

Network Algorithmics

The Morgan Kaufmann Series in Networking
Series Editor, David Clark, M.I.T.

Network Algorithmics: An Interdisciplinary Approach to
Designing Fast Networked Devices

George Varghese

Network Recovery: Protection and Restoration of Optical,
SONET-SDH, IP, and MPLS

Jean Philippe Vasseur, Mario Pickavet, and Piet Demeester

Routing, Flow, and Capacity Design in Communication
and Computer Networks

Michal Pióro and Deepankar Medhi

Wireless Sensor Networks: An Information Processing
Approach

Feng Zhao and Leonidas Guibas

Communication Networking: An Analytical Approach

Anurag Kumar, D. Manjunath, and Joy Kuri

The Internet and Its Protocols: A Comparative Approach

Adrian Farrel

Modern Cable Television Technology: Video, Voice, and
Data Communications, 2e

Walter Ciciora, James Farmer, David Large, and Michael Adams

Bluetooth Application Programming with the Java APIs

C. Bala Kumar, Paul J. Kline, and Timothy J. Thompson

Policy-Based Network Management: Solutions for
the Next Generation

John Strassner

Computer Networks: A Systems Approach, 3e

Larry L. Peterson and Bruce S. Davie

Network Architecture, Analysis, and Design, 2e

James D. McCabe

MPLS Network Management: MIBs, Tools, and Techniques

Thomas D. Nadeau

Developing IP-Based Services: Solutions for Service
Providers and Vendors

Monique Morrow and Kateel Vijayananda

Telecommunications Law in the Internet Age

Sharon K. Black

Optical Networks: A Practical Perspective, 2e

Rajiv Ramaswami and Kumar N. Sivarajan

Internet QoS: Architectures and Mechanisms

Zheng Wang

TCP/IP Sockets in Java: Practical Guide for Programmers

Michael J. Donahoo and Kenneth L. Calvert

TCP/IP Sockets in C: Practical Guide for Programmers

Kenneth L. Calvert and Michael J. Donahoo

Multicast Communication: Protocols, Programming,
and Applications

Ralph Wittmann and Martina Zitterbart

MPLS: Technology and Applications

Bruce Davie and Yakov Rekhter

High-Performance Communication Networks, 2e

Jean Walrand and Pravin Varaiya

Internetworking Multimedia

Jon Crowcroft, Mark Handley, and Ian Wakeman

Understanding Networked Applications: A First Course

David G. Messerschmitt

Integrated Management of Networked Systems: Concepts,
Architectures, and Their Operational Applications

Heinz-Gerd Hegering, Sebastian Abeck, and Bernhard Neumair

Virtual Private Networks: Making the Right Connection

Dennis Fowler

Networked Applications: A Guide to the New Computing
Infrastructure

David G. Messerschmitt

Wide Area Network Design: Concepts and Tools for
Optimization

Robert S. Cahn

For further information on these books and for a list of forth-
coming titles, please visit our website at http://www.mkp.com.

Network Algorithmics
An Interdisciplinary Approach to Designing
Fast Networked Devices

George Varghese
University of California, San Diego

AMSTERDAM • BOSTON • HEIDELBERG • LONDON
NEW YORK • OXFORD • PARIS • SAN DIEGO
SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

MORGAN KAUFMANN PUBLISHERS IS AN IMPRINT OF ELSEVIER

Elsevier/Morgan Kaufmann Cover Image: Getty Images
Publishing Director: Diane D. Cerra Text Design: Michael Remener
Senior Acquisitions Editor: Rick Adams Composition: CEPHA
Associate Editor: Karyn Johnson Technical Illustration: Dartmouth Publishing, Inc.
Editorial Coordinator: Mona Buehler Copyeditor: Elliot Simon
Publishing Services Manager: Simon Crump Proofreader: Phyllis Coyne et al.
Senior Project Manager: Angela Dooley Indexer: Northwind Editorial
Cover Design Manager: Cate Rickard Barr Interior Printer: The Maple-Vail Book Manufacturing Group
Cover Design: Yvo Riezebos Design Cover Printer: Phoenix Color

Morgan Kaufmann is an imprint of Elsevier.
500 Sansome Street, Suite 400, San Francisco, CA 94111

This book is printed on acid-free paper.

© 2005 by Elsevier Inc.

Designations used by companies to distinguish their products are often claimed as trademarks or registered
trademarks. In all instances in which Elsevier is aware of a claim, the product names appear in initial capital or all
capital letters. Readers, however, should contact the appropriate companies for more complete information regarding
trademarks and registration.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means
electronic, mechanical, photocopying, scanning, or otherwise without prior written permission of the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in Oxford, UK: phone:
(+44) 1865 843830, fax: (+44) 1865 853333, e-mail: permissions@elsevier.com.uk. You may also complete your
request on-line via the Elsevier homepage (http://elsevier.com) by selecting “Customer Support” and then “Obtaining
Permissions.”

Library of Congress Cataloging-in-Publication Data
Application submitted

ISBN: 0-12-088477-1

For information on all Morgan Kaufmann publications,
visit our website at www.mkp.com.

Printed in the United States of America
08 07 06 05 04 5 4 3 2 1

For Aju and Tim and Andrew, who made all this possible . . .

C O N T E N T S

P R E F A C E x i x

PART I The Ru les o f the Game 1
C H A P T E R 1 Introducing Network Algorithmics 3

1.1 The Problem: Network Bottlenecks 3
1.1.1 Endnode Bottlenecks 4

1.1.2 Router Bottlenecks 5

1.2 The Techniques: Network Algorithmics 7
1.2.1 Warm-up Example: Scenting an Evil Packet 8

1.2.2 Strawman Solution 9

1.2.3 Thinking Algorithmically 9

1.2.4 Refining the Algorithm: Exploiting Hardware 10

1.2.5 Cleaning Up 11

1.2.6 Characteristics of Network Algorithmics 13

1.3 Exercise 15

C H A P T E R 2 Network Implementation Models 16
2.1 Protocols 17

2.1.1 Transport and Routing Protocols 17

2.1.2 Abstract Protocol Model 17

2.1.3 Performance Environment and Measures 19

2.2 Hardware 21
2.2.1 Combinatorial Logic 21

2.2.2 Timing and Power 22

vii

viii Contents

2.2.3 Raising the Abstraction Level of Hardware Design 23

2.2.4 Memories 25

2.2.5 Memory Subsystem Design Techniques 29

2.2.6 Component-Level Design 30

2.2.7 Final Hardware Lessons 31

2.3 Network Device Architectures 32
2.3.1 Endnode Architecture 32

2.3.2 Router Architecture 34

2.4 Operating Systems 39
2.4.1 Uninterrupted Computation via Processes 39

2.4.2 Infinite Memory via Virtual Memory 41

2.4.3 Simple I/O via System Calls 43

2.5 Summary 44

2.6 Exercises 44

C H A P T E R 3 Fifteen Implementation Principles 50
3.1 Motivating the Use of Principles — Updating Ternary Content-Addressable

Memories 50

3.2 Algorithms versus Algorithmics 54

3.3 Fifteen Implementation Principles — Categorization and Description 56

3.3.1 Systems Principles 56

3.3.2 Principles for Modularity with Efficiency 61

3.3.3 Principles for Speeding Up Routines 63

3.4 Design versus Implementation Principles 65

3.5 Caveats 66
3.5.1 Eight Cautionary Questions 68

3.6 Summary 70

3.7 Exercises 70

C H A P T E R 4 Principles in Action 73
4.1 Buffer Validation of Application Device Channels 74

4.2 Scheduler for Asynchronous Transfer Mode Flow Control 76

4.3 Route Computation Using Dijkstra’s Algorithm 77

4.4 Ethernet Monitor Using Bridge Hardware 80

Contents ix

4.5 Demultiplexing in the X-Kernel 81

4.6 Tries with Node Compression 83

4.7 Packet Filtering in Routers 85

4.8 Avoiding Fragmentation of Link State Packets 87

4.9 Policing Traffic Patterns 90

4.10 Identifying a Resource Hog 92

4.11 Getting Rid of the TCP Open Connection List 93

4.12 Acknowledgment Withholding 96

4.13 Incrementally Reading a Large Database 98

4.14 Binary Search of Long Identifiers 100

4.15 Video Conferencing via Asynchronous Transfer Mode 102

PART II P lay ing wi th Endnodes 105

C H A P T E R 5 Copying Data 107
5.1 Why Data Copies 109

5.2 Reducing Copying via Local Restructuring 111
5.2.1 Exploiting Adaptor Memory 111

5.2.2 Using Copy-on-Write 113

5.2.3 Fbufs: Optimizing Page Remapping 115

5.2.4 Transparently Emulating Copy Semantics 119

5.3 Avoiding Copying Using Remote DMA 121
5.3.1 Avoiding Copying in a Cluster 122

5.3.2 Modern-Day Incarnations of RDMA 123

5.4 Broadening to File Systems 125
5.4.1 Shared Memory 125

5.4.2 IO-Lite: A Unified View of Buffering 126

5.4.3 Avoiding File System Copies via I/O Splicing 128

5.5 Broadening beyond Copies 129

5.6 Broadening beyond Data Manipulations 131
5.6.1 Using Caches Effectively 131

5.6.2 Direct Memory Access versus Programmed I/O 135

x Contents

5.7 Conclusions 135

5.8 Exercises 137

C H A P T E R 6 Transferring Control 139
6.1 Why Control Overhead? 141

6.2 Avoiding Scheduling Overhead in Networking Code 143
6.2.1 Making User-Level Protocol Implementations Real 144

6.3 Avoiding Context-Switching Overhead in Applications 146
6.3.1 Process per Client 147

6.3.2 Thread per Client 148

6.3.3 Event-Driven Scheduler 150

6.3.4 Event-Driven Server with Helper Processes 150

6.3.5 Task-Based Structuring 151

6.4 Fast Select 153
6.4.1 A Server Mystery 153

6.4.2 Existing Use and Implementation of Select() 154

6.4.3 Analysis of Select() 155

6.4.4 Speeding Up Select() without Changing the API 157

6.4.5 Speeding Up Select() by Changing the API 158

6.5 Avoiding System Calls 159
6.5.1 The Virtual Interface Architecture (VIA) Proposal 162

6.6 Reducing Interrupts 163
6.6.1 Avoiding Receiver Livelock 164

6.7 Conclusions 165

6.8 Exercises 166

C H A P T E R 7 Maintaining Timers 169
7.1 Why Timers? 169

7.2 Model and Performance Measures 171

7.3 Simplest Timer Schemes 172

7.4 Timing Wheels 173

7.5 Hashed Wheels 175

7.6 Hierarchical Wheels 176

7.7 BSD Implementation 178

Contents xi

7.8 Obtaining Fine-Granularity Timers 179

7.9 Conclusions 180

7.10 Exercises 181

C H A P T E R 8 Demultiplexing 182
8.1 Opportunities and Challenges of Early Demultiplexing 184

8.2 Goals 184

8.3 CMU/Stanford Packet Filter: Pioneering Packet Filters 185

8.4 Berkeley Packet Filter: Enabling High-Performance Monitoring 186

8.5 Pathfinder: Factoring Out Common Checks 189

8.6 Dynamic Packet Filter: Compilers to the Rescue 192

8.7 Conclusions 195

8.8 Exercises 195

C H A P T E R 9 Protocol Processing 197
9.1 Buffer Management 198

9.1.1 Buffer Allocation 199

9.1.2 Sharing Buffers 201

9.2 Cyclic Redundancy Checks and Checksums 203
9.2.1 Cyclic Redundancy Checks 204

9.2.2 Internet Checksums 207

9.2.3 Finessing Checksums 209

9.3 Generic Protocol Processing 209
9.3.1 UDP Processing 212

9.4 Reassembly 213
9.4.1 Efficient Reassembly 214

9.5 Conclusions 216

9.6 Exercises 217

PART III P lay ing wi th Rou te rs 219

C H A P T E R 1 0 Exact-Match Lookups 221
10.1 Challenge 1: Ethernet under Fire 222

xii Contents

10.2 Challenge 2: Wire Speed Forwarding 224

10.3 Challenge 3: Scaling Lookups to Higher Speeds 228
10.3.1 Scaling via Hashing 228

10.3.2 Using Hardware Parallelism 230

10.4 Summary 231

10.5 Exercise 232

C H A P T E R 1 1 Prefix-Match Lookups 233
11.1 Introduction to Prefix Lookups 234

11.1.1 Prefix Notation 234

11.1.2 Why Variable-Length Prefixes? 235

11.1.3 Lookup Model 236

11.2 Finessing Lookups 238
11.2.1 Threaded Indices and Tag Switching 238

11.2.2 Flow Switching 240

11.2.3 Status of Tag Switching, Flow Switching, and Multiprotocol
Label Switching 241

11.3 Nonalgorithmic Techniques for Prefix Matching 242
11.3.1 Caching 242

11.3.2 Ternary Content-Addressable Memories 242

11.4 Unibit Tries 243

11.5 Multibit Tries 245
11.5.1 Fixed-Stride Tries 246

11.5.2 Variable-Stride Tries 247

11.5.3 Incremental Update 250

11.6 Level-Compressed (LC) Tries 250

11.7 Lulea-Compressed Tries 252

11.8 Tree Bitmap 255
11.8.1 Tree Bitmap Ideas 255

11.8.2 Tree Bitmap Search Algorithm 256

11.9 Binary Search on Ranges 257

11.10 Binary Search on Prefix Lengths 259

11.11 Memory Allocation in Compressed Schemes 261
11.11.1 Frame-Based Compaction 262

Contents xiii

11.12 Lookup-Chip Model 263

11.13 Conclusions 265

11.14 Exercises 266

C H A P T E R 1 2 Packet Classification 270
12.1 Why Packet Classification? 271

12.2 Packet-Classification Problem 273

12.3 Requirements and Metrics 275

12.4 Simple Solutions 276
12.4.1 Linear Search 276

12.4.2 Caching 276

12.4.3 Demultiplexing Algorithms 277

12.4.4 Passing Labels 277

12.4.5 Content-Addressable Memories 278

12.5 Two-Dimensional Schemes 278
12.5.1 Fast Searching Using Set-Pruning Trees 278

12.5.2 Reducing Memory Using Backtracking 281

12.5.3 The Best of Both Worlds: Grid of Tries 281

12.6 Approaches to General Rule Sets 284
12.6.1 Geometric View of Classification 284

12.6.2 Beyond Two Dimensions: The Bad News 286

12.6.3 Beyond Two Dimensions: The Good News 286

12.7 Extending Two-Dimensional Schemes 287

12.8 Using Divide-and-Conquer 288

12.9 Bit Vector Linear Search 289

12.10 Cross-Producting 292

12.11 Equivalenced Cross-Producting 293

12.12 Decision Tree Approaches 296

12.13 Conclusions 299

12.14 Exercises 300

C H A P T E R 1 3 Switching 302
13.1 Router versus Telephone Switches 304

xiv Contents

13.2 Shared-Memory Switches 305

13.3 Router History: From Buses to Crossbars 305

13.4 The Take-a-Ticket Crossbar Scheduler 307

13.5 Head-of-Line Blocking 311

13.6 Avoiding Head-of-Line Blocking via Output Queuing 312

13.7 Avoiding Head-of-Line Blocking by Using Parallel Iterative
Matching 314

13.8 Avoiding Randomization with iSLIP 316
13.8.1 Extending iSLIP to Multicast and Priority 320

13.8.2 iSLIP Implementation Notes 322

13.9 Scaling to Larger Switches 323
13.9.1 Measuring Switch Cost 324

13.9.2 Clos Networks for Medium-Size Routers 324

13.9.3 Benes Networks for Larger Routers 328

13.10 Scaling to Faster Switches 333
13.10.1 Using Bit Slicing for Higher-Speed Fabrics 333

13.10.2 Using Short Links for Higher-Speed Fabrics 334

13.10.3 Memory Scaling Using Randomization 335

13.11 Conclusions 336

13.12 Exercises 337

C H A P T E R 1 4 Scheduling Packets 339
14.1 Motivation for Quality of Service 340

14.2 Random Early Detection 342

14.3 Token Bucket Policing 345

14.4 Multiple Outbound Queues and Priority 346

14.5 A Quick Detour into Reservation Protocols 347

14.6 Providing Bandwidth Guarantees 348
14.6.1 The Parochial Parcel Service 348

14.6.2 Deficit Round-Robin 350

14.6.3 Implementation and Extensions of Deficit Round-Robin 351

14.7 Schedulers That Provide Delay Guarantees 354

14.8 Scalable Fair Queuing 358
14.8.1 Random Aggregation 359

Contents xv

14.8.2 Edge Aggregation 359

14.8.3 Edge Aggregation with Policing 360

14.9 Summary 361

14.10 Exercises 361

C H A P T E R 1 5 Routers as Distributed Systems 362
15.1 Internal Flow Control 363

15.1.1 Improving Performance 364

15.1.2 Rescuing Reliability 365

15.2 Internal Striping 368
15.2.1 Improving Performance 368

15.2.2 Rescuing Reliability 369

15.3 Asynchronous Updates 371
15.3.1 Improving Performance 372

15.3.2 Rescuing Reliability 373

15.4 Conclusions 373

15.5 Exercises 374

PART IV Endgame 377

C H A P T E R 1 6 Measuring Network Traffic 379
16.1 Why Measurement Is Hard 381

16.1.1 Why Counting Is Hard 381

16.2 Reducing SRAM Width Using DRAM Backing Store 382

16.3 Reducing Counter Width Using Randomized Counting 384

16.4 Reducing Counters Using Threshold Aggregation 385

16.5 Reducing Counters Using Flow Counting 387

16.6 Reducing Processing Using Sampled NetFlow 388

16.7 Reducing Reporting Using Sampled Charging 389

16.8 Correlating Measurements Using Trajectory Sampling 390

16.9 A Concerted Approach to Accounting 392

16.10 Computing Traffic Matrices 393
16.10.1 Approach 1: Internet Tomography 394

xvi Contents

16.10.2 Approach 2: Per-Prefix Counters 394

16.10.3 Approach 3: Class Counters 395

16.11 Sting as an Example of Passive Measurement 395

16.12 Conclusion 396

16.13 Exercises 397

C H A P T E R 1 7 Network Security 399
17.1 Searching for Multiple Strings in Packet Payloads 401

17.1.1 Integrated String Matching Using Aho–Corasick 402

17.1.2 Integrated String Matching Using Boyer–Moore 403

17.2 Approximate String Matching 405

17.3 IP Traceback via Probabilistic Marking 406

17.4 IP Traceback via Logging 409
17.4.1 Bloom Filters 410

17.4.2 Bloom Filter Implementation of Packet Logging 412

17.5 Detecting Worms 413

17.6 Conclusion 415

17.7 Exercises 415

C H A P T E R 1 8 Conclusions 417
18.1 What This Book Has Been About 418

18.1.1 Endnode Algorithmics 418

18.1.2 Router Algorithmics 419

18.1.3 Toward a Synthesis 420

18.2 What Network Algorithmics Is About 423
18.2.1 Interdisciplinary Thinking 423

18.2.2 Systems Thinking 424

18.2.3 Algorithmic Thinking 425

18.3 Network Algorithmics and Real Products 427

18.4 Network Algorithmics: Back to the Future 429
18.4.1 New Abstractions 429

18.4.2 New Connecting Disciplines 430

18.4.3 New Requirements 431

18.5 The Inner Life of a Networking Device 431

Contents xvii

A P P E N D I X Detailed Models 433
A.1 TCP and IP 433

A.1.1 Transport Protocols 433

A.1.2 Routing Protocols 436

A.2 Hardware Models 437
A.2.1 From Transistors to Logic Gates 437

A.2.2 Timing Delays 439

A.2.3 Hardware Design Building Blocks 439

A.2.4 Memories: The Inside Scoop 440

A.2.5 Chip Design 441

A.3 Switching Theory 442
A.3.1 Matching Algorithms for Clos Networks with k = n 442

A.4 The Interconnection Network Zoo 443

Bibliography 445

Index 457

P R E F A C E

Computer networks have become an integral part of society. We take for granted the ability
to transact commerce over the Internet and that users can avail themselves of a burgeoning
set of communication methods, which range from file sharing to Web logs. However, for
networks to take their place as part of the fundamental infrastructure of society, they must
provide performance guarantees.

We take for granted that electricity will flow when a switch is flicked and that telephone
calls will be routed on Mother’s Day. But the performance of computer networks such as the
Internet is still notoriously unreliable. While there are many factors that go into performance,
one major issue is that of network bottlenecks. There are two types of network bottlenecks:
resource bottlenecks and implementation bottlenecks.

Resource bottlenecks occur when network performance is limited by the speed of the
underlying hardware; examples include slow processors in server platforms and slow com-
munication links. Resource bottlenecks can be worked around, at some cost, by buying faster
hardware. However, it is quite often the case that the underlying hardware is perfectly ade-
quate but that the real bottleneck is a design issue in the implementation. For example, a Web
server running on the fastest processors may run slowly because of redundant data copying.
Similarly, a router with a simple packet classification algorithm may start dropping packets
when the number of ACL rules grows beyond a limit, though it keeps up with link speeds
when classification is turned off. This book concentrates on such network implementation
bottlenecks, especially at servers and routers.

Beyond servers and routers, new breeds of networking devices that introduce new perfor-
mance bottlenecks are becoming popular. As networks become more integrated, devices such
as storage area networks (SANs) and multimedia switches are becoming common. Further, as
networks get more complex, various special-purpose network appliances for file systems and
security are proliferating. While the first generation of such devices justified themselves by
the new functions they provided, it is becoming critical that future network appliances keep
up with link speeds.

Thus the objective of this book is to provide a set of techniques to overcome implemen-
tation bottlenecks at all networking devices and to provide a set of principles and models to
help overcome current and future networking bottlenecks.

xix

xx Preface

AUDIENCE

This book was written to answer a need for a text on efficient protocol implementations.
The vast majority of networking books are on network protocols; even the implementation
books are, for the most part, detailed explanations of the protocol. While protocols form the
foundation of the field, there are just a handful of fundamental network infrastucture protocols
left, such as TCP and IP. On the other hand, there are many implementations as most companies
and start-ups customize their products to gain competitive advantage. This is exacerbated by
the tendency to place TCP and IP everywhere, from bridges to SAN switches to toasters.

Thus there are many more people implementing protocols than designing them. This is a
textbook for implementors, networking students, and networking researchers, covering ground
from the art of building a fast Web server to building a fast router and beyond.

To do so, this book describes a collection of efficient implementation techniques; in fact,
an initial section of each chapter concludes with a Quick Reference Guide for implementors
that points to the most useful techniques for each topic. However, the book goes further and
distills a fundamental method of crafting solutions to new network bottlenecks that we call
network algorithmics. This provides the reader tools to design different implementations for
specific contexts and to deal with new bottlenecks that will undoubtedly arise in a changing
world.

Here is a detailed profile of our intended audience.

• Network Protocol Implementors: This group includes implementors of endnode
networking stacks for large servers, PCs, and workstations and for network appliances. It
also includes implementors of classic network interconnection devices, such as routers,
bridges, switches, and gateways, as well as devices that monitor networks for measurement
and security purposes. It also includes implementors of storage area networks, distributed
computing infrastructures, multimedia switches and gateways, and other new networking
devices. This book can be especially useful for implementors in start-ups as well as in
established companies, for whom improved performance can provide an edge.

• Networking Students: Undergraduate and graduate students who have mastered the basics
of network protocols can use this book as a text that describes how protocols should be
implemented to improve performance, potentially an important aspect of their future jobs.

• Instructors: Instructors can use this book as a textbook for a one-semester course on
network algorithmics.

• Systems Researchers: Networking and other systems researchers can use this text as a
reference and as a stimulus for further research in improving system performance. Given
that disributed operating systems and distributed computing infrastructures (e.g., the Grid)
rely on an underlying networking core whose performance can be critical, this book can be
useful to general systems researchers.

WHAT THIS BOOK IS ABOUT

Chapter 1 provides a more detailed introduction to network algorithmics. For now, we infor-
mally define network algorithmics as an interdisciplinary systems approach to streamlining

Preface xxi

network implementations. Network algorithmics is interdisciplinary, because it requires tech-
niques from diverse fields such as architecture, operating systems, hardware design, and
algorithms. Network algorithmics is also a systems approach, because routers and servers are
systems in which efficiencies can be gained by moving functions in time and space between
subsystems.

In essence, this book is about three things: fundamental networking implementation bot-
tlenecks, general principles to address new bottlenecks, and techniques for specific bottlenecks
that can be derived from the general principles.

Fundamental bottlenecks for an endnode such as a PC or workstation include data copy-
ing, control transfer, demultiplexing, timers, buffer allocation, checksums, and protocol
processing. Similarly, fundamental bottlenecks for interconnect devices such as routers and
SAN switches include exact and prefix lookups, packet classification, switching, and the
implementation of measurement and security primitives. Chapter 1 goes into more detail
about the inherent causes of these bottlenecks.

The fundamental methods that encompass network algorithmics include implementation
models (Chapter 2) and 15 implementation principles (Chapter 3). The implementation models
include models of operating systems, protocols, hardware, and architecture. They are included
because the world of network protocol implementation requires the skills of several different
communities, including operating system experts, protocol pundits, hardware designers, and
computer architects. The implementation models are an attempt to bridge the gaps between
these traditionally separate communities.

On the other hand, the implementation principles are an attempt to abstract the main ideas
behind many specific implementation techniques. They include such well-known principles as
“Optimize the expected case.” They also include somewhat less well-known principles, such
as “Combine DRAM with SRAM,” which is a surprisingly powerful principle for producing
fast hardware designs for network devices.

While Part I of the book lays out the methodology of network algorithmics, Part II applies
the methodology to specific network bottlenecks in endnodes and servers. For example, Part
II discusses copy avoidance techniques (such as passing virtual memory pointers and RDMA)
and efficient control transfer methods (such as bypassing the kernel, as in the VIA proposal,
and techniques for building event-driven servers).

Similarly, Part III of the book applies the methodology of Part I to interconnect devices,
such as network routers. For example, Part III discusses effficient prefix-lookup schemes (such
as multibit or compressed tries) and efficient switching schemes (such as those based on virtual
output queues and bipartite matching).

Finally, Part IV of the book applies the methodology of Part I to new functions for security
and measurement that could be housed in either servers or interconnect devices. For example,
Part IV discusses efficient methods to compress large traffic reports and efficient methods to
detect attacks.

ORGANIZATION OF THE BOOK

This book is organized into four overall parts. Each part is made as self-contained as possible
to allow detailed study. Readers that are pressed for time can consult the index or Table of
Contents for a particular topic (e.g., IP lookups). More importantly, the opening section of

xxii Preface

each chapter concludes with a Quick Reference Guide that points to the most important topics
for implementors. The Quick Reference Guide may be the fastest guide for usefully skimming
a chapter.

Part I of the book aims to familiarize the reader with the rules and philosophy of network
algorithmics. It starts with Chapter 2, which describes simple models of protocols, operating
systems, hardware design, and endnode and router architectures. Chapter 3 describes in detail
the 15 principles used as a cornerstone for the book. Chapter 4 rounds out the first part by
providing 15 examples, drawn for the most part from real implementation problems, to allow
the reader a first opportunity to see the principles in action on real problems.

Part II of the book, called “Playing with Endnodes,” shows how to build fast endnode
implementations, such as Web servers, that run on general-purpose operating systems and stan-
dard computer architectures. It starts with Chapter 5, which shows how to reduce or avoid extra
data copying. (Copying often occurs when network data is passed between implementation
modules) and how to increase cache efficiency. Chapter 6 shows how to reduce or avoid the
overhead of transferring control between implementation modules, such as the device driver,
the kernel, and the application. Chapter 7 describes how to efficiently manage thousands of
outstanding timers, a critical issue for large servers. Chapter 8 describes how to efficiently
demultiplex data to receiving applications in a single step, allowing innovations such as user-
level networking. Chapter 9 describes how to implement specific functions that often recur
in specific protocol implementations, such as buffer allocation, checksums, sequence number
bookkeeping, and reassembly. An overview of Part II can be found in Figure 1.1.

Part III of the book, called “Playing with Routers,” shows how to build fast routers, bridges,
and gateways. It begins with three chapters that describe state lookups of increasing complexity.
Chapter 10 describes exact-match lookups, which are essential for the design of bridges and
ARP caches. Chapter 11 describes prefix-match lookups, which are used by Internet routers
to forward packets. Chapter 12 describes packet classification, a more sophisticated form of
lookup required for security and quality of service. Chapter 13 describes how to build crossbar
switches, which interconnect input and output links of devices such as routers. Finally, Chapter
14 describes packet-scheduling algorithms, which are used to provide quality-of-service, and
Chapter 15 discusses routers as distributed systems, with examples focusing on performance
and the use of design and reasoning techniques from distributed algorithms. While this list of
functions seems short, one can build a fast router by designing a fast lookup algorithm, a fast
switch, and fast packet-scheduling algorithms. Part IV, called “Endgame,” starts by speculating
on the potential need for implementing more complex tasks in the future. For example, Chapter
16 describes efficient implementation techniques for measurement primitives, while Chapter
17 describes efficient implementation techniques for security primitives. The book ends with
a short chapter, Chapter 18, which reaches closure by distilling the unities that underly the
many different topics in this book. This chapter also briefly presents examples of the use of
algorithmics in a canonical router (the Cisco GSR) and a canonical server (the Flash Web
server). A more detailed overview of Parts III and IV of the book can be found in Figure 1.2.

FEATURES

The book has the following features that readers, implementors, students, and instructors can
take advantage of.

Preface xxiii

Intuitive introduction: The introductory paragraph of each chapter in Parts II, III, and IV uses
an intuitive, real-world analogy to motivate each bottleneck. For example, we use the
analogy of making multiple photocopies of a document for data copying and the analogy
of a flight database for prefix lookups.

Quick Reference Guide: For readers familiar with a topic and pressed for time, the opening
section of each chapter concludes with a Quick Reference Guide that points to the most
important implementation ideas and the corresponding section numbers.

Chapter organization: To help orient the reader, immediately after the Quick Reference Guide
in each chapter is a map of the entire chapter.

Summary of techniques: To emphasize the correlation between principles and techniques, at
the start of each chapter is a table that summarizes the techniques described, together with
the corresponding principles.

Consistent use of principles: After a detailed description in Chapter 3 of 15 principles, the
rest of the book consistently uses these principles in describing specific techniques. For
reference, the principles are summarized inside the front cover. Principles are referred
to consistently by number — for example, P9 for Principle 9. Since principle numbers
are hard to remember, three aids are provided. Besides the inside front cover summary
and the summary at the start of each chapter, the first use of a principle in any chapter is
accompanied by an explicit statement of the principle.

Exercises: Chapter 4 of the book provides a set of real-life examples of applying the principles
that have been enjoyed by past attendees of tutorials on network algorithmics. Every
subsequent chapter through Chapter 17 is followed by a set of exercises. Brief solutions to
these exercises can be found in an instructor’s manual obtainable from Morgan Kaufmann.

Slides: Lecture slides in pdf for most chapters are available at Morgan Kaufmann’s Web site
www.mkp.com.

USAGE

This book can be used in many ways.

Textbook: Students and instructors can use this book as the basis of a one-semester class.
A semester class on network algorithmics can include most of Part I and can sample
chapters from Part II (e.g., Chapter 5 on copying, Chapter 6 on control overhead) and
from Part III (e.g., Chapter 11 on prefix lookups, Chapter 13 on switching).

Implementation guide: Implementors who care about performance may wish to read all of
Part I and then sample Parts II and III according to their needs.

Reference book: Implementors and students can also use this book as a reference book in
addition to other books on network protocols.

WHY THIS BOOK WAS WRITTEN

The impetus for this book came from my academic research into efficient protocol implemen-
tation. It also came from three networking products I worked on with colleagues: the first
bridge, the Gigaswitch, and the Procket 40 Gbps router. To prove itself against detractors, the
first bridge was designed to operate at wire speed, an idea that spread to routers and the entire

xxiv Preface

industry. My experience watching the work of Mark Kempf on the first bridge (see Chapter 10)
led to a lasting interest in speeding up networking devices.

Next, the DEC Gigaswitch introduced me to the world of switching. Finally, the Procket
router was designed by an interdisciplinary team that included digital designers who had
designed processors, experts who had written vast amounts of the software in core routers, and
some people like myself who were interested in algorithms. Despite the varied backgrounds,
the team produced innovative new ideas, which convinced me of the importance of interdis-
ciplinary thinking for performance breakthroughs. This motivated the writing of Chapter 2
on implementation models, an attempt to bridge the gaps between the different communities
involved in high-performance designs.

For several years, I taught a class that collected together these techniques. The 15 principles
emerged as a way to break up the techniques more finely and systematically. In retrospect,
some principles seem redundant and glib. However, they serve as part of a first attempt to
organize a vast amount of material.

I have taught five classes and three tutorials based on the material in this book, and so this
book has been greatly influenced by student responses and ideas.

ACKNOWLEDGMENTS

A special thanks to my editors: Karen Gettman and Rick Adams and Karyn Johnson; to all my
advisors, who taught me so much: Wushow Chou, Arne Nillson, Baruch Awerbuch, Nancy
Lynch; to all my mentors: Alan Kirby, Radia Perlman, Tony Lauck, Bob Thomas, Bob Simcoe,
Jon Turner; to numerous colleages at DEC and other companies, especially to Sharad Merhotra,
Bill Lynch, and Tony Li of Procket Networks, who taught me about real routers; to students
who adventured in the field of network algorithmics with me; to numerous reviewers of this
book and especially to Jon Snader, Tony Lauck, Brian Kernighan, Craig Partridge, and Radia
Perlman for detailed comments; to Kevin D’Souza, Stefano Previdi, Anees Shaikh, and Darryl
Veitch for their reviews and ideas; to my family, my mother, my wife’s father and mother, and
my sister; and, of course, to my wife, Aju, and my sons, Tim and Andrew.

I’d like to end by acknowledging my heroes: four teachers who have influenced me. The
first is Leonard Bernstein, who taught me in his lectures on music that a teacher’s enthusiasm
for the material can be infectious. The second is George Polya, who taught me in his books
on problem solving that the process of discovery is as important as the final discoveries them-
selves. The third is Socrates, who taught me through Plato that it is worth always questioning
assumptions. The fourth is Jesus, who has taught me that life, and indeed this book, is not a
matter of merit but of grace and gift.

P A R T I

The Rules of the Game

“Come, Watson, come!” he cried. “The game is afoot!”

—Arthur Conan Doyle in The Abbey Grange

The first part of this book deals with specifying the rules of the network algorithmics
game. We start with a quick introduction where we define network algorithmics and
contrast it to algorithm design. Next, we present models of protocols, operating
systems, processor architecture, and hardware design; these are the key disciplines
used in the rest of the book. Then we present a set of 15 principles abstracted from
the specific techniques presented later in the book. Part I ends with a set of sample
problems together with solutions obtained using the principles. Implementors pressed
for time should skim the Quick Reference Guides directly following the introduction
to each chapter.

C H A P T E R 1

Introducing Network Algorithmics

What really makes it an invention is that someone decides not to change the solution
to a known problem, but to change the question.

—Dean Kamen

Just as the objective of chess is to checkmate the opponent and the objective of tennis is to win
matches, the objective of the network algorithmics game is to battle networking implementation
bottlenecks.

Beyond specific techniques, this book distills a fundamental way of crafting solutions
to internet bottlenecks that we call network algorithmics. This provides the reader tools to
design different implementations for specific contexts and to deal with new bottlenecks that
will undoubtedly arise in the changing world of networks.

So what is network algorithmics? Network algorithmics goes beyond the design of effi-
cient algorithms for networking tasks, though this has an important place. In particular,
network algorithmics recognizes the primary importance of taking an interdisciplinary systems
approach to streamlining network implementations.

Network algorithmics is an interdisciplinary approach because it encompasses such fields
as architecture and operating systems (for speeding up servers), hardware design (for speeding
up network devices such as routers), and algorithm design (for designing scalable algorithms).
Network algorithmics is also a systems approach, because it is described in this book using a set
of 15 principles that exploit the fact that routers and servers are systems, in which efficiencies
can be gained by moving functions in time and space between subsystems.

The problems addressed by network algorithmics are fundamental networking perfor-
mance bottlenecks. The solutions advocated by network algorithmics are a set of fundamental
techniques to address these bottlenecks. Next, we provide a quick preview of both the
bottlenecks and the methods.

1.1 THE PROBLEM: NETWORK BOTTLENECKS

The main problem considered in this book is how to make networks easy to use while at the
same time realizing the performance of the raw hardware. Ease of use comes from the use of
powerful network abstractions, such as socket interfaces and prefix-based forwarding. Unfor-
tunately, without care such abstractions exact a large performance penalty when compared to
the capacity of raw transmission links such as optical fiber. To study this performance gap

3

4 C H A P T E R 1 Introducing Network Algorithmics

in more detail we examine two fundamental categories of networking devices, endnodes and
routers.

1.1.1 Endnode Bottlenecks
Endnodes are the endpoints of the network. They include personal computers and workstations
as well as large servers that provide services. Endnodes are specialized toward computation,
as opposed to networking, and are typically designed to support general-purpose computation.
Thus endnode bottlenecks are typically the result of two forces: structure and scale.

• Structure: To be able to run arbitrary code, personal computers and large servers typically
have an operating system that mediates between applications and the hardware. To ease
software development, most large operating systems are carefully structured as layered
software; to protect the operating system from other applications, operating systems
implement a set of protection mechanisms; finally, core operating systems routines, such
as schedulers and allocators, are written using general mechanisms that target as wide a
class of applications as possible. Unfortunately, the combination of layered software,
protection mechanisms, and excessive generality can slow down networking software
greatly, even with the fastest processors.

• Scale: The emergence of large servers providing Web and other services causes further
performance problems. In particular, a large server such as a Web server will typically have
thousands of concurrent clients. Many operating systems use inefficient data structures and
algorithms that were designed for an era when the number of connections was small.

Figure 1.1 previews the main endnode bottlenecks covered in this book, together with
causes and solutions. The first bottleneck occurs because conventional operating system struc-
tures cause packet data copying across protection domains; the situation is further complicated

Bottleneck Chapter

5

Cause Sample Solution

Copying Protection, structure Copying many data blocks without
OS intervention (e.g., RDMA)

6Context
switching Complex scheduling User-level protocol implementations

Event-driven Web servers

6System
calls Protection, structure Direct channels from applications

to drivers (e.g., VIA)

8Demultiplexing Scaling with
number of endpoints BPF and Pathfinder

7Timers Scaling with
number of timers Timing wheels

9Checksums/
CRCs

Generality
Scaling with link speeds

Multibit computation

9Protocol
code Generality Header prediction

F I G U R E 1.1 Preview of endnode bottlenecks, solutions to which are described in Part II of the book.

1.1 The Problem: Network Bottlenecks 5

in Web servers by similar copying with respect to the file system and by other manipula-
tions, such as checksums, that examine all the packet data. Chapter 5 describes a number of
techniques to reduce these overheads while preserving the goals of system abstractions, such
as protection and structure. The second major overhead is the control overhead caused by
switching between threads of control (or protection domains) while processing a packet; this
is addressed in Chapter 6.

Networking applications use timers to deal with failure. With a large number of connec-
tions the timer overhead at a server can become large; this overhead is addressed in Chapter 7.
Similarly, network messages must be demultiplexed (i.e., steered) on receipt to the right end
application; techniques to address this bottleneck are addressed in Chapter 8. Finally, there
are several other common protocol processing tasks, such as buffer allocation and checksums,
which are addressed in Chapter 9.

1.1.2 Router Bottlenecks
Though we concentrate on Internet routers, almost all the techniques described in this book
apply equally well to any other network devices, such as bridges, switches, gateways, monitors,
and security appliances, and to protocols other than IP, such as FiberChannel.

Thus throughout the rest of the book, it is often useful to think of a router as a “generic
network interconnection device.” Unlike endnodes, these are special-purpose devices devoted
to networking. Thus there is very little structural overhead within a router, with only the use
of a very lightweight operating system and a clearly separated forwarding path that often is
completely implemented in hardware. Instead of structure, the fundamental problems faced
by routers are caused by scale and services.

• Scale: Network devices face two areas of scaling: bandwidth scaling and population
scaling. Bandwidth scaling occurs because optical links keep getting faster, as the progress
from 1-Gbps to 40-Gbps links shows, and because Internet traffic keeps growing due to a
diverse set of new applications. Population scaling occurs because more endpoints get
added to the Internet as more enterprises go online.

• Services: The need for speed and scale drove much of the networking industry in the
1980s and 1990s as more businesses went online (e.g., Amazon.com) and whole new
online services were created (e.g., Ebay). But the very success of the Internet requires
careful attention in the next decade to make it more effective by providing guarantees in
terms of performance, security, and reliability. After all, if manufacturers (e.g., Dell) sell
more online than by other channels, it is important to provide network guarantees — delay
in times of congestion, protection during attacks, and availability when failures occur.
Finding ways to implement these new services at high speeds will be a major challenge
for router vendors in the next decade.

Figure 1.2 previews the main router (bridge/gateway) bottlenecks covered in this book, together
with causes and solutions.

First, all networking devices forward packets to their destination by looking up a for-
warding table. The simplest forwarding table lookup does an exact match with a destination
address, as exemplified by bridges. Chapter 10 describes fast and scalable exact-match lookup
schemes. Unfortunately, population scaling has made lookups far more complex for routers.

6 C H A P T E R 1 Introducing Network Algorithmics

Bottleneck Chapter

10

Cause Sample Solution

Exact
lookups Link speed scaling Parallel hashing

11Prefix
lookups

Link speed scaling
Prefix database size scaling Compressed multibit tries

12Packet
classification

Service differentiation
Link speed and size scaling

Decision tree algorithms
Hardware parallelism (CAMs)

13Switching Optical-electronic speed gap
Head-of-line blocking

Crossbar switches
Virtual output queues

14Fair
queueing

Service differentiation
Link speed scaling

Memory scaling

Weighted fair queueing
Deficit round robin

DiffServ, Core Stateless

15Internal
bandwidth

Scaling of internal
bus speeds Reliable striping

16Measurement Link speed scaling Juniper's DCU

17Security Scaling in number and
intensity of attacks

Traceback with bloom filters
Extracting worm signatures

F I G U R E 1.2 Preview of router bottlenecks, solutions to which are described in Parts III and IV
of the book.

To deal with large Internet populations, routers keep a single entry called a prefix (analogous
to a telephone area code) for a large group of stations. Thus routers must do a more com-
plex longest-prefix-match lookup. Chapter 11 describes solutions to this problem that scale to
increasing speeds and table sizes.

Many routers today offer what is sometimes called service differentiation, where different
packets can be treated differently in order to provide service and security guarantees. Unfor-
tunately, this requires an even more complex form of lookup called packet classification, in
which the lookup is based on the destination, source, and even the services that a packet is
providing. This challenging issue is tackled in Chapter 12.

Next, all networking devices can be abstractly considered as switches that shunt packets
coming in from a set of input links to a set of output links. Thus a fundamental issue is that of
building a high-speed switch. This is hard, especially in the face of the growing gap between
optical and electronic speeds. The standard solution is to use parallelism via a crossbar switch.
Unfortunately, it is nontrivial to schedule a crossbar at high speeds, and parallelism is limited
by a phenomenon known as head-of-line blocking. Worse, population scaling and optical
multiplexing are forcing switch vendors to build switches with a large number of ports (e.g.,
256), which exacerbates these other problems. Solutions to these problems are described in
Chapter 13.

While the previous bottlenecks are caused by scaling, the next bottleneck is caused by
the need for new services. The issue of providing performance guarantees at high speeds is
treated in Chapter 14, where the issue of implementing so-called QoS (quality of service)
mechanisms is studied. Chapter 15 briefly surveys another bottleneck that is becoming an

1.2 The Techniques: Network Algorithmics 7

increasing problem: the issue of bandwidth within a router. It describes sample techniques,
such as striping across internal buses and chip-to-chip links.

The final sections of the book take a brief look at emerging services that must, we believe,
be part of a well-engineered Internet of the future. First, routers of the future must build in
support for measurement, because measurement is key to engineering networks to provide
guarantees. While routers today provide some support for measurement in terms of counters
and NetFlow records, Chapter 16 also considers more innovative measurement mechanisms
that may be implemented in the future.

Chapter 17 describes security support, some of which is already being built into routers.
Given the increased sophistication, virulence, and rate of network attacks, we believe that
implementing security features in networking devices (whether routers or dedicated intru-
sion prevention/detection devices) will be essential. Further, unless the security device can
keep up with high-speed links, the device may miss vital information required to spot an
attack.

1.2 THE TECHNIQUES: NETWORK ALGORITHMICS

Throughout this book, we will talk of many specific techniques: of interrupts, copies, and
timing wheels; of Pathfinder and Sting; of why some routers are very slow; and whether
Web servers can scale. But what underlies the assorted techniques in this book and makes
it more than a recipe book is the notion of network algorithmics. As said earlier, network
algorithmics recognizes the primary importance of taking a systems approach to streamlining
network implementations.

While everyone recognizes that the Internet is a system consisting of routers and links,
it is perhaps less obvious that every networking device, from the Cisco GSR to an Apache
Web server, is also a system. A system is built out of interconnected subsystems that are
instantiated at various points in time. For example, a core router consists of line cards with
forwarding engines and packet memories connected by a crossbar switch. The router behavior
is affected by decisions at various time scales, which range from manufacturing time (when
default parameters are stored in NVRAM) to route computation time (when routers conspire
to compute routes) to packet-forwarding time (when packets are sent to adjoining routers).

Thus one key observation in the systems approach is that one can often design an efficient
subsystem by moving some of its functions in space (i.e., to other subsystems) or in time
(i.e., to points in time before or after the function is apparently required). In some sense, the
practitioner of network algorithmics is an unscrupulous opportunist willing to change the rules
at any time to make the game easier. The only constraint is that the functions provided by the
overall system continue to satisfy users.

In one of Mark Twain’s books, a Connecticut Yankee is transported back in time to King
Arthur’s court. The Yankee then uses a gun to fight against dueling knights accustomed to
jousting with lances. This is an example of changing system assumptions (replacing lances by
guns) to solve a problem (winning a duel).

Considering the constraints faced by the network implementor at high speeds — increas-
ingly complex tasks, larger systems to support, small amounts of high-speed memory, and
a small number of memory accesses — it may require every trick, every gun in one’s arse-
nal, to keep pace with the increasing speed and scale of the Internet. The designer can throw

8 C H A P T E R 1 Introducing Network Algorithmics

hardware at the problem, change the system assumptions, design a new algorithm — whatever
it takes to get the job done.

This book is divided into four parts. The first part, of which this is the first chapter, lays
a foundation for applying network algorithmics to packet processing. The second chapter of
the first part outlines models, and the third chapter presents general principles used in the
remainder of the book.

One of the best ways to get a quick idea about what network algorithmics is about is to
plunge right away into a warm-up example. While the warm-up example that follows is in the
context of a device within the network where new hardware can be designed, note that Part 2
is about building efficient servers using only software design techniques.

1.2.1 Warm-up Example: Scenting an Evil Packet
Imagine a front-end network monitor (or intrusion detection system) on the periphery of a
corporate network that wishes to flag suspicious incoming packets — packets that could contain
attacks on internal computers. A common such attack is a buffer overflow attack, where the
attacker places machine code C in a network header field F.

If the receiving computer allocates a buffer too small for header field F and is careless
about checking for overflow, the code C can spill onto the receiving machine’s stack. With a
little more effort, the intruder can make the receiving machine actually execute evil code C.
C then takes over the receiver machine. Figure 1.3 shows such an attack embodied in a familiar
field, a destination Web URL (uniform resource locator). How might the monitor detect the
presence of such a suspicious URL? A possible way is to observe that URLs containing evil
code are often too long (an easy check) and often have a large fraction of unusual (at least in
URLs) characters, such as #. Thus the monitor could mark such packets (containing URLs that
are too long and have too many occurrences of such unusual characters) for more thorough
examination.

