32–34

router, 34–38

virtual interface, 162–163

Asynchronous transfer mode (ATM)

ﬂow control, 76–77

video conferencing via, 102–104

Backtracking, 14, 281

Baker, Fred, 227

Bandwidth, 28




guarantees, 348–354

reducing collection, 389–390

scaling, 5

Banks, 28

Banyan, 444

Barrel shifters, 23

Batch allocator, 200–201

Batching, 58, 164

Benes networks, 328–333

Berkeley packet ﬁlter (BPF), 145, 186–188

BGP (Border Gateway Protocol), 36, 373–374

Binary search

of long identiﬁers, 100–102

pipelining, 230–231

preﬁx lengths, 259–261

on ranges, 257–258

Binary trees, balanced, 29

Binomial bucketing, 93

Bit-by-bit round-robin, 350–354

Bitmaps, tree, 255–257

Bit slicing, 333–334

Bit vector linear search, 289–292

Bloom ﬁlters, 410–413

Bottlenecks, 3

endnode, 4–5

router, 5–7

Boyer-Moore algorithm, 403–405

BPF (Berkeley packet ﬁlter), 145, 186–188

Bridges/bridging, 80–81

deﬁned, 221

Ethernets, 222–224

scaling lookups to higher speeds, 228–231

wire speed forwarding, 224–228

BSD UNIX, 40–41, 164

callouts and timers, 178–179

457
458


Index
Bucket sorting, 92–93

Buddy system, 200

Buffer(s)