It is worth stating at the outset that the security implications of this strategy need to be
carefully thought out. For example, there may be several innocuous programs, such as CGI
scripts, in URLs that lead to false positives. Without getting too hung up in overall architectural
implications, let us assume that this was a specification handed down to a chip architect by
a security architect. We now use this sample problem, suggested by Mike Fisk, to illustrate
algorithmics in action.

Faced with such a specification, a chip designer may use the following design process,
which illustrates some of the principles of network algorithmics. The process starts with a
strawman design and refines the design using techniques such as designing a better algorithm,
relaxing the specification, and exploiting hardware.

Intrusion
Detection
System

Evil code

Get AIM://overflow # * # ! * # *

F I G U R E 1.3 Getting wind of an evil packet by noticing the frequency of unprintable characters.

1.2 The Techniques: Network Algorithmics 9

Threshold
Array

Count
Array Evil code

Get AIM://overflow # * # ! * # . . # . *
2%0 5

1%#

255

3 Increment

F I G U R E 1.4 Strawman solution for detecting an evil packet by counting occurrences of each char-
acter via a count array (middle) and then comparing in a final pass with an array of acceptable thresholds
(left).

1.2.2 Strawman Solution
The check of overall length is straightforward to implement, so we concentrate on checking for
a prevalence of suspicious characters. The first strawman solution is illustrated in Figure 1.4.
The chip maintains two arrays, T and C, with 256 elements each, one for each possible value
of an 8-bit character. The threshold array, T , contains the acceptable percentage (as a fraction
of the entire URL length) for each character. If the occurrences of a character in an actual
URL fall above this fraction, the packet should be flagged. Each character can have a different
threshold.

The count array, C, in the middle, contains the current count C[i] for each possible
character i. When the chip reads a new character ′′i′′ in the URL, it increments C[i] by 1.
C[i] is initialized to 0 for all values of i when a new packet is encountered. The incrementing
process starts only after the chip parses the HTTP header and recognizes the start of a URL.

In HTTP, the end of a URL is signified by two newline characters; thus one can tell the
length of the URL only after parsing the entire URL string. Thus, after the end of the URL is
encountered, the chip makes a final pass over the array C. If C[j] ≥ L · T [j] for any j, where
L is the length of the URL, the packet is flagged.

Assume that packets are coming into the monitor at high speed and that we wish to finish
processing a packet before the next one arrives. This requirement, called wire speed processing,
is very common in networking; it prevents processing backlogs even in the worst case. To meet
wire speed requirements, ideally the chip should do a small constant number of operations for
every URL byte. Assume the main step of incrementing a counter can be done in the time to
receive a byte.

Unfortunately, the two passes over the array, first to initialize it and then to check for
threshold violations, make this design slow. Minimum packet sizes are often as small as
40 bytes and include only network headers. Adding 768 more operations (1 write and 1 read
to each element of C, and 1 read of T for each of 256 indices) can make this design infeasible.

1.2.3 Thinking Algorithmically
Intuitively, the second pass through the arrays C and T at the end seems like a waste. For exam-
ple, it suffices to alarm if any character is over the threshold. So why check all characters?

10 C H A P T E R 1 Introducing Network Algorithmics

Threshold
Array

Count
Array Evil code

Get AIM://overflow # * # ! * # . . # . *
2%0 5

1%#

255

3

1) Increment

3) If C[i]/T[i] > Max, Max = C[i]/T[i]
2) Read

F I G U R E 1.5 Avoiding the final loop through the threshold array by keeping track only of Max, the
highest counter encountered so far relative to its threshold value.

This suggests keeping track only of the largest character count c; at the end perhaps the
algorithm needs to check only whether c is over threshold with respect to the total URL
length L.

This does not quite work. A nonsuspicious character such as “e” may well have a very
high occurrence count. However, “e” is also likely to be specified with a high threshold. Thus
if we keep track only of “e” with, say, a count of 20, we may not keep track of “#” with, say, a
count of 10. If the threshold of “#” is much smaller, the algorithm may cause a false negative:
The chip may fail to alarm on a packet that should be flagged.

The counterexample suggests the following fix. The chip keeps track in a register of the
highest counter relativized to the threshold value. More precisely, the chip keeps track of the
highest relativized counter Max corresponding to some character k, such that C[k]/T [k] = Max
is the highest among all characters encountered so far. If a new character i is read, the chip
increments C[i]. If C[i]/T [i] > Max, then the chip replaces the current stored value of Max
with C[i]/T [i]. At the end of URL processing, the chip alarms if Max ≥ L.

Here’s why this works. If Max = C[k]/T [k] ≥ L, clearly the packet must be flagged,
because character k is over threshold. On the other hand, if C[k]/T [k] < L, then for any
character i, it follows that C[i]/T [i] ≤ C[k]/T [k] < L. Thus if Max falls below threshold, then
no character is above threshold. Thus there can be no false negatives. This solution is shown
in Figure 1.5.

1.2.4 Refining the Algorithm: Exploiting Hardware
The new algorithm has eliminated the loop at the end but still has to deal with a divide operation
while processing each byte. Divide logic is somewhat complicated and worth avoiding if
possible — but how?

Returning to the specification and its intended use, it seems likely that thresholds are not
meant to be exact floating point numbers. It is unlikely that the architect providing thresholds
can estimate the values precisely; one is likely to approximate 2.78% as 3% without causing
much difference to the security goals. So why not go further and approximate the threshold
by some power of 2 less than the exact intended threshold? Thus if the threshold is 1/29, why
not approximate it as 1/32?

1.2 The Techniques: Network Algorithmics 11

Threshold plus
Count Array Evil code

Get AIM://overflow # * # ! * # . . # . *
2%0 5

1%#

255

3
1) Read wide word
2) Compare and flag if needed
3) Write incremented value

F I G U R E 1.6 Using a wide word and a coalesced array to combine 2 reads into one.

Changing the specification in this way requires negotiation with the system architect.
Assume that the architect agrees to this new proposal. Then a threshold such as 1/32 can be
encoded compactly as the corresponding power of 2 — i.e., 5. This threshold shift value can
be stored in the threshold array instead of a fraction.

Thus when a character j is encountered, the chip increments C[j] as usual and then shifts
C[j] to the left — dividing by 1/x is the same as multiplying by x — by the specified threshold.
If the shifted value is higher than the last stored value for Max, the chip replaces the old value
with the new value and marches on.

Thus the logic required to implement the processing of a byte is a simple shift-and-
compare. The stored state is only a single register to store Max. As it stands, however, the
design requires a Read to the Threshold array (to read the shift value), a Read to the Count
array (to read the old count), and a Write to the Count array (to write back the incremented
value).

Now reads to memory — 1–2 nsec even for the fastest on-chip memories but possibly
even as slow as 10 nsec for slower memories — are slower than logic. Single gate delays are
only in the order of picoseconds, and shift logic does not require too many gate delays. Thus
the processing bottleneck is the number of memory accesses.

The chip implementation can combine the 2 Reads to memory into 1 Read by coalescing
the Count and Threshold arrays into a single array, as shown in Figure 1.6. The idea is to make
the memory words wide enough to hold the counter (say, 15 bits to handle packets of length
32K) and the threshold (depending on the precision necessary, no more than 14 bits). Thus the
two fields can easily be combined into a larger word of size 29 bits. In practice, hardware can
handle much larger words sizes of up to 1000 bits. Also, note that extracting the two fields
packed into a single word, quite a chore in software, is trivial in hardware by routing wires
appropriately between registers or by using multiplexers.

1.2.5 Cleaning Up
We have postponed one thorny issue to this point. The terminal loop has been eliminated
while leaving the initial initialization loop. To handle this, note that the chip has spare time for
initialization after parsing the URL of the current packet and before encountering the URL of
the next packet.

12 C H A P T E R 1 Introducing Network Algorithmics

Unfortunately, packets can be as small as 50 bytes, even with an HTTP header. Thus
even assuming a slack of 40 non-URL bytes other than the 10 bytes of the URL, this still does
not suffice to initialize a 256-byte array without paying 256/40 = 6 more operations per byte
than during the processing of a URL. As in the URL processing loop, each initialization step
requires a Read and Write of some element of the coalesced array.

A trick among lazy people is to postpone work until it is absolutely needed, in the hope
that it may never be needed. Note that, strictly speaking, the chip need not initialize a C[i]
until character i is accessed for the first time in a subsequent packet. But how can the chip tell
that it is seeing character i for the first time?

To implement lazy evaluation, each memory word representing an entry in the coalesced
array must be expanded to include, say, a 3-bit generation number G[i]. The generation number
can be thought of as a value of clock time measured in terms of packets encountered so far,
except that it is limited to 3 bits. Thus, the chip keeps an additional register g, besides the
extra G[i] for each i, that is 3 bits long; g is incremented mod 8 for every packet encountered.
In addition, every time C[i] is updated, the chip updates G[i] as well to reflect the current
value of g.

Given the generation numbers, the chip need not initialize the count array after the current
packet has been processed. However, consider the case of a packet whose generation number
is h, which contains a character i in its URL. When the chip encounters i while processing the
packet the chip reads C[i] and G[i] from the Count array. If G[i] �= h, this clearly indicates
that entry i was last accessed by an earlier packet and has not been subsequently initialized.
Thus the logic will write back the value of C[i] as 1 (initialization plus increment) and set G[i]
to h. This is shown in Figure 1.7.

The careful reader will immediately object. Since the generation number is only 3 bits,
once the value of g wraps around, there can be aliasing. Thus if G[i] is 5 and entry i is not
accessed until eight more packets have gone by, g will have wrapped around to 5. If the next
packet contains i, C[i] will not be initialized and the count will (wrongly) accumulate the count
of i in the current packet together with the count that occurred eight packets in the past.

The chip can avoid such aliasing by doing a separate “scrubbing” loop that reads the array
and initializes all counters with outdated generation numbers. For correctness, the chip must
guarantee one complete scan through the array for every eight packets processed. Given that
one has a slack of (say) 40 non-URL bytes per packet, this guarantees a slack of 320 non-URL

Shift Count

CurrentGen=101

Gen Evil code

Get AIM://overflow # * # ! * # . . # . *

At the end, flag packet if Max > URL length

1 bit0 5 100

4 bits#

255

3 101
1) Read wide word
2) If Gen match, Write count + 1 else Write 1
3) if C[i] shifted by T[i] > Max, replace Max

F I G U R E 1.7 The final solution with generation numbers to finesse an initialization loop.

1.2 The Techniques: Network Algorithmics 13

bytes after eight packets, which suffices to initialize a 256-element array using one Read and
one Write per byte, whether the byte is a URL or a non-URL byte. Clearly, the designer can
gain more slack, if needed, by increasing the bits in the generation number, at the cost of
slightly increased storage in the array.

The chip, then, must have two states: one for processing URL bytes and one for processing
non-URL bytes. When the URL is completely processed, the chip switches to the “Scrub” state.
The chip maintains another register, which points to the next array entry s to be scrubbed. In
the scrub state, when a non-URL character is received, the chip reads entry s in the coalesced
array. If G[s] �= g, G[s] is reset to g and C[s] is initialized to 0.

Thus the use of 3 extra bits of generation number per array entry has reduced initialization
processing cycles, trading processing for storage. Altogether a coalesced array entry is now
only 32 bits, 15 bits for a counter, 14 bits for a threshold shift value, and 3 bits for a generation
number. Note that the added initialization check needed during URL byte processing does
not increase memory references (the bottleneck) but adds slightly to the processing logic. In
addition, it requires two more chip registers to hold g and s, a small additional expense.

1.2.6 Characteristics of Network Algorithmics
The example of scenting an evil packet illustrates three important aspects of network
algorithmics.

a. Network algorithmics is interdisciplinary: Given the high rates at which network
processing must be done, a router designer would be hard pressed not to use hardware. The
example exploited several features of hardware: It assumed that wide words of arbitrary size
were easily possible; it assumed that shifts were easier than divides; it assumed that memory
references were the bottleneck; it assumed that a 256-element array contained in fast on-chip
memory was feasible; it assumed that adding a few extra registers was feasible; and finally it
assumed that small changes to the logic to combine URL processing and initialization were
trivial to implement.

For the reader unfamiliar with hardware design, this is a little like jumping into a game of
cards without knowing the rules and then finding oneself finessed and trumped in unexpected
ways. Acontention of this book is that mastery of a few relevant aspects of hardware design can
help even a software designer understand at least the feasibility of different hardware designs.
A further contention of this book is that such interdisciplinary thinking can help produce the
best designs.

Thus Chapter 2 presents the rules of the game. It presents simple models of hardware that
point out opportunities for finessing and trumping troublesome implementation issues. It also
presents simple models of operating systems. This is done because end systems such as clients
and Web servers require tinkering with and understanding operating system issues to improve
performance, just as routers and network devices require tinkering with hardware.

b. Network algorithmics recognizes the primacy of systems thinking: The specification
was relaxed to allow approximate thresholds in powers of 2, which simplified the hardware.
Relaxing specifications and moving work from one subsystem to another is an extremely com-
mon systems technique, but it is not encouraged by current educational practice in universities,
in which each area is taught in isolation.

Thus today one has separate courses in algorithms, in operating systems, and in net-
working. This tends to encourage “black box” thinking instead of holistic or systems thinking.

14 C H A P T E R 1 Introducing Network Algorithmics

The example alluded to other systems techniques, such as the use of lazy evaluation and trading
memory for processing in order to scrub the Count array.

Thus a feature of this book is an attempt to distill the systems principles used in algorithmics
into a set of 15 principles, which are catalogued inside the front cover of the book and are
explored in detail in Chapter 3. This book attempts to explain and dissect all the network
implementations described in this book in terms of these principles. The principles are also
given numbers for easy reference, though for the most part we will use both the number and the
name. For instance, take a quick peek at the inside front cover and you will find that relaxing
specifications is principle P4 and lazy evaluation is P2a.

c. Network algorithmics can benefit from algorithmic thinking: While this book
stresses the primacy of systems thinking to finesse problems wherever possible, there are
many situations where systems constraints prevent any elimination of problems. In our exam-
ple, after attempting to finesse the need for algorithmic thinking by relaxing the specification,
the problem of false positives led to considering keeping track of the highest counter relative
to its threshold value. As a second example, Chapter 11 shows that despite attempts to finesse
Internet lookups using what is called tag switching, many routers resort to efficient algorithms
for lookup.

It is worth emphasizing, however, that because the models are somewhat different from
standard theoretical models, it is often insufficient to blindly reuse existing algorithms. For
example, Chapter 13 discusses how the need to schedule a crossbar switch in 8 nsec leads to
considering simpler maximal matching heuristics, as opposed to more complicated algorithms
that produce optimal matchings in a bipartite graph.

As a second example, Chapter 11 describes how the BSD implementation of lookups
blindly reused a data structure called a Patricia trie, which uses a skip count, to do IP lookups.
The resulting algorithm requires complex backtracking.1 A simple modification that keeps the
actual bits that were skipped (instead of the count) avoids the need for backtracking. But this
requires some insight into the black box (i.e., the algorithm) and its application.

In summary, the uncritical use of standard algorithms can miss implementation break-
throughs because of inappropriate measures (e.g., for packet filters such as BPF, the insertion
of a new classifier can afford to take more time than search), inappropriate models (e.g.,
ignoring the effects of cache lines in software or parallelism in hardware), and inappropriate
analysis (e.g., order-of-complexity results that hide constant factors crucial in ensuring wire
speed forwarding).

Thus another purpose of this book is to persuade implementors that insight into algo-
rithms and the use of fundamental algorithmic techniques such as divide-and-conquer and
randomization is important to master. This leads us to the following.

Definition: Network algorithmics is the use of an interdisciplinary systems approach,
seasoned with algorithmic thinking, to design fast implementations of network processing
tasks at servers, routers, and other networking devices.

1The algorithm was considered to be the state of the art for many years and was even implemented in hardware
in several router designs. In fact, a patent for lookups issued to a major router company appears to be a hardware
implementation of BSD Patricia tries with backtracking. Any deficiencies of the algorithm can, of course, be mitigated
by fast hardware. However, it is worth considering that a simple change to the algorithm could have simplified the
hardware design.

1.3 Exercise 15

Focus Chapter

2

Motivation Sample Topic

Models Understand simple models
for OS, hardware, networks

Memory technology techniques
(interleaving, mixing SRAM/DRAM)

3Strategies Learn systems principles
for overcoming bottlenecks

Pass hints, evaluate lazily
Add state, exploit locality

4Problems Practice applying principles
on simple problems

Designing a lookup engine for
a network monitor

F I G U R E 1.8 Preview of network algorithmics. Network algorithmics is introduced using a set of
models, strategies, and sample problems, which are described in Part I of the book.

Part I of the book is devoted to describing the network algorithmics approach in more
detail. An overview of Part I is given in Figure 1.8.

While this book concentrates on networking, the general algorithmics approach holds for
the implementation of any computer system, whether a database, a processor architecture,
or a software application. This general philosophy is alluded to in Chapter 3 by providing
illustrative examples from the field of computer system implementation. The reader interested
only in networking should rest assured that the remainder of the book, other than Chapter 3,
avoids further digressions beyond networking.

While Parts II and III provide specific techniques for important specific problems, the main
goal of this book is to allow the reader to be able to tackle arbitrary packet-processing tasks
at high speeds in software or hardware. Thus the implementor of the future may be given the
task of speeding up XML processing in a Web server (likely, given current trends) or even the
task of computing the chi-square statistic in a router (possible because chi-square provides a
test for detecting abnormal observed frequencies for tasks such as intrusion detection). Despite
being assigned a completely unfamiliar task, the hope is that the implementor would be able
to craft a new solution to such tasks using the models, principles, and techniques described in
this book.

1.3 EXERCISE

1. Implementing Chi-Square: The chi-square statistic can be used to find if the overall set
of observed character frequencies are unusually different (as compared to normal random
variation) from the expected character frequencies. This is a more sophisticated test,
statistically speaking, than the simple threshold detector used in the warm-up example.
Assume that the thresholds represent the expected frequencies. The statistic is computed
by finding the sum of

(ExpectedFrequency[i] − ObservedFrequency[i])2/ExpectedFrequency[i]

for all values of character i. The chip should alarm if the final statistic is above a specified
threshold. (For example, a value of 14.2 implies that there is only a 1.4% chance that the
difference is due to chance variation.) Find a way to efficiently implement this statistic,
assuming once again that the length is known only at the end.

C H A P T E R 2

Network Implementation Models

A rather small set of key concepts is enough. Only by learning the essence of each
topic, and by carrying along the least amount of mental baggage at each step, will
the student emerge with a good overall understanding of the subject.

— Carver Mead and Lynn Conway

To improve the performance of endnodes and routers, an implementor must know the rules of
the game. A central difficulty is that network algorithmics encompasses four separate areas:
protocols, hardware architectures, operating systems, and algorithms. Networking innovations
occur when area experts work together to produce synergistic solutions. But can a logic designer
understand protocol issues, and can a clever algorithm designer understand hardware trade-offs,
at least without deep study?

Useful dialog can begin with simple models that have explanatory and predictive power but
without unnecessary detail. At the least, such models should define terms used in the book; at the
best, such models should enable a creative person outside an area to play with and create designs
that can be checked by an expert within the area. For example, a hardware chip implementor
should be able to suggest software changes to the chip driver, and a theoretical computer
scientist should be able to dream up hardware matching algorithms for switch arbitration. This
is the goal of this chapter.

The chapter is organized as follows. Starting with a model for protocols in Section 2.1, the
implementation environment is described in bottom-up order. Section 2.2 describes relevant
aspects of hardware protocol implementation, surveying logic, memories, and components.
Section 2.3 describes a model for endnodes and network devices such as routers. Section 2.4
describes a model for the relevant aspects of operating systems that affect performance, espe-
cially in endnodes. To motivate the reader and to retain the interest of the area expert, the
chapter contains a large number of networking examples to illustrate the application of each
model.

Q u i c k R e f e r e n c e G u i d e
Hardware designers should skip most of Section 2.2, except for Example 3 (design of a switch

arbitrator), Example 4 (design of a flow ID lookup chip), Example 5 (pin count limitations and their impli-
cations), and Section 2.2.5 (which summarizes three hardware design principles useful in networking).
Processor and architecture experts should skip Section 2.3 except for Example 7 (network processors).

16

2.1 Protocols 17

Implementors familiar with operating systems should skip Section 2.4, except for Example 8 (receiver
livelock as an example of how operating system structure influences protocol implementations). Even
those unfamiliar with an area such as operating systems may wish to consult these sections if needed
after reading the specific chapters that follow.

2.1 PROTOCOLS

Section 2.1.1 describes the transport protocol TCP and the IP routing protocol. These two
examples are used to provide an abstract model of a protocol and its functions in Section 2.1.2.
Section 2.1.3 ends with common network performance assumptions. Readers familiar with
TCP/IP may wish to skip to Section 2.1.2.

2.1.1 Transport and Routing Protocols
Applications subcontract the job of reliable delivery to a transport protocol such as the Trans-
mission Control Protocol (TCP). TCP’s job is to provide the sending and receiving applications
with the illusion of two shared data queues in each direction — despite the fact that the sender
and receiver machines are separated by a lossy network. Thus whatever the sender application
writes to its local TCP send queue should magically appear in the same order at the local TCP
receive queue at the receiver, and vice versa. TCP implements this mechanism by breaking
the queued application data into segments and retransmitting each segment until an acknowl-
edgment (ack) has been received. A more detailed description of TCP operation can be found
in Section A.1.1.

If the application is (say) a videoconferencing application that does not want reliability
guarantees, it can choose to use a protocol called UDP (User Datagram Protocol) instead of
TCP. Unlike TCP, UDP does not need acks or retransmissions because it does not guarantee
reliability.

Transport protocols such as TCP and UDP work by sending segments from a sender node
to a receiver node across the Internet. The actual job of sending a segment is subcontracted to
the Internet routing protocol IP.

Internet routing is broken into two conceptual parts, called forwarding and routing.
Forwarding is the process by which packets move from source to destination through inter-
mediate routers. A packet is a TCP segment together with a routing header that contains the
destination Internet address.

While forwarding must be done at extremely high speeds, the forwarding tables at each
router must be built by a routing protocol, especially in the face of topology changes, such
as link failures. There are several commonly used routing protocols, such as distance vector
(e.g., RIP), link state (e.g., OSPF), and policy routing (e.g., BGP). More details and references
to other texts can be found in Section A.1.2 in the Appendix.

2.1.2 Abstract Protocol Model
A protocol is a state machine for all nodes participating in the protocol, together with inter-
faces and message formats. A model for a protocol state machine is shown in Figure 2.1.

18 C H A P T E R 2 Network Implementation Models

STATE
(e.g., seq numbers)

User calls

Receive messageSend message

Timer calls

F I G U R E 2.1 Abstract model of the state machine implementing a protocol at a node participating in
a protocol.

CONTROL TRANSFER

Demultiplex

Schedule tasks

Set timers

Manipulate state

Look Up state

Reassemble

PROTOCOL
PROCESSING

Allocate resources (buffers, CPU)

DATA MANIPULATION
(e.g., switch, copy, checksum)

F I G U R E 2.2 Common protocol functions. The small shaded black box to the lower left represents
the state table used by the protocol.

The specification must describe how the state machine changes state and responds (e.g., by
sending messages, setting timers) to interface calls, received messages, and timer events.

For instance, when an application makes a connect request, the TCP sender state machine
initializes by picking an unused initial sequence number, goes to the so-called SYN-SENT
state, and sends a SYN message. As a second example, a link state routing protocol like OSPF
has a state machine at each router; when a link state packet (LSP) arrives at a router with a
higher sequence number than the last LSP from the source, the new LSP should be stored and
sent to all neighbors. While the link state protocol is very different from TCP, both protocols
can be abstracted by the state machine model shown in Figure 2.1.

This book is devoted to protocol implementations. Besides TCP and IP, this book will
consider other protocols, such as HTTP. Thus, it is worth abstracting out the generic and time-
consuming functions that a protocol state machine performs based on our TCP and routing
examples. Such a model, shown in Figure 2.2, will guide us through this book.

First, at the bottom of Figure 2.2, a protocol state machine must receive and send data
packets. This involves data manipulations, or operations that must read or write every byte in a
packet. For instance, a TCP must copy received data to application buffers, while a router has to

2.1 Protocols 19

switch packets from input links to output links. The TCP header also specifies a checksum that
must be computed over all the data bytes. Data copying also requires allocation of resources
such as buffers.

Second, at the top of Figure 2.2, the state machine must demultiplex data to one of many
clients. In some cases, the client programs must be activated, requiring potentially expensive
control transfer. For instance, when a receiving TCP receives a Web page, it has to demultiplex
the data to the Web browser application using the port number fields and may have to wake
up the process running the browser.

Figure 2.2 also depicts several generic functions shared by many protocols. First, protocols
have crucial state that must be looked up at high speeds and sometimes manipulated. For
instance, a received TCP packet causes TCP to look up a table of connection state, while a
received IP packet causes IP to look up a forwarding table. Second, protocols need to efficiently
set timers, for example, to control retransmission in TCP. Third, if a protocol module is
handling several different clients, it needs to efficiently schedule these clients. For instance,
TCP must schedule the processing of different connections, while a router must make sure that
unruly conversations between some pair of computers do not lock out other conversations.
Many protocols also allow large pieces of data to be fragmented into smaller pieces that need
reassembly.

One of the major theses of this book is that though such generic functions are often
expensive, their cost can be mitigated with the right techniques. Thus each generic protocol
function is worth studying in isolation. Therefore after Part I of this book, the remaining
chapters address specific protocol functions for endnodes and routers.

2.1.3 Performance Environment and Measures
This section describes some important measures and performance assumptions. Consider a
system (such as a network or even a single router) where jobs (such as messages) arrive
and, after completion, leave. The two most important metrics in networks are throughput and
latency. Throughput roughly measures the number of jobs completed per second. Latency
measures the time (typically worst case) to complete a job. System owners (e.g., ISPs, routers)
seek to maximize throughput to maximize revenues, while users of a system want end-to-end
latencies lower than a few hundred milliseconds. Latency also affects the speed of computation
across the network, as, for example, in the performance of a remote procedure call.

The following performance-related observations about the Internet milieu are helpful when
considering implementation trade-offs.

• Link Speeds: Backbone links are upgrading to 10 Gbps and 40 Gbps, and local links are
upgrading to gigabit speeds. However, wireless and home links are currently orders of
magnitude slower.

• TCP and Web Dominance: Web traffic accounts for over 70% of traffic in bytes or packets.
Similarly, TCP accounts for 90% of traffic in a a recent study [Bra98].

• Small Transfers: Most accessed Web documents accessed are small; for example, a SPEC
[Car96] study shows that 50% of accessed files are 50 kilobytes (KB) or less.

• Poor Latencies: Real round-trip delays exceed speed-of-light limitations; measurements in
Crovella and Carter [CC95] report a mean of 241 msec across the United States compared

20 C H A P T E R 2 Network Implementation Models

to speed-of-light delays of less than 30 msec. Increased latency can be caused by efforts
to improve throughput, such as batch compression at modems and pipelining in routers.

• Poor Locality: Backbone traffic studies [TMW97] show 250,000 different source–
destination pairs (sometimes called flows) passing through a router in a very short
duration. More recent estimates show around a million concurrent flows. Aggregating
groups of headers with the same destination address or other means does not reduce the
number of header classes significantly. Thus locality, or the likelihood of computation
invested in a packet being reused on a future packet, is small.

• Small Packets: Thompson et al. [TMW97] also show that roughly half the packets received
by a router are minimum-size 40-byte TCP acknowledgments. To avoid losing important
packets in a stream of minimum-size packets, most router- and network-adaptor vendors
aim for “wire speed forwarding” — this is the ability to process minimum-size (40-byte)
packets at the speed of the input link.1

• Critical Measures: It is worth distinguishing between global performance measures, such
as end-to-end delay and bandwidth, and local performance measures, such as router
lookup speeds. While global performance measures are crucial to overall network
performance, this book focuses only on local performance measures, which are a key
piece of the puzzle. In particular, this book focuses on forwarding performance and
resource (e.g., memory, logic) measures.

• Tools: Most network management tools, such as HP’s OpenView, deal with global
measures. The tools needed for local measures are tools to measure performance within
computers, such as profiling software. Examples include Rational’s Quantify
(http://www.rational.com) for application software, Intel’s VTune (www.intel.com/
software/products/vtune/), and even hardware oscilloscopes. Network monitors such
as tcpdump (www.tcpdump.org) are also useful.

Case Study 1: SANs and iSCSI

This case study shows that protocol features can greatly affect application per-
formance. Many large data centers connect their disk drives and computers together
using a storage area network (SAN). This allows computers to share disks. Currently,
storage area networks are based on FiberChannel [Ben95] components, which are
more expensive than say Gigabit Ethernet. The proponents of iSCSI (Internet storage)
[SSMe01] protocols seek to replace FiberChannel protocols with (hopefully cheaper)
TCP/IP protocols and components.

SCSI is the protocol used by computers to communicate with local disks. It can also
be used to communicate with disks across a network. A single SCSI command could
ask to read 10 megabytes (MB) of data from a remote disk. Currently, such remote
SCSI commands run over a FiberChannel transport protocol implemented in the net-
work adaptors. Thus a 10-MB transfer is broken up into multiple FiberChannel packets,

1The preoccupation with wire speed forwarding in networking is extremely different from the mentality in
computer architecture, which is content with optimizing typical (and not worst-case) performance as measured on
benchmarks.

2.2 Hardware 21

sent, delivered, and acknowledged (acked) without any per-packet processing by the
requesting computer or responding disk.

The obvious approach to reduce costs is to replace the proprietary FiberChannel
transport layer with TCPand the FiberChannel network layer with IP. This would allow us
to replace expensive FiberChannel switches in SANs with commodity Ethernet switches.
However, this has three implications. First, to compete with FiberChannel performance,
TCP will probably have to be implemented in hardware. Second, TCP sends and delivers
a byte stream (see Figure A.1 in the Appendix if needed). Thus multiple sent SCSI
messages can be merged at the receiver. Message boundaries must be recovered by
adding another iSCSI header containing the length of the next SCSI message.

The third implication is trickier. Storage vendors [SSMe01] wish to process SCSI
commands out of order. If two independent SCSI messages C1 and C2 are sent in
order but the C2 data arrives before C1, TCP will buffer C2 until C1 arrives. But the
storage enthusiast wishes to steer C2 directly to a preallocated SCSI buffer and process
C2 out of order, a prospect that makes the TCP purist cringe. The length field method
described earlier fails for this purpose because a missing TCP segment (containing the
SCSI message length) makes it impossible to find later message boundaries. An alternate
proposal suggests having the iSCSI layer insert headers at periodic intervals in the TCP
byte stream, but the jury is still out.

2.2 HARDWARE

As links approach 40-gigabit/sec OC-768 speeds, a 40-byte packet must be forwarded in 8 nsec.
At such speeds, packet forwarding is typically directly implemented in hardware instead of
on a programmable processor. You cannot participate in the design process of such hardware-
intensive designs without understanding the tools and constraints of hardware designers. And
yet a few simple models can allow you to understand and even play with hardware designs.
Even if you have no familiarity with and have a positive distaste for hardware, you are invited
to take a quick tour of hardware design, full of networking examples to keep you awake.

Internet lookups are often implemented using combinational logic, Internet packets are
stored in router memories, and an Internet router is put together with components such as
switches, and lookup chips. Thus our tour begins with logic implementation, continues with
memory internals, and ends with component-based design. For more details, we refer the
reader to the classic VLSI text [MC80], which still wears well despite its age, and the classic
computer architecture text [HP96].

2.2.1 Combinatorial Logic
Section A.2.1 in the Appendix describes very simple models of basic hardware gates, such as
NOT, NAND, and NOR, that can be understood by even a software designer who is willing to
read a few pages. However, even knowing how basic gates are implemented is not required to
have some insight into hardware design.

The first key to understanding logic design is the following observation. Given NOT,
NAND, and NOR gates, Boolean algebra shows that any Boolean function f (I1, . . . , In) of
n inputs can be implemented. Each bit of a multibit output can be considered a function of

22 C H A P T E R 2 Network Implementation Models

the input bits. Logic minimization is often used to eliminate redundant gates and sometimes
to increase speed. For example, if + denotes OR and · denotes AND, then the function
O = I1 · I2 + I1 · I2 can be simplified to O = I1.

◆ Example 1. Quality of Service and Priority Encoders: Suppose we have a network router that
maintains n output packet queues for a link, where queue i has higher priority than queue j if
i < j. This problem comes under the category of providing quality of service (QOS), which
is covered in Chapter 14. The transmit scheduler in the router must pick a packet from the
first nonempty packet queue in priority order. Assume the scheduler maintains an N-bit vector
(bitmap) I such that I[j] = 1 if and only if queue j is nonempty. Then the scheduler can find
the highest-priority nonempty queue by finding the smallest position in I in which a bit is
set. Hardware designers know this function intimately as a priority encoder. However, even
a software designer should realize that this function is feasible for hardware implementation
for reasonable n. This function is examined more closely in Example 2.

2.2.2 Timing and Power
To forward a 40-byte packet at OC-768 speeds, any networking function on the packet must
complete in 8 nsec. Thus the maximum signal transmission delay from inputs to outputs on any
logic path must not exceed 8 nsec.2 To ensure this constraint, a model of signal transmission
delay in a transistor is needed.

Roughly speaking, each logic gate, such as a NAND or NOT gate, can be thought of as
a set of capacitors and resistors that must be charged (when input values change) in order to
compute output values. Worse, charging one input gate can cause the outputs of later gates
to charge further inputs, and so on. Thus for a combinatorial function, the delay to compute
the function is the sum of the charging and discharging delays over the worst-case path of
transistors. Such path delays must fit within a minimum packet arrival time. Besides the time
to charge capacitors, another source of delay is wire delay. More details can be found in
Section A.2.2.

It also takes energy to charge capacitors, where the energy per unit time (power) scales
with the square of the voltage, the capacitance, and the clock frequency at which inputs can
change; P = CV2f . While new processes shrink voltage levels and capacitance, higher-speed
circuits must increase clock frequency. Similarly, parallelism implies more capacitors being
charged at a time. Thus many high-speed chips dissipate a lot of heat, requiring nontrivial
cooling techniques such as heat sinks. ISPs and colocation facilities are large consumers of
power. While our level of abstraction precludes understanding power trade-offs, it is good to
be aware that chips and routers are sometimes power limited. Some practical limits today are
30 watts per square centimeter on a single die and 10,000 watts per square foot in a data center.

◆ Example 2. Priority Encoder Design: Consider the problem of estimating timing for the priority
encoder of Example 1 for an OC-768 link using 40-byte packets. Thus the circuit has 8 nsec
to produce the output. Assume the input I and outputs O are N-bit vectors such that O[j] = 1
if and only if I[j] = 1 and I[k] = 0 for all k < j. Notice that the output is represented in unary
(often called 1-hot representation) rather than binary. The specification leads directly to the
combinational logic equation O[j] = I[1] . . . I[j − 1]I[j] for j > 0.

2Alternatively, parts of the function can be parallelized/pipelined, but then each part must complete in 8 nsec.

2.2 Hardware 23

This design can be implemented directly using N AND gates, one for each output bit,
where the N gates take a number of inputs that range from 1 to N . Intuitively, since N input
AND gates take O(N) transistors, we have a design, Design 1, with O(N2) transistors that
appears to take O(1) time.3 Even this level of design is helpful, though one can do better.

A more area-economical design is based on the observation that every output bit O[j]
requires the AND of the complement of the first j − 1 input bits. Thus we define the partial
results P[j] = I[1] . . . I[j − 1] for j = 2 . . . N . Clearly, O[j] = I[j]P[j]. But P[j] can be
constructed recursively using the equation P[j] = P[j − 1]I[j], which can be implemented
using N two-input AND gates, connected in series. This produces a design, Design 2, that
takes O(N) transistors but takes O(N) time.

Design 1 is fast and fat, and Design 2 is slow and lean. This is a familiar time–space
trade-off and suggests we can get something in between. The computation of P[j] in Design
2 resembles an unbalanced binary tree of height N . However, it is obvious that P[N] can be
computed using a fully balanced binary of 2-input AND gates of height log N . A little thought
then shows that the partial results of the binary tree can be combined in simple ways to get
P[j] for all j < N using the same binary tree [WH00].

For example, if N = 8, to compute P[8]we compute X = I[0] . . . I[3] and Y = I[4] . . . I[7]
and compute the AND of X and Y at the root. Thus, it is easy to calculate P[5], for instance,
using one more AND gate by computing X · I[4]. Such a method is very commonly used by
hardware designers to replace apparently long O(N) computation chains with chains of length
2 log N . Since it was first used to speed up carry chains in addition, it is known as carry look-
ahead or simply look-ahead. While look-ahead techniques appear complex, even software
designers can master them because at their core they use divide-and-conquer.

2.2.3 Raising the Abstraction Level of Hardware Design
Hand designing each transistor in a network chip design consisting of 1 million transistors
would be time consuming. The design process can be reduced to a few months using building
blocks. A quick description of building block technologies, such as PLAs, PALs, and standard
cells, can be found in Section A.2.5.

The high-order bit, however, is that just as software designers reuse code, so also hardware
designers reuse a repertoire of commonly occurring functions. Besides common computational
blocks, such as adders, multipliers, comparators, and priority encoders, designs also use
decoders, barrel shifters, multiplexers, and demultiplexers. It is helpful to be familiar with
these “arrows” in the hardware designer’s quiver.

A decoder coverts a log N–bit binary value to an N-bit unary encoding of the same value;
while binary representations are more compact, unary representations are more convenient for
computation. A barrel shifter shifts an input I by s positions to the left or right, with the bits
shifted off from an end coming around to the other end.

A multiplexer (mux) connects one of several inputs to a common output, while its dual, the
demultiplexer, routes one input to one of several possible outputs. More precisely, a multiplexer
(mux) connects one of n input bits Ij to the output O if a log n–bit select signal S encodes the
value j in binary. Its dual, the demultiplexer, connects input I to output Oj if the signal S
encodes the value j in binary.

3A more precise argument, due to David Harris, using the method of Sutherland et al. [SSH99] shows the delay
scales as log(N log N) because of the effort required to charge a tree of N transistors in each AND gate.

24 C H A P T E R 2 Network Implementation Models

Output
O

I0

S0

I1

S1

I2

S0

I3

F I G U R E 2.3 Building a 4-input mux with select bits S0 and S1 from three 2-input muxes. The figure
uses the standard trapezoidal icon for a mux.

Thus the game becomes one of decomposing a complex logic function into instances of
the standard functions, even using recursion when needed. This is exactly akin to reduction
and divide-and-conquer and is easily picked up by software designers. For example, Figure 2.3
shows the typical Lego puzzle faced by hardware designers: Build a 4-input multiplexer from
2-input multiplexers. Start by choosing one of I0 and I1 using a 2-input mux and then choosing
one of I2 and I3 by another 2-input mux. Clearly, the outputs of the 2-input muxes in the first
stage must be combined using a third 2-input mux; the only cleverness required is to realize
that the select signal for the first two muxes is the least significant bit S0 of the 2-bit select
signal, while the third mux chooses between the upper and lower halves and so uses S1 as the
select bit.

The following networking example shows that reduction is a powerful design tool for
designing critical networking functions.

◆ Example 3. Crossbar Scheduling and Programmable Priority Encoders: Examples 1 and 2
motivated and designed a fast priority encoder (PE). A commonly used router arbitration
mechanism uses an enhanced form of priority encoder called a programmable priority encoder
(PPE). There is an N-bit input I as before, together with an additional log N-bit input P. The
PPE circuit must compute an output O such that O[j] = 1, where j is the first position beyond
P (treated as a binary value) that has a nonzero bit in I . If P = 0, this reduces to a simple
priority encoder.

PPEs arise naturally in switch arbitration (see Chapter 13 for details). For now, suppose a
router connects N communication links. Suppose several input links wish to transmit a packet
at the same time to output link L. To avoid contention at L, each of the inputs sends a request
to L in the first time slot; L chooses which input link to grant a request to in the second slot;
the granted input sends a packet in the third time slot.

To make its grant decision, L can store the requests received at the end of Slot 1 in an
N-bit request vector R, where R[i] = 1 if input link i wishes to transmit to L. For fairness, L
should remember the last input link P it granted a request to. Then, L should confer the grant
to the first input link beyond P that has a request. This is exactly a PPE problem with R and P
as inputs. Since a router must do arbitration for each time slot and each output link, a fast and

2.2 Hardware 25

area-efficient PPE design is needed. Even a software designer can understand and possibly
repeat the process [GM99a] used to design the PPE found in the Tiny Tera, a switch built at
Stanford and later commercialized. The basic idea is reduction: reducing the design of a PPE
to the design of a PE (Example 2).

The first idea is simple. A PPE is essentially a PE whose highest-priority value starts at
position P instead of at 0. A barrel shifter can be used to shift I first to the left by P bits. After
this a simple PE can be used. Of course, the output-bit vector is now shifted; we recover the
original order by shifting the output of the PE to the right by P bits. A barrel shifter for N-bit
inputs can be implemented using a tree of 2-input multiplexers in around log N time. Thus two
barrel shifters and a PE take around 3 log N gate delays.

A faster design used in Gupta and McKeown [GM99a], which requires only 2 log N gate
delays is as follows. Split the problem into two parts. If the input has some bit set at position
P or greater, then the result can be found by using a PE operating on the original input after
setting to zero all input bits with positions less than P.4 On the other hand, if the input has no
bit set at a position P or greater, then the result can be found by using a PE on the original
input with no masking at all. This results in the design of Figure 2.4, which, when tested on a
Texas Instrument Cell Library, was nearly twice as fast and took three times less area than the
barrel shifter design for a 32-port router.

The message here is that the logic design used for a time-critical component of a very
influential switch design can be achieved using simple reductions and simple models. Such
models are not beyond the reach of those of us who do not live and breathe digital design.

2.2.4 Memories
In endnodes and routers, packet forwarding is performed using combinational logic, but packets
and forwarding state are stored in memories. Since memory access times are significantly
slower than logic delays, memories form major bottlenecks in routers and endnodes.

Further, different subsystems require different memory characteristics. For example,
router vendors feel it is important to buffer 200 msec — an upper bound on a round-trip
delay — worth of packets to avoid dropping packets during periods of congestion. At, say,
40 Gbit/sec per link, such packet buffering requires an enormous amount of memory. On the
other hand, router lookups require a smaller amount of memory, which is accessed randomly.
Thus it helps to have simple models for different memory technologies. Next, we describe reg-
isters, SRAMs, DRAMs, and interleaved memory technology. Simple implementation models
of these memory components can be found in Section A.2.4 in the Appendix.

REGISTERS

A flip-flop is a way of connecting two or more transistors in a feedback loop so that (in the
absence of Writes and power failures) the bit stays indefinitely without “leaking” away. A
register is an ordered collection of flip-flops. For example, most modern processors have a
collection of 32- or 64-bit on-chip registers. A32-bit register contains 32 flip-flops, each storing
a bit. Access from logic to a register on the same chip is extremely fast, around 0.5–1 nsec.

4This can be done by ANDing the input with P encoded as a mask; such a mask is commonly known in the
hardware community as a thermometer encoding of P.

26 C H A P T E R 2 Network Implementation Models

Pointer P Request R

Encode as
N-bit mask

Copy 2
of PE

Copy 1
 of PE

Any bit set?

AND

AND

OR

log N bits N bits

N bits

N bits

N bits

N bits

Grant (N bits)

F I G U R E 2.4 The Tiny Tera PPE design uses copy 1 of a priority encoder to find the highest bit set,
if any, of all bits greater than P using a mask encoding of P. If such a bit is not found, the output of a
second copy of a priority encoder is enabled using the bottom AND gate. The results of the two copies
are then combined using an N-input OR gate.

SRAM

A static random access memory (SRAM) contains N registers addressed by log N address bits
A. SRAM is so named because the underlying flip-flops refresh themselves and so are “static.”
Besides flip-flops, an SRAM also needs a decoder that decodes A into a unary value used to
select the right register. Accessing an SRAM on-chip is only slightly slower than accessing a
register, because of the added decode delay. At the time of writing, it was possible to obtain
on-chip SRAMs with 0.5-nsec access times. Access times of of 1–2 nsec for on-chip SRAM
and 5–10 nsec for off-chip SRAM are common.

DYNAMIC RAM

An SRAM bit cell requires at least five transistors. Thus SRAM is always less dense or more
expensive than memory technology based on dynamic RAM (DRAM). The key idea is to
replace the feedback loop (and extra transistors) used to store a bit in a flip-flop with an output
capacitance that can store the bit; thus the charge leaks, but it leaks slowly. Loss due to leakage
is fixed by refreshing the DRAM cell externally within a few milliseconds. Of course, the
complexity comes in manufacturing a high capacitance using a tiny amount of silicon.

DRAM chips appear to quadruple in capacity every 3 years [FPCe97] and are heading
towards 1 gigabit on a single chip. Addressing these bits, even if they are packed together as 4-
or even 32-bit “registers,” is tricky. Recall that the address must be decoded from (say) 20 bits

2.2 Hardware 27

Row
decoder

selected row of bits

Column
decoder

Address bits

row buffer

selected word within row

F I G U R E 2.5 Most large memories are organized two-dimensionally in terms of rows and columns.
Selecting a word consists of selecting first the row and then the column within the row.

to (say) one of 220 values. The complexity of such decode logic suggests divide-and-conquer.
Why not decode in two stages?

Figure 2.5 shows that most memories are internally organized two-dimensionally into
rows and columns. The upper address bits are decoded to select the row, and then the lower
address bits are used to decode the column. More precisely, the user first supplies the row
address bits and enables a signal called RAS (row address strobe); later, the user supplies
the column address bits,5 and enables a signal called CAS (column address strobe). After
a specified time, the desired memory word can be read out. Assuming equal-size rows and
columns, this reduces decode gate complexity from O(N) to O(

√
(N)) at the expense of one

extra decode delay. Besides the required delay between RAS and CAS, there is also a precharge
delay between successive RAS and CAS invocations to allow time for capacitors to charge.

The fastest off-chip DRAMs take around 40–60 nsec to access (latency), with longer times,
such as 100 nsec, between successive reads (throughput) because of precharge restrictions.
Some of this latency includes the time to drive the address using external lines onto the DRAM
interface pins; recent innovations allow on-chip DRAM with lower access times of around
30 nsec. It seems clear that DRAM will always be denser but slower than SRAM.

PAGE-MODE DRAMS

One reason to understand DRAM structure is to understand how function can follow form. A
classic example is a trick to speed up access times called page mode. Page mode is beneficial for
access patterns that exhibit spatial locality, in which adjacent memory words are successively
accessed. But having made a row access in Figure 2.5, one can access words within the
row without incurring additional RAS and precharge delays. Video RAMs exploit the same
structure by having a row read into an SRAM, which can be read out serially to refresh a
display at high speed. Besides page mode and video RAMS, perhaps there are other ideas that
exploit DRAM structure that could be useful in networking.

5Many DRAM chips take advantage of the fact that row and column addresses are not required at the same time
to multiplex row and column addresses on the same set of pins, reducing the pin count of the chip.

28 C H A P T E R 2 Network Implementation Models

Bank 1 Bank 2 Bank B• • •

Address Bus

Data Bus

Single chip

F I G U R E 2.6 The idea behind RAMBUS, SDRAM, and numerous variants is to create a single chip
containing multiple DRAM parallel memories to gain memory bandwidth while using only one set of
address and data lines.

INTERLEAVED DRAMS

While memory latency is critical for computation speed, memory throughput (often called
bandwidth) is also important for many network applications. Suppose a DRAM has a word
size of 32 bits and a cycle time of 100 nsec. Then the throughput using a single copy of
the DRAM is limited to 32 bits every 100 nsec. Clearly, throughput can be improved using
accesses to multiple DRAMs. As in Figure 2.6, multiple DRAMs (called banks) can be strung
together on a single bus. The user can start a Read to Bank 1 by placing the address on the
address bus. Assume each DRAM bank takes 100 nsec to return the selected data.

Instead of idling during this 100-nsec delay, the user can place a second address for Bank
2, a third for Bank 3, and so on. If the placing of each address takes 10 nsec, the user can
“feed” 10 DRAM banks before the answer to the first DRAM bank query arrives, followed
10 nsec later by the answer to the second DRAM bank query, and so on. Thus the net memory
bandwidth in this example is 10 times the memory bandwidth of a single DRAM, as long as
the user can arrange to have consecutive accesses touch different banks.

While using multiple memory banks is a very old idea, it is only in the last 5 years
that memory designers have integrated several banks into a single memory chip (Figure 2.6),
where the address and data lines for all banks are multiplexed using a common high-speed
network called a bus. In addition, page-mode accesses are often allowed on each bank. Memory
technologies based on this core idea abound, with different values for the DRAM sizes, the
protocol to read and write, and the number of banks. Prominent examples include SDRAM
with two banks and RDRAM with 16 banks.

◆ Example 4. Pipelined Flow ID Lookups: A flow is characterized by source and destination IP
addresses and TCP ports. Some customers would like routers to keep track of the number of
packets sent by each network flow, for accounting purposes. This requires a data structure that
stores a counter for each flow ID and supports the two operations of Insert (FlowId) to insert
a new flow ID, and Lookup (FlowId) to find the location of a counter for a flow ID. Lookup
requires an exact match on the flow ID – which is around 96 bits – in the time to receive a
packet. This can be done by any exact-matching algorithm, such as hashing.

2.2 Hardware 29

Bank 1

Bank 16

Queue of
results

Flow ID queue

Lookup

Logic

Address

Data

LOOKUP CHIP RDRAM

F I G U R E 2.7 Solving the flow ID lookup problem by using a pipelined lookup chip that works on
up to 16 concurrent flow ID lookups, each of which accesses an independent bank of the RDRAM. The
lookup chip returns an index to, say, a network processor that updates the flow ID counter.

However, if, as many router vendors wish to do, the worst-case lookup time must be small
and bounded, binary search [CLR90] is a better idea. Assume that flow ID lookups must be
done at wire speeds for worst-case 40-byte packets at 2.5 Gbits/sec or OC-48 speeds. Thus the
chip has 128 nsec to look up a flow ID.

To bound lookup delays, consider using a balanced binary tree, such as a B-tree. The
logic for tree traversal is fairly easy. For speed, ideally the flow IDs and counters should be
stored in SRAM. However, current estimates in core routers [TMW97] show around a million
concurrent flows. Keeping state for a million flows in SRAM is expensive. However, plain
DRAM using a binary tree with a branching factor of 2 would require log2 1,000,000 = 20
memory accesses. Even assuming an optimistic DRAM cycle time of 50 nsec, the overall
lookup time is 1 usec, which is too slow.

A solution is to use pipelining, as shown in Figure 2.7, where the pipelined logic accesses
flow IDs stored in an RDRAM with 16 banks of memory as shown in Figure 2.6. All the nodes
at height i in the binary tree are stored in Bank i of the RDRAM. The lookup chip works
on 16 flow ID lookups (for 16 packets) concurrently. For example, after looking at the root
node for Packet 1 in Bank 1, the chip can look up the second-level tree node for Packet 1 in
Bank 2 and (very slightly after that) look up the root for Packet 2 in Bank 1. When Packet 1’s
lookup “thread” is accessing Bank 16, Packet 16’s lookup thread is accessing Bank 1. Since
direct RDRAM runs at 800 MHz, the time between address requests to the RAMBUS is small
compared with the read access time of around 60 nsec. Thus while a single packet takes around
16 ∗ 60 nsec to complete, processing 16 packets concurrently allows a throughput of one flow
ID lookup every 60 nsec.

Unfortunately, a binary tree with 16 levels allows only 216 = 64K flow IDs, which is too
small. Fortunately, RAMBUS allows a variation of page mode where 8 data words of 32 bits
can be accessed in almost the same time as 1 word. This allows us to retrieve two 96-bit keys
and three 20-bit pointers in one 256-bit memory access. Thus a tree with 3-way branching can
be used, which allows potentially 316, or potentially 43 million, flow IDs.

2.2.5 Memory Subsystem Design Techniques
The flow ID lookup problem illustrates three major design techniques commonly used in
memory subsystem designs for networking chips.

30 C H A P T E R 2 Network Implementation Models

• Memory Interleaving and Pipelining: Similar techniques are used in IP lookup,
classification, and in scheduling algorithms that implement QoS. The multiple banks
can be implemented using several external memories, a single external memory like
a RAMBUS, or on-chip SRAM within a chip that also contains processing logic.

• Wide Word Parallelism: A common theme in many networking designs, such as the
Lucent bit vector scheme (Chapter 12), is to use wide memory words that can be processed
in parallel. This can be implemented using DRAM and exploiting page mode or by using
SRAM and making each memory word wider.

• Combining DRAM and SRAM: Given that SRAM is expensive and fast and that DRAM
is cheap and slow, it makes sense to combine the two technologies to attempt to obtain the
best of both worlds. While the use of SRAM as a cache for DRAM databases is classical,
there are many more creative applications of the idea of a memory hierarchy. For instance,
the exercises explore the effect of a small amount of SRAM on the design of the flow
ID lookup chip. Chapter 16 describes a more unusual application of this technique to
implement a large number of counters, where the low-order bits of each counter are stored
in SRAM.

It is more important for a novice designer to understand these design techniques (than to know
memory implementation details) in order to produce creative hardware implementations of
networking functions.

2.2.6 Component-Level Design
The methods of the last two subsections can be used to implement a state machine that imple-
ments arbitrary computation. Astate machine has a current state stored in memory; the machine
processes inputs using combinatorial logic that reads the current state and possibly writes the
state. An example of a complex state machine is a Pentium processor, whose state is the com-
bination of registers, caches, and main memory. An example of a simpler state machine is
the flow ID lookup chip of Figure 2.7, whose state is the registers used to track each of 16
concurrent lookups and the RDRAM storing the B-tree.

While a few key chips may have to be designed to build a router or a network interface
card, the remainder of the design can be called component-level design: organizing and inter-
connecting chips on a board and placing the board in a box while paying attention to form
factor, power, and cooling. A key aspect of component-level design is understanding pin-count
limitations, which often provide a quick “parity check” on feasible designs.

◆ Example 5. Pin-Count Implications for Router Buffers: Consider a router than has five
10 Gb/sec links. The overall buffering required is 200 msec * 50 Gb/sec, which is 10 gigabits.
For cost and power, we use DRAM for packet buffers. Since each packet must go in and out
of the buffer, the overall memory bandwidth needs to be twice the bandwidth into the box —
i.e., 100 Gb/sec. Assuming 100% overhead for internal packet headers, links between packets
in queues, and wasted memory bandwidth, it is reasonable to aim for 200-Gb/sec memory
bandwidth.

Using a single direct RDRAM with 16 banks, specifications show peak memory bandwidth
of 1.6 GB/sec, or 13 Gb/sec. Accessing each RDRAM requires 64 interface pins for data and
25 other pins for address and control, for a total of 90 pins. A 200-Gbps memory bandwidth
requires 16 RDRAMs, which require 1440 pins in total. A conservative upper bound on the

2.2 Hardware 31

number of pins on a chip is around 1000. This implies that even if the router vendor were to
build an extremely fast custom-designed packet-forwarding chip that could handle all packets
at the maximum box rate, one would still need at least one more chip to drive data in and out
of the RAMBUS packet buffers. Our message is that pin limitations are a key constraint in
partitioning a design between chips.

2.2.7 Final Hardware Lessons
If all else is forgotten in this hardware design section, it is helpful to remember the design
techniques of Section 2.2.5. A knowledge of the following parameter values is also useful
to help system designers quickly weed out infeasible designs without a detailed knowledge
of hardware design. Unfortunately, these parameters are a moving target, and the following
numbers were written based on technology available in 2004.

• Chip Complexity Scaling: The number of components per chip appears to double every
2 years. While 0.13-micron processes are common, 90-nm technology is ramping up, and
65-nm technology is expected after that. As a result, current ASICs can pack several
million gate equivalents (that’s a lot of combinatorial logic) plus up to 50 Mbits (at the
time of writing, using half a 12-mm/side die) of on-chip SRAM on an ASIC.6 Embedded
DRAM is also a common option to get more space on-chip at the cost of larger latency.

• Chip Speeds: As feature sizes go down, on-chip clock speeds of 1 GHz are becoming
common, with some chips even pushing close to 3 GHz. To put this in perspective, the
clock cycle to do a piece of computation on a 1-GHz chip is 1 nsec. By using parallelism
via pipelining and wide memory words, multiple operations can be performed per clock
cycle.

• Chip I/O: The number of pins per chip grows, but rather slowly. While there are
some promising technologies, it is best to assume that designs are pin limited to
around 1000 pins.

• Serial I/O: Chip-to-chip I/O has also come a long way, with 10-Gbit serial links available
to connect chips.

• Memory Scaling: On-chip SRAM with access times of 1 nsec are available, with even
smaller access times being worked on. Off-chip SRAM with access times of 2.5 nsec are
commonly available. On-chip DRAM access times are around 30 nsec, while off-chip
DRAM of around 60 nsec is common. Of course, the use of interleaved DRAM, as
discussed in the memory subsection, is a good way to increase memory subsystem
throughput for certain applications. DRAM costs roughly 4–10 times less than SRAM
per bit.

• Power and Packaging: The large power consumption of high-speed routers requires
careful design of the cooling system. Finally, most ISPs have severe rack space limitations,
and so there is considerable pressure to build routers that have small form factors.

These parameter values have clear implications for high-speed networking designs. For
instance, at OC-768 speeds, a 40-byte packet arrives in 3.2 nsec. Thus it seems clear that all

6FPGAs are more programmable chips that can only offer smaller amounts of on-chip SRAM.

32 C H A P T E R 2 Network Implementation Models

state required to process the packet must be in on-chip SRAM. While the amount of on-chip
SRAM is growing, this memory is not growing as fast as the number of flows seen by a router.
Similarly, with 1-nsec SRAMs, at most three memory accesses can be made to a single memory
bank in a packet arrival time.

Thus the design techniques of Section 2.2.5 must be used within a chip to gain parallelism
using multiple memory banks and wide words and to increase the usable memory by creative
combinations that involve off- and on-chip memory. However, given that chip densities and
power constraints limit parallelism to, say, a factor of at most 60, the bottom line is that all
packet-processing functions at high speeds must complete using at most 200 memory accesses
and limited on-chip memory.7 Despite these limitations, a rich variety of packet-processing
functions have been implemented at high speeds.

2.3 NETWORK DEVICE ARCHITECTURES

Optimizing network performance requires optimizing the path of data through the internals
of the source node, the sink node, and every router. Thus it is important to understand the
internal architecture of endnodes and routers. The earlier part of this chapter argued that logic
and memory can be combined to form state machines. In essence, both routers and endnodes
are state machines. However, their architectures are optimized for different purposes: endnode
architectures (Section 2.3.1) for general computation and router architectures (Section 2.3.2)
for Internet communication.

2.3.1 Endnode Architecture
A processor such as a Pentium is a state machine that takes a sequence of instructions and data
as input and writes output to I/O devices, such as printers and terminals. To allow programs
that have a large state space, the bulk of processor state is stored externally in cheap DRAM.
In PCs, this is referred to as main memory and is often implemented using 1 GB or more of
interleaved DRAM, such as SDRAM. However, recall that DRAM access times are large, say,
60 nsec. If processor state were stored only in DRAM, an instruction would take 60 nsec to
read or write to memory.

Processors gain speed using caches, which are comparitively small chunks of SRAM that
can store commonly used pieces of state for faster access. Some SRAM (i.e., the L1 cache)
is placed on the processor chip, and some more SRAM (i.e., the L2 cache) is placed external
to the processor. A cache is a hash table that maps between memory address locations and
contents. CPU caches use a simple hash function: They extract some bits from the address
to index into an array and then search in parallel for all the addresses that map into the array
element.8 When a memory location has to be read from DRAM, it is placed in the cache, and
an existing cache element may be evicted. Commonly used data is stored in a data cache, and
commonly used instructions in an instruction cache.

7Of course, there are ways to work around these limits, for instance, by using multiple chips, but such
implementations often do badly in terms of cost, complexity, and power consumption.

8The number of elements that can be searched in parallel in a hash bucket is called the associativity of the cache.
While router designers rightly consider bit extraction to be a poor hash function, the addition of associativity improves
overall hashing performance, especially on computing workloads.

2.3 Network Device Architectures 33

Caching works well if the instructions and data exhibit temporal locality (i.e., the corre-
sponding location is reused frequently in a small time period) or spatial locality (i.e., accessing
a location is followed by access to a nearby location). Spatial locality is taken advantage of as
follows. Recall that accessing a DRAM location involves accessing a row R and then a column
within the row. Thus reading words within row R is cheaper after R is accessed. A Pentium
takes advantage of this observation by prefetching 128 (cache line size) contiguous bits into
the cache whenever 32 bits of data are accessed. Accesses to the adjoining 96 bits will not
incur a cache miss penalty.

Many computing benchmarks exhibit temporal and spatial locality; however, a stream of
packets probably exhibits only spatial locality. Thus improving endnode protocol implemen-
tations often requires paying attention to cache effects.

The foregoing discussion should set the stage for the endnode architecture model shown
in Figure 2.8. The processor, or CPU — e.g., a Pentium or an Alpha — sits on a bus. A bus
can be thought of as a network like an Ethernet, but optimized for the fact that the devices
on the bus are close to each other. The processor interacts with other components by sending
messages across the bus.

The input–output (I/O) devices are typically memory mapped. In other words, even I/O
devices like the network adaptor and the disk look like pieces of memory. For example, the
adaptor memory may be locations 100–200 on the bus. This allows uniform communication
between the CPU and any device by using the same conventions used to interact with memory.
In terms of networking, a Read (or Write) can be thought of as a message sent on the bus
addressed to the memory location. Thus a Read 100 is sent on the bus, and the device that
owns memory location 100 (e.g., the adaptor) will receive the message and reply with the
contents of location 100.

Modern machines allow direct memory access (DMA), where devices such as the disk
or the network adaptor send Reads and Writes directly to the memory via the bus without
processor intervention. However, only one entity can use the bus at a time. Thus the adaptor
has to contend for the bus; any device that gets hold of the bus “steals cycles” from the
processor. This is because the processor is forced to wait to access memory while a device is
sending messages across the bus.

In Figure 2.8 notice also that the adaptor actually sits on a different bus (system bus or
memory bus) from the bus on which the network adaptor and other peripherals (I/O bus) sit.

CPU

MMU, Cache

Memory

Bus adaptor
Network interface

System bus

I/O bus

F I G U R E 2.8 Model of a workstation.

34 C H A P T E R 2 Network Implementation Models

Processor Memory 1

Memory 2
Network
adaptor

Programmable
parallel switch

F I G U R E 2.9 Using parallel connections within an endnode architecture to allow concurrent
processing and network traffic via a parallel switch.

The memory bus is designed for speed and is redesigned for every new processor; the I/O bus
is a standard bus (e.g., a PCI bus) chosen to stay compatible with older I/O devices. Thus the
I/O bus is typically slower than the memory bus.

Abig lesson for networking in Figure 2.8 is that the throughput of a networking application
is crucially limited by the speed of the slowest bus, typically the I/O bus. Worse, the need for
extra copies to preserve operating system structure causes every packet received or sent by a
workstation to traverse the bus multiple times. Techniques to avoid redundant bus traversals
are described in Chapter 5.

Modern processors are heavily pipelined with instruction fetch, instruction decode, data
reads, and data writes split into separate stages. Superscalar and multithreaded machines
go beyond pipelining by issuing multiple instructions concurrently. While these innovations
(see, for example, the classic reference on endnode architecture [HP96]) remove computation
bottlenecks, they do little for data-movement bottlenecks. Consider instead the following
speculative architecture.

◆ Example 6. Endnode Architecture Using a Crossbar Switch: Figure 2.9 shows the endnode
bus being replaced by a programmable hardware switch, as is commonly used by routers.
The switch internally contains a number of parallel buses so that any set of disjoint endpoint
pairs can be connected in parallel by the switch. Thus in the figure the processor is connected
to Memory 1, while the network adaptor is connected to Memory 2. Thus packets from the
network can be placed in Memory 2 without interfering with the processor’s reading from
Memory 1. If the processor now wishes to read the incoming packet, the switch can be
reprogrammed to connect the processor to Memory 2 and the adaptor to Memory 1. This can
work well if the queue of empty packet buffers used by the adaptor alternates between the two
memories.

There are recent proposals for Infiniband switch technology to replace the I/O bus in
processors (Chapter 5). The ultimate message of this example is not that architectures such
as Figure 2.9 are necessarily good but that simple architectural ideas to improve network
performance, such as Figure 2.9, are not hard for even protocol designers to conceive, given
simple models of hardware and architecture.

2.3.2 Router Architecture
A router model that covers both high-end routers (such as Juniper’s M-series routers) and
low-end routers (such as the Cisco Catalyst) is shown in Figure 2.10. Basically, a router is a

2.3 Network Device Architectures 35

Switching

Output linkInput link i

Scheduling

ROUTER

B2

B1

B3

Address lookup

F I G U R E 2.10 A model of a router labeled with the three main bottlenecks in the forwarding path:
address lookup (B1), switching (B2), and output scheduling (B3).

box with a set of input links, shown on the left, and a set of output links, shown on the right;
the task of the router is to switch a packet from an input link to the appropriate output link
based on the destination address in the packet. While the input and output links are shown
separately, the two links in each direction between two routers are often packaged together.
We review three main bottlenecks in a router: lookup, switching, and output queuing.

LOOKUP

A packet arrives on, say, the left link, input link i. Every packet carries a 32-bit Internet (IP)
address.9 Assume that the first six bits of the destination address of a sample packet are 100100.
A processor in the router inspects the destination address to determine where to forward the
packet.

The processor consults a forwarding table to determine the output link for the packet. The
forwarding table is sometimes called a FIB, for forwarding information base. The FIB contains
a set of prefixes with corresponding output links. The reason for prefixes will be explained in
Chapter 11; for now think of prefixes as variable-length “area codes” that greatly reduce the
FIB size. A prefix like 01*, where the * denotes the usual “don’t care” symbol, matches IP
addresses that start with 01. Assume that prefix 100* has associated output link 6, while prefix
1* has output link 2. Thus our sample packet, whose destination address starts with 100100,
matches both prefix 100* and 1*. The disambiguating rule that IP routers use is to match an
address to the longest matching prefix. Assuming no longer matching prefixes, our sample
packet should be forwarded to output link 6.

The processor that does the lookup and basic packet processing can be either shared or
dedicated and can be either a general processor or a special-purpose chip. Early router designs
used a shared processor (or processors), but this proved to be a bottleneck. Later designs,
including Cisco’s GSR family, use a dedicated processor per input link interface. The earliest
designs used a standard CPU processor, but many of the fastest routers today, such as Juniper’s
M-160, use a dedicated chip (ASIC) with some degree of programmability. There has been a

9Recall that while most users deal with domain names, these names are translated to an IP address by a directory
service, called DNS, before packets are sent.

36 C H A P T E R 2 Network Implementation Models

backlash to this trend toward ASICs, however, with customers asking routers to perform new
functions, such as Web load balancing. Thus some new routers use network processors (see
Example 7), which are general-purpose processors optimized for networking.

Algorithms for prefix lookups are described in Chapter 11. Many routers today also offer
a more complex lookup called packet classification (Chapter 12), where the lookup takes as
input the destination address as well as source address and TCP ports.

SWITCHING

After address lookup in the example of Figure 2.10, the processor instructs an internal switching
system to transfer the packet from link i to output link 6. In older processors, the switch was a
simple bus, such as shown in Figure 2.8. This proved to be a major bottleneck because, if the
switch has N input links running at B bits per second, the bus would have to have a bandwidth
of B · N . Unfortunately, as N increases, electrical effects (such as the capacitive load of a bus)
predominate, limiting the bus speed.

Thus the fastest routers today internally use a parallel switch of the sort shown in Figure 2.9.
The throughput of the switch is increased by using N parallel buses, one for each input and
one for each output. An input and an output are connected by turning on transistors connecting
the corresponding input bus and output bus. While it is easy to build the data path, it is harder
to schedule the switch, because multiple inputs may wish to send to the same output link at
the same time. The switch-scheduling problem boils down to matching available inputs and
outputs every packet arrival time. Algorithms for this purpose are described in Chapter 13.

QUEUING

Once the packet in Figure 2.10 has been looked up and switched to output link 6, output
link 6 may be congested, and thus the packet may have to be placed in a queue for output
link 6. Many older routers simply place the packet in a first-in first-out (FIFO) transmission
queue. However, some routers employ more sophisticated output scheduling to provide fair
bandwidth allocation and delay guarantees. Output scheduling is described in Chapter 14.

Besides the major tasks of lookups, switching, and queuing, there are a number of other
tasks that are less time critical.

HEADER VALIDATION AND CHECKSUMS

The version number of a packet is checked, and the header-length field is checked for options.
Options are additional processing directives that are rarely used; such packets are often shunted
to a separate route processor. The header also has a simple checksum that must be verified.
Finally, a time-to-live (TTL) field must be decremented and the header checksum recalculated.
Chapter 9 shows how to incrementally update the checksum. Header validation and checksum
computation are often done in hardware.

ROUTE PROCESSING

Section A.1.2 describes briefly how routers build forwarding tables using routing protocols.
Routers within domains implement RIP and OSPF, while routers that link domains also
must implement BGP.10 These protocols are implemented in one or more route processors.

10It is possible to buy versions of these protocols, but the software must be customized for each new hardware
platform. A more insidious problem, especially with BGP and OSPF, is that many of the first implementations of these

2.3 Network Device Architectures 37

For example, when a link state packet is sent to the router in Figure 2.10, lookup will recognize
that this is a packet destined for the router itself and will cause the packet to be switched to the
route processor. The route processor maintains the link state database and computes shortest
paths; after computation, the route processor loads the new forwarding databases in each of
the forwarding processors through either the switch or a separate out-of-band path.

In the early days, Cisco won its spurs by processing not just Internet packets but also other
routing protocols, such as DECNET, SNA, and Appletalk. The need for such multiprotocol
processing is less clear now. A much more important trend is multi-protocol-label switching
(MPLS), which appears to be de rigeur for core routers. In MPLS, the IP header is augmented
with a header containing simple integer indices that can be looked up directly without a prefix
lookup; Chapter 11 provides more details about MPLS.

PROTOCOL PROCESSING

All routers today have to implement the simple network management protocol (SNMP) and
provide a set of counters that can be inspected remotely. To allow remote communication with
the router, most routers also implement TCP and UDP. In addition, routers have to implement
the Internet control message protocol (ICMP), which is basically a protocol for sending error
messages, such as “time-to-live exceeded.”

FRAGMENTATION, REDIRECTS, AND ARPS

While it is clear that route and protocol processing is best relegated to a route processor on a
so-called “slow path,” there are a few router functions that are more ambiguous. For example,
if a packet of 4000 bytes is to be sent over a link with a maximum packet size (MTU) of
1500 bytes, the packet has to be fragmented into two pieces.11 While the prevailing trend is for
sources, instead of routers, to do fragmentation, some routers do fragmentation in the fast path.
Another such function is the sending of Redirects. If an endnode sends a message to the wrong
router, the router is supposed to send a Redirect back to the endnode. A third such function is
the sending of address resolution protocol (ARP) requests, whose operation is explored in the
exercises.

Finally, routers today have a number of other tasks they may be called on to perform. Many
routers within enterprises do content-based handling of packets, where the packet processing
depends on strings found in the packet data. For example, a router that fronts a Web farm of
many servers may wish to forward packets with the same Web URL to the same Web server.
There are also the issues of accounting and traffic measurement. Some of these new services
are described in Chapter 16.

◆ Example 7. Network Processors: Network processors are general-purpose programmable pro-
cessors optimized for network traffic. Their proponents say that they are needed because the
unpredictable nature of router tasks (such as content-based delivery) makes committing router
forwarding to silicon a risky proposition. For example, the Intel IXP1200 network proces-
sor evaluated in Spalink et al. [SKP00] internally contains six processors, each running at

protocols vary in subtle ways from the actual specifications. Thus a new implementation that meets the specification
may not interoperate with existing routers. Thus ISPs are reluctant to buy new routers unless they can trust the “quality”
of the BGP code, in terms of its ability to interoperate with existing routers.

11Strictly speaking, since each fragment adds headers, there will be three pieces.

38 C H A P T E R 2 Network Implementation Models

177 MHz with a 5.6-nsec clock cycle. Each processor receives packets from an input queue;
packets are stored in a large DRAM; after the processor has looked up the packet destination,
the packet is placed on the output queue with a tag describing the output link it should be
forwarded to.

The biggest problem is that the processors are responsible for moving packets in and out
of DRAM. In the IXP1200, moving 32 bytes from the queue to the DRAM takes 45 clock
cycles, and moving from the DRAM to the queue takes 55 cycles. Since a minimum-size
packet is at least 40 bytes, this requires a total of 200 cycles = 1.12 usec, which translates to
a forwarding rate of only around 900K packets/second. The IXP1200 gets around this limit
by using six parallel processors and an old architectural idea called multithreading. The main
idea is that each processor works on multiple packets, each packet being a thread; when the
processing for one packet stalls because of a memory reference, processing for the next thread
is resumed. Using fast context switching between threads, and four contexts per processor, the
IXP1200 can theoretically obtain 6 * 4 * 900 = 21.4M packets/second.

Network processors also offer special-purpose instructions for address lookup and other
common forwarding functions. Some network processors also streamline the movement of
data packets by having hardware engines that present only the header of each data packet
to the processor. The remainder of the data packet flows directly to the output queue. The
processor(s) read the header, do the lookup, and write the updated header to the output queue.
The hardware magically glues together the updated header with the original packet and keeps
all packets in order. While this approach avoids the movement of the remainder of the packet
through the processor, it does nothing for the case of minimum-size packets.

Case Study 2: Buffering and Optical Switching

As fiber-optic links scale to higher speeds, electronics implementing combinational
logic and memories in core routers becomes a bottleneck. Currently, packets arrive over
fiber-optic links with each bit encoded as a light pulse. Optics at the receiver convert
light to electrical pulses; the packet is then presented to forwarding logic implemented
electronically. The packet is then queued to an outbound link for transmission, upon
which the transmitting link optics convert electrical bits back to light. The electronic
bottleneck can be circumvented by creating an all-optical router without any electro-
optical conversions.

Unfortunately, doing IP lookups optically, and especially building dense optical
packet memories, seems hard today. But switching light between several endpoints is
feasible. Thus the numerous startups in the buzzing optical space tend to build optical
circuit switches that use electronics to set up the circuit switch. A circuit switch connects
input X to output Y for a large duration, as opposed to the duration of a single packet
as in a packet switch. Such circuit switches have found use as a flexible “core” of an
ISP’s network to connect conventional routers. If traffic between, say, routers R1 and R2
increases, an ISP operator can (at a large time scale of, say, minutes) change the circuit
switches to increase the bandwidth of the R1-to-R2 path. However, the wastefulness
of reserving switch paths for small flow durations makes it likely that packet-switched
routers will continue to be popular in the near future.

2.4 Operating Systems 39

2.4 OPERATING SYSTEMS

An operating system is software that sits above hardware in order to make life easier for appli-
cation programmers. For most Internet routers, time-critical packet forwarding runs directly
on the hardware (Figure 2.10) and is not mediated by an operating system. Less time-critical
code runs on a router operating system that is stripped down such as Cisco’s IOS. However, to
improve end-to-end performance for, say, Web browsing, an implementor needs to understand
the costs and benefits of operating systems.

Abstractions are idealizations or illusions we invent to deal with the perversity and irreg-
ularity of the real world. To finesse the difficulties of programming on a bare machine,
operating systems offer abstractions to application programmers. Three central difficulties
of dealing with raw hardware are dealing with interruptions, managing memory, and control-
ling I/O devices. To deal with these difficulties, operating systems offer the abstractions of
uninterrupted computation, infinite memory, and simple I/O.

A good abstraction increases programmer productivity but has two costs. First, the mech-
anism implementing the abstraction has a price. For example, scheduling processes can cause
overhead for a Web server. A second, less obvious cost is that the abstraction can hide power,
preventing the programmer from making optimal use of resources. For example, operating
system memory management may prevent the programmer of an Internet lookup algorithm
from keeping the lookup data structure in memory in order to maximize performance. We now
provide a model of the costs and underlying mechanisms of the process (Section 2.4.1), virtual
memory (Section 2.4.2), and I/O (Section 2.4.3) abstractions. More details can be found in
Tanenbaum [Tan92].

2.4.1 Uninterrupted Computation via Processes
A program may not run very long on the processor before being interrupted by the network
adaptor. If application programmers had to deal with interrupts, a working 100-line program
would be a miracle. Thus operating systems provide programmers with the abstraction of
uninterrupted, sequential computation under the name of a process.

The process abstraction is realized by three mechanisms: context switching, scheduling,
and protection, the first two of which are depicted in Figure 2.11. In Figure 2.11, Process P1
has the illusion that it runs on the processor by itself. In reality, as shown on the timeline below,
Process P1 may be interrupted by a timer interrupt, which causes the OS scheduler program
to run on the processor. Displacing P1 requires the operating system to save the state of P1 in
memory. The scheduler may run briefly and decide to give Process P2 a turn. Restoring P2 to

Process P1 runs to completion all by itself

P1 starts
to run

On interrupt, kernel
saves P1’s state

Scheduler runs,
picks P2

P2’s state is
restored

P1 runs again
and finishes

P2 runs • • • •

Illusion

Reality

Timeline

F I G U R E 2.11 The programmer sees the illusion of an uninterrupted timeline shown above, while the real
processor timeline may switch back and forth between several processes.

40 C H A P T E R 2 Network Implementation Models

TCP

Socket Queues

IP

Network
adaptor

Shared IP
queue

P1 P2 P3Application processes

Kernel

F I G U R E 2.12 The processing of a received Internet packet in BSD is divided between the network
adaptor, the kernel, and the destined process.

run on the processor requires restoring the state of P2 from memory. Thus the actual time line
of a processor may involve frequent context switches between processes, as orchestrated by
the scheduler. Finally, protection ensures that incorrect or malicious behavior of one process
cannot affect other processes.

As agents of computation, “processes” come in three flavors — interrupt handlers, threads,
and user processes — ranked in order of increasing generality and cost. Interrupt handlers are
small pieces of computation used to service urgent requests, such as the arrival of a message
to the network adaptor; interrupt handlers use only a small amount of state, typically a few
registers. User processes use the complete state of the machine, such as memory as well as
registers; thus it is expensive to switch between user processes as directed by the scheduler.
Within the context of a single process, threads offer a cheaper alternative to processes. A
thread is a lightweight process that requires less state, because threads within the same process
share the same memory (i.e., same variables). Thus context switching between two threads
in the same process is cheaper than switching processes, because memory does not have
to be remapped. The following example shows the relevance of these concepts to endnode
networking.

◆ Example 8. Receiver Livelock in BSD Unix: In BSD UNIX, as shown in Figure 2.12, the
arrival of a packet generates an interrupt. The interrupt is a hardware signal that causes the
processor to save the state of the currently running process, say, a Java program. The processor
then jumps to the interrupt handler code, bypassing the scheduler for speed. The interrupt
handler copies the packet to a kernel queue of IP packets waiting to be consumed, makes a
request for an operating system thread (called a software interrupt), and exits. Assuming no
further interrupts, the interrupt exit passes control to the scheduler, which is likely to cede the
processor to the software interrupt, which has higher priority than user processes.

2.4 Operating Systems 41

The kernel thread does TCP and IP processing and queues the packet to the appropriate
application queue, called a socket queue (Figure 2.12). Assume that the application is a browser
such as Netscape. Netscape runs as a process that may have been asleep waiting for data and
is now considered for being run on the processor by the scheduler. After the software interrupt
exits and control passes back to the scheduler, the scheduler may decide to run Netscape in
place of the original Java program.

Under high network load, the computer can enter what is called receiver livelock [MR97],
in which the computer spends all its time processing incoming packets, only to discard them
later because the applications never run. In our example, if there is a series of back-to-back
packet arrivals, only the highest-priority interrupt handler will run, possibly leaving no time
for the software interrupt and certainly leaving none for the browser process. Thus either the IP
or socket queues will fill up, causing packets to be dropped after resources have been invested
in their processing. Methods to mitigate this effect are described in Chapter 6.

Notice also that the latency and throughput of network code in an endnode depend on
“process” activation times. For example, current figures for Pentium IV machines show around
2 µsec of interrupt latency for a null interrupt call, around 10 µsec for a Process Context switch
on a Linux machine with two processes, and much more time for Windows and Solaris on
the same machine. These times may seem small, but recall that 30 minimum-size (40-byte)
packets can arrive in 10 µsec on a Gigabit Ethernet link.

2.4.2 Infinite Memory via Virtual Memory
In virtual memory (Figure 2.13), the programmer works with an abstraction of memory that
is a linear array into which a compiler assigns variable locations. Variable X could be stored

Virtual
Page 1

Virtual
Page 2

Virtual
Page M

Process 1’s Virtual
Memory

Disk page
80

Disk Memory

Physical Page
40

Physical Page
200

Main Memory

Illusion Reality

F I G U R E 2.13 The programmer sees the illusion of contiguous virtual memory, which is, in reality,
mapped to a collection of main memory and disk memory pages via page tables.

42 C H A P T E R 2 Network Implementation Models

in location 1010 in this imaginary (or virtual) array. The virtual memory abstraction is imple-
mented using the twin mechanisms of page table mapping and demand paging. Both these
mechanisms are crucial to understand in order to optimize data transfer costs in an endnode.

Any virtual address must be mapped to a physical memory address. The easiest mapping
is to use an offset into physical memory. For example, a virtual array of 15,000 locations
could be mapped into physical memory from, say, 12,000 to 27,000. This has two disad-
vantages. First, when the program runs, a block of 15,000 contiguous locations has to be
found. Second, the programmer is limited to using a total memory equal to the size of physical
memory.

Both problems can be avoided by a mapping based on table lookup. Since it takes too
much memory to implement a mapping from any virtual location to any physical location,
a more restricted mapping based on pages is used. Thus for any virtual address, let us say
that the high-order bits (e.g., 20 bits) form the page number and that the low-order bits (e.g.,
12 bits) form the location within a page. All locations within a virtual page are mapped to the
same relative location, but individual virtual pages can be mapped to arbitrary locations. Main
memory is also divided into physical pages, such that every group of 212 memory words is a
physical page.

To map a virtual into a physical address, the corresponding virtual page (i.e., high-order
20 bits) is mapped to a physical page number while retaining the same location within the
page. The mapping is done by looking up a page table indexed by the virtual page number.
A virtual page can be located in any physical memory page. More generally, some pages
(e.g., Virtual Page 2 in Figure 2.13) may not be memory resident and can be marked as being
on disk. When such a page is accessed, the hardware will generate an exception and cause the
operating system to read the page from the disk page into a main memory page. This second
mechanism is called demand paging.

Together, page mapping and demand paging solve the two problems of storage allocation
and bounded memory allocations. Instead of solving the harder variable size storage allocation
problem, the OS needs only to keep a list of fixed size free pages and to assign some free pages
to a new program. Also, the programmer can work with an abstraction of memory whose size
is bounded only by the size of disk and the number of instruction address bits.

The extra mapping can slow down each instruction considerably. ARead to virtual location
X may require two main memory accesses: a page table access to translate X to physical address
P, followed by a Read to address P. Modern processors get around this overhead by caching
the most recently used mappings between virtual and physical addresses in a translation look-
aside buffer (TLB), which is a processor-resident cache. The actual translation is done by a
piece of hardware called the memory management unit (MMU), as shown in Figure 2.8.

The page table mapping also provides a mechanism for protection between processes.
When a process makes a Read to virtual location X, unless there is a corresponding entry
in the page table, the hardware will generate a page fault exception. By ensuring that only
the operating system can change page table entries, the operating system can ensure that
one process cannot read from or write to the memory of another process in unauthorized
fashion.

While router forwarding works directly on physical memory, all endnode and server
networking code works on virtual memory. While virtual memory is a potential cost (e.g., for
TLB misses), it also reflects a possible opportunity. For example, it offers the potential that

2.4 Operating Systems 43

packet copying between the operating system and the application (see Example 8) can be done
more efficiently by manipulating page tables. This idea is explored further in Chapter 5.

2.4.3 Simple I/O via System Calls
Having an application programmer be aware of the variety and complexity of each I/O device
would be intolerable. Thus operating systems provide the programmer with the abstraction of
the devices as a piece of memory (Figure 2.14) that can be read and written.

The code that maps from a simple I/O interface call to the actual physical Read (with all
parameters filled in) to the device is called a device driver. If abstraction were the only concern,
the device driver code could be installed in a library of commonly available code that can be
“checked out” by each application. However, since devices such as disks must be shared by
all applications, if applications directly control the disk, an erroneous process could crash the
disk. Instead, secure operating system design requires that only the buggy application fail.

Thus it makes sense for the I/O calls to be handled by device drivers that are in a secure
portion of the operating system that cannot be affected by buggy processes. This secure portion,
called the kernel, provides a core of essential services, including I/O and page table updates,
that applications cannot be trusted to perform directly.

Thus when a browser such as Netscape wants to make a disk access to read a Web page, it
must make a so-called system call across the application–kernel boundary. System calls are a
protected form of a function call. The hardware instruction is said to “trap” to a more privileged
level (kernel mode), which allows access to operating system internals. When the function call
returns after the I/O completes, the application code runs at normal privilege levels. A system
call is more expensive than a function call because of the hardware privilege escalation and
the extra sanitizing checks for incorrect parameter values. A simple system call may take a
few microseconds on modern machines.

The relevance to networking is that when a browser wishes to send a message over the
network (e.g., Process 2 in Figure 2.14), it must do a system call to activate TCP processing.
A few microseconds for a system call may seem small, but it is really very high overhead on
a fast Pentium. Can applications speed up networking by bypassing the system call? If so,

Process 1

read file X

Process 2

write to TCP connection Y

Choose platter
Move disk arm

Write device register
Write network headers

Kernel

Network adaptor

Illusion

Reality

F I G U R E 2.14 The programmer sees devices as disparate as a disk and a network adaptor as pieces
of memory that can be read and written using system calls, but in reality the kernel manages a host of
device-specific details.

44 C H A P T E R 2 Network Implementation Models

does OS protection get tossed out of the window? Answers to these tantalizing questions are
postponed to Chapter 6.

2.5 SUMMARY

This chapter is best sampled based on the reader’s needs. Structurally, the chapter works its
way through four abstraction levels that affect performance: hardware, architecture, operating
systems, and protocols. Viewing across abstraction levels is helpful because packet-processing
speeds can be limited by transistor paths implementing packet processing, by architectural
limits such as bus speeds, by OS abstraction overheads such as system calls, and finally even
by protocol mechanisms. Several examples, which look ahead to the rest of the book, were
described to show that performance can be improved by understanding each abstraction level.

Designers that consider all four abstraction levels for each problem will soon be lost in
detail. However, there are a few important performance issues and major architectural decisions
for which simultaneous understanding of all abstraction levels is essential. For example, the
simple models given in this chapter can allow circuit designers, logic designers, architects,
microcoders, and software protocol implementors to work together to craft the architecture of
a world-class router. They can also allow operating system designers, algorithm experts, and
application writers to work together to design a world-class Web server. As link speeds cross
40 Gbps, such interdisciplinary teams will become even more important. This need is alluded
to by Raymond Kurzweil in a different context [Kur]:

There’s another aspect of creativity. We’ve been talking about great individual contrib-
utors, but when you’re creating technology it’s necessarily a group process, because
technology today is so complex that it has to be interdisciplinary. . . . And they’re all
essentially speaking their own languages, even about the same concepts. So we will
spend months establishing our common language. . . . I have a technique to get people
to think outside the box: I’ll give a signal-processing problem to the linguists, and vice
versa, and let them apply the disciplines in which they’ve grown up to a completely
different problem. The result is often an approach that the experts in the original field
would never have thought of. Group process gives creativity a new dimension.

With fields like hardware implementation and protocol design replacing signal processing
and linguistics, Kurzweil’s manifesto reflects the goal of this chapter.

2.6 EXERCISES

1. TCP Protocols and Denial-of-Service Attacks: A common exploit for a hacker is to
attempt to bring down a popular service, such as Yahoo, by doing a denial-of-service
(DOS) attack. A simple DOS attack that can be understood using the simple TCP model
of Figure A.1 is TCP Syn-Flooding. In this attack, the hacker sends a number of SYN
packets to the chosen destination D (e.g., Yahoo) using randomly chosen source
addresses. D sends back a SYN-ACK to the supposed source S and waits for a response.
If S is not an active IP address, then there will be no response from S. Unfortunately,
state for S is kept in a pending connection queue at D until D finally times out S. By
periodically sending bogus connection attempts pretending to be from different sources,

2.6 Exercises 45

the attacker can ensure that the finite pending connection queue is always full. Thereafter,
legitimate connection requests to D will be denied.

• Assume there is a monitor that is watching all traffic. What algorithm can be used to
detect denial-of-service attacks? Try to make your algorithm as fast and memory
efficient as possible so that it can potentially be used in real time, even in a router.
This is a hard problem, but even starting to think about the problem is instructive.

• Suppose the monitor realizes a TCP flood attack is under way. Why might it be hard to
distinguish between legitimate traffic and flood traffic?

2. Digital Design: Multiplexers and barrel shifters are very useful in networking hardware,
so working this problem can help even a software person to build up hardware intuition.

• First, design a 2-input multiplexer from basic gates (AND, OR, NOT).

• Next, generalize the idea shown in the chapter to design an N-input multiplexer from
N /2 input multiplexers. Use this to describe a design that takes log N gate delays and
O(N) transistors.

• Show how to design a barrel shifter using a reduction to multiplexers (i.e, use as many
muxes as you need in your solution). Based on your earlier solutions, what are the gate
and time complexities of your solution?

• Try to design a barrel shifter directly at the transistor level. What are its time and
transistor complexities? You can do better using direct design than the simple reduction
earlier.

3. Memory Design: For the design of the pipelined flow ID lookup scheme described
earlier, draw the timing diagrams for the pipelined lookups. Use the numbers described in
the chapter, and clearly sketch a sample binary tree with 15 leaves and show how it can
be looked up after four lookups on four different banks. Assume a binary tree, not a
ternary tree. Also, calculate the number of keys that can be supported using 16 banks
of RAMBUS if the first k levels of the tree are cached in on-chip SRAM.

4. Memories and Pipelining Trees: This problem studies how to pipeline a heap. A heap is
important for applications like QoS, where a router wishes to transmit the packet with the
earliest timestamp first. Thus it makes sense to have a heap ordered on timestamps. To
make it efficient, the heap needs to be pipelined in the same fashion as the binary search
tree example in the chapter, though doing so for a heap is somewhat harder. Figure 2.15
shows an example of a P-heap capable of storing 15 keys. A P-heap [BL00] is a full
binary tree, such as a standard heap, except that nodes anywhere in the heap can be empty
as long as all children of the node are also empty (e.g., nodes 6, 12, 13).

For the following explanations consult Figures 2.15 and Figure 2.16. Consider
adding key 9 to the heap. Assume every node N has a count of the number of empty nodes
in the subtree rooted at N . Since 9 is less than the root value of 16, 9 must move below.
Since both the left and right children have empty nodes in their subtrees, we arbitrarily
choose to add 9 to the left subtree (node 2). The index, value, and position values shown
on the left of each tree are registers used to show the state of the current operation. Thus
in Figure 2.15, part (b), when 9 is added to the left subtree, the index represents the depth

46 C H A P T E R 2 Network Implementation Models

9

value

1

index

2

3

4

position

1

2 4

8 7

14

16

10

3

5

4

2 3

1

5 6 7

8 9 10 11 12 13 14 15

9

value

1

index

2

3

4

position

2

2 4

8 7

14

16

10

3

5

4

2 3

1

5 6 7

8 9 10 11 12 13 14 15

9

value

1

index

2

3

4

position

5

2 4

8 7

14

16

10

3

5

4

2 3

1

5 6 7

8 9 10 11 12 13 14 15

7

value

1

index

2

3

4

position

10 2 4

8 9

14

16

10

3

5

4

2 3

1

5 6 7

8 9 10 11 12 13 14 15

value

1

index

2

3

4

position

2 4

8 9

14

16

10

3

7 5

4

2 3

1

5 6 7

8 9 10 11 12 13 14 15

(a) (b)

(c)

(e)

(d)

F I G U R E 2.15 An enqueue example in five snapshots to be read from left to right and then top down. In each
snapshot, the index represents the depth of the subtree, and the position is the number of the node that the value is
being added to.

of the subtree (depth 2) and the position is the number of the node (i.e., node 2) that the
value 9 is being added to.

Next, since 9 is less than 14 and since only the right child has space in its subtree,
9 is added to the subtree rooted at node 5. This time 9 is greater than 7, so 7 is replaced
with 9 (in node 5) and 7 is pushed down to the empty node, 10. Thus in Figure 2.15, part
(d), the index value is 4 (i.e., operation is at depth 4) and the position is 10. Although in
Figure 2.15 only one of the registers at any index/depth has nonempty information,
keeping separate registers for each index will allow pipelining.

Consider next what is involved in removing the largest element (dequeue). Remove
16 and try to push down the hole created until an empty subtree is created. Thus in Step 3,

2.6 Exercises 47

value

1

index

2

3

4

position

2 4

8 7

14

16

10

3

5

4

2 3

1

5 6 7

8 9 10 11 12 13 14 15

value

1

index

2

3

4

position

1

2 4

8 7

14 10

3

5

4

2 3

1

5 6 7

8 9 10 11 12 13 14 15

value

1

index

3

4

position

2 4

8 7

14

10

3

5

4

2 3

5 6 7

8 9 10 11 12 13 14 15

value

1

index

2

4

position

2 4

7

8

14

10

3

5

4

2 3

5 6 7

8 9 10 11 12 13 14 15

value

1

index

2

3

4

position

2

4 7

8

14

10

3

5

4

2 3

5 6 7

8 9 10 11 12 13 14 15

2 2

3 4

(a) (b) local-dequeue(1)

(c) local-dequeue(2)

(e)

(d) local-dequeue(3)

F I G U R E 2.16 Dequeue example.

the hole is moved to node 2 (because its value, 14, is larger than its sibling, with
value 10), then to node 4, and finally to node 9. Each time a hole is moved down,
the corresponding nonempty value from below replaces the old hole.

• In order to make the enqueue operation work correctly, the count of empty subtree
nodes must be maintained. Explain briefly how the count should be maintained for
each enqueue and dequeue operation (the structure will be pipelined in a moment,
so make sure the count values respect this goal).

• A logical thing to do is to pipeline by level, as we did for the binary tree in the chapter.
However, here we have a problem. At each level (say, inserting 9 at the root) the
operation has to consult the two children at the next level as well. Thus when the first
operation moves down to level 2, one cannot bring in a second operation to level 1 or

48 C H A P T E R 2 Network Implementation Models

there will be memory contention. Clearly waiting till one operation finishes completely
will work, but this reduces to sequential processing of operations. What is the fastest
rate you can pipeline the heap?

• Consider the operations “Enqueue 9; Enqueue 4.5; Dequeue” pipelined as you have
answered earlier. Show six consecutive snapshots of the tree supporting these three
operations.

• Assume that each level memory is an on-chip SRAM that takes 5 nsec for a memory
access. Assume that you can read and write the value and count fields together in one
access. Remember that some of the memories can be queried in parallel. What is the
steady-state throughput of the heap, in operations per second?

• Could one improve the number of memory references by using a wider memory access
and laying out the tree appropriately?

• Before this design, previous designs used a memory element for each heap element as
well as logic for each element. Thus the amount of logic required scaled directly with
heap size, which scales poorly in terms of density and power. In this design, the
memory scales with the number of heap elements and thus scales with SRAM densities
and power, but the logic required scales much better. Explain.