aggregates, 126

allocation, 5, 199–201

dynamic buffer limiting, 203

fast, 115–119

management, 198–203

overﬂow, 8

sharing, 201–203

stealing, 201–202

validation of application device channels

(ADCs), 74–76

Buses, 28, 33, 305–307

Butterﬂy network, 444

Byte swapping and order, 207, 208

Caches (caching), 32–33, 63–64, 131–135, 242

packet classiﬁcation and, 276

Callouts, 178–179

Cell, 190–191

CERN Web proxy, 153

Checksums, 5, 36, 203

header, 208–209

Internet, 207–209

Cheeson, Greg, 210

Cheetah Web Server, 128

Chips

design, 441–442

scaling and speeds, 31

Chi-square, 15

Circuit switches, 38

Cisco, 240, 320, 354, 382

GSR, 428–429

NetFlow, 388–389

Clark, Dave, 143–144

Class-based queuing (CBQ), 353–354

Classiﬁcation, See Packet Classiﬁcation

Classless Internet Domain Routing (CIDR),

235–236

Client

structuring processes per client, 147–148

structuring threads per client, 148–150

Clos, Charles, 324

Clos networks, 324–328, 442–443

Clusters

copying in, 122–123

VAX, 122–123

CMU Stanford packet ﬁlter (CSPF), 145,

185–186, 194–195




Code

application, 140

arrangement, 132–133

networking, 143–146

Column address strobe (CAS), 27

Compaction, frame-based, 262–263

Compaq Computer Inc., virtual interface

architecture, 162–163

Concurrency, 147, 150–151

Connection lists, getting rid of TCP open, 93–96

Content-addressable memory (CAM), 50–54,

230, 242, 278

Control overhead, 5, 226

context-switching, 146–152

fast select, 153–159

interrupts, 163–165

in networking code, 143–146

reasons for, 141–143

system calls, 159–163

Copying, 4–5

adaptor memory, 111–113

Afterburner approach, 112–113

in a cluster, 122–123

loop, 129–130

methods of, 109–111

page remapping, 115–119

reducing, 111–121

remote DMA to avoid, 121–125

semantics, transparent emulation, 119–121

Copy-on-write (COW), 57, 113–114

transient (TCOW), 119–121

Counting (counters), 381–382

pre-preﬁx, 394

probabilistic, 387–388

reducing counter height using ﬂow, 387–388

reducing counter height using threshold

aggregation, 385–387

reducing counter width using randomized,

384–385

Crossbar switches/scheduler, 6, 307–311

Crosspoints, 307–308

Cross-producting

equivalenced, 293–296

on demand, 292–293

CSPF (CMU Stanford packet ﬁlter), 145,

185–186, 194–195

Cyclic redundancy checks (CRCs), 203–207

Data, copying. See Copying data

Databases, incremental reading of large, 98–100

Data cache, 32

Data link layer, 223




Index
Dynamic random access memory (DRAM),

26–29, 32, 33, 226, 441




459
Data manipulations, 18

DEC (Digital Equipment Corp.), 122, 223,

227, 228

Decision trees, 296–299

DECNET, 37, 223

Decoders, 23

Deﬁcit round-robin, 350–354

Degrees of freedom, 52–53, 64

Delay guarantees, 354–358

Delta network, 328–330, 443–444

Demand paging, 42

Demultiplexing (demultiplexers), 5, 19, 23, 145

Berkeley packet ﬁlter (BPF), 145, 186–188

challenges of early, 184–185

CMU Stanford packet ﬁlter (CSPF), 145,

185–186, 194–195

deﬁned, 182

delayered, 182

dynamic packet ﬁlter (DPF), 192–195

early, 117, 182–195

layered, 182

packet classiﬁcation and, 277

PathFinder, 145, 189–192

in x-kernel, 81–83

Dense wavelength-division multiplexing

(DWDM), 323

Descriptors, 160–161, 163

Design, implementation principles versus,

65–66

Device driver, 43

DiffServ, 272, 277, 348, 359–361

Dijkstra’s algorithm, 77–80

Directed acyclic graph (DAG), 191

Direct memory access (DMA), 33, 226

remote, 121–125

versus programmed I/O, 135

Display-get-data, 144

Distributed systems, routers as

asynchronous updates, 371–373

internal ﬂow control, 363–368

internal striping, 368–371

Divide-and-conquer, 288–296

dlmalloc(), 200

Doorbells, 163

Download times, reducing, 66–67

Dynamic buffer limiting, 203

Dynamic packet ﬁlter (DPF), 192–195


reducing SRAM width using, backing store,

382–384

Earliest deadline ﬁrst, 356

Encoders

architecture, 34

design of priority, 22–23

programmable priority, 24–25, 322

quality of service and priority, 22

Endnodes, 4–5, 418–419

architecture, 32–34

ESLIP, 321, 322

Ethernets

description of, 222–224

forwarding packets, 80–81

Event-driven scheduler, 150

Event-driven server, 150–151

Evil packet example, 8

Exact-match lookups, 6, 28, 221–232

ExpiryProcessing, 171, 172

Expression tree model, 185–186

Extended grid of tries (EGT), 288

False negative, 10

Fast retransmit, 343

Fast select. See select()

Fbufs (fast buffers), 115–119

FDDI, 228

Fiber Channel, 20–21, 122, 123

File systems

IO-Lite, 126–128

I/O splicing, 128–129

shared memory, 116, 125–126

Fine-granularity timers, 179–180

Firewalls, 272

First in, ﬁrst out (FIFO), 339

Fisk, Mike, 8

Fixed-stride tries, 246–247

Flash Web server, 151, 428

Flip-ﬂops, 25

Flow control, internal, 363–368

Flow counting, reducing counter height

using, 387–388

Flow ID lookups, 28–30

Flow switching, 240–241

Forwarding, 17

Forwarding information base (FIB), 35

Fractional cascading, 285

460


Index
Fragmentation, 37

of link state protocols, 87–89

Frame-based compaction, 262–263

Geometric view, of packet classiﬁcation, 284–286

Gigaswitch, 228–230

Green, Larry, 210

Grid of tries, 281–284

extended, 288

Hardware

component-level design, 30–31

design tools, 23–25

logic gates, 21–22

memory, 25–30

models, 437–442

parallelism, 230–231

parameters, 31–32

transmission speed, 22–23

Hart, John, 227

Harvest Web server. See Squid Web server

Hashed wheels, 175–176

Hashing, 28, 75, 228–230

locality-preserving, 405

Header checksum, 208–209

Header ﬁelds, 273

Header prediction, 210–212

Header validation, 36

Head-of-line blocking, 6, 311–316

Hewlett-Packard, OpenView, 20

Hierarchical deﬁcit round-robin, 353

Hierarchical wheels, 176–178

Hints, use of, 62–63

Hole ﬁlling, 396

Hunt groups, 310–311

Hypercube, 444

IBM, 223

I-caches, 132–133

Identiﬁers, binary search of long, 100–102

Implementation principles

caution when using, 68–70

modularity with efﬁciency principles, 56,

61–63

routines, principles for speeding up, 56, 63–65

systems principles, 56–61

versus design, 65–66

Inﬁniband, 123–124

Instruction cache, 32

Integrated layer processing (ILP), 130




Intel

virtual interface architecture, 162–163

VTune, 20

Internal ﬂow control, 363–368

Internal striping, 368–371

Internet Control Message Protocol (ICMP), 37

Interrupt(s)

handlers, 40, 145

reducing, 163–165

software, 40, 144, 164

Intrusion detection systems (IDSs)