5. Architecture, Caches, and Fast Hash Functions: The L1 cache in a CPU provides
essentially a fast hash function that maps from a physical memory address to its contents
via the L1 cache. Suppose that one wants to teach an old dog (the L1 cache) a new trick
(to do IP lookups) using a method suggested in Chieuh and Pradhan [CP98]. The goal is
to use the L1 cache as a hash table to map 32-bit IP addresses to 7-bit port numbers.
Assume a 16-KB L1 cache, of which the first 4 KB are reserved for the hash table, and a
32-byte cache block size. Assume a byte-addressable machine, a 32-bit virtual address,
and a page size of 4 KB. Thus there are 512 32-byte blocks in the cache. Assume the L1
cache is directly indexed (called direct mapped). Thus bits 5 through 13 of a virtual
address are used to index into one of 512 blocks, with bits 0 through 4 identifying the
byte within each block.

• Given pages of size 4 KB and that the machine is byte addressable, how many bits in a
virtual address identify the virtual page? How many bits of the virtual page number
intersect with bits 5 through 13 used to index into the L1 cache?

• The only way to ensure that the hash table is not thrown out of the L1 cache when some
other virtual pages arrive is to mark any pages that could map into the same portion of
the L1 cache as uncacheable at start-up (this can be done). Based on your previous
answer and the fact that the hash table uses the first 4 KB of L1 cache, precisely
identify which pages must be marked as uncacheable.

• To do a lookup of a 32-byte IP address, first convert the address to a virtual address by
setting to 0 all bits except bits 5 through 11 (bits 12 and 13 are zero because only the
top quarter of the L1 cache is being used). Assume this is translated to the exact same
physical address. When a Read is done to this address, the L1 cache hardware will
return the contents of the first 32-bit word of the corresponding cache block. Each
32-bit word will contain a 25-bit tag and a 7-bit port number. Next, compare all bits in

2.6 Exercises 49

the IP address, other than bits 5 through 11, with the tag, and keep doing so for each
32-bit entry in the block. How many L1 cache accesses are required in the worst case
for a hash lookup? Why might this be faster than a standard hash lookup in software?

6. Operating Systems and Lazy Receiver Processing: Example 8 described how BSD
protocol processing can lead to receiver livelock. Lazy receiver processing [DB96]
combats this problem via two mechanisms.

• The first mechanism is to replace the single shared IP processing queue by a separate
queue per destination socket. Why does this help? Why might this not be easy to
implement?

• The second mechanism is to implement the protocol processing at the priority of the
receiving process and as part of the context of the received process (and not a separate
software interrupt). Why does this help? Why might this not be easy to implement?

C H A P T E R 3

Fifteen Implementation Principles

Instead of computing, I had to think about the problem, a formula for success that I
recommend highly.

— Ivan Sutherland

After understanding how queens and knights move in a game of chess, it helps to understand
basic strategies, such as castling and the promotion of pawns in the endgame. Similarly,
having studied some of the rules of the protocol implementation game in the last chap-
ter, you will be presented in this chapter with implementation strategies in the form of
15 principles. The principles are abstracted from protocol implementations that have worked
well. Many good implementors unconsciously use such principles. The point, however,
is to articulate such principles so that they can be deliberately applied to craft efficient
implementations.

This chapter is organized as follows. Section 3.1 motivates the use of the principles using
a ternary CAM problem. Section 3.2 clarifies the distinction between algorithms and algorith-
mics using a network security forensics problem. Section 3.3 introduces 15 implementation
principles; Section 3.4 explains the differences between implementation and design principles.
Finally, Section 3.5 describes some cautionary questions that should be asked before applying
the principles.

Q u i c k R e f e r e n c e G u i d e
The reader pressed for time should consult the summaries of the 15 principles found in Figures

3.1, 3.2, and 3.3. Two networking applications of these principles can be found in a ternary CAM update
problem (Section 3.1) and a network security forensics problem (Section 3.2).

3.1 MOTIVATING THE USE OF PRINCIPLES — UPDATING TERNARY CONTENT-
ADDRESSABLE MEMORIES

Call a string ternary if it contains characters that are either 0, 1, or *, where * denotes a wildcard
that can match both a 0 and a 1. Examples of ternary strings of length 3 include S1 = 01* and
S2 = *1*; the actual binary string 011 matches both S1 and S2, while 111 matches only S2.

50

3.1 Motivating the Use of Principles — Updating Ternary Content-Addressable Memories 51

P1

P2
 P2a
 P2b
 P2c

P3
 P3a
 P3b
 P3c

P4
 P4a
 P4b
 P4c

P5
 P5a
 P5b
 P5c

Avoid obvious waste

Shift computation in time
 Precompute
 Evaluate lazily
 Share expenses, batch

Relax system requirements
 Trade certainty for time
 Trade accuracy for time
 Shift computation in space

Leverage off system components
 Exploit locality
 Trade memory for speed
 Exploit existing hardware

Add hardware
 Use memory interleaving and pipelining
 Use wide word parallelism
 Combine DRAM and SRAM effectively

Zero-copy interfaces

Application device channels
Copy-on-write
Integrated layer processing

Stochastic fair queueing
Switch load balancing
IPv6 fragmentation

Locality-driven receiver
Processing; Lulea IP lookups
Fast TCP checksum

Pipelined IP lookups
Shared memory switches
Maintaining counters

Number Principle Used In

F I G U R E 3.1 Summary of Principles 1–5 — systems thinking.

P6

P7

P8

P9

P10

Avoid unnecessary generality

UDP checksums

Fbufs

Upcalls

Packet filters

Tag switching

Number Principle Networking Example

Create efficient specialized
routines

Don't be tied to reference
implementation

Pass hints in layer interfaces

Pass hints in protocol headers

F I G U R E 3.2 Summary of Principles 6–10 — recovering efficiency while retaining modularity.

P11
 P11a

P12
 P12a

P13

P14

P15 Create efficient data
structures

Optimize the expected case
 Use caches

Add state for speed
 Compute incrementally

Optimize degrees of freedom

Use bucket sorting, bitmaps

Level-4 switching

Header prediction
 Fbufs

Active VC list
 Recomputing CRCs

IP trie lookups

Timing wheels

Number Networking ExamplePrinciple

F I G U R E 3.3 Summary of Principles 11–15 — speeding up key routines.

52 C H A P T E R 3 Fifteen Implementation Principles

Free Free

110*
111*

P3
P2

00*
01*
10*

P1
P3
P4

0* P4

Prefix Next Hop

010001 *
110001 *

P5
P5

110001. .

P1
P2
P3
P4
P5

Router

F I G U R E 3.4 Example of using a ternary CAM for prefix lookups.

A ternary content-addressable memory (CAM) is a memory containing ternary strings of a
specified length together with associated information; when presented with an input string,
the CAM will search all its memory locations in parallel to output (in one cycle) the lowest
memory location whose ternary string matches the specified input key.

Figure 3.4 shows an application of ternary CAMs to the longest-matching-prefix problem
for Internet routers. For every incoming packet, each Internet router must extract a 32-bit
destination IP address from the incoming packet and match it against a forwarding database
of IP prefixes with their corresponding next hops. An IP prefix is a ternary string of length 32
where all the wildcards are at the end. We will change notation slightly and let * denote any
number of wildcard characters, so 101* matches 10100 and not just 1010.

Thus in Figure 3.4 a packet sent to a destination address that starts with 010001 matches the
prefixes 010001* and 01* but should be sent to Port P5 because Internet forwarding requires
that packets be forwarded using the longest match. We will have more to say about this problem
in Chapter 11. For now, note that if the prefixes are arranged in a ternary CAM such that all
longer prefixes occur before any shorter prefixes (as in Figure 3.4), the ternary CAM provides
the matching next hop in one memory cycle.

While ternary CAMs are extremely fast for message forwarding, they require that longer
prefixes occur before shorter prefixes. But routing protocols often add or delete prefixes.
Suppose in Figure 3.4 that a new prefix, 11*, with next hop Port 1 must be added to the
router database. The naive way to do insertion would make space in the group of length-2
prefixes (i.e., create a hole before 0*) by pushing up by one position all prefixes of length 2 or
higher.

Unfortunately, for a large database of around 100,000 prefixes kept by a typical core router,
this would take 100,000 memory cycles, which would make it very slow to add a prefix. We
can obtain a better solution systematically by applying the following two principles (described
later in this chapter as principles P13 and P15).

UNDERSTAND AND EXPLOIT DEGREES OF FREEDOM

In looking at the forwarding table on the left of Figure 3.4 we see that all prefixes of the same
length are arranged together and all prefixes of length i occur after all prefixes of length j > i.

3.1 Motivating the Use of Principles — Updating Ternary Content-Addressable Memories 53

Y

X

Length-(i + 1) prefixes

Length-i prefixes

Free space

Prefix Next Hop

Create a hole here by
moving X to Y’s position

F I G U R E 3.5 Finding a spot for the new prefix by moving X to Y ’s position recursively requires us
to find a spot to move Y .

However, in the figure all prefixes of the same length are also sorted by value. Thus 00* occurs
before 01*, which occurs before 10*. But this is unnecessary for the CAM to correctly return
longest matching prefixes: We only require ordering between prefixes of different lengths; we
do not require ordering between prefixes of the same length.

In looking at the more abstract view of Figure 3.4 shown in Figure 3.5, we see that if we
are to add an entry to the start of the set of length-i prefixes, we have to create a hole at the end
of the length-(i +1) set of prefixes. Thus we have to move the entry X, already at this position,
to another position. If we move X one step up, we will be forced into our prior inefficient
solution.

However, our observation about degrees of freedom says that we can place X anywhere
adjacent to the other length-(i + 1) prefixes. Thus, an alternative idea is to move X to the
position held by Y , the last length-(i + 2) prefix. But this forces us to find a new position for
Y . How does this help? We need a second principle.

USE ALGORITHMIC TECHNIQUES

Again, recursion suggests itself: We solve a problem by reducing the problem to a “smaller”
instance of the same problem. In this case, the new problem of assigning Y a new position is
“smaller” because the set of length-(i + 2) prefixes are closer to the free space at the top of the
CAM than the set of length-(i + 1) prefixes. Thus we move Y to the end of the length-(i + 3)
set of prefixes, etc.

While recursion is a natural way to think, a better implementation is to unwind the recursion
by starting from the top of the CAM and working downward by creating a hole at the end of
the length-1 prefixes,1 creating a hole at the end of the length-2 prefixes, etc., until we create
a hole at the end of the length-i prefixes. Thus the worst-case time is 32 − i memory accesses,
which is around 32 for small i.

1For simplicity, this description has assumed that the CAM contains prefixes of all lengths; it is easy to modify
the algorithm to avoid this assumption.

54 C H A P T E R 3 Fifteen Implementation Principles

Are we done? No, we can do better by further exploiting degrees of freedom. First, in
Figure 3.5 we assumed that the free space was at the top of the CAM. But the free space could
be placed anywhere. In particular, it can be placed after the length-16 prefixes. This reduces
the worst-case number of memory accesses by a factor of 2 [SG01].

A more sophisticated degree of freedom is as follows. So far the specification of the CAM
insertion algorithm required that “a prefix of length i must occur before a prefix of length j
if i > j.” Such a specification is sufficient for correctness but is not necessary. For example,
010* can occur before 111001* because there is no address that can match both prefixes!

Thus a less exacting specification is “if two prefixes P and Q can match the same address,
then P must come before Q in the CAM if P is longer than Q.” This is used in Shah and Gupta
[SG01] to further reduce the worst-case number of memory accesses for insertion for some
practical databases.

While the last improvement is not worth its complexity, it points to another important
principle. We often divide a large problem into subproblems and hand over the subproblem
for a solution based on a specification. For example, the CAM hardware designer may have
handed over the update problem to a microcoder, specifying that longer prefixes be placed
before shorter ones.

But, as before, such a specification may not be the only way to solve the original problem.
Thus changes to the specification (principle P3) can yield a more efficient solution. Of course,
this requires curious and confident individuals who understand the big picture or who are brave
enough to ask dangerous questions.

3.2 ALGORITHMS VERSUS ALGORITHMICS

It may be possible to argue that the previous example is still essentially algorithmic and does
not require system thinking. One more quick example will help clarify the difference between
algorithms and algorithmics.
SECURITY FORENSICS PROBLEM

In many intrusion detection systems, a manager often finds that a flow (defined by some
packet header, for example, a source IP address) is likely to be misbehaving based on some
probabilistic check. For example, a source doing a port scan may be identified after it has sent
100,000 packets to different machines in the attacked subnet.

While there are methods to identify such sources, one problem is that the evidence (the
100,000 packets sent by the source) has typically disappeared (i.e., been forwarded from the
router) by the time the guilty source is identified. The problem is that the probabilistic check
requires accumulating some state (in, say, a suspicion table) for every packet received over
some period of time before a source can be deemed suspicious. Thus if a source is judged to
be suspicious after 10 seconds, how can one go back in time and retrieve the packets sent by
the source during those 10 seconds?

To accomplish this, in Figure 3.6 we keep a queue of the last 100,000 packets that were
sent by the router. When a packet is forwarded we also add a copy of the packet (or just keep
a pointer to the packet) to the head of the queue. To keep the queue bounded, when the queue
is full we delete from the tail as well.

The main difficulty with this scheme is that when a guilty flow is detected there may be
lots of the flow’s packets in the queue (Figure 3.6). All of these packets must be placed in

3.2 Algorithms versus Algorithmics 55

Packet P arrives
for flow F

Report to manager periodically
or upon bad flow detection

Fast probabilistic
suspicion test

Forward P

Add copy
of P to Head

Forensic
log

Suspicion
table

 —

If alert, add F to table;
If F in Table, update state

Queue of
last N
packets

Q
F

F

F

How to search memory for
all packets sent with flow ID F
to add to forensic log?

F I G U R E 3.6 Keeping a queue of the last 100,000 packets that contains forensic information about
what suspicious flows have been sent in the past.

the forensic log for transmission to a manager. The naive method of searching through a large
DRAM buffer is very slow.

The textbook algorithms approach would be to add some index structure to search quickly
for flow IDs. For example, one might maintain a hash table of flow IDs that maps every flow
to a list of pointers to all packets with that flow ID in the queue. When a new packet is placed
in the queue, the flow ID is looked up in the hash table and the address of the new packet in
the queue is placed at the end of the flow’s list. Of course, when packets leave the queue, their
entries must be removed from the list, and the list can be long. Fortunately, the entry to be
deleted is guaranteed to be at the head of the queue for that flow ID.

Despite this, the textbook scheme has some difficulties. It adds more space to maintain
these extra queues per flow ID, and space can be at a premium for a high-speed implementation.
It also adds some extra complexity to packet processing to maintain the hash table, and requires
reading out all of a flow’s packets to the forensic log before the packet is overwritten by a
packet that arrives 100,000 packets later. Instead the following “systems” solution may be
more elegant.
SOLUTION

Do not attempt to immediately identify all of a flow F’s packets when F is identified, but
lazily identify them as they reach the end of the packet queue. This is shown in Figure 3.7.
When we add a packet to the head of the queue, we must remove a packet from the end of the
queue (at least when the queue is full).

If that packet (say, Q, see Figure 3.6) belongs to flow F that is in the Suspicion Table and
flow F has reached some threshold of suspicion, we then add packet Q to the forensic log. The
log can be sent to a manager. The overhead of this scheme is significant but manageable; we
have to do two packet-processing steps, one for the packet being forwarded and one for the
packet being removed from the queue. But these two packet-processing steps are also required
in the textbook scheme; on the other hand, the elegant scheme requires no hashing and uses
much less storage (no pointers between the 100,000 packets).

56 C H A P T E R 3 Fifteen Implementation Principles

Packet P arrives
for flow F

Report to manager periodically
or upon bad flow detection

Fast probabilistic
suspicion test

Foward P

Add copy
of P to Head

Forensic
log

Suspicion
table

 —

If alert, add F to table;
If F in Table, update state

Queue of
last N
packets

Q

If packet Q’s flow F is deemed bad
in suspicion table, add Q to log

F I G U R E 3.7 Keeping a queue of the last 100,000 packets that contains forensic information about
what suspicious flows have been sent in the past.

3.3 FIFTEEN IMPLEMENTATION PRINCIPLES — CATEGORIZATION AND DESCRIPTION

The two earlier examples and the warm-up exercise in Chapter 1 motivate the following
15 principles, which are used in the rest of the book. They are summarized inside the front
cover. To add more structure they are categorized as follows:

• Systems Principles: Principles 1–5 take advantage of the fact that a system is constructed
from subsystems. By taking a systemwide rather than a black-box approach, one can often
improve performance.

• Improving Efficiency While Retaining Modularity: Principles 6–10 suggest methods
for improving performance while allowing complex systems to be built modularly.

• Speeding It Up: Principles 11–15 suggest techniques for speeding up a key routine
considered by itself.

Amazingly, many of these principles have been used for years by Chef Charlie at his
Greasy Spoon restaurant. This chapter sometimes uses illustrations drawn from Chef Char-
lie’s experience, in addition to computer systems examples. One networking example is also
described for each principle, though details are deferred to later chapters.

3.3.1 Systems Principles
The first five principles exploit the fact that we are building systems.

P1: AVOID OBVIOUS WASTE IN COMMON SITUATIONS

In a system, there may be wasted resources in special sequences of operations. If these patterns
occur commonly, it may be worth eliminating the waste. This reflects an attitude of thriftiness
toward system costs.

3.3 Fifteen Implementation Principles — Categorization and Description 57

For example, Chef Charlie has to make a trip to the pantry to get the ice cream maker
to make ice cream and to the pantry for a pie plate when he makes pies. But when he makes
pie à la mode, he has learned to eliminate the obvious waste of two separate trips to the
pantry.

Similarly, optimizing compilers look for obvious waste in terms of repeated subexpres-
sions. For example, if a statement calculates i = 5.1 ∗ n + 2 and a later statement calculates
j := (5.1 ∗ n + 2) ∗ 4, the calculation of the common subexpression 5.1 ∗ n + 2 is wasteful
and can be avoided by computing the subexpression once, assigning it to a temporary variable
t, and then calculating i := t and j := t ∗ 4. A classic networking example, described in
Chapter 5, is avoiding making multiple copies of a packet between operating system and user
buffers.

Notice that each operation (e.g., walk to pantry, line of code, single packet copy) consid-
ered by itself has no obvious waste. It is the sequence of operations (two trips to the pantry,
two statements that recompute a subexpression, two copies) that have obvious waste. Clearly,
the larger the exposed context, the greater the scope for optimization. While the identification
of certain operation patterns as being worth optimizing is often a matter of designer intuition,
optimizations can be tested in practice using benchmarks.

P2: SHIFT COMPUTATION IN TIME

Systems have an aspect in space and time. The space aspect is represented by the subsystems,
possibly geographically distributed, into which the system is decomposed. The time aspect is
represented by the fact that a system is instantiated at various time scales, from fabrication
time, to compile time, to parameter-setting times, to run time. Many efficiencies can be gained
by shifting computation in time. Here are three generic methods that fall under time-shifting.

• P2a: Precompute. This refers to computing quantities before they are actually used, to
save time at the point of use. For example, Chef Charlie prepares crushed garlic in advance
to save time during the dinner rush. A common systems example is table-lookup methods,
where the computation of an expensive function f in run time is replaced by the lookup of
a table that contains the value of f for every element in the domain of f . A networking
example is the precomputation of IP and TCP headers for packets in a connection; because
only a few header fields change for each packet, this reduces the work to write packet
headers (Chapter 9).

• P2b: Evaluate Lazily. This refers to postponing expensive operations at critical times,
hoping that either the operation will not be needed later or a less busy time will be found to
perform the operation. For example, Chef Charlie postpones dishwashing to the end of the
day. While precomputation is computing before the need, lazy evaluation is computing
only when needed.

A famous example of lazy evaluation in systems is copy-on-write in the Mach
operating system. Suppose we have to copy a virtual address space A to another space, B,
for process migration. A general solution is to copy all pages in A to B to allow for pages in
B to be written independently. Instead, copy-on-write makes page table entries in B’s
virtual address space point to the corresponding page in A. When a process using B writes
to a location, then a separate copy of the corresponding page in A is made for B, and the
write is performed. Since we expect the number of pages that are written in B to be small
compared to the total number of pages, this avoids unnecessary copying.

58 C H A P T E R 3 Fifteen Implementation Principles

(property P)
Subsystem 2

Subsystem 1

Spec S

(property Q)
Subsystem 2

Subsystem 1

Weaker Spec W

F I G U R E 3.8 Easing the implementation of Subsystem 1 by weakening its specification from S to,
say, W , at the cost of making Subsystem 2 do more work.

A simple networking example occurs when a network packet arrives to an endnode
X in a different byte order than X’s native byte order. Rather than swap all bytes
immediately, it can be more efficient to wait to swap the bytes that are actually read.

• P2c: Share Expenses. This refers to taking advantage of expensive operations done by
other parts of the system. An important example of expense sharing is batching, where
several expensive operations can be done together more cheaply than doing each
separately. For example, Charlie bakes several pies in one batch. Computer systems have
used batch processing for years, especially in the early days of mainframes, before time
sharing. Batching trades latency for throughput. A simple networking example of expense
sharing is timing wheels (Chapter 7), where the timer data structure shares expensive
per-clock-tick processing with the routine that updates the time-of-day clock.

P3: RELAX SYSTEM REQUIREMENTS

When a system is first designed top-down, functions are partitioned among subsystems. After
fixing subsystem requirements and interfaces, individual subsystems are designed. When
implementation difficulties arise, the basic system structure may have to be redone, as shown
in Figure 3.8.

As shown in Chapter 1, implementation difficulties (e.g., implementing a Divide) can
sometimes be solved by relaxing the specification requirements for, say, Subsystem 1. This is
shown in the figure by weakening the specification of Subsystem 1 from, say, S to W , but at the
cost of making Subsystem 2 obey a stronger property, Q, compared to the previous property, P.

Three techniques that arise from this principle are distinguished by how they relax the
original subsystem specification.

• P3a: Trade Certainty for Time. Systems designers can fool themselves into believing that
their systems offer deterministic guarantees, when in fact we all depend on probabilities.
For example, quantum mechanics tells us there is some probability that the atoms in your
body will rearrange themselves to form a hockey puck, but this is clearly improbable.2

This opens the door to consider randomized strategies when deterministic algorithms are
too slow.

In systems, randomization is used by millions of Ethernets worldwide to sort
out packet-sending instants after collisions occur. A simple networking example of

2Quote due to Tony Lauck.

3.3 Fifteen Implementation Principles — Categorization and Description 59

randomization is Cisco’s NetFlow traffic measurement software: If a router does not have
enough processing power to count all arriving packets, it can count random samples and
still be able to statistically identify large flows. A second networking example is stochastic
fair queuing (Chapter 14), where, rather than keep track exactly of the networking
conversations going through a router, conversations are tracked probabilistically using
hashing.

• P3b: Trade Accuracy for Time. Similarly, numerical analysis cures us of the illusion that
computers are perfectly accurate. Thus it can pay to relax accuracy requirements for speed.
In systems, many image compression techniques, such as MPEG, rely on lossy
compression using interpolation. Chapter 1 used approximate thresholds to replace divides
by shifts. In networking, some packet-scheduling algorithms at routers (Chapter 14)
require sorting packets by their departure deadlines; some proposals to reduce sorting
overhead at high speeds suggest approximate sorting, which can slightly reduce
quality-of-service bounds but reduce processing.

• P3c: Shift Computation in Space. Notice that all the examples given for this principle
relaxed requirements: Sampling may miss some packets, and the transferred image may
not be identical to the original image. However, other parts of the system (e.g., Subsystem
2 in Figure 3.8) have to adapt to these looser requirements. Thus we prefer to call the
general idea of moving computation from one subsystem to another (“robbing Peter to pay
Paul”) shifting computation in space. In networking, for example, the need for routers to
fragment packets has recently been avoided by having end systems calculate a packet size
that will pass all routers.

P4: LEVERAGE OFF SYSTEM COMPONENTS

A black-box view of system design is to decompose the system into subsystems and then to
design each subsystem in isolation. While this top-down approach has a pleasing modularity,
in practice performance-critical components are often constructed partially bottom-up. For
example, algorithms are designed to fit the features offered by the hardware. Here are some
techniques that fall under this principle.

• P4a: Exploit Locality. Chapter 2 showed that memory hardware offers efficiencies if
related data is laid out contiguously — e.g., same sector for disks, or same DRAM page
for DRAMs. Disk-search algorithms exploit this fact by using search trees of high radix,
such as B-trees. IP-lookup algorithms (Chapter 11) use the same trick to reduce lookup
times by placing several keys in a wide word, as did the example in Chapter 1.

• P4b: Trade Memory for Speed. The obvious technique is to use more memory, such as
lookup tables, to save processing time. A less obvious technique is to compress a data
structure to make it more likely to fit into cache, because cache accesses are cheaper than
memory accesses. The Lulea IP-lookup algorithm described in Chapter 11 uses this idea
by using sparse arrays that can still be looked up efficiently using space-efficient bitmaps.

• P4c: Exploit Hardware Features. Compilers use strength reduction to optimize away
multiplications in loops; for example, in a loop where addresses are 4 bytes and the index i
increases by 1 each time, instead of computing 4 ∗ i, the compiler calculates the new array
index as being 4 higher than its previous value. This exploits the fact that multiplies are
more expensive than additions on many modern processors. Similarly, it pays to

60 C H A P T E R 3 Fifteen Implementation Principles

manipulate data in multiples of the machine word size, as we will see in the fast
IP-checksum algorithms described in Chapter 9.

If this principle is carried too far, the modularity of the system will be in jeopardy. Two
techniques alleviate this problem. First, if we exploit other system features only to improve
performance, then changes to those system features can only affect performance and not
correctness. Second, we use this technique only for system components that profiling has
shown to be a bottleneck.

P5: ADD HARDWARE TO IMPROVE PERFORMANCE

When all else fails, goes the aphorism, use brute force. Adding new hardware,3 such as buying
a faster processor, can be simpler and more cost effective than using clever techniques. Besides
the brute-force approach of using faster infrastructure (e.g., faster processors, memory, buses,
links), there are cleverer hardware–software trade-offs. Since hardware is less flexible and has
higher design costs, it pays to add the minimum amount of hardware needed.

Thus, baking at the Greasy Spoon was sped up using microwave ovens. In computer
systems, dramatic improvements each year in processor speeds and memory densities suggest
doing key algorithms in software and upgrading to faster processors for speed increases. But
computer systems abound with cleverer hardware–software trade-offs.

For example, in a multiprocessor system, if a processor wishes to write data, it must inform
any “owners” of cached versions of the data. This interaction can be avoided if each processor
has a piece of hardware that watches the bus for write transactions by other processors and
automatically invalidates the cached location when necessary. This simple hardware snoopy
cache controller allows the remainder of the cache-consistency algorithm to be efficiently
performed in software.

Decomposing functions between hardware and software is an art in itself. Hardware offers
several benefits. First, there is no time required to fetch instructions: Instructions are effec-
tively hardcoded. Second, common computational sequences (which would require several
instructions in software) can be done in a single hardware clock cycle. For example, finding
the first bit set in, say, a 32-bit word may take several instructions on a RISC machine but can
be computed by a simple priority encoder, as shown in the previous chapter.

Third, hardware allows you to explicitly take advantage of parallelism inherent in the
problem. Finally, hardware manufactured in volume may be cheaper than a general-purpose
processor. For example, a Pentium may cost $100 while anASIC in volume with similar speeds
may cost $10.

On the other hand, a software design is easily transported to the next generation of faster
chips. Hardware, despite the use of programmable chips, is still less flexible. Despite this,
with the advent of design tools such as VHDL synthesis packages, hardware design times have
decreased considerably. Thus in the last few years chips performing fairly complex functions,
such as image compression and IP lookups, have been designed.

Besides specific performance improvements, new technology can result in a complete
paradigm shift. A visionary designer may completely redesign a system in anticipation of

3By contrast, Principle P4 talks about exploiting existing system features, such as the existing hardware. Of
course, the distinction between principles tends to blur and must be taken with a grain of salt.

3.3 Fifteen Implementation Principles — Categorization and Description 61

such trends. For example, the invention of the transistor and fast digital memories certainly
enabled the use of digitized voice in the telephone network.

Increases in chip density have led computer architects to ponder what computational
features to add to memories to alleviate the processor-memory bottleneck. In networks, the
availability of high-speed links in the 1980s led to use of large addresses and large headers.
Ironically, the emergence of laptops in the 1990s led to the use of low-bandwidth wireless
links and to a renewed concern for header compression. Technology trends can seesaw!

The following specific hardware techniques are often used in networking ASICs and are
worth mentioning. They were first described in Chapter 2 and are repeated here for convenience.

• P5a: Use Memory Interleaving and Pipelining. Similar techniques are used in IP
lookup, in classification, and in scheduling algorithms that implement QoS. The multiple
banks can be implemented using several external memories, a single external memory
such as a RAMBUS, or on-chip SRAM within a chip that also contains processing logic.

• P5b: Use Wide Word Parallelism. A common theme in many networking designs, such
as the Lucent bit vector scheme (Chapter 12), is to use wide memory words that can be
processed in parallel. This can be implemented using DRAM and exploiting page mode or
by using SRAM and making each memory word wider.

• P5c: Combine DRAM and SRAM. Given that SRAM is expensive and fast and that
DRAM is cheap and slow, it makes sense to combine the two technologies to attempt to
obtain the best of both worlds. While the use of SRAM as a cache for DRAM databases is
classical, there are many more creative applications of the idea of a memory hierarchy. For
instance, the exercises explore the effect of a small amount of SRAM on the design of the
flow ID lookup chip. Chapter 16 describes a more unusual application of this technique to
implement a large number of counters, where the low-order bits of each counter are stored
in SRAM.

3.3.2 Principles for Modularity with Efficiency
An engineer who had read Dave Clark’s classic papers (e.g., Ref. Cla85) on the inefficiences
of layered implementations once complained to a researcher about modularity. The researcher
(Radia Perlman) replied, “But that’s how we got to the stage where we could complain about
something.” Her point, of course, was that complex systems like network protocols could only
have been engineered using layering and modularity. The following principles, culled from
work by Clark and others, show how to regain efficiencies while retaining modularity.

P6: CREATE EFFICIENT SPECIALIZED ROUTINES BY REPLACING

INEFFICIENT GENERAL-PURPOSE ROUTINES

As in mathematics, the use of abstraction in computer system design can make systems
compact, orthogonal, and modular. However, at times the one-size-fits-all aspect of a general-
purpose routine leads to inefficiencies. In important cases, it can pay to design an optimized
and specialized routine.

A systems example can be found in database caches. Most general-purpose caching strate-
gies would replace the least recently used record to disk. However, consider a query-processing
routine processing a sequence of database tuples in a loop. In such a case, it is the most recently
used record that will be used furthest in the future so it is the ideal candidate for replacement.

62 C H A P T E R 3 Fifteen Implementation Principles

Thus many database applications replace the operating system caching routines with more
specialized routines. It is best to do such specialization only for key routines, to avoid code
bloat. A networking example is the fast UDP processing routines that we describe in Chapter 9.

P7: AVOID UNNECESSARY GENERALITY

The tendency to design abstract and general subsystems can also lead to unnecessary or rarely
used features. Thus, rather than building several specialized routines (e.g., P6) to replace the
general-purpose routine, we might remove features to gain performance.4

Of course, as in the case of P3, removing features requires users of the routine to live
with restrictions. For example, in RISC processors, the elimination of complex instructions
such as multiplies required multiplication to be emulated by firmware. A networking example
is provided by Fbufs (Chapter 5), which provide a specialized virtual memory service that
allows efficient copying between virtual address spaces.

P8: DON’T BE TIED TO REFERENCE IMPLEMENTATIONS

Specifications are written for clarity, not to suggest efficient implementations. Because abstract
specification languages are unpopular, many specifications use imperative languages such as
C. Rather than precisely describe what function is to be computed, one gets code that prescribes
how to compute the function. This has two side effects.

First, there is a strong tendency to overspecify. Second, many implementors copy the
reference implementation in the specification, which is a problem when the reference imple-
mentation was chosen for conceptual clarity and not efficiency. As Clark [Cla85] points out,
implementors are free to change the reference implementation as long as the two implemen-
tations have the same external effects. In fact, there may be other structured implementations
that are efficient as well as modular.

For example, Charlie knows that when a recipe tells him to cut beans and then to cut
carrots, he can interchange the two steps. In the systems world, Clark originally suggested the
use of upcalls [Cla85] for operating systems. In an upcall, a lower layer can call an upper layer
for data or advice, seemingly violating the rules of hierarchical decomposition introduced
in the design of operating systems. Upcalls are commonly used today in network protocol
implementations.

P9: PASS HINTS IN MODULE INTERFACES

A hint is information passed from a client to a service that, if correct, can avoid expensive
computation by the service. The two key phrases are passed and if correct. By passing the
hint in its request, a service can avoid the need for the associative lookup needed to access
a cache. For example, a hint can be used to supply a direct index into the processing state at
the receiver. Also, unlike caches, the hint is not guaranteed to be correct and hence must be
checked against other certifiably correct information. Hints improve performance if the hint
is correct most of the time.

This definition of a hint suggests a variant in which information is passed that is guaranteed
to be correct and hence requires no checking. For want of an established term, we will call such
information a tip. Tips are harder to use because of the need to ensure correctness of the tip.

4Butler Lampson, a computer scientist and Turing Award winner, provides two quotes: When in doubt, get rid
of it (anonymous) and Exterminate Features (Thacker).

3.3 Fifteen Implementation Principles — Categorization and Description 63

As a systems example, the Alto File system [Lam89] has every file block on disk carry a
pointer to the next file block. This pointer is treated as only a hint and is checked against the
file name and block number stored in the block itself. If the hint is incorrect, the information
can be reconstructed from disk. Incorrect hints must not jeopardize system correctness but
result only in performance degradation.

P10: PASS HINTS IN PROTOCOL HEADERS

For distributed systems, the logical extension to Principle P9 is to pass information such as
hints in message headers. Since this book deals with distributed systems, we will make this a
separate principle. For example, computer architects have applied this principle to circumvent
inefficiencies in message-passing parallel systems such as the Connection Machine.

One of the ideas in active messages (Chapter 5) is to have a message carry the address of
the interrupt handler for fast dispatching. Another example is tag switching (Chapter 11), where
packets carry additional indices besides the destination address to help the destination address
to be looked up quickly. Tags are used as hints because tag consistency is not guaranteed;
packets can be routed to the wrong destination, where they must be checked.

3.3.3 Principles for Speeding Up Routines
While the previous principles exploited system structure, we now consider principles for
speeding up system routines considered in isolation.

P11: OPTIMIZE THE EXPECTED CASE

While systems can exhibit a range of behaviors, the behaviors often fall into a smaller set called
the “expected case” [HP96]. For example, well-designed systems should mostly operate in a
fault- and exception-free regime. A second example is a program that exhibits spatial locality
by mostly accessing a small set of memory locations. Thus it pays to make common behaviors
efficient, even at the cost of making uncommon behaviors more expensive.

Heuristics such as optimizing the expected case are often unsatisfying for theoreticians,
who (naturally) prefer mechanisms whose benefit can be precisely quantified in an average or
worst-case sense. In defense of this heuristic, note that every computer in existence optimizes
the expected case (see Chapter 2) at least a million times a second.

For example, with the use of paging, the worst-case number of memory references to
resolve a PC instruction that accesses memory can be as bad as four (read instruction from
memory, read first-level page table, read second-level page table, fetch operand from memory).
However, the number of memory accesses can be reduced to 0 using caches. In general, caches
allow designers to use modular structures and indirection, with gains in flexibility, and yet
regain performance in the expected case. Thus it is worth highlighting caching.

P11a: USE CACHES

Besides caching, there are subtler uses of the expected-case principle. For example, when
you wish to change buffers in the EMACS editor, the editor offers you a default buffer name,
which is the last buffer you examined. This saves typing time in the expected case when you
keep moving between two buffers. The use of header prediction (Chapter 9) in networks is
another example of optimizing the expected case: The cost of processing a packet can be greatly
reduced by assuming that the next packet received is closely related to the last packet processed
(for example, by being the next packet in sequence) and requires no exception processing.

64 C H A P T E R 3 Fifteen Implementation Principles

Note that determining the common case is best done by measurements and by schemes that
automatically learn the common case. However, it is often based on the designer’s intuition.
Note that the expected case may be incorrect in special situations or may change with time.

P12: ADD OR EXPLOIT STATE TO GAIN SPEED

If an operation is expensive, consider maintaining additional but redundant state to speed up
the operation. For example, Charlie keeps track of the tables that are busy so that he can
optimize waiter assignments. This is not absolutely necessary, for he can always compute this
information when needed by walking around the restaurant.

In database systems, a classic example is the use of secondary indices. Bank records
may be stored and searched using a primary key, say, the customer Social Security number.
However, if there are several queries that reference the customer name (e.g., “Find the balance
of all Cleopatra’s accounts in the Thebes branch”), it may pay to maintain an additional index
(e.g., a hash table or B-tree) on the customer name. Note that maintaining additional state
implies the need to potentially modify this state whenever changes occur.

However, sometimes this principle can be used without adding state by exploiting existing
state. We call this out as Principle P12a.

P12a: COMPUTE INCREMENTALLY

When a new customer comes in or leaves, Charlie increments the board on which he notes
waiter assignments. As a second example, strength reduction in compilers (see example in
P4c) incrementally computes the new loop index from the old using additions instead of
computing the absolute index using multiplication. An example of incremental computation
in networking is the incremental computation of IP checksums (Chapter 9) when only a few
fields in the packet change.

P13: OPTIMIZE DEGREES OF FREEDOM

It helps to be aware of the variables that are under one’s control and the evaluation criteria used
to determine good performance. Then the game becomes one of optimizing these variables
to maximize performance. For example, Charlie first used to assign waiters to tables as they
became free, but he realized he could improve waiter efficiency by assigning each waiter to a
set of contiguous tables.

Similarly, compilers use coloring algorithms to do register assignment while minimizing
register spills. A networking example of optimizing degrees of freedom is multibit trie IP
lookup algorithms (Chapter 11). In this example, a degree of freedom that can be overlooked
is that the number of bits used to index into a trie node can vary, depending on the path through
the trie, as opposed to being fixed at each level. The number of bits used can also be optimized
via dynamic programming (Chapter 11) to demand the smallest amount of memory for a given
speed requirement.

P14: USE SPECIAL TECHNIQUES FOR FINITE UNIVERSES SUCH AS

INTEGERS

When dealing with small universes, such as moderately sized integers, techniques like bucket
sorting, array lookup, and bitmaps are often more efficient than general-purpose sorting and
searching algorithms.

3.4 Design versus Implementation Principles 65

To translate a virtual address into a physical address, a processor first tries a cache called
the TLB. If this fails, the processor must look up the page table. A prefix of the address bits
is used to index into the page table directly. The use of table lookup avoids the use of hash
tables or binary search, but it requires large page table sizes. A networking example of this
technique is timing wheels (Chapter 7), where an efficient algorithm for a fixed timer range is
constructed using a circular array.

P15: USE ALGORITHMIC TECHNIQUES TO CREATE EFFICIENT DATA

STRUCTURES

Even where there are major bottlenecks, such as virtual address translation, systems designers
finesse the need for clever algorithms by passing hints, using caches, and performing table
lookup. Thus a major system designer is reported to have told an eager theoretician: “I don’t
use algorithms, son.”

This book does not take this somewhat anti-intellectual position. Instead it contends that,
in context, efficient algorithms can greatly improve system performance. In fact, a fair portion
of the book will be spent describing such examples. However, there is a solid kernel of truth
to the “I don’t use algorithms” putdown. In many cases, Principles P1 through P14 need to be
applied before any algorithmic issues become bottlenecks.

Algorithmic approaches include the use of standard data structures as well as generic algo-
rithmic techniques, such as divide-and-conquer and randomization. The algorithm designer
must, however, be prepared to see his clever algorithm become obsolete because of changes in
system structure and technology. As described in the introduction, the real breakthroughs may
arise from applying algorithmic thinking as opposed to merely reusing existing algorithms.

Examples of the successful use of algorithms in computer systems are the Lempel–Ziv
compression algorithm employed in the UNIX utility gzip, the Rabin–Miller primality test algo-
rithm found in public key systems, and the common use of B-trees (due to Bayer–McCreight)
in databases [CLR90]. Networking examples studied in this text include the Lulea IP-lookup
algorithm (Chapter 11) and the RFC scheme for packet classification (Chapter 12).

3.4 DESIGN VERSUS IMPLEMENTATION PRINCIPLES

Now that we have listed the principles used in this book, three clarifications are needed. First,
conscious use of general principles does not eliminate creativity and effort but instead channels
them more efficiently. Second, the list of principles is necessarily incomplete and can probably
be categorized in a different way; however, it is a good place to start.

Third, it is important to clarify the difference between system design and implementation
principles. Systems designers have articulated principles for system design. Design principles
include, for example, the use of hierarchies and aggregation for scaling (e.g., IP prefixes),
adding a level of indirection for increased flexibility (e.g., mapping from domain names to IP
addresses allows DNS servers to balance load between instances of a server), and virtualization
of resources for increased user productivity (e.g., virtual memory).5

A nice compilation of design principles can be found in Lampson’s article [Lam89] and
Keshav’s book [Kes97]. Besides design principles, both Lampson and Keshav include a few

5The previous chapter briefly explains these terms (IP prefixes, DNS, and virtual memory).

66 C H A P T E R 3 Fifteen Implementation Principles

Web page

Web client

Web server

Image 1 Image n

Get Web page

Get images 1. . . n

F I G U R E 3.9 Retrieval of a Web page with images typically requires one request to get the page that
specifies the needed images and more requests to retrieve each specified image. Why not have the Web
server download the images directly?

implementation principles (e.g., “use hints” and “optimize the expected case”). This book,
by contrast, assumes that much of the network design is already given, and so we focus on
principles for efficient protocol implementation. This book also adds several principles for
efficient implementation not found in Keshav [Kes91] or Lampson [Lam89].

On the other hand, Bentley’s book on “efficient program design” [Ben82] is more about
optimizing small code segments than the large systems that are our focus; thus many of
Bentley’s principles (e.g., fuse loops, unroll loops, reorder tests) are meant to speed up critical
loops rather than speed up systems as a whole.

3.5 CAVEATS

Performance problems cannot be solved only through the use of Zen meditation.

— Paraphrased from Jeff Mogul, a computer scientist at HP Labs

The best of principles must be balanced with wisdom to understand the important metrics,
with profiling to determine bottlenecks, and with experimental measurements to confirm that
the changes are really improvements. We start with two case studies to illustrate the need for
caution.

Case Study 1: Reducing Page Download Times

Figure 3.9 shows that in order for a Web client to retrieve a Web page containing
images, it must typically send a GET request for the page. If the page specifies inline
images, then the client must send separate requests to retrieve the images before it can
display the page. A natural application of principle P1 is to ask why separate requests are
needed. Why can’t the Web server automatically download the images when the page is
requested instead of waiting for a separate request? This should reduce page download
latency by at least half a round-trip delay.

To test our hypothesis, we modified the server software to do so and measured the
resulting performance. To our surprise, we found only minimal latency improvement.

3.5 Caveats 67

Using a network analyzer based on tcpdump, we found two reasons why this seeming
improvement was a bad idea.

• Interaction with TCP: Web transfer is orchestrated by TCP as described in
Chapter 2. To avoid network congestion, TCP increases its rate slowly, starting with
one packet per round-trip, then to two packets per round-trip delay, increasing its
rate when it gets acks. Since TCP had to wait for acks anyway to increase its rate,
waiting for additional requests for images did not add latency.

• Interaction with Client Caching: Many clients already cache common images,
such as .gif files. It is a waste of bandwidth to have the Web server unilaterally
download images that the client already has in its cache. Note that having the client
request the images avoids this problem because the client will only request images it
does not already have.

A useful lesson from this case study is the difficulty of improving part of a system
(e.g., image downloading) because of interactions with other parts of the system (e.g.,
TCP congestion control.)

Case Study 2: Speeding Up Signature-Based Intrusion Detection

As a second example, many network sites field an intrusion detection system, such
as Snort [Sno], that looks for suspicious strings in packet payloads that are characteristic
of hacker attacks. An example is the string “perl.exe”, which may signify an attempt
to execute perl and then to execute arbitrary commands on a Web server. For every
potentially matching rule that contains a string, Snort searches for each such string
separately using the Boyer–Moore algorithm [CLR90]. The worst case happens to be
a Web packet that matches 310 rules. Simple profiling using gprof reveals [FV01] that
30% of the overhead in Snort arises from string searching.

An obvious application of P1 seemed to be the following: Instead of separate
searches for each string, use an integrated search algorithm that searches for all possible
strings in a single pass over the packet. We modified Boyer–Moore to a set Boyer–
Moore algorithm that could search for all specified strings in one pass. Implemented
in a library, the new algorithm performed better than the Snort algorithm by a fac-
tor of 50 for the full Snort database. Unfortunately, when we integrated it into Snort,
we found almost no improvement on packet traces [FV01]. We found two reasons
for this.

• Multiple string matching is not a bottleneck for the trace: For the given trace,
very few packets matched multiple rules, each of which contained separate strings.
When we used a trace containing only Web traffic (i.e., traffic with destination port
80), a substantial improvement was found.

• Cache Effects: Integrated string searching requires a data structure, such as a trie,
whose size grows with the number of strings being searched. The simplest way to do
integrated set searching is to place the strings contained in all rules in a single trie.
However, when the number of strings went over 100, the trie did not fit in cache,

68 C H A P T E R 3 Fifteen Implementation Principles

and performance suffered. Thus the system had to be reimplemented to use
collections of smaller sets that took into account the hardware (P4).

A useful lesson from this case study is that purported improvements may not really
target the bottleneck (which in the trace appears to be single-string matching) and can
also interact with other parts of the system (the data cache).

3.5.1 Eight Cautionary Questions
In the spirit of the two case studies, here are eight cautionary questions that warn against
injudicious use of the principles.

Q1: IS IT WORTH IMPROVING PERFORMANCE?

If one were to sell the system as a product, is performance a major selling strength? People
interested in performance improvement would like to think so, but other aspects of a system,
such as ease of use, functionality, and robustness, may be more important. For example, a user
of a network management product cares more about features than performance. Thus, given
limited resources and implementation complexity, we may choose to defer optimizations until
needed. Even if performance is important, which performance metric (e.g., latency throughput,
memory) is important?

Other things being equal, simplicity is best. Simple systems are easier to understand,
debug, and maintain. On the other hand, the definition of simplicity changes with technology
and time. Some amount of complexity is worthwhile for large performance gains. For example,
years ago image compression algorithms such as MPEG were considered too complex to
implement in software or hardware. However, with increasing chip densities, many MPEG
chips have come to market.

Q2: IS THIS REALLY A BOTTLENECK?

The 80–20 rule suggests that a large percentage of the performance improvements comes from
optimizing a small fraction of the system. A simple way to start is to identify key bottlenecks
for the performance metrics we wish to optimize. One way to do so is to use profiling tools,
as we did in Case Study 2.

Q3: WHAT IMPACT DOES THE CHANGE HAVE ON THE REST OF THE

SYSTEM?

A simple change may speed up a portion of the system but may have complex and unforeseen
effects on the rest of the system. This is illustrated by Case Study 1. A change that improves
performance but has too many interactions should be reconsidered.

Q4: DOES THE INITIAL ANALYSIS INDICATE SIGNIFICANT IMPROVEMENT?

Before doing a complete implementation, a quick analysis can indicate how much gain is
possible. Standard complexity analysis is useful. However, when nanoseconds are at stake,
constant factors are important. For software and hardware, because memory accesses are a
bottleneck, a reasonable first-pass estimate is the number of memory accesses.