Aho-Corasick algorithm, 402–403

anomaly, 399

Boyer-Moore algorithm, 403–405

logging, 409–413

probabilistic marking, 406–409

searching for multiple strings in packet

payloads, 401–405

signature, 399

speeding up, 67–68

string matching, approximate, 405–406

subtasks, 400

worms, detecting, 413–415

IO-Lite, 126–128

I/O splicing, 128–129

IP Lookups, See Preﬁx-match Lookups

iSCSI, 20–21, 124–125

iSLIP, 316–323

Jupiter Networks, 324, 326, 392–393

Kempf, Mark, 223–224, 225, 227

Kernels, 43, 162

Kingsley, Chris, 199

Labels, passing, 277

Latency, 19

Lauck, Tony, 227

Layer 4 switching. See Packet classiﬁcation

Layer processing, locality-driven, 133–134

Lazy evaluation, 14, 57–58, 208

Lazy receiver processing (LRP), 165

Lea, Doug, 200

Leaf pushing, 252

Least-cost matching rule, 270, 273–275

Level-compressed tries, 250–251

Linear feedback shift register (LFSR), 206

Linear search, 276

bit vector, 289–292

Link state packet (LSP), 18, 77, 87–89

Index



461
Link state protocols, avoiding fragmentation

of, 87–89

Linux allocator, 200

Logging, 409–413

Logic gates, 21–22, 437–438

Lookups

chip model, 263–264

exact-match, 6, 28, 221–232

ﬂow ID, 28–30

preﬁx-match, 6, 35, 233–266

Lulea-compressed tries, 252–255

malloc(), 199

Markers, 366

Masking, 207, 235

Matchmaking, 148

mbufs, 118, 199

McQuillan, John, 272

Measuring network trafﬁc

difﬁculty of, 381–382

Jupiter network example, 392–393

reducing collection bandwidth, 389–390

reducing counter height using ﬂow counting,

387–388

reducing counter height using threshold

aggregation, 385–387

reducing counter width using randomized

counting, 384–385

reducing processing using NetFlow,

388–389

reducing SRAM width using DRAM backing

store, 382–384

Sting, 395–396

trafﬁc matrices, 393–395

trajectory sampling to correlate, 390–391

Memory, 25–30

adaptor, 111–113

allocation in compressed schemes, 261–263

backtracking, 281

content-addressable memory (CAM), 50–54,

230, 242, 278

direct memory access (DMA), 33

dynamic random access memory (DRAM),

26–29, 32, 33, 226, 441

main, 32

mapped, 33

registered, 163

scaling, 335–336

shared, 116, 125–126, 305




static random access memory (SRAM), 26,

32, 228, 382–384, 441

virtual, 41–43, 113–114

Memory management unit (MMU), 42

Microsoft Inc., virtual interface architecture,

162–163

Modiﬁed deﬁcit round-robin, 354

Modularity with efﬁciency principles, 56

generality, avoiding, 62

hints, use of, 62–63

over referencing, avoiding, 62

replace inefﬁcient routines, 61–62

Multibit tries, 245–250

Multicast, 321–322

Multichassis routers, 323, 326–328

Multiplexers, 23

Multi-protocol-label switching (MPLS), 37,

240, 241, 277

Multithreading, 38

Net-dispatch, 144

NetFlow, 388–389

Network address translation (NAT), 236

Network algorithmics

algorithms versus, 54–55

characteristics of, 13–15

deﬁned, 14, 423–427

future, 429–431

real products and, 427–429

techniques, 7–15

Networking code, avoiding scheduling overhead

in, 143–146

Network processors, 36, 37–38

Node compression, tries and, 83–85

1D torus, 334–335

Operating systems

system calls and simple, 43–44

uninterrupted computation, 39–41

virtual memory, 41–43

OSPF, 18, 36, 77

Output queuing, 312–314

Output scheduling, 36

Packet classiﬁcation, 6, 36, 85, 185

caching, 276

content-addressable memory, 278

cross-producting, 292–293

cross-producting, equivalenced, 293–296

decision trees, 296–299

462


Index
Packet classiﬁcation (continued)
demultiplexing, 277

divide-and-conquer, 288–296

extended grid of tries, 288

geometric view, 284–286

grid of tries, 281–284

linear search, 276

linear search, bit vector, 289–292

passing labels, 277

reasons for, 271–273

requirements and metrics, 275–276

role of, 270