For example, suppose analysis indicates that address lookup in a router is a bottleneck
(e.g., because there are fast switches to make data transfer not a bottleneck). Suppose the

3.5 Caveats 69

standard algorithm takes an average of 15 memory accesses while a new algorithm indicates
a worst case of 3 memory accesses. This suggests a factor of 5 improvement, which makes it
interesting to proceed further.

Q5: IS IT WORTH ADDING CUSTOM HARDWARE?

With the continued improvement in the price–performance of general-purpose processors, it
is tempting to implement algorithms in software and ride the price–performance curve. Thus
if we are considering a piece of custom hardware that takes a year to design, and the resulting
price–performance improvement is only a factor of 2, it may not be worth the effort. On the
other hand, hardware design times are shrinking with the advent of effective synthesis tools.
Volume manufacturing can also result in extremely small costs (compared to general-purpose
processors) for a custom-designed chip. Having an edge for even a small period such as a year
in a competitive market is attractive. This has led companies to increasingly place networking
functions in silicon.

Q6: CAN PROTOCOL CHANGES BE AVOIDED?

Through the years there have been several proposals denouncing particular protocols as being
inefficient and proposing alternative protocols designed for performance. For example, in the
1980s, the transport protocol TCP was considered “slow” and a protocol called XTP [Che89]
was explicitly designed to be implemented in hardware. This stimulated research into making
TCP fast, which culminated in Van Jacobson’s fast implementation of TCP [CJRS89] in the
standard BSD release. More recently, proposals for protocol changes (e.g., tag and flow
switching) to finesse the need for IP lookups have stimulated research into fast IP lookups.

Q7: DO PROTOTYPES CONFIRM THE INITIAL PROMISE?

Once we have successfully answered all the preceding questions, it is still a good idea to
build a prototype or simulation and actually test to see if the improvement is real. This is
because we are dealing with complex systems; the initial analysis rarely captures all effects
encountered in practice. For example, understanding that the Web-image-dumping idea does
not improve latency (see Case Study 1) might come only after a real implementation and tests
with a network analyzer.

A major problem is finding a standard set of benchmarks to compare the standard and new
implementations. For example, in the general systems world, despite some disagreement, there
are standard benchmarks for floating point performance (e.g., Whetstone) or database perfor-
mance (e.g., debit–credit). If one claims to reduce Web transfer latencies using differential
encoding, what set of Web pages provides a reasonable benchmark to prove this contention?
If one claims to have an IP lookup scheme with small storage, which benchmark databases
can be used to support this assertion?

Q8: WILL PERFORMANCE GAINS BE LOST IF THE ENVIRONMENT

CHANGES?

Sadly, the job is not quite over even if a prototype implementation is built and a benchmark
shows that performance improvements are close to initial projections. The difficulty is that
the improvement may be specific to the particular platform used (which can change) and may
take advantage of properties of a certain benchmark (which may not reflect all environments

70 C H A P T E R 3 Fifteen Implementation Principles

in which the system will be used). The improvements may still be worthwhile, but some form
of sensitivity analysis is still useful for the future.

For example, Van Jacobson performed a major optimization of the BSD networking code
that allowed ordinary workstations to saturate 100-Mbps FDDI rings. The optimization, which
we will study in detail in Chapter 9, assumes that in the normal case the next packet is from
the same connection as the previous packet, P, and has sequence number one higher than
P. Will this assumption hold for servers that have thousands of simultaneous connections to
clients? Will it hold if packets get sent over parallel links in the network, resulting in packet
reordering? Fortunately, the code has worked well in practice for a number of years. Despite
this, such questions alert us to possible future dangers.

3.6 SUMMARY

This chapter introduced a set of principles for efficient system implementation. A summary
can be found in Figures 3.1, 3.2, and 3.3. The principles were illustrated with examples drawn
from compilers, architecture, databases, algorithms, and networks to show broad applicability
to computer systems. Chef Charlie’s examples, while somewhat tongue in cheek, show that
these principles also extend to general systems, from restaurants to state governments. While
the broad focus is on performance, cost is an equally important metric. One can cast problems
in the form of finding the fastest solution for a given cost. Optimization of other metrics, such
as bandwidth, storage, and computation, can be subsumed under the cost metric.

A preview of well-known networking applications of the 15 principles can be found in
Figures 3.1, 3.2, and 3.3. These applications will be explained in detail in later chapters. The
first five principles encourage systems thinking. The next five principles encourage a fresh
look at system modularity. The last five principles point to useful ways to speed up individual
subsystems.

Just as chess strategies are boring until one plays a game of chess, implementation prin-
ciples are lifeless without concrete examples. The reader is encouraged to try the following
exercises, which provide more examples drawn from computer systems. The principles will
be applied to networks in the rest of the book. In particular, the next chapter seeks to engage
the reader by providing a set of 15 self-contained networking problems to play with.

3.7 EXERCISES

1. Batching, Disk Locality, and Logs: Most serious databases use log files for perfor-
mance. Because writes to disk are expensive, it is cheaper to update only a memory image
of a record. However, because a crash can occur any time, the update must also be
recorded on disk. This can be done by directly updating the record location on disk, but
random writes to disk are expensive (see P4a). Instead, information on the update is
written to a sequential log file. The log entry contains the record location, the old value
(undo information), and the new value (redo information).

• Suppose a disk page of 4000 bytes can be written using one disk I/0 and that a log
record is 50 bytes. If we apply batching (2c), what is a reasonable strategy for updating
the log? What fraction of a disk I/O should be charged to a log update?

3.7 Exercises 71

• Before a transaction that does the update can commit (i.e., tell the user it is done), it
must be sure the log is written. Why? Explain why this leads to another form of
batching, group commit, where multiple transactions are committed together.

• If the database represented by the log gets too far ahead of the database represented on
disk, crash recovery can take too long. Describe a strategy to bound crash recovery
times.

2. Relaxing Consistency Requirements in a Name Service: The Grapevine system [Be82]
offers a combination of a name service (to translate user names to inboxes) and a mail
service. To improve availability, Grapevine name servers are replicated. Thus any update
to a registration record (e.g., Joe → MailSlot3) must be performed on all servers
implementing replicas of that record. Standard database techniques for distributed
databases require that each update be atomic; that is, the effect should be as if updates
were done simultaneously on all replicas. Because atomic updates require that all servers
be available, and registration information is not as important as, say, bank accounts,
Grapevine provides only the following loose semantics (P3): All replicas will eventually
agree if updates stop. Each update is timestamped and passed from one replica to the
other in arbitrary order. The highest timestamped update wins.

• Give an example of how a user could detect inconsistency in Joe’s registration during
the convergence process.

• If Joe’s record is deleted, it should eventually be purged from the database to save
storage. Suppose a server purges Joe’s record immediately after receiving a Delete
update. Why might Add updates possibly cause a problem? Suggest a solution.

• The rule that the latest timestamp wins does not work well when two administrators try
to create an entry with the same name. Because a later creation could be trapped in a
crashed server, the administrator of the earlier creation can never know for sure that his
creation has won. The Grapevine designers did not introduce mechanisms to solve this
problem but relied on “some human-level centralization of name creation.” Explain
their assumption clearly.

3. Replacing General-Purpose Routines with Special-Purpose Routines and Efficient
Storage Allocators: Consider the design of a general storage allocator that is given
control of a large contiguous piece of memory and may be asked by applications for
smaller, variable-size chunks. A general allocator is quite complex: As time goes by, the
available memory fragments and time must be spent finding a piece of the requested size
and coalescing adjacent released pieces into larger free blocks.

• Briefly sketch the design of a general-purpose allocator. Consult a textbook such as
Horwitz and Sahni [HS78] for example allocators.

• Suppose a profile has shown that a large fraction of the applications ask for 64 bytes of
storage. Describe a more efficient allocator that works for the special case (P6) of
allocating just 64-byte quantities.

• How would you optimize the expected case (P11) and yet handle requests for storage
other than 64 bytes?

72 C H A P T E R 3 Fifteen Implementation Principles

4. Passing Information in Interfaces: Consider a file system that is reading or writing files
from disk. Each random disk Read/Write involves positioning the disk over the correct
track (seeking). If we have a sequence of say three Reads to Tracks 1, 15, and 7, it may
pay to reorder the second and third Reads to reduce waste in terms of seek times. Clearly,
as in P1, the larger the context of the optimization (e.g., the number of Reads or Writes
considered for reordering), the greater the potential benefits of such seek optimization.

A normal file system only has an interface to open, read, and write a single file.
However, suppose an application is reading multiple files and can pass that information
(P9) in the file system call.

• What information about the pattern of file accesses would be useful for the file system
to perform seek optimization? What should the interface look like?

• Give examples of applications that process multiple files and could benefit from this
optimization. For more details, see the paper by H. Patterson et al. [Pe95]. They call
this form of tip a disclosure.

5. Optimizing the Expected Case, Using Algorithmic Ideas, and Scavenging Files: The
Alto computer used a scavenging system [Lam89] that scans the disk after a crash to
reconstruct file system indexes that map from file names and blocks to disk sectors. This
can be done because each disk sector that contains a file block also contains the
corresponding file identifier. What complicates matters is that main memory is not large
enough to hold information for every disk sector. Thus a single scan that builds a list in
memory for each file will not work. Assume that the information for a single file will fit
into memory. Thus a way that will work is to make a single scan of the disk for each file;
but that would be obvious waste (P1) and too slow.

Instead, observe that in the expected case, most files are allocated contiguously. Thus
suppose File X has pages 1–1000 located on disk sectors 301–1301. Thus the information
about 1000 sectors can be compactly represented by three integers and a file name. Call
this a run node.

• Assume the expected case holds and that all run nodes can fit in memory. Assume also
that the file index for each file is an array (stored on disk) that maps from file block
number to disk sector number. Show how to rebuild all the file indexes.

• Now suppose the expected case does not hold and that the run nodes do not all fit into
memory. Describe a technique, based on the algorithmic idea of divide-and-conquer
(P15), that is guaranteed to work (without reverting to the naive idea of building the
index for one file at a time unless strictly necessary).

C H A P T E R 4

Principles in Action

System architecture and design, like any art, can only be learned by doing. . . . The
space of possibilities unfolds only as the medium is worked.

— Carver Mead and Lynn Conway

Having rounded up my horses, I now set myself to put them through their paces.

— Arnold Toynbee

The previous chapter outlined 15 principles for efficient network protocol implementation.
Part II of the book begins a detailed look at specific network bottlenecks such as data copying
and control transfer. While the principles are used in these later chapters, the focus of these
later chapters is on the specific bottleneck being examined. Given that network algorithmics
is as much a way of thinking as it is a set of techniques, it seems useful to round out Part I by
seeing the principles in action on small, self-contained, but nontrivial network problems.

Thus this chapter provides examples of applying the principles in solving specific net-
working problems. The examples are drawn from real problems, and some of the solutions
are used in real products. Unlike subsequent chapters, this chapter is not a collection of new
material followed by a set of exercises. Instead, this chapter can be thought of as an extended
set of exercises.

In Section 4.1 to Section 4.15, 15 problems are motivated and described. Each problem
is followed by a hint that suggests specific principles, which is then followed by a solution
sketch. There are also a few exercises after each solution. In classes and seminars on the topic
of this chapter, the audience enjoyed inventing solutions by themselves (after a few hints were
provided), rather than directly seeing the final solutions.

Q u i c k R e f e r e n c e G u i d e
In an ideal world, each problem should have something interesting for every reader. For those readers

pressed for time, however, here is some guidance. Hardware designers looking to sample a few problems
may wish to try their hand at designing an Ethernet monitor (Section 4.4) or doing a binary search on
long identifiers (Section 4.14). Systems people looking for examples of how systems thinking can finesse
algorithmic expertise may wish to tackle a problem on application device channels (Section 4.1) or a

73

74 C H A P T E R 4 Principles in Action

problem on compressing the connection table (Section 4.11). Algorithm designers may be interested in
the problem of identifying a resource hog (Section 4.10) and a problem on the use of protocol design
changes to simplify an implementation problem in link state routing (Section 4.8).

4.1 BUFFER VALIDATION OF APPLICATION DEVICE CHANNELS

Usually, application programs can only send network data through the operating system kernel,
and only the kernel is allowed to talk to the network adaptor. This restriction prevents different
applications from (maliciously or accidentally) writing or reading each other’s data. However,
communication through the kernel adds overhead in the form of system calls (see Chapter 2).
In application device channels (ADCs), the idea is to allow an application to send data to
and from the network by directly writing to the memory of the network adaptor. Refer to
Chapter 5 for more details. One mechanism to ensure protection, in lieu of kernel mediation,
is to have the kernel set up the adaptor with a set of valid memory pages for each application.
The network adaptor must then ensure that the application’s data can only be sent and received
from memory in the valid set.

In Figure 4.1, for example, application P is allowed to send and receive data from a set
of valid pages X , Y , . . . , L, A. Suppose application P queues a request to the adaptor to receive
the next packet for P into a buffer in page A. Since this request is sent directly to the adaptor,
the kernel cannot check that this is a valid buffer for P. Instead, the adaptor must validate this
request by ensuring that A is in the set of valid pages. If the adaptor does not perform this
check, application P could supply an invalid page belonging to some other application, and the
adaptor would write P’s data into the wrong page. The need for a check leads to the following
problem.

Application P

CPU

Kernel

Page X

Memory

Page A

Valid list
for P

X, Y,...L, A

Receive next
packet into
Page A

NETWORK

ADAPTOR

F I G U R E 4.1 In application device channels, the network adaptor is given a set of valid pages
(X, Y , L, A, etc.) for a given application P. When application P makes a request to receive data into
page A, the adaptor must check if A is in the valid list before allowing the receive.

4.1 Buffer Validation of Application Device Channels 75

PROBLEM

When application P does a Receive, the adaptor must validate whether the page belongs to
the valid page set for P. If the set of pages is organized as a linear list [DDP94], then validation
can cost O(n), where n is the number of pages in the set. For instance, in Figure 4.1, since A is
at the end of the list of valid pages, the adaptor must traverse the entire list before it finds A. If
n is large, this can be expensive and can slow down the rate at which the adaptor can send and
receive packets. How can the validation process be sped up? Try thinking through the solution
before reading the hint and solutions that follow.

Hint: A good approach to reduce the complexity of validation is to use a better data structure than a
list (P15). Which data structure would you choose? However, one can improve worst-case behavior
even further and get smaller constant factors by using system thinking and by passing hints in
interfaces (P9).

An algorithmic thinker will immediately consider implementing the set of valid pages as a hash
table instead of a list. This provides an O(1) average search time. Hashing has two disadvan-
tages: (1) good hash functions that have small collision probabilities are expensive computationally;
(2) hashing does not provide a good worst-case bound. Binary search does provide logarithmic
worst-case search times, but this is expensive (it also requires keeping the set sorted) if the set of
pages is large and packet transmission rates are high. Instead, we replace the hash table lookup by
an indexed array lookup, as follows (try using P9 before you read on).

SOLUTION

The adaptor stores the set of valid pages for each application in an array, as shown in
Figure 4.2. This array is updated only when the kernel updates the set of valid pages for the
application. When the application does a Receive into page A, it also passes to the adaptor a
handle (P9). The handle is the index of the array position where A is stored. The adaptor can
use this to quickly confirm whether the page in the Receive request matches the page stored
in the handle. The cost of validation is a bounds check (to see if the handle is a valid index),
one array lookup, and one compare.

Application

Receive (A, val, handle)
X

A

Y

L

ADAPTOR
.
.
.

F I G U R E 4.2 Finessing the need for a hash table lookup by passing a handle across the interface
between the application and adaptor.

76 C H A P T E R 4 Principles in Action

EXERCISES

• Is the handle a hint or a tip? Let’s invoke principle P1: If this is a handle, why pass the
page number (e.g., A) in the interface? Why does removing the page number speed up the
confirmation task slightly?

• To find the array corresponding to application P normally requires a hash table search
using P as the key. This weakens the argument for getting rid of the hash table search to
check if the page is valid — unless, of course, the hash search of P can be finessed as well.
How can this be done?

4.2 SCHEDULER FOR ASYNCHRONOUS TRANSFER MODE FLOW CONTROL

In asynchronous transfer mode (ATM), an ATM adaptor may have hundreds of simultaneous
virtual circuits (VCs) that can send data (called cells). Each VC is often flow controlled in
some way to limit the rate at which it can send. For example, in rate-based flow control, a VC
may receive credits to send cells at fixed time intervals. On the other hand, in credit-based
flow control [KCB94, OSV94], credits may be sent by the next node in the path when buffers
free up.

Thus, in Figure 4.3 the adaptor has a table that holds the VC state. There are four VCs that
have been set up (1, 3, 5, 7). Of these, only VCs 1, 5, and 7 have any cells to send. Finally,
only VCs 1 and 7 have credits to send cells. Thus the next cell to be sent by the adaptor should
be from either one of the eligible VCs: 1 or 7. The selection from the eligible VCs should be
done fairly, for example, in round-robin fashion. If the adaptor chooses to send a cell from
VC 7, the adaptor would decrement the credits of VC 7 to 1. Since there are no more cells to
be sent, VC 7 now becomes ineligible. Choosing the next eligible VC leads to the following
problem.
PROBLEM

A naive scheduler may cycle through the VC array looking for a VC that is eligible. If
many of the VCs are ineligible, this can be quite inefficient, for the scheduler may have to

Active
has credits

Active
no credits

Active
has credits

VC
1

VC
3

Inactive

VC
5

VC
7

F I G U R E 4.3 An ATM virtual circuit is eligible to send data if it is active (has some outstanding cells
to send in the queue shown below the VC) and has credits (shown by black dots above the VC). The
problem is to select the next eligible VC in some fair manner without stepping through VCs that are
ineligible.

4.3 Route Computation Using Dijkstra’s Algorithm 77

List of active
VCs with credits

Tail

VC
1

Head

VC
7

F I G U R E 4.4 Maintaining a list of eligible VCs to speed up the scheduler main loop.

step through several VCs that are ineligible to send one cell from an eligible VC. How can this
inefficiency be avoided?

Hint: Consider invoking P12 to add some extra state to speed up the scheduler main loop. What state
can you add to avoid stepping through ineligible VCs? How would you maintain this state efficiently?

SOLUTION

Maintain a list (Figure 4.4) of eligible VCs in addition to the VC table of Figure 4.3. The
only problem is to efficiently maintain this state. This is the major difficulty in using P12. If
the state is too expensive to maintain, the added state is a liability and not an asset. Recall that
a VC is eligible if it has both cells to send and has credits. Thus a VC is removed from the list
after service if VC becomes inactive or has no more credits; if not, the VC is added to the tail
of the list to ensure fairness. A VC is added to the tail of the list either when a cell arrives to
an empty VC cell queue or when the VC has no credits and receives a credit update.

EXERCISES

• How can you be sure that a VC is not added multiple times to the eligible list?

• Can this scheme be generalized to allow some VCs to get more opportunities to send than
other VCs based on a weight assigned by a manager?

4.3 ROUTE COMPUTATION USING DIJKSTRA’S ALGORITHM

How does a router S decide how to route a packet to a given destination D? Every link in a
network is labeled with a cost, and routers like S often compute the shortest (i.e., lowest-cost)
paths to destinations within a local domain. Assume the cost is a small integer. Recall from
Chapter 2 that the most commonly used routing protocol within a domain is OSPF based on
link state routing.

In link state routing, every router in a subnet sends a link state packet (LSP) that lists its
links to all of its neighbors. Each LSP is sent to every other router in the subnet. Each router
sends its LSP to other routers using a primitive flooding protocol [Per92]. Once every router
receives an LSP from every router, then every router has a complete map of the network.
Assuming the topology remains stable, each router can now calculate its shortest path to every
other node in the network using a standard shortest-path algorithm, such as Dijkstra’s algorithm
[CLR90].

In Figure 4.5, source S wishes to calculate a shortest-path tree to all other nodes (A, B, C, D)
in the network. The network is shown on the left frame in Figure 4.5 with links numbered
with their cost. In Dijkstra’s algorithm, S begins by placing only itself in the shortest-cost tree.

78 C H A P T E R 4 Principles in Action

A

Source

S B

C

D

2

1 2

17

3
A

Pick D next

S B

C

D

2

1 3

5

F I G U R E 4.5 In Dijkstra’s algorithm, the source S builds a shortest-path tree rooted at S. At each
stage, the closest node not in the tree is added to the tree.

S also updates the cost to reach all its direct neighbors (e.g., B, A). At each iteration, Dijkstra’s
algorithm adds to the current tree the node that is closest to the current tree. The costs of the
neighbors of this newly added node are updated. The process repeats until all nodes in the
network belong to the tree.

For instance, in Figure 4.5, after adding S, the algorithm picks B and then picks A. At
this iteration, the tree is as shown on the right in Figure 4.5. The solid lines show the existing
tree, and the dotted lines show the best current connections to nodes that are not already in
the tree. Thus since A has a cost of 2 and there is a link of cost 3 from A to C, C is labeled
with 5. Similarly, D is labeled with a cost of 2 for the path through B. At the next iteration, the
algorithm picks D as the least-cost node not already in the tree. The cost to C is then updated
using the route through D. Finally, C is added to the tree in the last iteration.

This textbook solution requires determining the node with the shortest cost that is not
already in the tree at each iteration. The standard data structure to keep track of the minimum-
value element in a dynamically changing set is a priority queue. This leads to the following
problem.
PROBLEM

Dijkstra’s algorithm requires a priority queue at each of N iterations, where N is the
number of network nodes. The best general-purpose priority queues, such as heaps [CLR90],
take O(log N) cost to find the minimum element. This implies a total running time of O(N log N)
time. For a large network, this can result in slow response to failures and other network topology
changes. How can route computation be speeded up?

Hint: Consider exploiting the fact that the link costs are small integers (P14) by using an array to
represent the current costs of nodes. How can you efficiently, at least in an amortized sense, find the
next minimum-cost node to include in the shortest-path tree?

SOLUTION

The fact that the link costs are small integers can be exploited to construct a priority
queue based on bucket sorting (P14). Assume that the largest link cost is MaxLinkCost. Thus
the maximum cost of a path can be no more than Diam ∗ MaxLinkCost, where Diam is the
diameter of the network. Assume Diam is also a small integer. Thus one could imagine using
an array with a location for every possible cost c in the range 1 . . . Diam ∗ MaxLinkCost. If
during the course of Dijkstra’s algorithm the current cost of a node X is c, then node X can be
placed in a list pointed to by element c of the array (Figure 4.6). This leads to the following
algorithm.

4.3 Route Computation Using Dijkstra’s Algorithm 79

Costs Diam * MaxLinkCost

0 1

CurrentMin

2 3 5

B A D C

F I G U R E 4.6 Using a priority queue based on bucket sorting to speed up Dijkstra’s algorithm.

Whenever a node X changes its cost from c to c′, node X is removed from the list for c
and added to the list for c′. But how is the minimum element to be found? This can be done by
initializing a pointer called CurrentMin to 0 (which corresponds to the cost of S). Each time
the algorithm wishes to find the minimum-cost node not in the tree, CurrentMin is incremented
by 1 until an array location is reached that contains a nonempty list. Any node in this list can
then be added to the tree. The algorithm costs O(N + Diam ∗ MaxLinkCost) because the work
done in advancing CurrentMin can at most be the size of the array. This can be significantly
better than N log N for large N and small values of Diam and MaxLinkCost.

A crucial factor in being able to efficiently use a bucket sort priority queue of the kind
described earlier is that the node costs are always ahead of the value of CurrentMin. This is a
monotonicity condition. If it were not true, the algorithm would start checking for the minimum
from 1 at each iteration, instead of starting from the last value of CurrentMin and never backing
up. The monotonicity condition is fairly obvious for Dijktra’s algorithm because the costs of
nodes not already in the tree have to be larger than the costs of nodes that are already in
the tree.

Figure 4.6 shows the state of the bucket sort priority queue after A has been added to the
tree. This corresponds to the right frame of Figure 4.5. At this stage, CurrentMin = 2, which
is the cost of A. At the next iteration, CurrentMin will advance to 3, and D will be added to
the tree. This will result in the C’s cost being reduced to 4. We thus remove C from the list in
position 5 and add it to the empty list in position 4. CurrentMin is then advanced to 4, and C
is added to the tree.

EXERCISES

• The algorithm requires a node to be removed from a list and added to another, earlier list.
How can this be done efficiently?

• In Figure 4.6, how can the algorithm know that it can terminate after adding C to the tree
instead of advancing to the end of the long array?

• In networks that have failures, the concept of diameter is a highly suspect one because the
diameter could change considerably after a failure. Consider a wheel topology where all N
nodes have diameter 2 through a central spoke node; if the central spoke node fails, the
diameter goes up to N /2. In actual practice the diameter is often small. Can this cause
problems in sizing the array?

80 C H A P T E R 4 Principles in Action

• Can you circumvent the problem of the diameter completely by replacing the linear array
of Figure 4.6 with a circular array of size MaxLinkCost? Explain. The resulting solution is
known as Dial’s algorithm [AMO93].

4.4 ETHERNET MONITOR USING BRIDGE HARDWARE

Alyssa P. Hacker is working for Acme Networks and knows of the Ethernet bridge invented at
Acme. A bridge (see Chapter 10) is a device that can connect together Ethernets. To forward
packets from one Ethernet to another, the bridge must look up the 48-bit destination address
in an Ethernet packet at high speeds.

Alyssa decides to convert the bridge into an Ethernet traffic monitor that will passively
listen to an Ethernet and produce statistics about traffic patterns. The marketing person tells
her that she needs to monitor traffic between arbitrary source–destination pairs. Thus for every
active source–destination pair, such as A, B, Alyssa must keep a variable PA,B that measures
the number of packets sent from A to B since the monitor was started. When a packet is sent
from A to B, the monitor (which is listening to all packets sent on the cable) will pick up a
copy of the packet. If the source is A and the destination is B, the monitor should increment
PA,B. The problem is to do this in 64 µsec, the minimum interpacket time on the Ethernet.
The bottleneck is the lookup of the state PA,B associated with a pair of 48-bit addresses A, B.

Fortunately, the bridge hardware has a spiffy lookup hardware engine that can look up
the state associated with a single 48-bit address in 1.4 µsec. A call to the hardware can be
expressed as Lookup(X , D), where X is the 48-bit key and D is the database to be searched.
The call returns the state associated with X in 1.4 µsec for databases of less than 64,000 keys.
What Alyssa must solve is the following problem.
PROBLEM

The monitor needs to update state for AB when a packet from A to B arrives. The monitor
has a lookup engine that can look up only single addresses and not address pairs. How can
Alyssa use the existing engine to look up address pairs? The problem is illustrated in Figure 4.7.

Hint: The problem requires using P4c to exploit the existing bridge hardware. Since 1.4 µsec is
much smaller than 64 µsec, the design can afford to use more than one hardware lookup. How can
a 96-bit lookup be reduced to a 48-bit lookup using three lookups?

A naive solution is to use two lookups to convert source A and destination B into smaller (<24-bit)
indices IA and IB. The indices IA and IB can then be used to look up a two-dimensional array that

A
(48 bits)

HAVE

State
for A

AB
(96 bits)

WANT

State
for AB

F I G U R E 4.7 Adapting an engine that does destination lookup to doing destination-source lookups.

4.5 Demultiplexing in the X-Kernel 81

A

GET INDICES

IA IAIB
(48 bits)

GET STATE

State
for AB

B IB

(24 bits)

F I G U R E 4.8 Converting a 96-bit lookup into a 48-bit lookup by first converting each 48-bit address
into a 24-bit index and concatenating the indices.

stores the state for AB. This requires only two hardware lookups plus one more memory access,
but it can require large amounts of memory. If there are 1000 possible sources and 1000 possible
destinations, the array must contain a million entries. In practice, there may be only 20,000 active
source–destination pairs. How could you make the required amount of memory proportional to the
number of actual source–destination pairs?

SOLUTION

As before, first use one lookup each to convert source A and destination B into smaller
(<24-bit) indices IA and IB. Then use a third lookup to map from IAIB to AB state. The solution
is illustrated in Figure 4.8. The third lookup effectively compresses the two-dimensional array
of the naive solution. This solution is due to Mark Kempf and Mike Soha.

EXERCISES

• Can this problem be solved using only two bridge hardware lookups without requiring
extra memory?

• The set of active source–destination pairs may change with time, because some pairs of
addresses stop communicating for long periods. How can this be handled without keeping
the state for every possible address pair that has communicated since the monitor was
powered on?

4.5 DEMULTIPLEXING IN THE X-KERNEL

The x-kernel [HP91] provides a software infrastructure for protocol implementation in hosts.
The x-kernel system provides support for a number of required protocol functions. One com-
monly required function is protocol demultiplexing. For example, when the Internet routing
layer IP receives a packet, it must use the protocol field to determine whether the packet should
be subsequently sent to TCP or UDP.

Most protocols do demultiplexing based on some identifier in the protocol header. These
identifiers can vary in length in different protocols. For example, Ethernet-type fields can be
5 bytes whileTCPport numbers are 2 bytes long. Thus the x-kernel allows demultiplexing based
on variable-length protocol identifiers. When the system is initialized, the protocol routine can
register the mapping between the identifier and the destination protocol with the x-kernel.

82 C H A P T E R 4 Principles in Action

(variable length)
Key K

Key L, State

Hash
Table

hash (K)

Hit if K = L

(byte by byte compare)

F I G U R E 4.9 Demultiplexing in the x-kernel is done by hashing the protocol identifier K and
(potentially) using a byte-by-byte comparison with the key L stored at the hash table entry.

At run time, when a packet arrives the protocol routine can extract the protocol identifier from
the packet and query the x-kernel demultiplexing routine for the destination protocol. Since
packets can arrive at high speeds, the demultiplexing routine should be fast. This leads to the
following problem.
PROBLEM

On average, the fastest way to do a lookup is to use a hash table. As shown in Figure 4.9,
this requires computing some hash function on the identifier K to generate a hash index, using
this index to access the hash table, and comparing the key L stored in the hash table entry
with K . If there is a match, the demultiplexing routine can retrieve the destination protocol
associated with key L. Assume that the hash function has been chosen to make collisions
infrequent.

However, since the identifier length is an arbitrary number of bytes, the comparison
routine that compares the two keys must, in general, do byte-by-byte comparisons. However,
suppose the most common case is 4-byte identifiers, which is the machine word size. In this
case, it is much more efficient to do a word comparison. Thus the goal is to exploit efficient
word comparisons (P4c) to optimize the expected case (P11). How can this be done while still
handling arbitrary protocols?

Hint: Notice that if the x-kernel has to demultiplex a 3-byte identifier, it has to use a byte-by-byte
comparison routine; if the x-kernel has to demultiplex a 4-byte identifier and 4 bytes is the machine
word size, it can use a word compare. The first degree of freedom that can be exploited is to
have different comparison routines for the most common cases (e.g., word compares, long-word
compares) and a default comparison routine that uses byte comparisons. Doing so trades some extra
space for time (P4b). For correctness, however, it is important to know which comparison routine
to use for each protocol. Consider invoking principles P9 to pass hints in interfaces and P2a to do
some precomputation.

SOLUTION

Each protocol has to declare its identifier and destination protocol to the x-kernel when
the system initializes. When this happens, each protocol can predeclare its identifier length,
so the x-kernel can use a specialized comparison routines for each protocol. Effectively,
information is being passed between the client protocol and the x-kernel (P9) at an earlier
time (P2a). Assume that the x-kernel has a separate hash table for each client protocol and
that the x-kernel knows the context for each client in order to use code specialized for that
client.

4.6 Tries with Node Compression 83

EXERCISES

• Code up byte-by-byte and word comparisons on your machine and do a large number
of both types of comparisons and compare the overall time taken for each.

• In the earlier ADC solution, the hash table lookup was finessed by passing an index
(instead of the identifier length as earlier). Why might that solution be difficult in this case?

4.6 TRIES WITH NODE COMPRESSION

A trie is a data structure that is a tree of nodes, where each node is an array of M elements.
Figure 4.10 shows a simple example with M = 8. Each array can hold either a key (e.g., KEY
1, KEY 2, or KEY 3 in Figure 4.11) or a pointer to another trie node (e.g., the first element
in the topmost trie node of Figure 4.10, which is the root). The trie is used to search for
exact matches (and longest-prefix matches) with an input string. Tries are useful in networking
for such varied tasks as IP address lookup (Chapter 11), bridge lookups (Chapter 10), and
demultiplexing filters (Chapter 8).

The exact trie algorithms do not concern us here. All one needs to know is how a trie is
searched. Let c = log2 M be the chunk size of a trie. To search the trie, search first breaks
the input string into chunks of size c. Search uses successive chunks, starting from the most
significant, to index into nodes of the trie, starting with the root node. When search uses chunk
j to index into position i of the current trie node, position i could contain either a pointer or
a key. If position i contains a nonnull pointer to node N , the search continues at node N with
chunk j + 1; otherwise, the search terminates.

To summarize, each node is an array of pointers or keys, and the search process needs to
index into these arrays. However, if many trie nodes are sparse, there is considerable wasted
space (P1). For example, in Figure 4.10, only 4 out of 16 locations contain useful information.
In the worst case, each trie node could contain 1 pointer or key and there could be a factor of
M in wasted memory. Assume M ≤ 32 in what follows. Even if M is this small, a 32-fold
increase in memory can greatly increase the cost of the design.

An obvious approach is to replace each trie node by a linear list of pairs of the form (i, val),
where val is the nonempty value (either pointer or key) in position i of the node. For example,

Trie Node (space not used by pointers is wasted)

Key 2 Key 3

Key 1

F I G U R E 4.10 Trie storing three keys. Notice the wasted space in the trie nodes.

84 C H A P T E R 4 Principles in Action

Uncompressed Trie Node

7
(Key 3)

1

2
(Key 3)

1 Compressed Trie Node
10000010
(bitmap)

F I G U R E 4.11 Compressing a trie node using a bitmap and bit counting to efficiently translate from
an uncompressed index to a compressed index.

the root trie node in Figure 4.10 could be replaced by the list (1, ptr); (7, KEY1), where ptr1 is
the pointer to the bottom trie node. Unfortunately, this can slow down trie search by a factor of
M, because the search of each trie node may now have to search through a list of M locations,
instead of a single indexing operation. This leads to the following problem.
PROBLEM

How can trie nodes be compressed to remove null pointers without slowing down search
by more than a small factor?

Hint: Despite compressing the nodes, array indexing needs to be efficient. If the nodes are com-
pressed, how might information about which array elements are removed be represented? Consider
leveraging off the fact that M is small by following P14 (exploit the small integer size) and P4a (exploit
locality).

SOLUTION

Since M < 32, a bitmap of size 32 can easily fit into a computer word (P14 and P4a).
Thus null pointers are removed after adding a bitmap with zero bits indicating the original
positions of null pointers. This is shown in Figure 4.11. The trie node can now be replaced
with a bitmap and a compressed trie node. A compressed trie node is an array that consists
only of the nonnull values in the original node. Thus in Figure 4.11, the original root trie node
(on the top) has been replaced with the compressed trie node (on the bottom). The bitmap
contains a 1 in the first and seventh positions, where the root node contains nonnull values.
The compressed array now contains only two elements, the first pointer and KEY 3. This still
begs the question: How should a trie node be searched?

Since both uncompressed and compressed nodes are arrays and the search process starts
with an index I into the uncompressed node, the search process must consult the bitmap to
convert the uncompressed index I into a compressed index C into the compressed node. For
example, if I is 1 in Figure 4.11, C should be 1; if I is 7, C should be 2. If I is any other value,
C should be 0, indicating that there is only a null pointer.

Fortunately, the conversion from I to C can be accomplished easily by noting the following.
If position I in the bitmap contains a 0, then C = 0. Otherwise, C is the number of 1’s in the

4.7 Packet Filtering in Routers 85

first I bits of the bitmap. Thus if I = 7, then C = 2, since there are two bits set in the first
seven bits of the bitmap.

This computation requires at most two memory references: one to access the bitmap
(because the bitmap is small (P4a)) and one to access the compressed array. The calculation
of the number of bits set in a bitmap can be done using internal registers (in software) or
combinatorial logic (in hardware). Thus the effective slowdown is slightly more than a factor
of 2 in software and exactly 2 in hardware.

EXERCISES

• How could you use table lookup (P14, P2a) to speed up counting the number of bits set in
software? Would this necessarily require a third memory reference?

• Suppose the bitmap is large (say, M = 64 K). It would appear that counting the number of
bits set in such a large bitmap is impossibly slow in hardware or software. Can you find a
way to speed up counting bits in a large bitmap (principles P12 and P2a) using only one
extra memory access? This will be extremely useful in Chapter 11.

4.7 PACKET FILTERING IN ROUTERS

Chapter 12 describes protocols that set up resources at routers for traffic, such as video, that
needs performance guarantees. Such protocols use the concept of packet filters, sometimes
called classifiers. Thus, in Figure 4.12 each receiver attached to a router may specify a packet
filter describing the packets it wishes to receive. For example, in Figure 4.12 Receiver 1 may be
interested in receiving NBC, which is specified by Filter 4. Each filter is some specification of
the fields that describe the video packets that NBC sends. For example, NBC may be specified
by packets that use the source address of the NBC transmitter in Germany and use a specified
TCP destination and source port number.

Similarly, in Figure 4.12 Receiver m may be interested in receiving ABC Sports and CNN,
which are described by Filters 1 and 7, respectively. Packets arrive at the router at high speeds
and must be sent to all receivers that request the packet. For example, Receivers 1 and 2 may
both wish to receive NBC. This leads to the following problem.

Arriving
Packet

Receiver 1
(Filter 4)

Filter 1
Filter 2

Router

Filter n

Receiver m
(Filters 1, 7)

.

.

.
.
.
.

F I G U R E 4.12 Packet filtering in a router may require a slow linear scan of all filters followed by
making a copy of the packet for all filters that match.

86 C H A P T E R 4 Principles in Action

PROBLEM

Each receiving packet must be matched against all filters and sent to all receivers that
match. A simple linear scan of all filters is expensive if the number of filters is large. Assume
the number of filters is over a thousand. How can this expensive process be sped up?

Hint: One might think of optimizing the expected case by caching (P11a). However, why is caching
difficult in this case? Consider adding a field (P10) to the packet header to make caching easier. Ideally,
which protocol layer should this be added to? Adding a fixed well-known field for each possible video
type is not a panacea because it requires global standardization, and filters can be based on other
fields, such as the source address. Assume the field you add does not require globally standardized
identifiers. What properties of this field must the source ensure?

SOLUTION

Caching (P11a), the old workhorse of system designers, is not very straightforward in
this problem. In general, a cache stores a mapping between an input a and some output f (a).
The cache then consists of a set of pairs of the form (a, f (a)). This set of pairs is stored as a
database keyed by values of a. The database can be implemented as a hash table (in software)
or a content-addressable memory (in hardware). Given input a and the need to calculate f (a),
the database is first checked to see if a is already in the database. If so, the fast path exits
with the existing value of f (a). If not, f (a) is computed using some other (possibly expensive)
computation and the pair (a, f (a)) is then inserted into the cache database. Subsequent inputs
with value a can then be calculated very fast.

In the packet filtering problem, the goal is to calculate the set of receivers associated with
a packet P. The problem is that the output is a function of a (potentially) large number of
packet header fields of P. Thus to use caching, one has to store a large portion of the headers
of P associated with the set of receivers for P. Storing a mapping between 64 bytes of packet
header and an output set of receivers is an expensive proposition. It is expensive in time, since
searching the cache can take longer because the keys are wide. It is also clearly expensive in
storage. The large storage needs in turn imply that fewer mappings can be cached for a given
cache size, which leads to a poorer cache hit rate.

The ideal is to cache a mapping between one or two packet fields and the output receiver
set. This would speed up cache search time and improve the cache hit rate. These fields should
also preferably be in the routing header, which routers examine anyway. The problem is that
there may be no such field that uniquely fingerprints packet P.

However, suppose we are system designers designing the routing protocol. We can add a
field to the routing header. The problem might seem trivial if we could assign each possible
stream of packets a unique global identifier. For example, if we could assign NBC identifier
1, ABC identifier 2, and CNN identifier 3, then we could cache using the identifier as the
key. Such a solution would require some form of global standards committee responsible for
naming every application stream. Even if that could be done, the receiver filter might ask for
all NBC packets from a given source, and the filter could depend on other packet fields. This
leads to the following final idea.

Change the routing header to add a flow identifier F (Figure 4.13), whose meaning depends
on the source. In other words, different sources can use the same flow identifier because it
is the combination of the source and the flow identifier that is unique. Thus there is no need
for global standardization (or other global coordination) of flow identifiers. A flow identifier
is only a local counter maintained by the source. The idea is that a sending application at the

4.8 Avoiding Fragmentation of Link State Packets 87

Arriving
Packet

R1

Filter 1

Router

Filter n

Rm

S F

Flow ID
Cache

F, S

G, S'

R1, R5

Rm

...
...

... ...

...

F I G U R E 4.13 Adding a flow identifier (which is unique only with respect to a source) can speed up
packet filtering.

sender can ask the routing layer for a flow identifier. This identifier is added to the routing
header of all the packets for this application.

As usual, when the application packet first arrives, the router does a (slow) linear search
to determine the set of receivers associated with the packet header. Because identifiers are
not unique across sources, the router caches the mapping using the concatenation of the
packet source address and the flow identifier as the key. Clearly, correctness depends on
the sender application’s not changing fields that could affect a filter without also changing the
flow identifier in the packet.

EXERCISES

• What can go wrong if the source crashes and comes up again without remembering which
identifiers it has assigned to different applications? What can go wrong when a receiver
adds a new filter? How can these problems be solved?

• In the current solution, the flow identifier is used as a tip (Chapter 3) and not as a hint.
What additional costs would be incurred if the flow identifier-source address pair is treated
as a hint and not as a tip?

4.8 AVOIDING FRAGMENTATION OF LINK STATE PACKETS

The following problem actually arose during the design of the OSI and OSPF [Per92] link
state routing protocols. This problem is about protocol design, as opposed to protocol imple-
mentation once the design is fixed. Despite this, it illustrates how design choices can greatly
affect implementation performance.

Chapter 2 and Section 4.3 described link state routing. Recall that in link state routing,
a router must send a link state packet (LSP) listing all its neighbors. The link state protocol
consists of two separate processes. The first is the update process that sends link state packets
reliably from router to router using a flooding protocol that relies on a unique sequence number

88 C H A P T E R 4 Principles in Action

E1
E2

R1

E500

R2

R3

R4

F I G U R E 4.14 The link state packet of router R1 (with even 500 endnode neighbors) may be too
large to fit into a data link frame. Without a clever idea, this would require inefficient fragmentation and
reassembly of the router at every hop.

per link state packet. The sequence number is used to reject duplicate copies of an LSP.
Whenever a router receives a new LSP numbered x from source S, the router will remember
number x and will reject any subsequent LSPs received from S with sequence number x.
After the update process does its work, the decision process at every router applies Dijkstra’s
algorithm to the network map formed by the link state packets.

While a router may have a small number of router neighbors, a router may have a large
number of host computers (endnodes) that are connected directly to the router on the same
LAN. For example, in Figure 4.14, router R1 has 500 endnode neighbors E1 . . . E500. Large
LANs may even have a larger number of endnodes. This leads to the following problem.
PROBLEM

At 8 bytes per endnode (6 bytes to identify the endnode and 2 bytes of cost information),
the LSP can be very large (40,000 bytes for 5000 endnodes). This is much too huge for the
link state packet to fit into a maximum-size frame on many commonly used data links. For
example, Ethernet has a maximum size of 1500 bytes and FDDI specifies a maximum of
4500 bytes. This implies that the large LSP must be fragmented into many data link frames
on each hop and reassembled at each router before it can be sent onward. This requires an
expensive reassembly process at each hop to determine whether all the pieces of a LSP have
been received.

It also increases the latency of link state propagation. Suppose that each LSP can fit in M
data link frames, that the diameter of the network is D, and that the time to send a data link
frame over a link is 1 time unit. Then with hop-by-hop reassembly, the propagation time of
an LSP can be D · M. If a router did not have to wait to reassemble each LSP at each hop, the
propagation delay would be only M + D. When the link state protocol was being designed,
these problems were discovered by implementors reviewing the initial specification.

On the other hand, it seems impossible to propagate the fragments independently because
the LSP carries a single sequence number that is crucial to the update process. Simply copy-
ing the sequence number into each fragment will not help, because that will cause the later
fragments to be rejected, since they have the same sequence number as the first fragment.
The problem is to make the impossible possible by shifting computation around in space
to avoid the need for hop-by-hop fragmentation. Changes to the LSP routing protocol are
allowed.

Hint: Does the information about all 5000 endnodes have to be in the same LSP? Consider invoking
P3c to shift computation in space.

4.8 Avoiding Fragmentation of Link State Packets 89

R2

E175–E350 R1b

R3

R4

R1a

R1c

E1–E175

E350–E500

F I G U R E 4.15 Avoiding hop-by-hop fragmentation by dividing a large router into pseudo-routers.

SOLUTION

If the individual fragments of the original LSP of R1 are to be propagated independently
without hop-by-hop reassembly, then each fragment must be a separate LSP by itself, with a
separate sequence number. This crucial observation leads to the following elegant idea.

Modify the link state routing protocol to allow any router R1 to be multiple pseudo-routers
R1a, R1b, R1c (see Figure 4.15). The original set of endnodes are divided among these pseudo-
routers, so the LSP of each pseudo-router can fit into most data link frames without the need for
fragmentation. For example, if most data link sizes are at least 576 bytes, roughly 72 endnodes
can fit within a data link frame.

How is this concept of a pseudo-router actually realized? In the original LSP propagation,
each router had a 6-byte ID that is placed in all LSPs sent by the router. To allow for pseudo-
routers, we change the protocol to have LSPs carry a 7-byte ID (6-byte router ID + 1-byte
pseudo-router ID). The pseudo-router ID can be assigned by the actual router that houses all
the pseudo-routers. By allowing 256 pseudo-routers per router, roughly 18,000 endnodes can
be supported per router.

While the LSP propagation treats pseudo-routers separately, it is crucial that route com-
putation treat the separate pseudo-routers as one router. After all, the endnodes are all directly
connected to R1 in our example. But this is easily done, because all the LSPs with the same
first 6 bytes can be recognized as being from the same router.

In summary, the main idea is to shift computation in space (P3c) by having the source
fragment the original LSP into independent LSPs instead of having each data link do the
fragmentation. This is a good example of systems thinking. Needless to say, the implementors
liked this solution (invented by Radia Perlman) much better than the original approach.

EXERCISES

• How can a router assign endnodes to pseudo-routers? What happens if a router initially has
a lot of endnodes (and hence a lot of pseudo-routers) and then most of the endnodes die?
This can leave a lot of pseudo-routers, each of which has only a few endnodes. Why is this
bad, and how can it be fixed?

• As in the relaxed-consistency examples described in Chapter 3, this solution can lead to
some unexpected (but not very serious) temporary inconsistencies. Assuming a solution to
the previous exercise, describe a scenario in which a given router, say, R2, can find (at
some instant) that its LSP database shows the same endnode (say, E1) belonging to two
pseudo-routers, R1a and R1c. Why is this no worse than ordinary LSP routing?

90 C H A P T E R 4 Principles in Action

4.9 POLICING TRAFFIC PATTERNS

Some network protocols require that sources never send data faster than a certain rate. Instead
of merely specifying the average rate over long periods of time, the protocol may also specify
the maximum amount of traffic, B, in bits a source can send in any period of T seconds. This
does limit the source to an average rate of B/T bits per second. However, it also limits the
“burstiness” of the users’ traffic to at most one burst of size B every T units of time. For
example, choosing a small value of the parameter T limits the traffic burstiness considerably.
Burstiness causes problems for networks because periods of high traffic and packet loss are
followed by idle periods.

If every source meets its contract (i.e., sends no more than the specified amount in the
specified period), the network can often guarantee performance and ensure that no traffic is
dropped and that all traffic is delivered in timely fashion. Unfortunately, this is like saying that
if everyone follows the rules of the road, traffic will flow smoothly. Most people do follow
the rules: some because they feel it is the right thing to do, and many because they are aware
of penalties that they have to pay when caught by traffic police. Thus policing is an important
part of an ordered society.