routers, 270

tuples, 273–275

two dimensional, 278–284, 287–288

Packet ﬁlters

Berkeley (BPF), 145, 186–188

CMU Stanford (CSPF), 145, 185–186

dynamic, 192–195

Packets, 17

ﬁltering in routers, 85–87

ﬂow, 340

header validation and checksums, 36

logs, 388

repeaters, 223–224

scheduling, 339–361

Page mode, 27, 226

Page remapping, 115–119

Pages, 42

Parallelism, hardware, 230–231

Parallel iterative matching (PIM), 314–316

Pareto optimality, 201

PathFinder, 145, 189–192, 277

Path MTU, 213–214

Patricia trie, 14, 245

pbufs, 199

Perfect hashing, 229

Performance, improving, 364–365, 368–369,

372–373

Performance measures, 19–20

select() and server performance problem,

153–154

for timers, 171

Perlman, Radia, 227

PerTickBookkeeping, 171, 172

Piggybacking, 98

Ping, 395

Pipelining, 28–29, 230–231

Polling, 164

Population scaling, 5




Preﬁx-match lookups, 6, 35

binary search, preﬁx lengths, 259–261

binary search, on ranges, 257–258

ﬂow switching, 240–241

memory allocation, 261–263

model, 236–238

model, lookup-chip, 263–264

multi-protocol label switching, 37, 240, 241

nonalgorithmic techniques for, 242

notation, 234–235

threaded indices and tag switching, 14,

238–240, 241

tree bitmaps, 255–257

tries, level-compressed, 250–251

tries, Lulea-compressed, 252–255

tries, multibit, 245–250

tries, unibit, 243–245

variable-length, reasons for, 235–236

Pre-preﬁx counters, 394

Priorities, 320–321, 347

Probabilistic counting, 387–388

Probabilistic marking, 406–409

Programmable logic arrays (PLAs), 439

Programmable priority encoders, 24–25, 322

Protocol control block (PCB), 210–212

Protocol Engines, Inc., 210

Protocol processing

buffer management, 198–203

checksums and cyclic redundancy checks,

203–209

generic, 209–213

reassembly, 213–216

Protocols, 17–19, 36–37

reservation, 347–348

Pushout, 202–203

Quality of service (QOS), 22

reasons for, 340–342

Queuing, 36

class-based, 353–354

multiple outbound, 346–347

output, 312–314

scalable fair, 358–361

Random early detection (RED), 342–345

Randomization

avoiding, 316–323

memory scaling using, 335–336

Rational, Quantify, 20

Reading large databases, incremental, 98–100

Rearrangeably nonblocking, 327

Reassembly, 19, 213–216

Receiver livelock, 40–41

avoiding, 164–165

Recursive ﬂow classiﬁcation (RFC), 293–296

Redirects, 37

Reentrant, 148

Registered memory, 163

Registers, 25, 440

Reliability, 365–368, 369–371, 373

Remote direct memory access (RDMA), 121–125

Repeaters




Scaling

chip, 31

to faster switches, 333–336

to larger switches, 323–333

memory, 31, 335–336

via hashing, 228–230

Schedule clients, 19

Scheduling

crossbar, 24–25, 307–311

event-driven, 150

output, 36

packets, 339–361




Index



463
ﬁltering, 224

packet, 223–224

Resemblance, 405–406

Reservation protocols, 347–348

Resource Reservation Protocol (RSVP), 347–348

Resources, identifying, 92–93

RIP, 36

Round-robin

deﬁcit (bit-by-bit), 350–354

slice-by-slice, 348–350

Routers, 5–7, 419–420

See also Distributed systems, routers as

architecture, 34–38

fragmentation, redirects and ARPs, 37–38

history of, 305–307

lookup, 35–36

multichassis, 323, 326–328

packet classiﬁcation, 270

packet ﬁltering in, 85–87

pin-count for buffers, 30–31

processing, 36–37

queuing, 36

switching, 36

telephone switches versus, 304–305

Routines, principles for speeding up, 56, 63–65

Routing, 17

computation using Dijkstra’s algorithm,

77–80

Row address strobe (RAS), 27

Sampled charging, 389–390

Savage, Stefan, 395

Scalable fair queuing, 358–361

Scale

bandwidth, 5

endnode, 4

population, 5

router, 5


SCSI (small computer system interface),

20–21, 123

Security issues. See Intrusion detection systems

(IDSs)

Security forensics problem, 54–55

select()