For the same reason, many designers advocate that the network should periodically police
traffic to look for offenders that do not meet their contracts. Without policing, the offenders
can get an unfair share of network bandwidth.

Assume that a traffic flow is identified by the source and destination address and the traffic
type. Thus each router needs to ensure that a particular traffic flow sends no more than B bits
in any period of T seconds. The simplest solution is for the router to use a single timer that
ticks every T seconds and to count the number of bits sent in each period using a counter per
flow. At the end of each period, if the counter exceeds B, the router has detected a violation.

Unfortunately, the single timer can police only some periods. For example, assume without
loss of generality that the timer starts at time 0. Then the only periods checked are the periods
[0, T], [T , 2T], [2T , 3T], This does not ensure that the source flow does not violate its
contract in a period like [T /2, 3T /2], which overlaps the periods that are policed. For example,
in the left side of Figure 4.16, the flow sends a burst of size B just before the timer ticks at time
T and sends a second burst of size B just after the timer ticks at time T .

B
its

Time
T T

Time

ONE TIMER TWO TIMERS

BB

T/2 T/2 TT/2 T/2

F I G U R E 4.16 The naive use of a single or multiple timers (to check whether a flow sends no more
than B every T seconds) does not catch all violations.

4.9 Policing Traffic Patterns 91

B
its

Time

T Random RandomT

B

Violation

F I G U R E 4.17 Picking a random gap of T seconds between policing intervals allows the router to
catch a violating flow with high probability.

One attempt to fix this problem is for the router to use multiple timers and counters. For
example, as shown on the right of Figure 4.16, the router could use one timer that starts at 0
and a second timer that starts at time T /2. Unfortunately, the flow can still violate its contract
by sending no more than B in each policed period but sending more than B in some overlapping
period.

For instance, in the right frame of Figure 4.16 an offending flow sends a first burst of B
at the end of the first period and a second burst of B at the start of the third period, sending 2B
within a period slightly greater than T /2. Unfortunately, neither of the timers will detect the
flow as being a violator. This leads to the following problem.
PROBLEM

Multiple timers are expensive and do not guarantee that the flow will not violate its traffic
contract. It is easy to see that with even a single timer, the flow can send no more than 2B in
any period of T seconds. One approach is simply to assume that a factor-of-2 violation is not
worth the effort to police. However, suppose that bandwidth is precious on a transcontinental
link and that a factor-of-2 violation is serious. How could a violating flow still be caught using
only a single timer?

Hint: Consider exploiting a degree of freedom (P13) that has been assumed to be fixed in the naive
solution. Do the policing intervals have to start at fixed intervals? Also consider using P3a.

SOLUTION

As suggested in the hints, the policing intervals need not be fixed. Thus, there can be an
arbitrary gap between policing intervals. How should the gap be picked? Since a violating
flow can pick its violating period of T to start at any instant, a simple idea is to invoke P3a to
yield the following idea (Figure 4.17).

The router uses a single timer of T units and a single counter, as before. A policing interval
ends with a timer tick; if the counter is greater than B, a violation is detected. Then a flag is
set indicating that the timer is now used only for inserting a random gap. Then the timer is
restarted for a random time interval between 0 and T . When the timer ticks, the flag is cleared
and the counter is initialized, and the timer is reset for a period of T to start policing again.

EXERCISES

• Suppose the counter is initialized and maintained during the gap period as well as during
policing periods. Can the router make any valid inference during such a period, even if the
gap period is less than T units?

92 C H A P T E R 4 Principles in Action

S1

S2

S3

S4

S5

1

9

30

24

7

Priority queue
(e.g., heap)

ExtractMax
S3, 30

F I G U R E 4.18 Finding the source that is a resource hog.

• (Open Problem): Suppose the flow is adversarial. What is a good strategy for the flow to
consistently violate the contract by as high a margin as possible and still elude the
randomized detector described earlier? The flow strategy can be randomized as well. A
good answer should be supported by a probabilistic analysis.

4.10 IDENTIFYING A RESOURCE HOG

Suppose a device wishes to keep track of resources, like the packet memory allocated to
various sources in a router. The device wants a cheap way to find the source consuming the
most memory so that the device can grab memory back from such a resource hog. Figure 4.18
shows five sources with their present resource consumption of 1, 9, 30, 24, and 7 units,
respectively. The resource hog is S3.

A simple solution to identify the resource hog is to use a heap. However, if the number
of sources is a thousand or more, this may be too expensive at high speeds. Assume that the
numbers that describe resource usage are integers in the range from 1 to 8000. Thus bucket
sort techniques won’t work well because we may have to search 8000 entries to find the
resource hog.

Suppose, instead, that the device does not care about the exact maximum as long as the
result comes within a factor of 2 (perfect fairness is unimportant as in P3b). For example, in
the figure, assume it is fine to get an answer of 24 instead of 30. This leads to the following
problem.
PROBLEM

A software or hardware module needs to keep track of resources required by various users.
The module needs a cheap way to find the user consuming the most resources. Since ordinary
heaps are too slow, the device designers are willing to relax the system requirements (P3b) to
be off by a factor of 2. Can this relaxation in accuracy requirements be translated into a more
efficient algorithm?

Hint: Consider using three principles: trading accuracy for computation (P3b), using bucket sorting
(P14), and using table lookups (P4b, P2a).

SOLUTION

Since the answer can be off by a factor of 2, it makes sense to aggregate users whose
resources are within a factor of 2 into the same “resource usage group.” This can be a win if
the resulting number of groups is much smaller than the original number of users; finding the
largest group then will be faster than finding the largest user. This is roughly the same idea
behind aggregation in hierarchical routing, where a number of destinations are aggregated

4.11 Getting Rid of the TCP Open Connection List 93

S1

S2

S3

S4

S5

1

9

30

24

7

1–1 2–3 4–7 8–15 16–31

1 0 1 1 1

S1 S5 S2 S4

ExtractMax

S4, 24
(off by 2!)

S3

F I G U R E 4.19 Aggregating users with resource consumption within a factor of 2 leads to a small
number of aggregates whose membership can be represented using a bitmap.

behind a common prefix; this can make routing less accurate but reduces the number of
routing entries. This leads to the following idea (try to work out the details before you read
further).

Binomial bucketing can be used, as shown in Figure 4.19, where all users are grouped into
buckets according to resource consumption, where bucket i contains all users whose resource
consumption lies between 2i and 2i+1 − 1. In Figure 4.19, for instance, users S3 and S4 are
both in the range [16, 31] and hence are in the same bucket.

Each bucket contains an unsorted list of the resource records of all the users that fall within
that bucket range. Thus in Figure 4.19, S3 and S4 are in the same list. The data structure also
contains a bitmap, with one bit for every bucket, that is set if the corresponding bucket list is
nonempty (Figure 4.19). Thus in Figure 4.19, the bits corresponding to buckets [1,1], [4,7],
[8,15], and [16,31] are set, while the bit corresponding to [2,3] is clear.

Thus to find the resource hog, the algorithm simply looks for the bit position i correspond-
ing to the rightmost bit set in the bitmap. The algorithm then returns the user at the head of
the bucket list corresponding to position i. Thus in Figure 4.19, the algorithm would return S4
instead of the more accurate S3.

EXERCISES

• How is this data structure maintained? What happens if the resources in a user (e.g., S3)
are reduced from 30 to 16? What kind of lists are needed for efficient maintenance?

• How large is each bitmap? How can finding the rightmost bit set be done efficiently?

4.11 GETTING RID OF THE TCP OPEN CONNECTION LIST

A transport protocol such as TCP [Ste94] in computer X keeps state for every concurrent
conversation that X has with other computers. Recall from Chapter 2 that the technical name
for the shared state between the two endpoints of a conversation is a connection. Thus if a
user wishes to send mail from X to another workstation, Y , the mail program in X must first
establish a connection (shared state) to the mail program in Y . A busy server like a Web server
may have lots of concurrent connections.

The state in a connection consists of things like the numbers of packets sent by X that
have not been acknowledged by Y . Any packets that have not been acknowledged for a long
time must be retransmitted by X. To do retransmission, transport protocols typically have a

94 C H A P T E R 4 Principles in Action

Conn 1

Conn 2

Conn N

Conn 1 Conn 2

Connection list

Hash table

Conn N

...

...

. . .

F I G U R E 4.20 The x-kernel implementation uses a hash table mapping connections to state (for
packet dispatching) as well as a linked list of connections (for timer processing). The redundant state
causes dilution of the data cache.

periodic timer that triggers the retransmission of any packets whose acknowledgments have
been outstanding for a while.

The freely available Berkeley (BSD) TCP code [Ste94] keeps a list of open connections
(Figure 4.20) to examine on timer ticks in order to perform any needed retransmissions. How-
ever, when a packet arrives at X, TCP at X must also quickly determine which connection the
packet belongs to in order to update the state for the connection. Each connection is identified
by a connection identifier that is carried in every packet.

Relying on the list to determine the connection for a packet would require searching the
entire list, in the worst case; this could be slow for servers with large numbers of connections.
Thus the x-kernel implementation [HP91] added a hash table to the BSD implementation
(P15) to efficiently map from connection identifiers in packets to the corresponding state for
the connection. The hash table is an array of pointers indexed by hash value that points to lists of
connections that hash to the same value. In addition, the original linked list of connections was
retained for timer processing, while the hash table was supposed to speed up packet processing.

Oddly enough, measurements of the new implementation actually showed a slowdown!
Careful measurements traced the problem to the fact that information about connections was
stored redundantly, and this reduced the efficiency of the data cache when implemented on
modern processors (see Chapter 2 for a model of a modern processor). This illustrates question
Q3 in Chapter 3, where an obvious improvement to one part of the system can affect other
parts of the system. Note that while main memory may be cheap, fast memory such as the data
cache is often limited. Commonly used structures such as the connection list should float into
the data cache as long as they are small enough to fit.

The obvious solution is to avoid redundancy. The hash table is needed for fast lookups.
The timer routine must also periodically and efficiently scan through all connections. This
leads to the following problem.
PROBLEM

Can you get rid of the waste caused by the explicit connection list while retaining the hash
table? It is reasonable to add a small amount of extra information to the hash table. When doing
so, observe that the original connection list was made doubly linked to allow easy deletion
when connections terminate. But this adds storage and dilutes the data cache. How can a singly
linked list be used without slowing down deletion?

Hint: The first part is easy to fix by linking the valid hash table entries in a list. The second part
(avoiding the doubly linked list, which would require two pointers per hash table entry) is a bit harder.

4.11 Getting Rid of the TCP Open Connection List 95

Connection table replaced
by a singly linked list

C1

Hash table for
connection lookup
with lazy deletion

C3

C2

C4

C6

C5

F I G U R E 4.21 Linking the valid hash table entries using forward pointers and lazy deletion. The
dashed lines imply connection records that have been marked as deleted but that will be processed only
in the next iteration.

A connection list consists of nodes, each of which contains a connection ID (96 bits for IP)
plus two pointers (say, 32 bits each) for easy deletion. Since the hash table is needed for fast
demultiplexing, the connection list can be removed if the valid hash table entries are linked together
as shown in Figure 4.21 and a pointer is kept to the head of the list. On a timer tick, the retransmit
routine will periodically scan this list. Scanning the complete hash table is less efficient because the
hash table may have many empty locations.

The naive solution would add two pointers to each valid hash table entry to implement a doubly
linked list. Since these pointers can be hash table indexes instead of arbitrary pointers to memory,
the indexes need not be larger than the size of the hash table: Even the largest hash table storing
connections should require no more than 16 bits, often much less. The naive solution does well,
adding at most 32 bits per entry instead of 160 bits per entry, a savings of 128 bits. However, it
is possible to do better and to add only 16 bits per entry. Consider using lazy evaluation (P2b) and
relaxing the specification (P3).

SOLUTION

A doubly linked list is useful only for efficient deletions. When a connection (say, Connec-
tion C3 in Figure 4.21) is terminated, the delete routine would ideally like to find the previous
valid entry (i.e., the list containing Connection C1 in Figure 4.20) in order to link the previous
list to the next list (i.e., the list containing C2). This would require each hash table entry to
store a pointer to the previous valid entry in the list.

Instead, consider principle P3, which asks whether the system requirements can be relaxed.
Normally, one assumes that when a connection terminates, its storage must be reclaimed
immediately. To reclaim storage, the hash table entry should be placed in a free list, where it can
be used by another connection. However, if the hash table is a little larger than strictly necessary,
it is not essential that the storage used by a terminated connection be reused immediately.

96 C H A P T E R 4 Principles in Action

Given this relaxation of requirements, the implementation can lazily delete the connection
state. When a connection is terminated, the entry must be marked as unused. This requires an
extra bit of state, as in P12, but is cheap. The actual deletion of unused hash table entry E
involves linking the entry before E to the entry after E and also requires returning E to a free
list. However, this deletion can be done on the next list traversal when the traversal encounters
an unused entry.

EXERCISES

• Write pseudocode for the addition of a new connection, the termination of a connection,
and the timer-based traversal.

• How can we get away with singly linked lists for the lists of connections in each hash table
list?

• Hugh Hopeful is always interested in clever tricks that he never thinks through completely.
He suggests a way to avoid back pointers in any doubly linked list. Suppose a node X
needs to be deleted. Normally, the deletion routine is passed a handle to retrieve X, which
is typically a pointer to node X. Instead, Hugh suggests that the handle be a pointer to the
node before X in the linked list (except when X is the head of the list when the handle is a
null pointer). Hugh claims that this allows his implementation to efficiently locate both the
node prior to X and the node after X using only forward pointers. Present a counter-
example to stop Hugh before he writes some buggy code.

4.12 ACKNOWLEDGMENT WITHHOLDING

Transport protocols such as TCP ensure that data is delivered to the destination by requiring
that the destination send an acknowledgment (ack) for every piece of received data. This is
analogous to certified mail. Packets and acks are numbered. Acks are often cumulative; an
ack for a packet numbered N implicitly acknowledges all packets with numbers less than or
equal to N .

Cumulative acks allow the receiver the flexibility of not sending an ack for every received
packet. Instead, acks can be batched (P2c). For example, in Figure 4.22 a file transfer program
is sending file blocks, one in every packet. Blocks 1 and 2 are individually acknowledged, but
blocks 3 and 4 are acknowledged with a single ack for block 4.

Reducing acks is a good thing for the sender and receiver. Although acks are small, they
contain headers that must be processed by every router and the source and the destination. Fur-
ther, each received packet, however small, can cause an interrupt at the destination computer,
and interrupts are expensive. Thus ideally, a receiver should batch as many acks as possible.
But what should the receiver batching policy be? This leads to the following problem.
PROBLEM

Ack withholding is difficult at a receiver that is not clairvoyant. In Figure 4.22, for
example, if block 3 arrives first and is processed quickly, how long should the receiver wait
for block 4 before sending the ack for block 3? If block 4 never arrives (because the sender has
no more data to send), then withholding the ack for block 3 would cause incorrect behavior.
The classical solution is to set an ack-withholding timer; when the timer expires, a cumulative
ack is sent. This limits the time that an ack can be withheld.

4.12 Acknowledgment Withholding 97

SENDER RECEIVER

File
transfer

Block 1
Ack 1

Ack 2

Ack 4

Block 2

Block 3

Block 4

F I G U R E 4.22 The use of cumulative acks allows the receiver to acknowledge several packets
with one ack (e.g., Blocks 3 and 4) but introduces the problem of determining a good receiver ack
policy.

However, the withholding timer also causes problems. Some applications are sensitive to
latency. Adding an ack-withholding timer can increase latency in cases where the sender has
no more data to send. If the transport protocol could be modified, what information could be
added to avoid unnecessary latency and yet allow acks to be effectively batched?

Hint: In an application such as FTP, which software module “knows” that there is more data to be
sent? For ack withholding, which software module would ideally like to know that there is more data
to be sent? Now consider using P9 and P10.

SOLUTION

In an application such as file transfer, the sender application knows that there is more
data to be sent (e.g., there will be a block 4 after block 3). The sending application may
also be willing to tolerate the latency due to batching of acks. However, it is the transport
module at the receiver that needs to know this information. This observation leads to a simple
proposal.

The sender application passes a bit to the sender transport (in the application–transport
interface) that is set when the application has more data to send. Assume that the transport
protocol can be modified to carry a withhold bit. The sending transport can use the information
passed by the application to set a withhold bit w in every packet that it sends; w is cleared when
the sender wants an immediate ack. The moral, of course, is that it is better for the sender to
telegraph his intentions than for the receiver to make guesses about the future!

For example, in Figure 4.23 the sender transport is informed by the sending file transfer
application that there are four blocks to be sent. Thus the sender transport sets the withhold
bit on the first three packets and clears the bit in the fourth packet. The receiver acts on this
information to send one ack instead of four. On the other hand, an application that is latency
sensitive can choose not to pass any information about data to be sent. Note also that the
withhold bit is a hint; the receiver can choose to ignore this information and send an ack
anyway. Despite its apparent cleverness, this solution is a bad idea in today’s TCP. See the
exercises for details.

98 C H A P T E R 4 Principles in Action

SENDER RECEIVER

Block 1, w=1

Ack 4

Block 2, w=1

Block 3, w=1

Block 4, w=0

F I G U R E 4.23 Telegraphing the sender’s intentions using a withhold bit w.

EXERCISES

• Another technique for reducing acks is to piggyback acks on data flowing from the
receiver to the sender. To support this, most transport protocols, such as TCP, have extra
fields in data packets to convey reverse ack information. However, piggybacking has the
same classical trade-off between latency and piggybacking efficiency. How long should
the receiver transport wait for reverse data? On the other hand, there are common
applications where the sender application knows this information. How could the solution
outlined earlier be extended to support piggybacking as well as ack batching?

• Recall that Chapter 3 outlined a set of cautionary questions for evaluating purported
improvements. For example, Q3 asks whether a change can affect the rest of the system.
Why might aggressive ack withholding interact with other aspects of the transport
protocol, such as flow and congestion control [Ste94]?

4.13 INCREMENTALLY READING A LARGE DATABASE

Suppose a user continuously reads a large database stored on a Web site. The Web page can
change and the reader only wants the incremental (P12a) updates since the last read of the
database. Thus, in Figure 4.24 there is a database of highly popular food items that is being read
constantly by readers around the world who wish to keep up with culinary fashion. Fortunately,
food fashions change slowly.

Thus a reader that last read at 2 pm and reads again at 6 pm only wants the differences:
Coke to Pepsi, and Wheaties to Cheerios. If, on the other hand, a different user reads at 3 pm
and then at 6 pm, she, too, only wants the difference: Wheaties to Cheerios. This leads to the
following problem.
PROBLEM

Find a way for the database to efficiently perform such incremental queries. One solution is
to have the database remember what each user has previously read. However, it is unreasonable

4.13 Incrementally Reading a Large Database 99

Coke

Apples

Pies

Wheaties

Pepsi

Apples

Pies

Wheaties

Pepsi

Apples

Pies

Cheerios

Last update
2 pm

Last update
3 pm

Last update
6 pm

F I G U R E 4.24 A slowly changing database of food items shown at three different times: 2 pm, 3
pm, and 6 pm. Notice that only the soft drink has changed from 2 to 3 pm and that only the cereal has
changed from 3 to 6 pm. Thus a reader who is constantly monitoring the database wishes to find only the
differences from the last time the database was read.

for the database to remember what each user has previously read, since there may be millions
of users. Find another solution that is less burdensome for the database program.

Hint: If the database does not store any information about the last Read performed by a user, then
it follows that user Read requests must pass some information (P10) about the last Read request
made by the same user. Passing the entire details of the last Read would be overkill and inefficient.
What simple piece of information can succinctly characterize the user’s last request? Now consider
adding redundant state (P12) at the database that can easily be indexed using the information passed
by the user to facilitate efficient incremental query processing.

SOLUTION

As said earlier, user Read requests must pass some information (P10) about the last Read
request made by the same user. The most succinct and relevant piece of information about the
last user request is the time at which it was made. If user requests pass the time of the last Read,
then the database needs to be organized to efficiently compute all updates after any given time.
This can be done by storing copies of the database at all possible earlier times. This is clearly
inefficient and can be avoided by storing only the incremental changes (P12a). This leads to
the following algorithm.

Add an update history list to the database, with most recent updates closer to the head of
the list. Read requests carry the time T of the last Read, so a Read request can be processed
by scanning the update list from the head to find all updates after T .

For example, in Figure 4.25 the head of the update history list has the latest change
(compare with Figure 4.24) at 6 pm from Wheaties to Cheerios and the next earliest change at
3 pm from Coke to Pepsi. Consider a Read request that has a last Read time of 5 pm. In this
case, when scanning the list from the head, the request processing will find the 6 pm update
and stop when it reaches the 3 pm update because 3 < 5. Thus the Read request will return
only the first update.

EXERCISES

• If a single entry changes multiple times, a single entry change can be stored redundantly in
the list, which costs space and time. What principle can you use to avoid this redundancy?

100 C H A P T E R 4 Principles in Action

Pepsi

Apples

Pies

Cheerios

Last update
6 pm

Wheaties
6 pm

Cheerios Coke
3 pm

Pepsi

Update history list

F I G U R E 4.25 Solving the incremental-update problem using an update history list.

Assume the database is just a collection of records and that you want each record to appear
at most once in the incremental list.

• If the number of records is large or the foregoing trick is not adopted, the incremental list
size will grow very big. Suggest a sensible policy for periodically reducing the size of the
incremental list.

4.14 BINARY SEARCH OF LONG IDENTIFIERS

The next-generation Internet (IPv6) plans to use larger, 128-bit addresses to accommodate more
Internet endpoints. Suppose the goal is to look up 128-bit addresses. Assume the algorithm
works on a machine whose natural word size is 32 bits. Then each comparison of two 128-bit
numbers will take 128/32 = 4 operations to compare each word individually. In general,
suppose each identifier in the table is W words long. In our example, W = 4. Naive binary
search will take W · log N comparisons, which is expensive. Yet this seems obviously wasteful.
If all the identifiers have the same first W − 1 words, then clearly log N comparisons are
sufficient. The problem is to modify binary search to take log N + W comparisons. The
strategy is to work in columns, starting with the most significant word and doing binary search
in that column until equality is obtained in that column. At that point, the algorithm moves to
the next word to the right and continues the binary search where it left off.

Thus in Figure 4.26, which has W = 3, consider a search for the three-word identifier
BMW . Pretend each character is a word. Start by comparing in the leftmost column in the
middle element, as shown by the arrow labeled 1.1 Since the B in the search string matches the
B at the arrow labeled 1, the search moves to the right (not shown) to compare the M in BMW
with the N in the middle location of the second column. Since N < M, the search performs the
second probe at the quarter position of the second column. This time the two M’s match and
the search moves rightward and finds W , but (oops!) the search has found AMW , not BMW as
desired. This leads to the following problem.

1Many implementors implement binary search to pick the 4th element from the top (i.e., the first B) as the
middle and not the 5th element as we have done. Keep this somewhat unusual convention in mind while following
the example.

4.14 Binary Search of Long Identifiers 101

A
A
A
B
B
B
B
C

C
D
M
M
N
N
N
N

E
C
W
W
X
Y
Z
D

Probe 1

3

W words wide

2

4

F I G U R E 4.26 Binary search of long identifiers can result in a multiplicative factor of W , the number
of words in an identifier. The naive method of reducing this to an additive factor by moving to the right
on equality fails.

PROBLEM

Find some state that can be added to each element in each column that can fix this algorithm
to work correctly in log N + W comparisons.

Hint: The problem is caused by the fact that when the search moved to the quarter position in column
2, it assumed that all elements in the quarter of the second column begin with B. This assumption
is false in general. What state can be added to avoid making this false assumption, and how can the
search be modified to use this state?

SOLUTION

The trick is to add state to each element in each column, which can constrain the binary
search to stay within a guard range. This is shown in Figure 4.27. In the figure, for each word
like B in the leftmost (most significant) column, add a pointer to the range of all other words
that also contain B in this position. Thus the first probe of the binary search for BMW starts
with the B in BNX . On equality, the search moves to the second column, as before. However,
search also keeps track of the guard range corresponding to the B’s in the first column. The
figure shows that the guard range includes only rows 4 through 7. This guard range is stored
with the first B compared (see arrows in Figure 4.27).

Thus when the search moves to column 2 and finds that M in BMW is less than the N in
BNX , it attempts to halve the range as before and to try a second probe at the third entry (the
M in AMT). However, the third entry is lower than the high point of the current guard range (4
through 6, assuming the first element is numbered 1). So without doing a compare, the search

A
A
A
B
B
B
B
C

C
D
M
M
N
N
N
N

E
C
W
W
X
Y
Z
D

Probe 1

3

4

2

5

F I G U R E 4.27 Adding a guard range to every element in a column to allow binary search to work
correctly when switching columns.

102 C H A P T E R 4 Principles in Action

tries to halve the binary search range again. This time the search tries entry 4, which is in the
guard range. The search finds equality, moves to the right, and finds BMW , as desired.

In general, every multiword entry W1, W2, . . . , Wn will store a precomputed guard range.
The range for Wi points to the range of entries that have W1, W2, . . . , Wi in the first i words.
This ensures that on a match with Wi in the ith column, the binary search in column i + 1 will
search only in this guard range. For example, the N entry in BNY (second column) has a guard
range of 5–7, because these entries all have BN in the first two words.

The resulting search strategy takes log2 N + W probes if there are N identifiers. The cost
is the addition of two 16-bit pointers to each word. Since most word sizes are at least 32 bits,
this results in adding 32 bits of pointer space for each word, which can at most double memory
usage. Besides adding state, a second dominant idea is to use precomputation (P2a) to trade a
slower insertion time for a faster search. The idea is due to Butler Lampson.

EXERCISE

• (This is harder than the usual exercises.) The naive method of updating the binary search
data structure requires rebuilding the entire structure (especially because of the
precomputed ranges) when a new entry is added or deleted. However, the whole scheme
can be elegantly represented by a binary search tree, with each node having the usual >

and < pointers but also an = pointer, which corresponds to moving to the next column to
the right, as shown earlier. The subtree corresponding to the = pointer naturally represents
the guard range. The structure now looks like a trie of binary search trees. Use this
observation and standard update techniques for balanced binary trees and tries to obtain
logarithmic update times.

4.15 VIDEO CONFERENCING VIA ASYNCHRONOUS TRANSFER MODE

In asynchronous transfer mode (ATM), the network first sets up a virtual circuit through a
series of switches before data can be sent. Standard ATM allows one-to-many virtual circuits,
where a virtual circuit (VC) can connect a single source to multiple receivers. Any data sent
by the source is replicated and sent to every receiver in the one-to-many virtual circuit.

Although it is not standardized, it is also easy to have many-to-many VCs, where every
endpoint can be both a source and a receiver. The idea is that when any source sends data, the
switches replicate the data to every receiver. Of course, the main problem in many-to-many
VCs is that if two sources talk at the same time, then the data from the two sources can be
arbitrarily interleaved at the receivers and cause confusion. This is possibly why many-to-many
VCs are not supported by standards, though it is often easy for switch hardware to support
many-to-many VCs.

Figure 4.28 shows a simple topology consisting of an ATM switch that connects N work-
stations. To showcase the bandwidth of the switch, the system designers have designed a
videoconferencing application. The conferencing application can allow users at any of the N
workstations to have a videoconference with each other. The application should bring up a
screen (on every workstation in the conference) that displays at least the current speaker and
also plays the speech of the current speaker. In addition, in the event of a conversation, it is
desirable to see the expressions of the participants. The designers soon run into the following
problem.

4.15 Video Conferencing via Asynchronous Transfer Mode 103

ATM
switch

N 1-to-many VCs

F I G U R E 4.28 A videoconferencing system that uses an ATM switch with the ability to support
many-to-many virtual circuits.

PROBLEM

The naivest solution would use up to N2 point-to-point connections between every pair
of participating workstations. A better solution is shown in Figure 4.28. It uses up to N many-
to-many VCs between each participating workstation and the other workstations. The video
and speech of each workstation is connected by a one-to-many virtual circuit to every other
participating workstation. Thus every participating workstation gets the video output of all
participants and the application can choose which one (or ones) to display. Unfortunately, the
ATM switch requires that bandwidth on the switch be statically divided among the N one-to-
many VCs. Given a minimum bandwidth for video quality of Bmin and a total switch bandwidth
of B, this limits the number of participating workstations to be less than B/Bmin. Is there a more
scalable solution?

Hint: Consider exploiting the switch hardware’s ability to support many-to-many VCs (P4c). However,
to prevent confusion, only one source should transmit at a time in any many-to-many VC. Instead
of developing a complex protocol to ensure such a constraint, what hardware can be added (P5) to
ensure this constraint?

SOLUTION

As suggested in the hint, the designers chose to exploit the many-to-many VC capability
of the switch to replace N one-to-many VCs with a constant number of many-to-many VCs.
This allowed the fixed switch bandwidth to scale to a large number of participants. However,
this generic idea requires elaboration. How many many-to-many VCs should be used? How
is the potential confusion caused by many-to-many VCs resolved? Here are the details of a
solution worked out by Jon Turner at Washington University.

First, consider the use of a single many-to-many VC named C. A naive solution to the
confusion problem entails a protocol (say, a round-robin protocol) that ensures that only one
workstation at a time connects its video output to C. Such protocols require coordination,
and the coordination adds latency and expense. Instead, as systems thinkers, the designers
observed that, at a minimum, only the current speaker needs to be displayed.

Thus the designers added extra hardware (P5) in the form of a speech detector to the input
at each workstation. If the detector detects significant speech activity at a workstation X, then

104 C H A P T E R 4 Principles in Action

ATM
switch

2 many-to-many VCs

Previous
speaker

Current
speaker

Current
speaker

F I G U R E 4.29 Replacing N one-to-many VCs with two many-to-many VCs through the use of a
speech detector and a simple hardware state machine at each input.

the detector connects the video input of X to C; otherwise, the video input of X is not connected
to C. Since this hardware was quite cheap, the extra scalability came at a reasonable price.

Next, the designers observed that keeping a video image of the last speaker provides visual
continuity in the expected case when there is a dialog between two participants. Thus instead
of one many-to-many VC, they used two many-to-many VCs, C and L, one for the current
speaker and one for the last speaker, as shown in Figure 4.29.

EXERCISES

• Write pseudocode (using some state variables) for the hardware at each workstation to
update its connections to C and L. Assume the speech detector output is a function.

• What happens if more than one user speaks at one time? What could you add to the
hardware state machine so that the application displays something reasonable? For
instance, it would be unreasonable for the images of the two speakers to be morphed
together in this case.

P A R T II

Playing with Endnodes

The supreme accomplishment is to blur the line between work and play.

— Arnold Toynbee

The second part of the book deals with endnode algorithmics. This is the applica-
tion of network algorithmics to building fast protocol implementations at endnodes,
especially at servers. If you like, you can think of it as a systematic collection of
techniques for building fast servers. The techniques are applied mostly in a software
setting. Much of it has to do with getting around operating system structure to enable
high-speed data transfers. We study how to reduce the overhead incurred by copying,
control transfer, demultiplexing, timers, and other generic protocol-processing tasks.

C H A P T E R 5

Copying Data

Copy from one, it’s plagiarism; copy from two, it’s research.

— Wilson Mizner

Imagine an office where every letter received is first sent to shipping and receiving. Shipping
and receiving opens the letter, figures out which department it’s meant for, and makes a
photocopy for their records. They then hand it to the security department, which pores over
every line of the letter, looking for signs of industrial esponiage. To maintain an audit trail
for possible later use, the security department also makes a photocopy of the letter, for good
measure. Finally, the letter, somewhat the worse for wear, reaches the intended recipient in
personnel.

You would probably think this a pretty ludicrous state of affairs, worthy to be featured in
a Charlie Chaplin movie. But then you might be surprised to learn that most Web servers, and
computers in general, routinely make a number of extra copies of received and sent messages.
Unlike photocopies, which take up only a small amount of paper, power, and time, extra
copying in a computer consumes two precious resources: memory bandwidth and memory
itself. Ultimately, if there are k copies involved in processing a message in a Web server, the
throughput of the Web server can be k times slower.

Thus this chapter will focus on removing the obvious waste (P1) involved in such unnec-
essary copies. A copy is unnecessary if it is not imposed by the hardware. For example, the
hardware does require copying bits received by an adaptor to the computer memory. However,
as we shall see, there is no essential reason (other than those imposed by conventional operating
system structuring) for copying between application and operating system buffers. Eliminating
redundant copies allows the software to come closer to realizing the potential of the hardware,
one of the goals of network algorithmics.

This chapter will also briefly talk about other operations (such as checksumming and
encryption) that touch all the data in the packet and other techniques to more closely align
protocol software to hardware constraints, such as bus bandwidths and caches. While we will
briefly repeat some of the relevant operating systems and architectural facts, it will help the
reader to be familiar with endnode architecture and operating system models of Chapter 2.
In summary, this chapter surveys techniques for reducing the costs of data manipulation without
sacrificing modularity and without major changes to operating system design.

This chapter is organized as follows. Section 5.1 describes why and how extra data copies
occur. Section 5.2 describes a series of techniques to avoid copies by local restructuring of the
operating system and network code at an endnode. Section 5.3 shows how to avoid both copy

107

108 C H A P T E R 5 Copying Data

and control overhead for large transfers, using remote DMA techniques that involve protocol
changes.

Section 5.4 broadens the discussion to consider the file system in, say, a Web server, and
it shows how to avoid wasteful copies between the file cache and the application. Section 5.5
broadens the discussion to consider other operations that touch all the data, such as check-
summing and encryption, and introduces a well-known technique called integrated layer
processing. Section 5.6 broadens the discussion beyond copying to show that without careful
consideration of cache effects, instruction cache effects can swamp the effects of copying for
small messages.

Although this is the first chapter of the book that is devoted to techniques for overcoming
a specific bottleneck, the techniques are based on the principles described in Part I of the book.
The techniques and the corresponding principles are summarized in Figure 5.1.

Q u i c k R e f e r e n c e G u i d e
The most useful sections for an implementor today are as follows. Section 5.3.1 on remote direct

memory access (RDMA) describes techniques to avoid memory copying overheads in computing and
storage clusters. Section 5.4.2 describes a fairly radical way, called IO-lite (involving some operating
system surgery), to improve the performance of a server by consistently passing buffers by reference,
even between the file and networking systems. IO-lite builds on an idea called fbufs that is introduced in
Section 5.2.3. Section 5.4.3 describes a less radical but effective method called I/O splicing to directly
connect I/O subsystems. Finally, Section 5.6.1 describes techniques to improve I-cache performance.

P13

P2b

P11a
P7

P10

P4

Memory location (on adaptor) as degree of freedom

Lazy copying using copy-on-write

Cache VM mappings per path
Uniform fbuf space across processes

Pass buffer name and offset in packet

VM mapping to avoid copies in cache
and application

Afterburner

Mach

Solaris fbufs

RDMA systems

Flash

Number Principle Used In

P11a Cache VM mappings per path
Buffer sequence numbers enable checksum caching

Flash-lite

P6 New system call that splices I/O Sendfile()

P1 Avoid repeated memory access across
manipulations

ILP

P13 Layout code to minimize i-cache misses

Layer processing order as degree of freedom

x-kernel

P13 LDRP

F I G U R E 5.1 Techniques for copy avoidance and cache efficiency that are discussed in this chapter,
together with the corresponding principles.

5.1 Why Data Copies 109

Web server application

↓write() read()↓

TCP/IP File systemKernel

CPU

Server buffer

Socket buffer

File cache buffer

MEMORY

NETWORK ADAPTOR

MEMORY BUS

I/O BUS

DISK

Network

Copy 3

Copy 2

Copy 1

Copy 4

F I G U R E 5.2 Redundant copies involved in handling a GET request at a server.

5.1 WHY DATA COPIES

In Figure A.1 in the Appendix, we describe how TCP works in the context of a Web server.
Figure A.1 only shows the sending of the GET request for a file, followed by the file data itself
in two TCP segments. What FigureA.1 does not show is how the Web server processes the GET
request. In this chapter, we ignore the control transfer required to transfer the request to some
application server process. Instead, Figure 5.2 shows the sequence of data transfers involved in
reading file data from the disk (in the worst case) to the sending of the corresponding segments
via the network adaptor.

The main hardware players in Figure 5.2 are the CPU, the memory bus, the I/O bus, the
disk, and the network adaptor. The main software players are the Web server application and
the kernel. There are two main kernel subsystems involved, the file system and the networking
system. For simplicity, the picture shows only one CPU in the server (many servers are
multiprocessors) and focuses only on requests for static content (many requests are for dynamic
content that is served by a computer-generated imagery (CGI) process).1

Intuitively, the story is simple. The file is read from disk into the application buffer via,
say, a read() system call. The combination of the HTTP response and the application buffer
is then sent to the network over the TCP connection to the client by, say, a write() system
call. The TCP code in the network subsystem of the kernel breaks up the response data into

1The picture makes it appear that the code for the file system and the TCP/IP code is on the processor. In reality,
the code is also stored in memory and is fetched by the processor. However, the portion of the code that fits into the
processor instruction cache indeed can be considered to be in the processor.

110 C H A P T E R 5 Copying Data

bite-size segments and transmits them to the network adaptor after adding a TCP checksum to
each segment.

In practice, the story is often more messy in the details. First, the file is typically read
into a piece of kernel memory, called the file cache, in what we call Copy 1. This is a good
idea because subsequent requests to a popular file can be served from main memory without
slow disk I/O. The file is then copied from the file cache into the Web server application buffer
in Copy 2 shown in Figure 5.2. Since the application buffer and the file cache buffer are in
different parts of main memory, this copy can only be done by the CPU’s reading the data from
the first memory location and writing into the second location across the memory bus.

The Web server then does a write() to the corresponding socket. Since the application
can freely reuse its buffer (or even deallocate it) at any time after the write(), the network
subsystem in the kernel cannot simply transmit out of the application buffer. In particular, the
TCP software may need to retransmit part of the file after an unpredictable amount of time, by
which time the application may wish to use the buffer for other purposes.

Thus UNIX (and many other operating systems) provides what is known as copy semantics.
The application buffer specified in the write() call is copied to a socket buffer (another buffer
within the kernel, at a different address in memory than either the file cache or the application
buffer). This is called Copy 3 in Figure 5.2. Finally, each segment is sent out to the network
(after IP and link headers have been pasted) by copying the data from the socket buffer to
memory within the network adaptor. This is called Copy 4.

In between, before transmission to the network, the TCP software in the kernel must make
a pass over the data to compute the TCP checksum. Techniques for efficiently implementing
the TCP checksum are described in Chapter 9, but for now it suffices to think of the TCP
checksum as essentially computing the sum of 16-bit words in each TCP segment’s data.

Each of the four copies and the checksum consume resources. All four copies and the
checksum calculation consume bandwidth on the memory bus. The copies between memory
locations (Copies 2 and 3) are actually worse than the others because they require one Read and
one Write across the bus for every word of memory transferred. The TCP checksum requires
only one Read for every word and a single Write to append the final checksum. Finally, Copies
1 and 4 can be as expensive as Copies 2 and 3 if the CPU does the heavy lifting for the copy
(so-called programmed I/O); however, if the devices themselves do the copy (so-called DMA),
the cost is only a single Read or Write per word across the bus.

The copies also consume I/O bus bandwidth and ultimately memory bandwidth itself.
A memory that supplies a word of size W bits every x nanoseconds has a fundamental limit
on throughput of W /x bits per nanosecond. For example, even assuming DMA, these copies
ensure that the memory bus is used seven times for each word in the file sent out by the server.
Thus the Web server throughput cannot exceed T /7, where T is the smaller of the speed of the
memory and the memory bus.

Second, and more basically, the extra copies consume memory. The same file (Figure 5.2)
could be stored in the file cache, the application buffer, and the socket buffer. While memory
seems to be cheap and plentiful (especially when buying a PC!), it does have some limits, and
Web servers would like to use as much as possible for the file cache to avoid slow disk I/O.
Thus triply replicating a file can reduce the file cache by a factor of 3, which in turn can
dramatically reduce the cache hit rate and, hence, overall server performance.

In summary, redundant copies hurt performance in two fundamental and orthogonal ways.
First, by using more bus and memory bandwidth than strictly necessary, the Web server runs

5.2 Reducing Copying via Local Restructuring 111

slower than bus speeds, even when serving documents that are in memory. Second, by using
more memory than it should, the Web server will have to read an unduly large fraction of files
from disk instead of from the file cache.

Note also that we have only described the scenario in which static content is served.
In reality the SPECweb benchmarks assume that 30% of the requests are for dynamic content.
Dynamic content is often served by a separate CGI process (other than the server application)
that communicates this content to the server via some interprocess communication mechanism,
such as a UNIX pipe, which often involves another copy.

Ideally, all these pesky extra bus traversals should be removed. Clearly, Copy 1 is not
required if the data is in cache and so we can ignore it (if it’s not in cache, the server runs
at disk speed, which is too slow anyway). Copy 2 seems unnecessary. Why can’t the data be
sent directly from the file cache memory location to the network? Similarly, Copy 3 seems
unnecessary. Copy 4 is unavoidable.

5.2 REDUCING COPYING VIA LOCAL RESTRUCTURING

Before tackling the full complexity of eliminating all redundant copies in Figure 5.2, this
section starts by concentrating on Copy 3, the fundamental copy made from the application to
kernel buffers (or vice versa) when a network message is sent (received). This is a fundamental
issue for networking, independent of file system issues. It also turns out that general solutions
that eliminate all redundant I/O copies (Section 5.4) build on the techniques developed in this
section.

This section assumes that the protocol is fixed but the local implementation (at least
the kernel) can be restructured. The goal, of course, is to perform minimal restructuring in
order to continue to leverage the vast amount of investment in existing kernel and application
software. Section 5.2.1 describes techniques based on exploiting adaptor memory. Section 5.2.2
describes the core idea behind copy avoidance (by remapping shared physical pages) and its
pitfalls. Section 5.2.3 shows how to optimize page remapping using precomputation and
caching based on I/O streams; however, this technique involves changing the application
programming interface (API). Finally, Section 5.2.4 describes another technique, one that
uses virtual memory but does not change the API.

5.2.1 Exploiting Adaptor Memory
The simple idea here is to exploit a degree of freedom (P13) by realizing that memory can be
located anywhere on the bus in a memory-mapped architecture. Recall from Chapter 2 that
memory mapping means that the CPU talks to all devices, such as the adaptor and the disk, by
reading and writing to a portion of the physical memory space that is located on the device.

Thus while kernel memory is often resident on the memory subsystem, there is no reason
why part of the kernel memory cannot be on the adaptor itself, which typically contains some
memory. By leveraging off the existing adaptor memory (P4) and utilizing this degree of
freedom in terms of placement of kernel memory, we can place kernel memory on the adaptor.
The net result is that once the data is copied from application to kernel memory it is already
in the adaptor and so does not need to be copied again for transmission to the network. This is
shown in Figure 5.3.

112 C H A P T E R 5 Copying Data

Application

↓write()

TCP/IPKernel

CPU

Server buffer

MEMORY

NETWORK ADAPTOR

MEMORY BUS

I/O BUS

Network

Socket buffer

Single copy
(piggyback checksum in software

or use checksum hardware)

F I G U R E 5.3 The Witless (afterburner) approach eliminates the need for the kernel-to-adaptor copy
by placing kernel buffers in the adaptor.

Compare Figure 5.3 to Figure 5.2. Notice that Figure 5.3 ignores any disk-to-memory
transfer. Essentially, the useless Copy 3 in Figure 5.2 is now combined with the essential Copy
4 in Figure 5.2 to form a single copy in Figure 5.3.

What about the checksum? We will see this in more general form in Section 5.5, but
the main idea is to use principle P2c, expense sharing. When data is being moved from
the application buffer to the adaptor resident kernel memory by the processor (using so-called
programmed I/O, or PIO, which is I/O under processor control), the CPU is reading every word
of the packet anyway. Since such bus reads are expensive, the CPU might as well piggyback
the checksum computation with the copy process by keeping a register that accumulates the
running sum of words that are transferred.

This idea, first espoused by Van Jacobson and called the Witless (or simple-minded)
approach, was never built. Later this approach was used by Banks and Prudence [BP93] at
Hewlett-Packard labs and called the Afterburner adaptor. In the Afterburner approach, the
CPU did not transfer data from memory to the adaptor. Instead, the adaptor did so, using
so-called direct memory access, or DMA. Thus since the CPU is no longer involved in the
copy process, the adaptor should do the checksum. The Afterburner adaptor had special (but
simple) checksum hardware that checksummed words as the DMA transfer takes place.

While the idea is a good one, it has three basic flaws. First, it implies that the network
adaptor needs lots of memory to provide support for many high-throughput TCP connections
(which require large window sizes); the memory required may make the adaptor more expen-
sive than one wishes. Second, in the Witless approach, where the checksum is calculated by
the CPU, doing the checksum while copying a received packet to the application buffer can

5.2 Reducing Copying via Local Restructuring 113

imply that corrupted data can be written to application buffers. Though this can be discovered
at the end, when the checksum does not compute, it does cause some awkwardness to prevent
applications from reading incorrect data. A third problem with delayed acknowledgments is
explored in the exercises.

5.2.2 Using Copy-on-Write
While the basic idea in the Witless approach can be considered to be eliminating the kernel-
to-adaptor copy, the alternate idea pursued in the next three subsections is to eliminate the
application-to-kernel copy (in most cases) using virtual memory remappings. Recall that one
reason for the separate copy was the possibility that the application would modify the buffer and
hence violate TCP semantics. A second reason is that the application and kernel use different
virtual address spaces.

Some operating systems (notably Mach) offer a facility called copy-on-write (COW) that
allows a process to replicate a virtual page in memory at low cost. The idea is to make the copy
point to the original physical page P from which it was copied. This only involves updating a
few descriptors (a few words of memory) instead of copying a whole packet (say, 1500 bytes
of data). However, the nice thing about copy-on-write is that if the original owner of the data
modifies the data, the OS will detect this condition automatically and generate two separate
physical copies, P and P′. The original owner now points to P and can make modifications
on P; the owner of the copied page points to the old copy, P′. This works fine if the vast majority
of times pages are not modified (or only a few pages are modified) by the original owner.

Thus in a copy-on-write system, the application could make a copy-on-write copy for the
kernel. In the hopefully rare event that the application modifies its buffer, the kernel makes
an (expensive) physical copy. However, that should be uncommon. Clearly, we are using lazy
evaluation (P2b) to minimize overhead in the expected case (P11). Finally, in Figure 5.4 the
checksum can be piggybacked either with the copy to or from adaptor memory or by using
CRC hardware on the adaptor.

Unfortunately, many operating systems, such as UNIX2 and Windows, do not offer copy-
on-write. However, much of the same effect can be obtained by understanding the basis behind
the copy-on-write service, which is the use of virtual memory.

IMPLEMENTING COPY-ON-WRITE

Recall from Chapter 2 that most modern computers use virtual memory. Recall that the pro-
grammer works with an abstraction of infinite memory that is a linear array into which she (or
more accurately her compiler) assigns variable locations, so, say, location X would be location
1010 in this imaginary (or virtual) array. These virtual addresses are then mapped into physical
memory (which can reside on disk or in main memory) using a page table (Chapter 2).

For any virtual address, the high-order bits (e.g., 20 bits) form the page number, and the
low-order bits (e.g., 12 bits) form the location within a page. Main memory is also divided into
physical pages such that (say) every group of 212 memory words is a physical page. Recall
that a virtual address is mapped to a physical address by mapping the corresponding virtual
page to a physical page number by looking up a page table indexed by the virtual page number.
If the desired page is not memory resident, the hardware generates an exception that causes the

2System V UNIX does implement copy-on-write when a process is forked. The pages shared between the child
and the parent process are shared with the copy-on-write bit set.

114 C H A P T E R 5 Copying Data

Application

↓write()

TCP/IPKernel

CPU

Server plus
socket buffer

MEMORY

NETWORK ADAPTOR

MEMORY BUS

I/O BUS

Network

Single copy
(piggyback checksum in software

or use checksum hardware)

Copy to a spare page
only if application writes

F I G U R E 5.4 Using copy-on-write.

operating system to read the page from disk into main memory. Recall also that the overhead of
reading page tables from memory can be avoided in the common case using a TLB (translation
look-aside buffer), which is a processor resident cache.

Looking under the hood, virtual memory is the basis for the copy-on-write scheme. Sup-
pose virtual page X is pointing to a physical memory–resident page P. Suppose that the
operating system wishes to replicate the contents of X onto a new virtual page, Y . The hard
way to do this would be to allocate a new physical page, P′, to copy the contents of P to P′,
and then to point Y to P′ in the page table. The simpler way, embodied in copy-on-write, is
to map the new virtual page, Y , back to the old physical page, P, by changing a page table
entry. Since most modern operating systems use large page sizes, changing a page table entry
is more efficient than copying from one physical page to another.

In addition, the kernel also sets a COW protection bit as part of the page table entry for the
original virtual page, X . If the application tries to write to page X, the hardware will access the
page table for X , notice the bit set, and generate an exception that calls the operating system.
At this point the operating system will copy the physical page, P, to another location, P′, and
then make X point to P′, after clearing the COW bit. Y continues to point to the old physical
page, P. While this is every bit as expensive as physical page copying, the point is that this
expense is incurred only in the (hopefully) rare case when an application writes to a COW page.

The explanation of how COW works should present the following opportunity. While
operating systems such as UNIX and Windows do not offer COW, they still offer virtual
memory. Virtual memory (VM) presents a level of indirection that can be exploited by changing
page table entries to finesse physical copying. Thus much of the core idea behind Figure 5.4
can be reused in most operating systems. All that remains is to find an alternate way to protect
against application Writes in place of COW protection.

5.2 Reducing Copying via Local Restructuring 115

Packet
data

Process 1
Page Table

Process 2
Page Table

VP 8VP 10

Write

F I G U R E 5.5 Basic operations involved in making a copy of a page using virtual memory.

5.2.3 Fbufs: Optimizing Page Remapping
Even ignoring the aspect of protecting against application writes, Figure 5.5 implies that a
large buffer can be transferred from application to kernel (or vice versa) with a Write to the
page table. This simplistic view of page remapping is somewhat naive and misleading.

Figure 5.5 shows a concrete example of page remapping. Suppose the operating system
wishes to make a fast copy of data of Process 1 (say, the application) in Virtual Page (VP) 10
to some virtual page (e.g., VP 8) in the page table of Process 23’s (say, the kernel). Naively,
this seems to require only changing the page table entry corresponding to Virtual Page 8 in
Process 2 to point to the packet data to which that Virtual Page table entry 10 in Process 1
already points. However, there are several additional pieces of overhead that are glossed over
by this simple description.

• Multiple-level page tables: Most modern systems use multiple levels of page table
mappings because it takes too much page table memory to map from, say, 20 bits of a
virtual page. Thus the real mapping may require changing mappings in at least a first- and
a second-level page table. For portability, there are also both machine-independent and
machine-dependent tables. Thus there are several Writes involved, not just one.

• Acquiring locks and modifying page table entries: Page tables are shared resources
and thus must be protected using locks that must be acquired and released.

• Flushing translation look-aside buffers (TLBs): As we said earlier, to save translation time,
commonly used page table mappings are cached in the TLB. When a new virtual page
location for VP 8 is written, any TLB entries for VP 8 must be found and flushed (i.e.,
removed) or corrected.

• Allocating VM in destination domain: While we have assumed that virtual memory
location 8 was the location for the destination page, some computation must be done to
find a free page table entry in the destination process before the copy can take place.

• Locking the corresponding pages: Physical pages can be swapped out to disk to make
room for other virtual pages currently on disk. To prevent pages from being swapped out,
pages have to be locked, which is additional overhead.

All these overheads are exacerbated in multiprocessor systems. The net result is that while
the page table mapping can seem very good (the mapping seems to take a constant time,
independent of the size of the packet data), the constant factors (see Q4 in the discussion of
caveats) are actually a big overhead. This was experimentally demonstrated by experiments

116 C H A P T E R 5 Copying Data

performed by Druschel and Peterson [DP93] in the early 1990s. In the decade that followed,
if anything, page mapping overheads have only increased.

Druschel and Peterson, however, did not stop with the experiments but invented an oper-
ating system facility called fbufs (short for “fast buffers”), which actually removes most or
all of the four sources of page remapping overhead. Their idea can be described as follows in
terms of the principles used in this book.

FBUFS

The main idea in fbufs is to realize that if an application is sending a lot of data packets to
the network through the kernel, then a buffer will probably be reused multiple times, and
thus the operating system can precompute (P2a) all the page mapping information for the
buffer ahead of time and then avoid much of the page mapping overhead during the actual
data transfer. Alternatively, the mappings can be computed lazily (P2b) when the data transfer
is first started (causing high overhead for the first few received packets) but can be cached
(P11a) for the subsequent packets. In this version, page remapping overheads are eliminated
in the common case.

The simplest way to do this would be to use what is called shared memory. Map a number of
pages P1, . . . , Pn into the virtual memory tables of the kernel as well as all sending applications
A1, . . . , Ak . However, this is a bad idea, because we now can have (say) application A1 reading
the packets sent by application A2.3 This would violate security and fault-isolation goals.

A more secure notion would be to reserve (or lazily establish) mapped shared pages for
each application-to-kernel transfer, and vice versa. For example, there could be one set of
buffers (pages) for FTP, one set for HTTP, and so on. More generally, some operating systems
define multiple security subsystems besides kernel and application. Thus the fbuf designers call
a path a sequence of security domains. For our simple examples described earlier, it suffices to
think of a path as either kernel, application or application, kernel (e.g., FTP, kernel or kernel,
HTTP). We will see why paths are unidirectional — that is, why each application needs two
paths in both directions — in a minute.

Figure 5.6 shows a more complex example of paths, where the Ethernet software is imple-
mented as a kernel-level driver, the TCP/IP stack is implemented as a user-level security
domain, and, finally, the Web application is implemented at the application layer. Each security
domain has its own set of page tables. The receiving paths are Ethernet, TCP/IP, Web and
Ethernet, OSI, FTP.

To implement the fbuf idea the operating system could take some number of physical
pages P1, . . . , Pk and premap them onto the page tables of the Ethernet driver, the TCP/IP
code, and the Web application. The same operation could be performed with a different set
of physical pages for Ethernet, OSI, and FTP. Thus we are using Principle 2a to precompute
mappings. Reserving physical pages for each path could be wasteful, because traffic is bursty;
instead, a better idea is to lazily establish (P2b) such mappings when a path becomes busy.

Lazy establishment avoids the overheads of updating multiple levels of page tables, acquir-
ing locks, flushing TLBs, and allocating destination virtual memory after the first few data
packets arrive and are sent. Instead, all this work is done once, when the transfer first starts.
To make fbufs work, it is crucial that when a packet arrives, the lowest-level driver (or even the

3It is worth knowing that the virtual memory hardware normally enforces this security constraint by making
sure that any accesses by A2 can access only physical pages mapped into the page tables of A2.

5.2 Reducing Copying via Local Restructuring 117

Ethernet

IP

Web

OSI?

FTP

(Domain 0)

(Domain 1)

(Domain 2)

Path 1 Path 2

Path 1 Cached buffers
Path 2 Cached buffers

F I G U R E 5.6 Premapping or lazily establishing buffer pages into the page tables of each domain in
a path avoids the expense of page remapping in the real-time path, after the initial setup.

adaptor itself) be able to quickly figure out what the complete path the packet will be mapped
to when receiving a packet from the network. This function, called early demultiplexing, is
described in detail in Chapter 8. Intuitively, in Figure 5.6 this is done by examining all the
packet headers to determine (for instance) that a packet with an Ethernet, IP, and HTTP header
belongs to Path 1.

The driver (or the adaptor) will then have a list of free buffers for that path, which will
be used by the adaptor to write the packet to; when the adaptor is done it will pass the buffer
descriptor to the next application in the path. Note that a buffer descriptor is only a pointer to
a shared page, not the page itself. When the last application in the path finishes with the page,
it passes it back to the first application in the path, where it again becomes a free buffer, and
so on.

At this point, the reader may wonder why paths are unidirectional. Paths are made unidi-
rectional because the first process on each path is assumed to be a writer and the remaining
processes are assumed to be readers. This can be enforced during the premapping by setting
a write-allowed bit for the first application in its page table entry, and a read-only bit in the
page table entries of all the other applications. Clearly, this is asymmetric in both directions
and requires unidirectional paths. But this does ensure some level of protection.

This is shown in Figure 5.7 with just two domains in a path. Note that the writer writes
packets into buffers described by a queue of free fbufs and then puts the written descriptor on to
a queue of written fbufs that are read by the next application (only one is shown in Figure 5.7).

So far, it is possible that premapped page 8 in the first application on a path is mapped to
page 10 in the second application. This is painful because when the second application reads
a descriptor for page 8, it must somehow know that it corresponds to its own virtual page 10.
Instead, the designers used the principle of avoiding unnecessary generality (P7) and insisted
that the fbuf get mapped to the same virtual page in all applications on the path. This can be
done by reserving some number of initial pages in the virtual memory of all processes to be
fbuf pages.

At this point, we may feel that we are finished, but there are still a few thorny problems.
To achieve protection, we allowed only a single writer and had multiple readers. However,
that means that pages are immutable; only the writer can touch them. But what about adding
headers when one goes down the stack. The solution to this problem is shown in Figure 5.8,
where a packet is really an aggregate data structure with pointers to individual fbufs so that
headers can be added by adding an ordinary buffer or an fbuf to the aggregate.

118 C H A P T E R 5 Copying Data

Packet
data

Process 1
Page Table

Process 2
Page Table

VP 10
(preallocated)

VP 10

Written
once

initiallyW R

Writer Reader

Written fbufs

Free fbufs

F I G U R E 5.7 The single writer optimization.

Strip headerPrepend header

AGGREGATE OBJECT

F I G U R E 5.8 Using aggregate objects to allow adding layers to add headers while allowing only a
single writer.

This is not as big a deal as it sounds because the commonly used UNIX mbufs (see
Chapter 9) are also composites of buffers strung together.4

So far, the fbuf scheme has used the underlying VM mapping ideas in Figure 5.4 except
that it has made them more efficient by amortizing the mapping costs over (hopefully) a large
number of packet transfers. Page table updates are removed in the common case. This can be
done in ordinary operating systems. In fact, after the fbufs paper, Thadani and Khalidi [TK95]
extended the idea and implemented it in Sun’s Solaris operating system. But this begs the
question: How are standard copy semantics preserved? What if the application does a Write?
A standard operating system such as UNIX cannot depend on copy-on-write as in Figure 5.4.

The ultimate answer in fbufs is that standard copy semantics are not preserved. The API
is changed. Application writers must be careful not to write to an fbuf when it has been handed
to the kernel until the fbuf is returned by the kernel in a free list. To protect against buggy or
malicious code, the kernel can briefly toggle the write-enable bit when an fbuf is transferred

4To be precise, UNIX mbufs are strung together in a linear topology, while buffer aggregates form a more
general tree topology, but the performance costs due to chaining and indexing are similar.

5.2 Reducing Copying via Local Restructuring 119

from the application to the kernel; the bit is set again when the fbuf is given back. If the
application does a Write when it does not have write permission, an exception is generated
and the application crashes, leaving other processes unaffected.

Since the toggling of the write-enable bits requires some of the overhead that fbufs worked
hard to avoid, the fbuf facility also allows another form of fbufs, called volatile. Observe that
if the writer is a trusted entity (such as the kernel), then there is no point enforcing write
protection. If the kernel has a bug that causes it to make unexpected writes, the whole system
will crash anyway.

Changing the API in this way sounds dramatic. Does this mean that the huge amount
of existing UNIX application software (which uses the networking stack) must be rewritten?
Since this is infeasible, there are several ways out. First, the existing API can be augmented
with new system calls. For example, the Solaris extensions in Thadani and Khalidi [TK95] add
a uf_write() call in addition to the standard write() call. Applications interested in performance
can be rewritten using these new calls.

Second, the extensions can be used in implementing common I/O substrates (such as the
UNIX stdio library) that are a part of several applications. Applications that are linked to this
library do not need to be changed and yet can potentially benefit in performance.

Eventually, the pragmatic consideration is not whether the API changes but how hard it is
to modify applications to benefit from the API changes. The experiences described in Thadani
and Khalidi [TK95] and Pai et al. [PDZ99b] for a number of applications indicate that the
changes required in an application to migrate to an fbuf-like API are small and localized.

5.2.4 Transparently Emulating Copy Semantics
One reaction to the new fbuf API is simply to modify applications to gain performance. It is
worth pointing out that while the changes may be simple and localized, the mental model that
a programmer has of a buffer changes in a fairly drastic way. In the standard UNIX API, the
application assigns buffer addresses; in fbufs, the buffers are assigned by the kernel from the
fbuf address space. In the standard UNIX API, the programmer can design the buffer layout
anyway he pleases, including the use of contiguous buffers. In fbufs, data received from
the network can be arbitrarily scattered into pieces linked together by a buffer aggregate, and
the application programmer must deal with this new buffer model chosen by the kernel.

Thus a reasonable question is whether many of the benefits of fbufs can be realized
without modifying the UNIX API. Theoretically, application software will continue to run, and
one might get performance without recoding applications.

In a series of papers, Brustoloni and Steenkiste (e.g., Ref. BS96) showed that there
is a clever mechanism, which they call TCOW (for transient copy-on-write), that makes this
possible. While preserving theAPI theoretically allows unmodified applications to enjoy better
performance, there is no experimental confirmation of this possibility. Thus in practice, it is
likely that applications have to be modified (perhaps in more intuitive ways) to take advantage
of the underlying kernel implementation changes. Nevertheless, the idea is simple and clever
and worth pointing out.

Recall that the standard API requires allowing an application to write or deallocate a
buffer passed to the kernel at any time. The fbuf design changes the API by making it illegal
for an application to do this. Instead, to preserve the API while doing only virtual memory
mappings, the operating system must deal with these two potential threats, application writes
and application deallocates, during the period the buffer is being used by the kernel to send or

120 C H A P T E R 5 Copying Data

retransmit a packet. In the Genie system [BS96], VM mapping is used, as in fbufs, but these
two threats are dealt with as follows.

Countering Write Threats by Modifying the VM Fault Manager: First, when an application
does a Write, the buffer is marked specially, as Read Only. Thus if the application does a Write,
the VM fault manager is invoked. Normally, this should cause an exception. But, of course,
if the OS is preserving copy semantics, this should not be an error. Thus Genie modifies the
exception handler as follows. First, for each such page/buffer, Genie keeps track of whether
there are outstanding sends (sends to the network) using a simple counter that is incremented
when the Send starts and decremented when the Send completes. Second, the fault handler is
modified to make a separate copy of the page for the application (which incorporates the new
Write) if there is an outstanding Send. Of course, this makes performance suffer, but it does
preserve the standard copy semantics of APIs such as UNIX. This technique, called transient
copy-on-write protection, is invoked only when needed — when the buffer is also being read
out by the network subsystem.

Countering Deallocate Threats by Modifying the Pageout Daemon: In a standard virtual
memory system, there is a process that is responsible for putting deallocated pages into a free
list from which pages may be written to disk. This pageout daemon can be modified not to
deallocate a page when the page is being used to send or receive packets.

Interestingly these two ideas are both instances of Principle P3c, shifting computation in
space. The work of checking for unexpected writes is moved to the VM fault handler, and the
work of dealing with deallocates is moved to the page deallocation routine.

These two ideas are sufficient for sending a packet but not for receiving. On receiving,
Genie needs to depend, like fbufs, on hardware support5 in the adaptor to split a packet’s
headers into one buffer and the remaining data into a page-size buffer that can be swapped to
the application’s buffer.

To do so without a physical copy, the kernel’s data buffer must start at the same offset within
the page as the application’s receive buffer. For a large buffer, the first and last pages (which
can be partially filled) are probably most efficiently handled by a physical copy; however,
the intermediate pages that are full can simply be swapped from the kernel to the application
by the right page table mappings. There is a cute optimization called reverse copyout that is
explored in the exercises.

Given the complexity that underlies page table remapping, it is unclear how page remap-
ping is done efficiently in Genie. One possibility is that Genie uses the same fbuf idea of
caching VM mappings on a path basis6 to avoid the overhead of TLB flushing, dealing with
multiple page tables, and so on.

When all is said and done, can the TCOW idea benefit legacy applications? There is no
experimental confirmation of this in Brustaloni and Steenkiste [BS96] and Brustoloni [Bru99]
because the experiments use a simple copy benchmark and not an existing application such as

5Hardware support for parsing in the adaptor is the simplest alternative proposed by the Genie system; there are
a number of more baroque mechanisms proposed as part of the Genie system to get around this hardware requirement,
but they seem too complicated and full of side effects to be useful in practice.

6The Genie experiments were done on an ATM network, where the virtual circuit identifier can provide a quick
mapping to the path.

5.3 Avoiding Copying Using Remote DMA 121

a Web server. Fundamentally, it seems hard for an existing legacy application to benefit from
the new kernel implementation of the existing API.

Consider an application running over TCP that supplies a buffer to TCP. Since there is no
feedback to the application (unlike fbufs), the application does not know when it can safely
reuse the buffer. If the application overwrites the buffer too early while TCPis holding the buffer
for retransmission, then safety is not compromised, but performance is compromised because
of the physical copy involved in copy-on-write. It appears improbable that an unmodified
application could choose the times to modify buffers in accordance with TCP sending times
and would have aligned its buffers well enough to allow page swapping to work well.

Thus applications do need to be modified to take full advantage of the Genie system. Even
if they do, there is still the hard problem of knowing when to reuse a buffer, because of the
lack of feedback. The application could monitor TCOW faults and accordingly modify its
reuse pattern. But if applications need to be modified in subtle ways to take full advantage of
the new kernel, it is unclear what benefit was gained from preserving the API. Nevertheless,
the ideas in Genie are fun to study, and they fall nicely within the general area of network
algorithmics.

5.3 AVOIDING COPYING USING REMOTE DMA

While fbufs provide a reasonable solution to the problem of avoiding redundant application-to-
kernel copies, there is a more direct solution that also removes an enormous amount of control
overhead. Normally, if a 1-MB file is transferred between two workstations on an Ethernet,
the file is chopped up into 1500-byte pieces. The CPU is involved in processing each of these
1500-byte pieces to do TCP processing and copying each packet (possibly via a zero-copy
interface such as fbufs) to application memory.

On the other hand, recall from Chapter 2 how a CPU orchestrates a direct memory access
(DMA) operation between, say, disk and memory for, say, a 1-MB transfer. The CPU sets
up the DMA, tells the disk the range of addresses into which the data must be written, and
goes about its business. One megabyte of data later, the disk interrupts the CPU to essentially
say, “Master, your job is done.” Note that the CPU does not micromanage every piece of this
transfer, unlike in the earlier case of the corresponding network transfer.

This analogy suggests the vision of doing DMA across the network, or RDMA as it is
sometimes called. In fact, it is hardly surprising that this networking feature was first proposed
in VAX Clusters by a group of computer architects [KLS86]. It is said that breakthroughs often
come via outsiders to an area. There is an apocryphal story about how one of the inventors of
VAX Clusters came to the networking people at DEC and asked to learn about networking.
They laughed at him and gave him a copy of the standard undergraduate text at that time.
He came back 6 months later with the RDMA design.

The intent is that data should be transferred between two memories in two computers
across the network without per-packet mediation by the two CPUs. Instead, the two adaptors
conspire to read from one memory and to write to the other: DMAacross the network. To realize
this vision two problems must be solved: (1) how the receiving adaptor knows where to place
the data — it cannot ask the host for help without defeating the intent; (2) how security is
maintained. The possibility of rogue packets coming over the network and overwriting key
pieces of memory should make one pause.

122 C H A P T E R 5 Copying Data

This section starts by describing this very early idea and then moves on to describe modern
incarnations of this idea in the Fiber Channel and RDMA [Cona] proposals.

5.3.1 Avoiding Copying in a Cluster
In the last few years, clusters of workstations have become accepted as a cheaper and more
effective substitute for large computers. Thus many Web servers are really server farms. While
this appears to be recent technology, 20 years ago Digital Equipment Corporation (DEC)
introduced a successful commercial product called VAX Clusters to provide a platform for
scalable computing for, say, database applications. The heart of the system was a 140-Mbit
network called the computer interconnect, or CI, which used an Ethernet-style protocol. To this
interconnect, customers could connect a number of VAX computers and network-attached
disks. The issue of efficient copying was motivated by the need to transfer large amounts of
data between the remote disk and the memory of a VAX. RDMA was born from this need.

RDMA requires that packet data containing part of a large file go into its final destination
when it gets to the destination adaptor. This is trickier than it sounds. In traditional networking,
when the packet arrives the processor is involved in at least examining the packet and deciding
where the packet is to go. Even if the CPU looks at headers, it can only tell based on the
destination application which queue of receive buffers to use.

Suppose the receiving application queues Pages 1, 2, and 3 to the receiving adaptor for
Application 1. Suppose the first packet arrives and is sent to Page 1, the third packet arrives
out of order and is put in Page 2 instead of Page 3. Assume that Pages 1, 2, and 3 should store
the receiving file. The CPU can always remap pages at the end, but remapping all the pages at
the end of the transfer for a large file can be painful. Out-of-order arrival can always happen,
even on a FIFO link, because of packet loss.

Instead, the idea in VAX Clusters is first to have the destination application lock a number
of physical pages (such as Pages 11 and 16 in Figure 5.9) that comprise the destination memory
for the file transfer. The logical view presented, however, is a buffer of consecutive logical
pages (e.g., Pages 1 and 2 in Figure 5.9) called, say, B. This buffer name B is passed to the
sending application.

The source now passes (P10, pass information in protocol headers) the buffer name and
offset with each packet it sends. Thus when sending Packet 3 out of order in our last example,

DESTINATION
ADAPTOR

Buffer name B

B, 1

B, 2 B1

B2

page 11

page 16

F I G U R E 5.9 Doing DMA across the network.

5.3 Avoiding Copying Using Remote DMA 123

Packet 3 will contain B and Page 3 and so can get stored in Page 3 of the buffer even though
it arrives before Packet 2. Thus after all packets arrive there is no need for any further page
remapping. This is an example of P10: passing information, such as a buffer name, in message
headers.

To realize the ideal of not bothering the processor on every packet arrival, there are several
additional requirements. First, the adaptor must implement the transport protocol (and do all
the checking for duplicates, etc.), as in TCP processing. Second, the adaptor must be able to
determine where the data begins and where the headers stop so as only to copy the data into
the destination buffer.

Finally, it is somewhat cavalier to allow any packet carrying a buffer ID from the network
to be written directly into memory. This could be a security hole. To mitigate against this, the
buffer IDs contain a random string that is hard to guess. More importantly, VAX Clusters are
used only between trusted hosts in a cluster. It is more difficult to imagine scaling this approach
to Internet data transfers.

5.3.2 Modern-Day Incarnations of RDMA
VAX Clusters introduced a very early storage area network. Storage area networks (SANs)
are back-end networks that connect many computers to shared storage, in terms of network-
attached disks. There are several recent successors to VAX Clusters that provide SAN
technology. These range from the venerable Fiber Channel [Ben95] technology to modern
upstarts such as InfiniBand [Assa] and iSCSI [SSMe01].

FIBER CHANNEL

In 1988, the American National Standards Institute (ANSI) Task Group X3T11 began work
on a standard called Fiber Channel [Ben95]. One of the goals of Fiber Channel was to take the
standard SCSI (small computer system interface) between a workstation and a local disk and
extend it over larger distances. Thus in many Fiber Channel installations, SCSI is still used as
the protocol that runs over Fiber Channel.

Fiber Channel goes further than VAX Clusters in the underlying network, using modern
network technology such as point-to-point fiber links connected with switches. This allows
speeds of up to 1 Gbps and allows a larger distance span than in the Vax Cluster network.
Switches can even be remotely connected, allowing a trading firm to have backup storage of
all trades at a remote site. The use of switches requires attention to such issues as flow control,
which is done very carefully to avoid dropping packets where possible.

Finally, Fiber Channel makes slightly more concession to security than VAX Clusters.
In VAX Clusters, any device with the right name can overwrite the memory of any other
device. Fiber Channel allows the network to be virtualized into zones. Nodes in a zone cannot
access the memory of nodes in other zones. Some recent products go even further and propose
techniques based on authentication.

However, other than these differences in the underlying technology, the underlying ideas
are the same. RDMA via named buffers is still a key enabling idea.

INFINIBAND

Infiniband starts with the observation that the internal I/O bus used within many workstations
and PCs, the PCI bus, is showing its age and needs replacement. With a maximum bandwidth
of 533 MB/sec, the PCI bus is being overwhelmed by modern high-speed peripherals, such

124 C H A P T E R 5 Copying Data

as Gigabit Ethernet interface cards. While there are some temporary alternatives, such as the
PCI-X bus, the internal computer interconnect needs to scale in the same way as the external
Internet has scaled from, say, 10-Mbit Ethernet to Gigabit Ethernet.

Also, observe that there are three separate networking technologies within a computer:
the network interface (e.g., Ethernet), the disk interface (e.g., SCSI over Fiber Channel), and
the PCI bus. Occam’s razor suggests substituting these three with one network technology.
Accordingly, Compaq, Dell, HP, IBM, and Sun banded together to form the Infiniband Trade
Association.

The Infiniband specifications use many of the ideas in Fiber Channel’s underlying network
technology. The interconnect is also based on switches and point-to-point links. Infiniband has
a few additional twists. It uses the proposal for 128-bit IP addresses in the next-generation
Internet as a basis for addressing. It allows individual physical links to be virtualized into
separate virtual links called lanes. It has features for quality of service and even multicast.
Once again, RDMA is the key technology to avoid copies.

ISCSI

At the time of writing, Fiber Channel parts appear to be priced higher than equivalent-speed
Gigabit Ethernet parts. Given that IP has invaded various other networking spaces, such as
voice, TV, and radio, a natural consequence is to invade the storage space. This, the argument
goes, should drive down prices (while also opening up new markets for network vendors).
Further, Fiber Channel and Infiniband are being extended to connect remote data centers over
the Internet. This involves using transport protocols that are not necessarily compatible with
TCP in terms of reacting to congestion. Why not just adapt TCP for this purpose instead of
trying to modify these other protocols to be TCP-friendly?

For the purposes of this chapter, the most interesting thing about iSCSI is the way it must
emulate RDMA over standard IP protocols. In particular, recall that in all RDMA implemen-
tations, the host adaptor implements the transport protocol in hardware. In the Internet world,
the transport protocol is TCP. Thus adaptors must implement TCP in hardware. This is not too
hard, and chips that perform TCP offload are becoming widely available.

The harder parts are as follows. First, as we saw in Case Study 1 of Chapter 2, TCP is
a streaming protocol. The application writes bytes to a queue, and these bytes are arbitrarily
segmented into packets. The RDMA idea, on the other hand, is based on messages, each of
which has a named buffer field. Second, RDMA over TCP requires a header to hold named
buffers.

The RDMA [Cona] proposal solves both these problems by logically layering three pro-
tocols over TCP. The first protocol, MPA, adds a header that defines message boundaries in
the byte stream. The second and third protocols implement the RDMA header fields but are
separated as follows. Notice that when a packet carries data, all that is needed is a buffer name
and offset. Thus this header is abstracted out into a so-called DDA (for direct data access)
header together with a command verb (such as READ or WRITE).

The RDMA protocol that is layered over DDA adds a header with a few more fields. For
example, for an RDMA remote READ, the initial request must specify the remote buffer name
(to be read) and the local name (to be written to). One of these two buffer names can be placed
in the DDA header, but the other must be placed in the RDMA header. Thus, except for control
messages such as initiating a READ, all data carries only a DDA header and not an RDMA
header.

5.4 Broadening to File Systems 125

During the evolution from VAX Clusters to the RDMA proposal, one interesting general-
ization was to replace a named buffer with an anonymous buffer. In this case, the DDA header
contains a queue name, and the packet is placed in a buffer corresponding to the buffer at the
head of the free queue at the receiver.

5.4 BROADENING TO FILE SYSTEMS

So far this chapter has concentrated only on avoiding redundant copies that occur while sending
data between an application (such as a Web server) and the network. However, Figure 5.2
shows that even after removing all redundant overhead due to network copying, there are still
redundant copies involving the file system. Thus in this section, we will cast our net more
widely. We leverage our intellectual investment by extending the copy-avoidance techniques
discussed so far to the file system.

Recall from Figure 5.2 that to process a request for File X, the server may have to read X
from disk (Copy 1) into a kernel buffer (representing the file cache) and then make a copy from
the file cache to the application buffer (Copy 2). Copy 1 goes out of the picture if the file is
already in cache, a reasonable assumption for popular files in a server with sufficient memory.
The main goal is to remove Copy 2. Note that in a Web server, unnecessarily doubling the
number of copies not only halves the effective bus bandwidth but potentially halves the size of
the server cache. This in turn reduces server performance by causing a larger miss rate, which
implies that a larger fraction of documents is served at disk speeds and not bus speeds.

This section surveys three techniques for removing the redundant file system copy
(Copy 2). Section 5.4.1 describes a technique called shared memory mapping that can reduce
Copy 2 but is not well integrated with the network subsystem. Section 5.4.2 describes IO-Lite,
essentially a generalization of fbufs to include the file system. Finally, Section 5.4.3 describes
a technique called I/O splicing that is used by many commercial Web servers.

5.4.1 Shared Memory
Modern UNIX variants [Ste98] provide a convenient system call known as mmap() to allow
an application such as a server to map a file into its virtual memory address space. Other
operating systems provide equivalent functions. Conceptually, when a file is mapped into an
application’s address space, it is as if the application has cached a copy of the file in its memory.
This seems redundant because the file system also maintains cached files. However, using the
magic of virtual memory (P4, leverage off system components), the cached file is really only
a set of mappings, so other applications and the file server cache can gain common access to
one set of physical pages for the file.

The Flash Web server [PDZ99a] avoids Copy 1 and Copy 2 in Figure 5.2 by having the
server application map frequently used files into memory. Given that there are limits on the
number of physical pages that can be allocated to file pages and limits on page table mappings,
the Flash Web server has to treat these mapped files as a cache. Instead of caching whole files,
it caches segments of files and uses an LRU (least recently used) policy to unmap files that
have not been used for a while.

Note that such cache maintenance functions are duplicated by the file system cache (which
has a more precise view of resources such as free pages because it is kernel resident). However,
this can be looked on as a necessary evil to avoid Copies 1 and 2 in Figure 5.2. While Flash uses

126 C H A P T E R 5 Copying Data

mmap() to avoid file system copying, it runs over the UNIX API. Hence, Flash is constrained
to make an extra copy in the network subsystem (Copy 3 in Figure 5.2). Just when progress is
being made to eliminate Copy 2, pesky Copy 3 reappears again!

Copy 3 can be avoided by combining emulated copying using TCOW [BS96] with mmap().
However, this has some of the disadvantages of TCOW mentioned earlier. It is also not a
complete solution that generalizes to avoid copying for interaction with a CGI process via a
UNIX pipe.

5.4.2 IO-Lite: A Unified View of Buffering
While combining emulated copy with mmap() does away with all redundant copying, it still
has some missing optimizations. First, it does nothing to avoid the copying between any CGI
application generating dynamic content and the Web server. Such an application is typically
implemented as a separate process7 that sends dynamic content to the server process via a UNIX
pipe. But pipes and other similar interprocess communication typically involve copying the
content between two address spaces.

Second, notice that none of our schemes so far has done anything about the TCP checksum,
an expensive operation. But if the same file keeps hitting in the cache, other than the first
response containing the HTTP header, all subsequent packets that return the file contents stay
the same for every request. Why can’t the TCP checksums be cached? However, that requires
a cache that can somehow map from packet contents to checksums. This is inefficient in a
conventional buffering scheme.

This section describes a buffering scheme called IO-Lite that generalizes the fbuf ideas
to include the file system. IO-Lite not only eliminates all redundant copies in Figure 5.2,
but also eliminates redundant copying between the CGI process and the server. It also has a
specialized buffer-numbering scheme that lets a subsystem (such as TCP) efficiently realize
that it is resending an earlier packet.

IO-Lite is the intellectual descendant of fbufs, though integration with the file system
adds significantly more complexity. It is first worth noting that fbufs cannot be combined with
mmap, unlike TCOW, which is combined with mmap in Brustoloni [Bru99]. This is because
in mmap the application picks the address and format of an application buffer, while in fbufs
the kernel picks the address and format of a fast buffer. Thus if the application has mapped a
file using a buffer in the application virtual address space, the buffer cannot be sent using an
fbuf (kernel address space) without a physical copy.

Since fbufs cannot be combined with mmap, IO-Lite generalizes fbufs to include the
file system, making mmap unnecessary. Also, IO-Lite is implemented in a a general-purpose
operating system (UNIX), as opposed to fbufs. But setting aside these two differences, IO-Lite
borrows all the main ideas from fbufs: the notion of read-only sharing via immutable buffers
(called slices in IO lite), the use of composite buffers (called buffer aggregates), and the notion
of a lazily created cache of buffers for a path (called an I/O stream in IO-Lite).

7Because of the overhead of copying data between a CGI process generating dynamic content and the server
process, some vendors have proposed merging the CGI code within the server process. However, that makes the
system more brittle because faulty third-party content-generation software can crash the server. Better solutions, such
as Windows ASP, propose incorporating safe languages into Web pages such that the server executes the code and
puts the result in the page it serves. Thus, despite the references to CGI processes in this chapter, CGI may well be
obsolete.

5.4 Broadening to File Systems 127

Web server application

↓write() read()↓

TCP/IP File systemKernel

CPU

Server buffer

Socket buffer

File cache
buffer

MEMORY

NETWORK ADAPTOR

MEMORY BUS

I/O BUS

DISK

Network

Copy 1

Copy 2

IO-Lite buffer

Cached response header

Cached checksum

F I G U R E 5.10 IO-Lite removes all the redundant copying in Figure 5.2 by effectively passing around
pointers (via VM mappings) to a single IO-Lite buffer. Assuming the file, the TCP checksum, and the
HTTP response are all cached, the Web server only has to transmit these cached values in a single copy
to the network interface.

Despite the core similarities, IO-Lite requires solving difficult problems to integrate with
the file system. First, IO-Lite must deal with complex sharing patterns, where several applica-
tions may have buffers pointing to the IO-Lite buffer together with the TCP code and the file
server. Second, an IO-Lite page can be both a virtual memory page (backed up by the paging
backup file on disk) and at the same time a file page (backed up by the actual disk copy of
the file). Thus IO-Lite has to implement a complex replacement policy that integrates both
the standard page replacement rules together with file cache replacement policies [PDZ99b].
Third, the goal of running over UNIX requires careful thought to find a clean way to integrate
IO-Lite without major surgery throughout UNIX.

Figure 5.10 shows the steps in responding to the same GET request pictured in Figure 5.2.
When the file is first read from disk into the file system cache, the file pages are stored as
IO-Lite buffers. When the application makes a call to read the file, no physical copy is made,
but a buffer aggregate is created with a pointer to the IO-Lite buffer. Next, when the application
sends the file to TCP for transmission, the network system gets a pointer to the same IO-Lite
pages. To prevent errors, the IO-Lite system keeps a reference count for each buffer and
reallocates a buffer only when all users are done.

Figure 5.10 also shows two more optimizations. The application keeps a cache of HTTP
responses for common files and can often simply append the standard response with minimal
modifications. Second, every buffer is given a unique number (P12, add redundant state) by
IO-Lite, and the TCP module keeps a cache of checksums indexed by buffer number. Thus
when a file is transmitted multiple times, the TCP module can avoid calculating the checksum

128 C H A P T E R 5 Copying Data

after the first time. Notice that these changes eliminate all the redundancy in Figure 5.2, which
speeds up the processing of a response.

IO-Lite can also be used to implement a modified pipe program that eliminates copying.
When this IPC mechanism is used between the CGI process and the server process, all copying
is eliminated without compromising the safety and fault isolation provided by implementing
the two programs as separate processes. IO-Lite can also allow applications to customize their
buffer-caching strategy, allowing fancier caching strategies for Web servers based on both size
and access frequency.

It is important to note that IO-Lite manages these performance feats without com-
pletely eliminating the UNIX kernel and without closely tying the application with the
kernel. The Cheetah Web server [EKO95] built over the Exokernel operating system takes
a more extreme position, allowing each application (including the Web server) to com-
pletely customize its network and file system. The Exokernel mechanisms allow such extreme
customization from each application without compromising safety. By dint of these customiza-
tions, the Cheetah Web server can eliminate all the copies in Figure 5.2 and also eliminate the
TCP checksum calculation using a cache.

While Cheetah does allow some further tricks (see the Exercises), the enormous soft-
ware engineering challenge of designing and maintaining custom kernels for each application
makes approaches such as IO-Lite more attractive. IO-Lite comes close to the perfor-
mance of customized kernels like Cheetah with a much smaller set of software engineering
challenges.

5.4.3 Avoiding File System Copies via I/O Splicing
In the commercial world, Web servers are measured by commercial tests such as the SPECweb
tests [Conb] for Web servers and the Web polygraph tests [Assb] for Web proxies. In the proxy
space, there is an annual cache-off, in which all devices are measured together to calculate
the highest cache hit rate, normalized to the price of the device. The SPECweb benchmarks
use a different system, in which manufacturers submit their own experimental results to the
benchmark system, though these results are audited. In the Web polygraph tests at the time of
writing, a Web server technology based on I/O-Lite ideas was among the leaders.

However, in the SPECweb benchmarks, a number of other Web servers also show impres-
sive performance. Part of the reason for this is just faster (and more expensive) hardware.
However, there are two simple ideas that can avoid the need for complete model shifts as is
the case in IO-Lite.

The first idea is to push the Web server application completely into the kernel. Thus in
Figure 5.2, all copies can be eliminated because the application and the kernel are part of the
same entity. The major problem with this approach is that such in-kernel Web servers have to
deal with the idiosyncrasies of operating system implementation changes. For example, for
a popular high-performance server that runs over Linux, every internal change to Linux can
invalidate assumptions made by the server software and cause a crash. Note that a conventional
user-space server does not have this problem because all changes to the UNIX implementation
still preserve the API.

The second idea keeps the server application in user space but relies on a simple idea called
I/O splicing to eliminate all the copying in Figure 5.2. I/O splicing, shown in Figure 5.11, was
first introduced in Fall and Pasquale [FP93]. The idea is to introduce a new system call that
combines the old call to read a file with the old call (P6, efficient specialized routines) to send

5.5 Broadening beyond Copies 129

Web server application

sendfile()
↓

Kernel

CPU MEMORY

NETWORK ADAPTOR

MEMORY BUS

I/O BUS

DISK

Network

Copy 1

Copy 2

File cache buffer

F I G U R E 5.11 In I/O splicing, all the indirection caused by copying to and from user-space buffers is
removed by a single system call that “splices” together the I/O stream from the disk with the I/O stream
to the network. As always, Copy 1 can be removed for files in the cache.

a message to the network. By allowing the kernel to splice together these two hitherto-separate
system calls, we can avoid all redundant copies. Many systems have system calls such as
sendfile(), which are now used by several commercial vendors. Despite the success of this
mechanism, mechanisms based on sendfile do not generalize well to communication with CGI
processes.

5.5 BROADENING BEYOND COPIES

Clark and Tennehouse, in a landmark paper, suggested generalizing Van Jacobson’s idea
(described earlier) of integrating checksums and copying. In more detail, the Jacobson idea is
based on the following observation. When copying a packet word from a location (say, W10 in
adaptor memory in Figure 5.12) to a location in memory (say, M9 in memory in Figure 5.12),
the processor has to load W10 into a register and then store that register to M9. Typically, most
RISC processors require that, between a load and a store, the compiler insert a so-called delay
slot, or empty cycle, to keep the pipeline working correctly (never mind why!). That empty
cycle can be used for other computation. For example, it can be used to add the word just read
to a register that holds the current checksum. Thus with no extra cost the copy loop can often
be augmented to be the checksum loop as well.

But there are other data-intensive manipulations, such as encrypting data and doing format
conversions. Why not, Clark and Tennehouse [CT90] argued, integrate all such manipulations
into the copy loop? For example, in Figure 5.12 the CPU could read W10 and then decrypt

130 C H A P T E R 5 Copying Data

Store M9, R0
(add R0 to Csum)

Load W10, R0

M9

W10
Adaptor Memory

CPU

F I G U R E 5.12 Integrating checksumming and copying.

W10 and write the decrypted word to M9 rather than have that done in another loop. They
called this idea integrated layer processing, or ILP. The essential idea is to avoid obvious waste
(P1), in terms of reading (and possibly) writing the bytes of a packet several times for multiple
data-manipulation operations on the same packet.

Thus ILP is a generalization of copy-checksum integration to other manipulations (e.g.,
encryption, presentation formatting). However, it has several challenges.

• Challenge 1: Information needed for manipulations is typically at different layers (e.g.,
encryption is at the application layer, and checksumming is done at the TCP layer).
Integrating the code from different layers without sacrificing modularity is hard.

• Challenge 2: Each manipulation may operate on different-size chunks and different
portions of the packet. For example, TCP works in 16-bit quantities for a 16-bit checksum,
while the popular DES encryption works in 64-bit quantities. Thus while working with one
32-bit word, the ILP loop has to deal with two TCP checksum words and half a DES word.

• Challenge 3: Some manipulations may be dependent on each other. For example, one
should probably not decrypt a packet if the TCP checksum fails.

• Challenge 4: ILP can increase cache miss rate because it can reduce locality within a
single manipulation. If we did TCP separately and DES separately instead of in a single
loop, the code we’d use at each instant is smaller for the two single loops as opposed to the
single loop. This makes it more likely that the code will be found in the instruction cache
in the more naive implementation. Increasing integration beyond a certain point can
destroy code locality so much that it may even have adverse effects. Some studies have
shown this to be a major issue.

The first three challenges show that ILP is hard to do. The fourth challenge suggests
that integrating more than a few operations can possibly even reduce performance. Finally, if
the packet data is used multiple times, it could well reside in the data cache (even in a naive
implementation), making all the bother about integrating loops unnecessary. Possibly for these
reasons, ILP has remained a tantalizing idea. Beyond the copy–checksum combination, there
has been little follow-up work in integrating other manipulations in academic or commercial
systems.

5.6 Broadening beyond Data Manipulations 131

5.6 BROADENING BEYOND DATA MANIPULATIONS

So far this chapter has concentrated on reducing the memory (and bus) bandwidth caused
by data-manipulation operations. First, we concentrated on removing redundant data copying
between the network and the application. Second, we addressed redundant copying between
the file system, the application, and the network. Third, we looked at removing redundant
memory reads and writes using integrated layer processing when several data-manipulation
operations operate over the same packet. What is common to all these techniques is an attempt
to reduce pressure on the memory and the I/O bus by avoiding redundant reads and writes.

But once this is done, there are still other sources of pressure that appear within an endnode
architecture as shown in Figure 5.2. This is alluded to in the following excerpt from e-mail
sent after the alpha release of a fast user-level Linux Web server [Ric01]:

With zero-copy sendfile, data movement is not an issue anymore, asynchronous net-
work IO allows for really inexpensive thread scheduling, and system call invocation
adds a very negligible overhead in Linux. What we are left with now is purely wait
cycles, the CPUs and the NICs are contending for memory and bus bandwidth.

In essence, once the first-order effects (such as eliminating copies) are taken care of,
performance can be improved only by paying attention to what might be thought of as second-
order effects. The next two subsections discuss two such architectural effects that greatly
impact the use of bus and memory bandwidth: the effective use of caches and the choice of
DMA versus PIO.

5.6.1 Using Caches Effectively
The architectural model of Figure 5.2 avoids two important details that were described in
Chapter 2. Recall that the processor keeps one or more data caches (d-caches), and one or
more instruction caches (I-caches). The data cache is a table that maps from memory addresses
to data contents; if there are repeated reads and writes to the same location L in memory and
L is cached, then these reads and writes can be served directly out of the data cache without
incurring bus or memory bandwidth. Similarly, recall that programs are stored in memory;
every line of code executed by the CPU has to be fetched from main memory unless it is cached
in the instruction cache.

Now, packet data benefits little from a data cache, for there is little reuse of the data and
copying involves writing to a new memory address, as opposed to repeated reads and writes
from the same memory address. Thus the techniques already discussed to reduce copies are
useful, despite the presence of a large processor data cache. However, there are two other items
stored in memory that can benefit from caches. First, the program executing the protocol code
to process a packet must be fetched from memory, unless it is stored in the I-cache. Second,
the state required to process a packet (e.g., TCP connection state tables) must be fetched from
memory, unless it is stored in the d-cache.

Of these two other possible contenders for memory bandwidth, the code to be executed
is potentially a more serious threat. This is because the state, in bytes, required to process a
packet (say, one connection table entry, one routing table entry) is generally small. However,
for a small, 40-byte packet, even this can be significant. Thus avoiding the use of redundant
state (which tends to pollute the d-cache) wherever possible can improve performance, as was
described in Problem 11 of Chapter 4.

132 C H A P T E R 5 Copying Data

However, the code required to execute all of the networking stack (Data Link, TCP, IP,
socket layer, and kernel entry and exit) can be much larger. For example, measurements in
Blackwell [Bla96] show a total code size of 34 KB using a 1995 NetBSD TCP implementation.
Given that even large packets on an Ethernet are at most 1.5 KB, the effort to load the code
from memory can easily dwarf the effort to copy the packet multiple times.

In particular, if the I-cache is 8 KB (typical for older machines, such as the early Alpha
machines used in Blackwell [Bla96]), this means that at most a quarter of the networking stack
can fit in the cache. This in turn could imply that all or most of the code has to be fetched from
memory every time a packet needs to be processed. Modern machines have not improved their
I-cache sizes significantly. The Pentium III uses 16 KB. Thus effective use of the I-cache could
be a key to improved performance, especially for small packets.

We now describe two techniques that can be used to improve I-cache effectiveness: code
arrangement and locality-driven-layer processing.

CODE ARRANGEMENT

It is hard to realize when one is writing networking code that the actual layout of code in
memory (and hence in the I-cache) is a degree of freedom that can be exploited (P13) with
some effort. The key idea in code arrangement [MPBM96] is to lay out code in memory to
optimize the common case (P11) such that commonly used code fits in the I-cache and the
effort of loading the I-cache is not wasted.

At first glance, this seems to require no extra work. Since a cache should favor frequently
used code over infrequently used code, this should happen automatically. Unfortunately, this
is incorrect because of the following two aspects of the way I-caches are implemented.

• Direct mapping: An I-cache is a mapping of memory addresses to contents; the mapping is
usually implemented by a simple hash function that optimizes for the case of sequential
access. Thus most processors use direct-mapped I-caches, where the low-order bits of a
memory address are used to index the I-cache array. If the high-order bits match, the
contents are returned directly from cache; otherwise, a Read to memory is done across the
bus, and the new data value and high-order bits are stored in the same location.

Figure 5.13 shows the effect of this implementation artifact. The figure on the left
shows the memory layout of code for two networking functions, with black code denoting
infrequently used code. Since the I-cache size is only half the total size of the code, it is
possible for two frequently accessed lines of code (such as X and Y , with addresses that
are the same modulo the I-cache size) to map to the same location in the I-cache. Thus if
both X and Y are used to process every packet, they will keep evicting each other from the
cache even though they are both frequently used.

• Multiple instructions per block: Many I-caches can be thought of as an array of blocks,
where multiple instructions (say, eight) are stored in a block. Thus when an instruction is
fetched, all eight instructions in the same block are also fetched on the assumption of
spatial locality: With sequential access, it seems probable that the other seven instructions
will also be fetched, and it is cheaper to read multiple instructions from memory at the
same time.