analysis of, 155–157

server performance problem, 153–154

speeding up by changing API, 158–159

speeding up without changing API, 157–158

use and implementation of, 154–155

Server, event-driven, 150–151

Service differentiation, 6, 270

Set-pruning tries, 278–281

Shared memory, 116, 125–126, 305

Shelley, Bob, 227

Short links, 334–335

Signature intrusion detection, 399

Simcoe, Bob, 228

Simple Network Management Protocol (SNMP),

37, 381

SNA, 37, 223

Snapshot, 367

SNORT, 399–402

SNS, 223

Socket queue, 41

Software interrupt, 40, 144, 164

Spanning tree algorithm, 227

SPECweb, 128

Spinney, Barry, 228–229, 230

Squid Web server, 150, 153

StartTimer, 171, 172

State machine implementation, 30–31

Static random access memory (SRAM), 26, 32,

228, 441

reducing, using DRAM backing store,

382–384

Sting, 395–396

464


Index
StopTimer, 171, 172

Storage area networks (SANs), 20–21, 123

String matching, approximate, 405–406

Strings in packet payloads, searching for,

401–405

Structure, 4

Substitution error, 405

Switching (switches), 36

Benes networks, 328–333

bit slicing, 333–334

Clos networks, 324–328

costs, 324

crossbar scheduler, 307–311

ﬂow, 240–241

head-of-line blocking, 311–316

iSLIP, 316–323

memory scaling, 335–336

multi-protocol-label, 37, 240, 241

optical, 38

output queuing, 312–314

parallel iterative matching (PIM), 314–316

router, 305–307

router versus telephone, 304–305

scaling, 323–336

shared-memory, 305

short links, 334–335

theory, 442–443

threaded indices and tag, 14, 238–240, 241

Switch pointers, 282–283

System calls, 43–44

avoiding, 159–163

Systems principles

leverage off system components, 59–60

performance improved by hardware, 60–61

relaxing requirements, 58–59

time and space computation, 57–58

waste, avoiding, 56–57

Tag switching, 14, 238–240, 241

Take-a-ticket scheme, 307–311

Task-based structuring, 151–152

tcpdump, 20

TCP/IP (Transmission Control Protocol/Internet

Protocol), 17–19, 21

congestion control, 342

header prediction, 210–212

open connection lists, getting rid of, 93–96

transport and routing, 433–437

Teardrop attack, 409

Telephone switches




Clos networks, 325–326

router versus, 304–305

Thomas, Bob, 228

Threads, 40

indices and tag switching, 238–240, 241

per client, 148–150

Threshold aggregation, 385–387

Throughput, 19

memory, 28

Timers, 5, 19

BSD UNIX implementation, 178–179

delays, 439

ﬁne granularity, 179–180

hashed wheels, 175–176

hierarchical wheels, 176–178

reasons for, 169–171

routines and performance of, 171

simple, 172–173

wheels, 173–174

Timing Wheels, See Timers, wheels

Token bucket shaping and policing, 345–346

Tomography, 394

Traceback

logging, 409–413

probabilistic marking, 406–409

Traceroute, 395

Trading memory for processing, 14

Trafﬁc matrices, 393–395

Trafﬁc patterns, monitoring, 90–92

See also Measuring network trafﬁc

Trajectory sampling, 390–391

Transistors, 437–438

Translation look-aside buffer (TLB), 42, 115

Transmission speed, 22–23

Transport-arm-to-send, 144

Transport-get-port, 144

Tree bitmaps, 255–257

Tries, 402

deﬁned, 190

extended grid of, 288

ﬁxed-stride, 246–247

grid of, 281–284

level-compressed, 250–251

Lulea-compressed, 252–255

multibit, 245–250

node compression and, 83–85

Patricia, 14, 245

set-pruning, 278–281

variable-stride, 247–250

unibit, 243–245

UDP (User Datagram Protocol), 17,

212–213

ufalloc(), 153–154




WAN (wide area network), 153

Waters, Greg, 231

Web servers




Index



465
Unibit tries, 243–245

UNIX mbufs, 118, 199

See also BSD UNIX

Upcalls, 143–145

Updates, asynchronous, 371–373

User-level implementation, 144–146

User processes, 40

Variable-stride tries, 247–250

VAX cluster, 122–123

Video conferencing, asynchronous transfer

mode and, 102–104

Virtual circuits (VCs), 76–77, 102–104

Virtual clock, 355–356

Virtual interface architecture (VIA), 162–163

Virtual memory, 41–43, 113–114

Virtual output queues (VOQs), 314–315, 322


context-switching control overhead,

146–152

event-driven scheduler, 150

event-driven server, 150–151

process per client, 147–148

task-based structuring, 151–152

thread per client, 148–150

Wheels. See Timers

Wire speed forwarding, 9, 224–228

Worms, detecting, 413–415

Xerox, 223

x-kernel, demultiplexing in, 81–83

XTP protocol, 210

Zeus Web server, 150


15 Principles Used to Overcome Network Bottlenecks
Number
P1
P2
  P2a
  P2b
  P2c
P3
  P3a
  P3b
  P3c
P4
  P4a
  P4b
  P4c
P5
  P5a
  P5b
  P5c
P6
P7
P8
P9
P10
P11
  P11a
P12
  P12a
P13
P14


Principle
Avoid obvious waste

Shift computation in time

  Precompute

  Evaluate lazily

  Share expenses, batch

Relax system requirements

  Trade certainty for time

  Trade accuracy for time

  Shift computation in space

Leverage off system components

  Exploit locality

  Trade memory for speed

  Exploit existing hardware

Add hardware

  Use memory interleaving and pipelining

  Use wide word parallelism

  Combine DRAM and SRAM effectively

Create efficient specialized

routines

Avoid unnecessary generality

Don't be tied to reference

implementation

Pass hints in layer interfaces

Pass hints in protocol headers

Optimize the expected case

  Use caches

Add state for speed

  Compute incrementally

Optimize degrees of freedom

Use bucket sorting, bitmaps



Used In/Networking Example
Zero-copy interfaces

Application device channels

Copy-on-write

Integrated layer processing

Stochastic fair queueing

Switch load balancing

IPv6 fragmentation

Locality-driven receiver

Processing; Lulea IP lookups

Fast TCP checksum

Pipelined IP lookups

Shared memory switches

Maintaining counters

UDP checksums

Fbufs

Upcalls

Packet filters

Tag switching

Header prediction

  Fbufs

Active VC list

  Recomputing CRCs

IP trie lookups

Timing wheels

P15
Create efficient data

structures



Level-4 switching

Bits


Bits


Most OSs


NumSet[J]  .  .  .  .  .


NumSet[J]


1


…


…


Window


Drop probability