Unfortunately, much of networking code contains error checks such as “If error E do
X , else do Z .” Z is hardly ever executed, but a compiler will often arrange the code for Z
immediately after X . For example, in Figure 5.13 imagine that code for Z immediately

5.6 Broadening beyond Data Manipulations 133

F1's code

F2's code

F1 and F2's
frequently used code

F1 and F2's
infrequently used code

I-cache
size

X

Y Relocate

F I G U R E 5.13 The figure on the left shows networking code that is laid out in memory so that
frequently used (white) and infrequently used (black) code are arbitrarily intermixed. Using a direct-
mapped cache of half the size of the total code can lead two frequently used instructions, such as X and
Y , to collide. This problem can be avoided by relocating all frequently used code to be contiguous, as
shown on the right.

follows X . If X and Z fall in the same block of eight instructions, then fetching frequently
accessed X also results in fetching infrequently used Z . This makes loading the cache less
efficient (more useless work) and makes the cache less useful after loading (less useful
code in cache).

Note that both of these effects are caused by the fact that real caches imperfectly reflect
temporal locality. The first is caused by an imperfect hash function that can cause collisions
between two frequently used addresses. The second is caused by the fact that the cache also
optimizes for spatial locality.

Both effects can be mitigated by reorganizing networking code [MPBM96] so that all
frequently used code is contiguous (see right of Figure 5.13). For example, in the case “If error
E do X , else do Z ,” the code for Z can be moved far away from X. This does require an extra
jump instruction to be added to the code for Z so that it can jump back to the code that followed
Z in the unoptimized version. However, this extra jump is taken only in the error case, and so
it is not much of a cost.

This is an example of realizing that the memory location of code is a degree of freedom
that can be optimized (P13) and an example of optimizing the expected case (P11) despite
increasing the code path for infrequently used code.

LOCALITY-DRIVEN LAYER PROCESSING

Code reorganization can help up to a point but fails if the working set (i.e., the set of instruc-
tions actually accessed for almost every packet) exceeds the I-cache size. For example, in
Figure 5.13, if the size of the white, frequently used instructions is larger than the I-cache,
code reorganization will still help (fewer loads from memory are required because each load

134 C H A P T E R 5 Copying Data

P1
arrival

P1
Data link

P1
Network

P1
Transport

P2
Data link

P2
Network

P2
Transport

P1
Data link

P2
Data link

P1
Network

P2
Network

P1
Transport

P2
Transport

Conventional
processing

Locality-driven
processing

P2

TIME

F I G U R E 5.14 In a conventional processing timeline (shown from left to right), all the networking
layers of packet P1 are processed before those of packet P2. In locality-driven receiver processing, each
layer code is executed multiple times for multiple received packets (two in the picture) before moving
on to the next layer.

loads only useful instructions). However, every instruction will still have to be fetched from
memory.

While the working set of the networking stack may fit into a modern I-cache (which is
getting bigger), it is possible that more complicated protocols (that run over TCP/IP) may
not. The idea behind locality-driven layer processing [Bla96] is to be able to use the I-cache
effectively as long as the code for each layer of the networking stack fits into the I-cache.
By repeatedly processing the code for the same layer across multiple packets, the expense of
loading the I-cache is shared (P2c) over multiple packets.

Consider the top timeline in Figure 5.14. In a conventional processing timeline (shown
from left to right in the figure), all the networking layers of packet P1 are processed before
those of packet P2. Imagine that two packets P1 and P2 arrive at a server. In a conventional
implementation, all the processing of P1 is finished, starting with the data link layer (e.g.,
Ethernet driver) and ending with the transport (e.g., TCP) layer. Only then is the processing
of packet P2 started.

The main idea in locality-driven processing is to exploit another degree of freedom (P13)
and to process all the layer code for as many received packets as possible before moving on
to the next layer. Thus in the bottom timeline, after the data link layer code for P1 is finished,
the CPU moves on to execute the data link layer code for P2, not the network layer code for
P1. This should not affect correctness because code for a layer should not depend on the state
of lower layers. By contrast, integrated layer processing has more subtle dependencies and
failure cases.

Thus if the code for each layer (e.g., the data link layer) fits into the I-cache while the code
for all layers does not, then this optimization amortizes the cost of loading the I-cache over
multiple packets. This is effectively using batch processing (P2c, expense sharing). The larger
the size of the batch, the more effective the use of the I-cache.

The implementation can be made to tune the size of the batch dynamically [Bla96].
The code can batch-process up to, say, k packets from the queue of arrived packets, where k
is a parameter that limits the latency. If the system is lightly loaded, then only one message
at a time will be processed. On the other hand, if the system is heavily loaded, the batch size
increases to make more effective use of memory bandwidth when it is most needed.

5.7 Conclusions 135

SOFTWARE ENGINEERING CONSIDERATIONS

Optimizations such as code restructuring (Figure 5.13) and locality-driven processing
(Figure 5.14) also need to be evaluated by their effects on code modularity and maintenance.
After all, one could rewrite the kernel and all applications using assembly language to more
perfectly optimize for memory bandwidth. But it would be difficult to get the code to work or
be maintainable.

Code restructuring is best done by a compiler. For example, error-handling code can be
annotated with hints [MPBM96] suggesting which branches are more frequently taken (gener-
ally obvious to the programmer), and a specially augmented compiler can restructure the code
for I-cache locality. Algorithms for this purpose are described in Mosberger et al. [MPBM96].

On the other hand, locality-driven processing preserves modularity within layers. Com-
munication between layers must be changed as follows. If each layer code passes a packet to
the code for a higher layer with a procedure call, this code must be modified to add packets to
a queue for the higher layer. Similarly, when a layer is called, it removes packets from its read
queue until the queue is exhausted; after processing each packet, it places it on the queue for
its next-higher layer. This strategy works well when each layer can reuse buffers from other
layers, as is the case for UNIX mbufs. Overall, the code changes may not be severe.

5.6.2 Direct Memory Access versus Programmed I/O
Earlier sections stated that the Witless scheme uses programmed I/O, or PIO (i.e., the pro-
cessor or CPU is involved on every word transferred between memory and adaptor), while
other schemes, such as VAX Clusters, use DMA (where the adaptor copies data directly to
memory). It may seem that DMA is always better than PIO. However, comparisons between
DMA and PIO are tricky because each method has subtle implications for the overall memory
bandwidth used.

For instance, PIO has one advantage in that the data flows through the processor and thus
ends up in the processor cache. This can be useful to prevent loss of memory bandwidth for
subsequent access. Also, with PIO it is easy to integrate other functions, such as checksums,
without requiring adaptor hardware to do the same function.

However, some studies have shown that if data arrives and is used much later (e.g., one
scheduling quantum later) by the application, then placing data in the d-cache too early is
wasteful of the d-cache and lowers rather than raises d-cache hit rate. On the other hand, DMA
can steal cycles from the CPU and also requires some careful cache invalidation when data is
written into a memory location (that could also be cached). So the jury is still out. The choice
between the two is best decided on a case-by-case basis, taking into account architectural
considerations and the application at hand. A more detailed study of the issues involved can
be found in Mogul and Ramakrishnan [MR97].

5.7 CONCLUSIONS

As networks get faster, links today, such as Gigabit Ethernet, are often faster than the buses
and memories within desktop computers and servers. Thus memory and bus bandwidth are
crucial resources. This chapter describes techniques to optimize the use of memory and bus
bandwidth for processing IP and Web packets, the dominant traffic streams found today in the
Internet.

136 C H A P T E R 5 Copying Data

To this end, the chapter started by showing how to remove redundant copies involved
in processing an IP packet using adaptor memory or virtual memory remapping. We then
showed how to remove redundant copies involved in processing Web requests at a server
by generalizing virtual memory remapping to include the file system or by combining file
system and network I/O in a single system call. We then showed how to combine various data
manipulations in one fell swoop. All of these techniques require changes to the application
and kernel, but the changes are fairly localized and mostly preserve modularity.

We finally showed that, without care, protocol processing can dwarf copy overhead, and we
described techniques to optimize the instruction cache. Comments such as Riccardi’s [Ric01]
indicate that modern Web servers may already be optimized for zero-copy implementations
using sendfile()-style system calls. However, Riccardi [Ric01] indicates that such servers still
burn processor cycles waiting for memory. Thus, techniques to improve I-cache efficiency
may provide the next round of optimizations for Web servers. Figure 5.1 presents a summary
of the techniques used in this chapter, together with the major principles involved.

It is important to state that all the performance problems involved in building a modern
Web server have not been eliminated. Complex Web sites, such as amazon.com, often use
several tiers of processing to respond to Web requests, including an application server, a Web
server, and a database server. Such database-driven Web servers introduce new bottlenecks that
may require new techniques beyond those described in this chapter. However, the underlying
principles should hopefully remain the same.

In terms of principles, this chapter is about the repeated use of P1, avoiding obvious
waste, where the waste is unnecessary reads and writes that consume precious memory and
bus bandwidth. At first glance, principle P1 seems vacuous or at best a cliché. What makes
this principle deeper is that the waste is not apparent unless one broadens one’s vision to see
as much of the system as possible.

Within each local subsystem (e.g., application to kernel, kernel to network, disk to file
system) there is no wasted memory bandwidth. It is only when one follows the adventures of a
received packet that one discovers the redundancy between application-to-kernel and kernel-
to-network copies. It is only when one broadens one’s view even further to see the contortions
involved in responding to a Web request that one notices the further redundancies involving the
file system. Only when one broadens one’s view further still does one see all the manipulations
involved in processing a packet and the wasted reads to memory. Finally, it is only when one
examines the loading of instructions that one sees the alarming possibility that the protocol
code can be several times larger than the packet size.

Thus the use of the first principle of network algorithmics requires a synoptic eye, one
that sees the whole system, from HTTP and its headers, to the file system, and down to the
instruction caches. While this seems daunting in complexity, Chapter 2 has already argued that
simple models of hardware, architecture, operating systems, and protocols can make such a
holistic viewpoint possible. For example, I-caches have a number of complex variants, but a
simple model of a direct-mapped I-cache with multiple instructions per block is not hard for
an operating system designer to keep in mind.

Finally, compared to the beauty and complexity of theoretical techniques such as the
ellipsoid algorithm for linear programming and the theory of rapidly mixing Markov chains,
techniques in systems such as copy avoidance seem drab and shallow. However, one can argue
that the complexity of systems is not in depth (i.e., the complexity of each component by itself)
but in breadth (i.e., the complex relationships between components). Perhaps the breadth

5.8 Exercises 137

of understanding (HTTP, file system, networking code, instruction cache implementation)
required to optimize memory bandwidth in a Web server provides some evidence for this
thesis.

5.8 EXERCISES

1. Data caches and copies: A normal data cache is a mapping from a memory location
address to a piece of content. If the content is frequently accessed, then the content can be
accessed directly from the fast cache instead of making a memory access. Assuming the
cache is a write-back cache, even writes can be written to the cache instead of memory
and only written to memory when the cache is overwritten. A modern cache block is fairly
large (128 bits), with a mapping from a 32-bit address to 128 bits of data starting at that
address.

We want to address the copying problem where various modules (including the
network and file system) copy data via intermediate buffers that are soon overwritten
(e.g., socket buffer, application buffer). The chapter did so with software changes. Here
we consider whether changing the hardware architecture can help without software
changes such as IO-Lite, fbufs, and mmap.

• Even an ordinary data cache may help remove some of the overhead when copying data
from location L to location M. Explain why. (Assume that location M is a temporary
buffer that is soon overwritten, as in a socket buffer. Assume that if only a single word
is written in a large cache block, the remaining words can be marked invalid.)
Intuitively, this problem is asking whether there is an equivalent of copy-on-write
(used to reduce copying between virtual address spaces) in the world of data caches.

• Now assume a different data cache design, where a cache is a mapping from one or
more addresses to the same content. Thus a cache has changed from a one-to-one
mapping to a many-to-one mapping. For example, assume a cache where two locations
can point to the same content. Thus a cache entry may be (L, M, C), where L and M are
addresses and C is the common contents of L and M. A memory access to either L or M
will return C. What is the advantage over the previous scheme in the previous item?

• This is all very speculative and wild. Comment on the disadvantages of the idea in the
previous item. In particular, many caches use a technique called set associativity,
where a simple hash function (e.g., low-order bits) is used to select a small set of cache
entries that the hardware searches in parallel. Why might the multiple address per
cache entry interact poorly with the set associative search?

2. Application-level optimizations for Web servers: Operating systems such as the
Exokernel [EKO95] take an even more extreme viewpoint and allow the application to
customize kernel features for its benefit without compromising safety for other
applications. One interesting optimization is to combine the final TCP FIN with the read
of the last data segment (an optimization allowed by TCP).

• Why does this optimization help small Web transfers (which are quite common)?

• Why is this optimization hard to do in a regular Web server, and why is it easier if the
application is integrated with the kernel, as in the Exokernel?

138 C H A P T E R 5 Copying Data

• Explain how this optimization can be migrated to an ordinary Web server by passing
information across the interface (P9) without compromising safety.

3. Reverse copyout: The emulated copy-on-write paper [BS96] describes an interesting
degree of freedom (P13) for copying page-aligned data between two modules (say,
system and application). Imagine that you wish to copy a partial page from an application
page, X , to a system page, Y . If the page is full, assume that you can swap the two pages
efficiently. Assume the partial page has useful data D and some remainder R.

• If the amount of data D is small compared to R, it is simpler to copy D to the destination
page in Y . On the other hand, if D is large (say, almost all of the page) compared to R,
devise a simple strategy to minimize copying. Note that if the destination page, Y , has
some other data in the remainder of the page, that data must remain after the copy.

• What is a simple threshold you would use to choose between these two strategies?

C H A P T E R 6

Transferring Control

Control thy passions, lest they take vengeance on thee.

— Epicetus

In a Scott Adams cartoon, Dilbert complains to Dogbert that he is embarassed to work at a
company where even paying a simple invoice takes 6 months. The invoice first comes into
the mail room for aging, spends some time at the secretary’s desk, goes to the desk of the
main decision maker, and finally ends up in accounts payable. When processing an invoice
in Dilbert’s company, the flow of control works its way through layers of command, each of
which incurs significant overhead.

A management consultant might suggest that Dilbert’s company streamline the processing
of an invoice by eliminating mediating layers wherever possible and by making each layer
as responsive as possible. However, each layer has some reason for existence. The mailroom
aggregates mail delivery service for all departments in the company. The secretary protects
the busy boss from interrupts and weeds out inappropriate requests. The boss must eventually
decide whether the invoice is worth paying. Finally, the mundane details of disbursing cash
are best left to accounts payable.

A modern CPU processing a network message also goes through similar layers of medi-
ation. The device, for example, an Ethernet adaptor, interrupts the CPU, asking somewhat
stridently for attention. Control is passed to the kernel. The kernel batches interrupts wherever
possible, does the network layer processing for the packet, and finally schedules the applica-
tion process (say, a Web server) to run. As always, the reception of a single packet provides
too limited a picture of the overall processing context. For instance, a Web server will parse
the request (such as a GET) in the network packet, look for the file, and institute proceedings
to retrieve the file from disk. When the file gets read into memory, a response containing the
requested file is sent back, prepended with an HTTP header.

While Chapter 5 concentrated on reducing the overhead of operations that touch the data
in a packet (e.g., copying, checksumming), this chapter concentrates on reducing the control
overheads involved in processing a packet. As in Chapter 5, we start by examining the control
overheads involved in sending or receiving a packet. We then broaden to our canonical network
application, a Web server.

This chapter is organized as follows. Section 6.1 starts by describing the control flow costs
involved in a computer: interrupt overheads (involved when a device asks asynchronously for
attention), system calls (involved when a user asks the kernel for service, thus moving the
flow of control across a protection boundary), and process-context switching (allowing a new

139

140 C H A P T E R 6 Transferring Control

P8

P8

P13

P13

P13

Go beyond downcalls used in specifications

Process per message, not per layer

Link protocol implementation with user code

Process per disk access

Modularize by task, not clients

Upcalls

x-Kernel

Mach variants

Flash

Haboob Web server

Number Principle Used In

P4 VM mapping to avoid copies in cache and application Flash

P15 Bitmap tree Fast ufalloc()

P12a
P9
P12

Incrementally compute interest vector
Pass hints from protocol to select ()
Remember interest across calls

Fast select()

P3c
P2

Move protection from kernel to adaptor
Have kernel authorize adaptor on initialization

ADCs

P13 Most OSs

P2b

Batch process interrupts

Execute protocol in the context of the receive process LRP (Lazy Receiver
Processing)

F I G U R E 6.1 Techniques for reducing control overhead that are discussed in this chapter, together
with the corresponding principles.

process to run when the current process is stymied waiting for some resource or has run too
long). Thus the rest of this chapter is organized around reducing these control overhead costs,
from the largest (context switching) to the smallest (interrupt overhead).

Accordingly, Section 6.2 concentrates on reducing process-context switching by describ-
ing how to structure networking code (e.g., TCP/IP) to avoid context switching. Section 6.3 then
describes how to structure application code (e.g, a Web server) to reduce context-switching
costs. Sections 6.4 and 6.5 focus on reducing or eliminating system call overhead. Section 6.4
shows how to reduce overhead in the implementation of a crucial system call used by event-
driven Web servers to decide which of the connections they are handling are ready to be
serviced. Section 6.5 goes further and describes user-level networking that bypasses the kernel
in the common case of sending and receiving a packet. Finally, Section 6.6 briefly describes
simple ideas to avoid interrupt overhead.

The techniques described in this chapter (and the corresponding principles invoked) are
summarized in Figure 6.1.

Q u i c k R e f e r e n c e G u i d e
The most useful sections for an implementor today are as follows. Section 6.3 describes how to

structure application code (e.g, a Web server) to reduce context-switching costs, presenting alternatives
to event-driven Web servers. Section 6.4 focuses on reducing the overhead of the select() system call

6.1 Why Control Overhead? 141

(or similar calls in other operating systems) used by event-driven servers to decide which client to service
next. Section 6.5 shows how to eliminate system call overhead using techniques such as VIA (virtual
interface adaptor).

6.1 WHY CONTROL OVERHEAD?

Chapter 5 started with a review of the copying overhead involved in a Web server by showing the
potential copies (Figure 5.2) involved in responding to a GET request at a server. By contrast,
Figure 6.2 shows the potential control overhead involved in a large Web server that handles
many clients. Note that in comparison with Figure 5.2 for Web copies, Figure 6.2 ignores all
aspects of data transfer. Thus Figure 6.2 uses a simplified architectural picture that concentrates
on the control interplay between the network adaptor and the CPU (via interrupts), between the
application and the kernel (via system calls), and between various application-level processes
or threads (via scheduler invocations). The reader unfamiliar with operating systems may wish
to consult the review of operating systems in Chapter 2. For simplicity, the picture shows only
one CPU in the server (many servers are multiprocessors) and a single disk (some servers
use multiple disks and disks with multiple heads). Assume that the server can handle a large
number (say, thousands) of concurrent clients.

For the purposes of understanding the possible control overhead involved in serving a
GET request, the relevant aspects of the story are slightly different from that in Chapter 5.
First, assume the client has sent a TCP SYN request to the server that arrives at the adaptor
from which it is placed in memory. The kernel is then informed of this arrival via an interrupt.
The kernel notifies the Web server via the unblocking of an earlier system call; the Web server
application will accept this connection if it has sufficient resources.

Web server
application

↓write() read()↓

TCP/IP File system Kernel

Process per group; groups defined by application structure

NETWORK ADAPTOR

MEMORY DISK

Network

Tracking active files
and connections

FindActive()↓

Client 1... Client 50 Client 51... Client 74 Client 75

BUS

Packet
received

Scheduling overhead
vs. loss of currency

System call overhead

Scheduling overhead

Interrupt overhead CPU

F I G U R E 6.2 Control overhead involved in handling a GET request at a server.

142 C H A P T E R 6 Transferring Control

In the second step of processing, some server process parses the Web request. For example,
assume the request is GET File 1. In the third step, the server needs to locate where the file
is on disk, for example, by navigating directory structures that may also be stored on disk.
Once the file is located, in the fourth step, the server process initiates a Read to the file system
(another system call). If the file is in the file cache, the read request can be satisfied quickly;
failing a cache hit, the file subsystem initiates a disk seek to read the data from disk. Finally,
after the file is in an application buffer, the server sends out the HTTP response by writing to
the corresponding connection (another system call).

So far the only control overhead appears to be that of system calls and interrupts. How-
ever, that is because we have not examined closely the structure of the networking and
application code.

First, if the networking code is structured naively, with a single process per layer in the
stack, then the process scheduling overhead (on the order of hundreds of microseconds) for
processing a packet can easily be much larger than a single packet arrival time. This potential
scheduling overhead is shown in Figure 6.2 with a dashed line to the TCP/IP code in the kernel.
Fortunately, most networking code is structured more monolithically, with minimal control
overhead, although there are some clever techniques that can do even better.

Second, our description of Web processing has focused on a single client. Since we are
assuming a large Web server that is working concurrently on behalf of thousands of clients, it
is unclear how the Web server should be structured. At one extreme, if each client is a separate
process (or thread) running the Web server code, concurrency is maximized (because when
client 1 is waiting for a disk read, client 2 could be sending out network packets) at the cost of
high process scheduling overhead.

On the other hand, if all clients are handled by a single event-driven process, then context-
switching overhead is minimized, but the single process must internally schedule the clients to
maximize concurrency. In particular, it must know when file reads have completed and when
network data has arrived.

Many operating systems provide a system call for this purpose that we have generically
called FindActive() in Figure 6.2. For example, in UNIX the specific name for this generic
routine is the select() system call. While even an empty system call is expensive because of the
kernel-to-application boundary crossing, an inefficient select() implementation can be even
more expensive.

Thus there are challenging questions as to how to structure both the networking and
server code in order to minimize scheduling overhead and maximize concurrency. For this
reason, Figure 6.2 shows the clients partitioned into groups, each of which is implemented
in a single process or thread. Note that placing all clients in a single group yields the event-
driven approach, while placing each client in a separate group yields the process- (or thread-)
per-client approach.

Thus an unoptimized implementation can incur considerable process-switching overhead
(hundreds of microseconds) if the application and networking code is poorly structured. Even
if process-structuring overhead is removed, system calls can cost tens of microseconds, and
interrupts can cost microseconds. To put these numbers in perspective, observe that on a 10-GB
Ethernet link, a 40-byte packet can arrive at a PC every 3.2 µsec.

Given that 10-Gbps links are already arriving, it is clear that careful attention has to be paid
to control overhead. Note that, as we have seen in Chapter 2, as CPUs get faster, historically
the control overheads associated with context switching, system calls, and interrupts have

6.2 Avoiding Scheduling Overhead in Networking Code 143

not improved at the same rate. Some progress has been made with more efficient operating
systems such as Linux, but the progress will not be sufficient to keep up with increasing link
speeds.

We now begin attacking the bottlenecks described in Figure 6.2.

6.2 AVOIDING SCHEDULING OVERHEAD IN NETWORKING CODE

One of the major difficulties with implementing a protocol is to balance modularity (so you
implement a big system in pieces and get each piece right, independent of the others) and
performance (so you can get the overall system to perform well). As a simple example, con-
sider how one might implement a networking stack. The “obvious modularity” would be to
implement the transport protocol (e.g., TCP) as a process, the routing protocol (e.g., IP) as
a process, and the applications as a separate process. If that were the case, however, every
received packet would take at least two process-context switches, which are expensive. There
are, however, a number of creative alternatives that allow modularity as well as efficiency.
These were first pointed out by Dave Clark in a series of papers.

Figure 6.3 provides an example that Clark [Cla85] used to illustrate his ideas. It consists
of a simple application that reads data from a keyboard and sends it to the network using a
reliable transport protocol. When the data is received by some receiver on the network, the
data is displayed on the screen. The vertical slices show the various protocol layers, with
the topmost slice (routines such as display-get-data and display-receive) being the application
protocol, the second slice (routines such as transport-receive and transport-send) being the
transport protocol, and the bottom slice (routines such as net-receive and net-dispatch) being
the network protocol. The naive way to implement this protocol would be to have a process per
slice, which would involve three processes and two full-scale context switches per received
or sent packet.

Instead, Clark suggests using only two processes each at the sender and two processes
at the receiver (shown as boxed vertical sections) to implement the network protocol stack.
In Figure 6.3 the leftmost two sections correspond to receiver processes and the rightmost
two sections correspond to sender processes. Thus the sender has a Keyboard Handler process

RECEIVE
PROCESS

RECEIVE
INTERRUPT
HANDLER

SEND
PROCESS

KEYBOARD
HANDLER

display–
receive

transport–
receive

net–
receive

display–
get–data

transport–
send

net–
send

transport–
get–port

net–
dispatch

keyboard–
handler

transport–
arm–to–send

Interrupt
Wake

F I G U R E 6.3 Implementing a protocol using upcalls.

144 C H A P T E R 6 Transferring Control

that gathers data coming in from the keyboard and calls transport-arm-to-send when it has
got some data. Notice that transport-arm-to-send is a transport-layer function that is exported
to the Keyboard Handler process and is executed by the Keyboard Handler process. At this
point the Keyboard Handler can suspend itself (a context switch). Transport-arm-to-send only
tells the transport protocol that this connection wished to send data; it does not transfer data.

However, the transport-send process may not send data immediately because of flow
control limitations. When the flow control limits are removed (because of acks arriving), the
Send Process will execute the transport-send routine for this connection. The send call will first
upcall the application protocol, which exports a routine called display-get-data that actually
provides the transport protocol with the data for the application. This is advantageous because
the application may have received more keyboard data by the time the transport protocol is
ready to send, and one might as well send as much data as possible in a packet. Finally, within
the context of the same process, transport adds a transport-layer header and makes a call to the
network protocol to actually send the packet.

At the receiving end, the packet is received by the receive interrupt handler using a
network-layer routine called net-dispatch that needs to find which process to dispatch the
received packet to. To find out, net-dispatch makes an upcall to transport-get-port. This is
a routine exported by the transport layer that looks at port numbers in the header to figure
out which application (e.g., FTP) must handle the packet. Then a context switch is made and
the Receive Handler relinquishes control and wakes up the Receive Process, which executes
network-layer functions, transport-layer functions, and finally the application-level code to
display the data. Note that a single process is executing all the layers of protocol.

The idea was a bit unusual at the time because the conventional dogma until that point was
that layers should only use services of layers below; thus calls between layers had, historically,
been “downcalls.” However, Clark pointed out that downcalls were perhaps required for
protocol specifications but were not the only alternative for protocol implementations. In our
example in particular, upcalls are used to obtain data (e.g., the upcall to display-get-data) and
for advice from upper layers (upcall to transport-get-port).

While upcalls are commonly used in real implementations, there is probably no difference
between an upcall and a standard procedure call except for its possible novelty in the context
of a networking layered implementation. However, the more important idea, which is perhaps
more lasting, is the idea of using only one or two processes to process a message, each process
consisting of routines from two or more protocol layers. This idea found its way into systems
like the x-kernel [HP91] and into user-level networking, which is described in the next section.

More generally, the idea of considering alternative implementation structures that pre-
serve modularity without sacrificing performance is a classic example of Principle P8, which
says that implementors should consider alternatives to reference implementations described
in specifications. Notice that each protocol layer can still be implemented modularly but the
upcalled routines can be registered by upper layers when the system starts up.

6.2.1 Making User-Level Protocol Implementations Real
Most modern machines certainly do not implement each protocol layer in a separate process.
Instead, in UNIX all the protocol code (transport, network, and data link) is handled as part of
a single kernel “process.” When a packet arrives via an interrupt, the interrupt handler notes
the arrival of the packet, possibly queues it to memory, and then schedules a kernel process
(via what is sometimes called a software interrupt) to actually process the packet.

6.2 Avoiding Scheduling Overhead in Networking Code 145

KERNEL
(driver)

Demux
process

Process 1 Process 2

F I G U R E 6.4 Demultiplexing a packet to the final destination process using an intermediate
demultiplexing process is expensive.

The kernel process does the data link, network, and transport-layer code (using upcalls);
by looking at the transport port numbers, the kernel process knows the application. It then
wakes up the application. Thus every packet is processed using at least two context switches:
one from the interrupt context to the kernel process doing protocol handling, and one from the
kernel process to the process running the application code (e.g., the Web, FTP).

The idea behind user-level protocol implementation is to realize the aspect of Clark’s idea
shown in the receive process of Figure 6.3, where the protocol handlers execute in the same
process as the application and can communicate using upcalls. User-level implementations
have two possible advantages: We can potentially bypass the kernel and go directly from the
interrupt handler to the application, as in the Clark model, saving a context switch. Also, the
protocol code can be written and debugged in user space, which is a far friendlier place to
implement protocols (debugging tools work in user space and do not work well at all in the
kernel).

One extreme way to do this was advocated in Mach, where all protocols were implemented
in user space. Also, protocols were allowed to be significantly more general than in Clark’s
example of Figure 6.3. Thus when a receiving interrupt handler received a packet, it had no
way of easily telling to which process it should dispatch the packet (since the network-layer
implementations done in the final process contained the demultiplexing code). In particular,
one can’t just call transport to examine the port number (as in Clark’s example) since we can
have lots of possible transport protocols and lots of possible network protocols.

A naive method was initially used, as shown in Figure 6.4. This involved a separate
demultiplexing process that received all packets and examined them to determine the final
destination process, which is then dispatched to. This is quite sad, because our efforts so far
have been to reduce context switches, but the new demultiplexing process is actually adding
back the missing context switch.

The simple idea used to remedy this situation is to pass extra information (P9) across the
application–kernel interface so that each application can pass information about what kinds of
packets it wants to process. This is shown in Figure 6.5. For example, a mail application may
wish for all packets whose Ethernet-type field is IP, whose IP protocol number specifies TCP,
and whose TCP destination port number is 25.

Recall that we are talking about the mail application implementing all of IP, TCP, and
mail. To do so, the kernel defines an interface, which is typically some form of program-
ming language. For example, the earliest one was the CSPF (CMU Stanford packet filter),
which specifies the fields for packets using a stack-based programming language. A more
commonly used language is BPF (Berkeley packet filter), which uses a stack-based language;
a more efficient language is PathFinder. These demultiplexing algorithms are described in
Chapter 8.

146 C H A P T E R 6 Transferring Control

KERNEL

Process 1 Process 2

Filter for
Process 1

Filter for
Process 2

F1 F3
Arriving
Packet

F I G U R E 6.5 The packet filter approach to demultiplexing.

Note that one has to be careful about passing information from an application to a ker-
nel; any such information should be checked so that malicious or wrong applications cannot
destroy the kernel. In particular, one has to prevent applications from providing arbitrary code
to kernels, which then causes havoc. Fortunately, there are software technologies that can
“sandbox” foreign code so it can do damage only within its own allotted space of memory
(its sandbox). For example, a stack-based language can be made to work on a specified size
of stack that can be bounds checked at every point. This form of technology has culminated
recently in execution of arbitrary Java applets received from the network.

Clearly, if packets are dispatched from the kernel interrupt handler (using the collection
of packet filters) to the receiving process, the receiving process should implement the protocol
stack. However, replicating the TCP/IP code in every application would cause a lot of code
redundancy. Thus TCP/IP is generally (in such systems) implemented as a shared library that
is linked in (a single copy is used to which the application has a pointer, but with the code
written in a so-called reentrant way, to allow reuse).

This is not as easy as it looks because there is some TCP state that is common to all connec-
tions, though most are TCP state connection specific. There are other problems because the last
write done by an application should be retransmitted by TCP, but the application may exit its
process after its last write. However, these problems can be fixed. User-level implementations
have been written [TNML93, MB93] to provide excellent performance. Fundamentally, they
exploit a degree of freedom (P13) in observing that protocols do not have to be implemented
in the kernel.

6.3 AVOIDING CONTEXT-SWITCHING OVERHEAD IN APPLICATIONS

The last section concentrated on removing process-scheduling overhead for processing a single
packet received by the network by effectively limiting the processing to fielding one interrupt
(which, as we discuss in Section 6.6, can also be removed or amortized over several packets)
and dispatching the packet to the final process in which the application (that processes the
packet) resides. If the destination process is currently running, then there is even no process-
scheduling overhead. Thus after all optimizations there can be close to no control overhead
for processing a packet.

This is analogous to Chapter 5, in which the first few sections showed how to process a
received packet with zero copies. However, in that chapter after broadening one’s viewpoint to

6.3 Avoiding Context-Switching Overhead in Applications 147

see the complete application processing, it became apparent that there were further redundant
copies caused by interactions with the file system.

In a similar fashion, this section broadens beyond the processing of a single packet to
consider how an application processes packets. Once again, as in Chapter 5, we consider a
Web server (Figure 6.2) because it is a canonical example of a server that needs to be made
more efficient and because of its importance in practice.

In what follows, we will use a Web server as an example of a canonical server that may
require the handling of a large number of connections. In another example, Barile [Bar04]
describes a TCP-to-UDPproxy server for a telephony server that can handle 100,000 concurrent
connections.

How should a Web server be structured? Before tackling this question, it helps to under-
stand the potential concurrency within a single Web server. Readers familiar with operating
systems may wish to skim over the next three paragraphs. These are included for readers not
as familiar with the secret life of a workstation.1

Even with a single CPU and a single disk head, there are opportunities for concurrency.
For example, assume that in processing a read for File 1, File 1 is not in cache. Thus the CPU
initiates a disk read. Since this may take a few milliseconds to complete, and the CPU can do
an instruction almost every nanosecond, it is obvious waste to idle the CPU during this read.
Thus a more sensible strategy is to have the CPU switch to processing another client while
Client 1’s disk read is in progress. This allows processing by the disk on behalf of Client 1 to
be overlapped with processing by the CPU for Client 2.

A second example of concurrency between the CPU and a device (that is relevant to a
Web server) is overlapping between network I/O (as performed by the adaptor) and the CPU.
For example, after a server accepts a connection, it may do a Read to an accepted connection
for Client 1. If the CPU waits for the Read to complete it may wait a long time, potentially also
several milliseconds. This is because the remote client has to send a packet that has to make
its way through the network and finally be written by the adaptor to the socket corresponding
to Client 1 at the server.

By switching to another client, processing by the network on behalf of Client 1 is over-
lapped with processing by the CPU on behalf of some other client. Similarly, when doing a
Write to the network, the Write may be blocked because of the lack of buffer space in the socket
buffer. This buffer space may be released much later when acknowledgments arrive from the
destination.

The last three paragraphs show that for a Web server to be efficient, every opportunity for
concurrency must be exploited to increase effective throughput. Thus a CPU in a Web server
must switch between clients when one client is blocked waiting for I/O. We now consider
various ways to structure a server application and their effects on concurrency and scheduling
overhead.

6.3.1 Process per Client
In terms of programming, the simplest way to implement a Web server is to structure the
processing of each client as a separate process. In other words, every client is in a separate
group by itself in Figure 6.2. In Chapter 2, we saw that the operating system scheduler juggles

1Recall that the intent of network algorithmics and of this book is to allow all constituencies — for example,
hardware designers — to understand the relevant issues.

148 C H A P T E R 6 Transferring Control

between processes, assigning a new process to a CPU when a current process is blocked. Most
modern operating systems also can take into account multiple CPUs and schedule the CPUs
such that all CPUs are doing useful work wherever possible.

Thus the Web server application need not do the juggling between clients; the operating
system does this automatically on the application’s behalf. For example, when Client 1 is
blocked waiting for the disk controller, the operating system may save all the context for the
Client 1 process to memory and allow the Client 2 process to run by restoring its context from
memory.

This simplicity, however, comes at a cost. First, as we have seen, process-context switching
and restoring is expensive. It requires reads and writes from memory to registers to save and
restore context. Recall that the context includes changing the page tables being used (because
page tables are per process); thus any virtual memory translations cached within the TLB need
to be cached. Similarly, the contents of the data cache and the instruction cache are likely to
represent the tastes and preferences of the previously resident process; thus much of it may
be useless to the new process. When all caches fail, the initial performance of the switched-in
process can be very poor.

Further, spawning a new process when a new client comes in, as was done by some initial
Web servers, is also expensive.2 Fortunately, the overhead to create and destroy processes
when clients come and go can be avoided by precomputation and/or lazy process deletion
(P2, shifting computation in time). When a client finishes its request processing and the
connection is terminated, rather than destroy the process, the process can be returned to a pool
of idle processes. The process can then be assigned to the next new client that needs a process
to shepherd its request through the server.

A second issue is the problem of matchmaking between new arriving clients and processes
in the process pool. A naive way to do this is as follows. Each new client is handed to a well-
known matchmaking process, which then hands off each new client to some available process in
the pool. However, operating system designers have realized the importance of matchmaking.
They have invented system calls (for instance, the Accept call in UNIX) to do matchmaking
at the cost of a system call invocation, as opposed to requiring a process-context switch.

When a process in the pool is done it makes an Accept call and waits in line in a kernel
data structure. When a new client comes in, its socket is handed off to the idle process that is
first in line. Thus the kernel provides matchmaking services directly.

6.3.2 Thread per Client
Even after removing the overheads of creating a process on demand and the overhead of match-
making, processes are an expensive solution. Since slow wide-area connections to servers are
very common and the rate of arrivals to popular Web servers can easily exceed 2000 per second,
it is not unusual for a Web server to have 6000 concurrent clients being served at once.

As we have seen, even if the processes are already created, switching between processes
incurs TLB and cache misses and requires effort to save and restore context. Further, each
process requires memory to store context. This can take away from the memory needed by the
file cache.

2While some of these early schemes may seem primitive in terms of the techniques in this book, they were
probably very simple to program and maintain. It is difficult to quantify the trade-off between efficiency and ease of
implementation and maintenance.

6.3 Avoiding Context-Switching Overhead in Applications 149

Accept
connection

Parse
request

Locate
file

Send
header

Read file
Send data

Accept
connection

Parse
request

Locate
file

Send
header

Read file
Send data

Accept
connection

Parse
request

Locate
file

Send
header

Read file
Send data

(1) MULTIPROCESS OR MULTITHREADED

(2) PURE EVENT DRIVEN

Process
(or Thread)

1

Process
(or Thread)

N

Event Dispatcher (i.e., kernel implementation of FindActive() or Select()

Single
process

Client 1

Client N

Client 1

Client N

F I G U R E 6.6 The two simplest alternatives for structuring a Web server: (1) the use of a single process (or thread)
per client; (2) a single process implementation that uses an event manager to tell the process of the status of I/O for
each client.

An intermediate stance is to use threads, or lightweight processes. Note that threads
generally trust each other, as is appropriate for all the threads processing different clients in a
Web server. Thus in Figure 6.6, we can replace the processing of each client with a separate
thread per client, all within the protection of a single process. Note that the threads share the
same virtual memory. Thus TLB entries do not have to be flushed between threads.

Further, the fact that threads can share memory implies that all threads can use a common
cache to share file name translations and even files. Implementing a process per client, on
the other hand, implies that file caches can often not be shared efficiently across processes,
because each process uses a separate virtual memory space. Thus application caches for Web
servers, as described in Chapter 5, will suffer in performance because files common to many
clients are replicated.3 Thus a popular Web server, the Apache Web server, is implemented
using a thread per client in Windows.

However, when all is said and done, the overhead for switching between threads, while
smaller than that for switching between processes, is still considerable. Fundamentally, the
operating system must still save and restore per-thread context such as stacks and registers.

3However, this replication will not cost much if a system such as I/O-Lite, described in Chapter 5, is used. The
problem is that many operating systems do not have such mechanisms to allow subsystems to share data.

150 C H A P T E R 6 Transferring Control

Also, the memory required to store per-thread or per-process state takes away from the file
cache, which then leads to potentially higher miss rates.

6.3.3 Event-Driven Scheduler
If a general-purpose operating system facility is too expensive, the simplest strategy is to avoid
it completely. Thus while thread scheduling provides a facility for juggling between clients
without further programming, if it is too expensive, the application may benefit from doing
the juggling itself. Effectively, the application must implement its own internal scheduler that
juggles the state of each client.

For example, the application may have to implement a state machine that remembers that
Client 1 is in Stage 2 (HTTP processing) while Client 2 is in Stage 3 (waiting for disk I/O)
and Client 3 is in Stage 4 (waiting for a socket buffer to clear up to send the next part of the
response).

However, the kernel has an advantage over an application program because the kernel sees
all I/O completion events. For example, if Client 1 is blocked waiting for I/O, in a per-thread
implementation, when the disk controller interrupts the CPU to say that the data is now in
memory, the kernel can now attempt to schedule the Client 1 thread.

Thus if the Web server application is to do its own scheduling between clients, the kernel
must pass information (P9) across the API to allow a single threaded application to view the
completion of all I/O that it has initiated. Many operating systems provide such a facility,
which we generically called FindActive() in Figure 6.2. For example, Windows NT 3.5 has an
I/O completion port (IOCP) mechanism, and UNIX provides the select() system call.

The main idea is that the application stays in a loop invoking the FindActive() call. Assum-
ing there is always some work to do on behalf of some client, the call will return with a list
of I/O descriptors (e.g., file 1 data is now in memory, connection 5 has received data) with
pending work. When the Web server processes these active descriptors, it loops back to making
another FindActive() call.

If there is always some client that needs attention (typically true for a busy server), there
is no need to sleep and invoke the costs of context switching (e.g., scheduler overhead, TLB
misses) when juggling between clients. Of course, such juggling requires that the application
keep a state machine that allows it to do its own context switching among the many concurrent
requests. Such application-specific internal scheduling is more efficient than invoking the
general-purpose, external scheduler. This is because the application knows the minimum set
of context that must be saved when moving from client to client.

The Zeus server and the original Harvest/Squid proxy cache server use the single-process
event-driven model. Figure 6.6 contrasts the multiprocess (and multithreaded) server architec-
tures with an event-driven architecture. The details of a generic event-driven implementation
using a single process can be found in Barile [Bar04], together with pointers to source code.
Barile [Bar04] describes generic code that is abstracted to work across platforms (a crucial
requirement for today’s server environments), including Windows and UNIX.

6.3.4 Event-Driven Server with Helper Processes
In principle, an event-driven server can extract as much concurrency from a stream of client
operations as a multiprocess or multithreaded server. Unfortunately, many operating systems,
such as UNIX, do not provide suitable support for nonblocking disk operations.

6.3 Avoiding Context-Switching Overhead in Applications 151

For example, if an event-driven server is not to waste opportunities to do useful work, then
when it issues a read() to a file that is not in cache, we wish the read() to return immediately
saying it is unavailable so that the read() is nonblocking. This allows the server to move on to
other clients. Later, when the disk I/O completes, the application can find out using the next
invocation of the FindActive() call. On the other hand, if the read() call is blocking, then the
server main loop would be stuck waiting for the milliseconds required for disk I/O to complete.

The difficulty is that many operating systems, such as Solaris and UNIX, allow nonblock-
ing read() and write() operations on network connections but may block when used on disk
files. These operating systems do allow other asynchronous system calls for disk I/O, but these
are not integrated with the select() call (i.e., the UNIX equivalent of FindActive()). Thus in
such operating systems one must choose between the loss of concurrency incurred by blocking
on disk I/O and going beyond the single-process model.

The Flash Web server [PDZ99a] goes beyond the single-process model to maximize con-
currency. When a file is to be read, the main server process first tests if the file is already in
memory using either a standard system call4 or by locking down the file cache pages so that the
server process always knows which files are in the cache.5 If the file is not in memory, the main
server process instructs a helper process to perform the potentially blocking disk read. When
the helper is done, it communicates to the main server process via some form of interprocess
communication such as a pipe.

Note that unlike the multiprocess model, helpers are needed only for each concurrent disk
operation and not for each concurrent client request. In some sense, this model exploits a
degree of freedom (P13) by observing that there are interesting alternatives between a single
process and a process per client.

Besides file reads, helper processes can also be used to do directory lookups to locate the file
on disk. While Flash maintains a cache that maps between directory path names and disk files,
if there is a cache miss, then there is a need to search through on-disk directory structures. Since
such directory lookups can also block, these are also relegated to helper processes. Increasing
the pathname cache does increase memory consumption, but the reduced cache miss rate may
reduce the number of helper processes required and so decrease memory overall.

Clearly, helper processes should be prespawned to avoid the latency of creating a process
each time a helper process is invoked. How many helper processes should be spawned? Too few
can cause concurrency loss, and too many results in wasted memory. The solution in Flash
[PDZ99a] is to dynamically spawn and destroy helper processes according to load.

6.3.5 Task-Based Structuring
The top of Figure 6.7 depicts the event-driven approach augmented with helper processes.
Notice the similarity to the simple event-handler approach shown at the bottom of Figure 6.6,
except for the addition of helper processes.

There are some problems with the event-driven architecture with helper processes.

• Complexity: The application designer must manage the state machine for juggling client
requests without help.

4The original Flash Web server uses UNIX’s mincore() command.
5If the virtual memory system could swap out cached files under the nose of the server, the server may think a

file is in cache when it really is not.

152 C H A P T E R 6 Transferring Control

Accept
connection

Parse
request

Locate
file

Send
header

Read file
Send data

Accept
connection

Parse
request

Locate
file

Send
header

Read file
Send data

Accept
connection

Parse
request

Locate
file

Send
header

Read file
Send data

(4) STAGED EVENT DRIVEN

(3) EVENT DRIVEN PLUS HELPER PROCESSES

Event Dispatcher (i.e., kernel implementation of FindActive() or Select()

Single
process

Client 1

Client N

Client 1

Client N

Helper process 1 Helper process K

Stage 1
(one or more
processes)

Stage 2
(one or more
processes)

Stage 3
(one or more
processes)

Stage 4
(one or more
processes)

Stage 5
(one or more
processes)

F I G U R E 6.7 Two other proposals for Web architectures besides the two shown in Figure 6.6: (3) event-driven
plus helper processes; (4) staged event-driven architecture.

• Modularity: The code for the server is written as one piece. While Web servers are
popular, there are many other Web services that may use some similar pieces of code
(e.g., for accepting connections). A more modular approach could allow code reuse.

• Overload control: Production Web servers have to deal with wide variations of load from
huge client populations. Thus it is crucial to continue to make some progress during
overload (without thrashing) and to be as fair as possible across clients.

The main idea in the staged event-driven architecture [WCB01] is to exploit another degree
of freedom (P13) in decomposing code. Instead of decomposing into threads horizontally by
client, as in a multithreaded architecture, the server system is decomposed vertically by tasks
within each client request cycle, as shown on the bottom of Figure 6.6. Each stage can be
handled by one or more threads. Thus the staged model can be considered a refinement of the
simple event-driven model. This is because it assigns a main thread and a potential thread to
each stage of server processing. Once that is done, the stages communicate via queues, and
more refined overload control can be done at each stage.

6.4 Fast Select 153

6.4 FAST SELECT

To motivate the fast-selection problem, Section 6.4.1 presents a mysterious performance
problem found in the literature. Section 6.4.2 then describes the usage and implementa-
tion of the select() call in UNIX. Section 6.4.3 describes an analysis of the overheads, and
applies the implementation principles to suggest ideas for improvement. Based on the anal-
ysis, Section 6.4.4 describes an improvement, assuming that the API cannot change. Finally,
Section 6.4.5 proposes an even better solution that involves a more dramatic change to the API.

6.4.1 A Server Mystery
The previous section suggested that avoiding process-scheduling overheads was important in
a Web server. For example, an event-driven server completely reduces process scheduling
overhead by using a single thread for all clients and then using a FindActive() call such as
select(). Now, the CERN Web proxy used a process per client, and the Squid (formerly
Harvest) Web server [CDea96] used an event-driven implementation. Measurements done in
a LAN environment indeed showed [CDea96] that the Squid Web proxy performed an order
of magnitude better than the CERN server.

A year later another group repeated these tests in a WAN (i.e., wide area network) environ-
ment [MRG97] and found that in the WAN environment there was no difference in performance
between the CERN and Squid servers. The problem is to elucidate this mystery.

The mystery was finally solved by Banga and Mogul [BM98]. A key observation is that
given the same throughput (in terms of connections per second), the higher round-trip delays
in a WAN environment lead to a larger number of concurrent connections in a WAN setting.
For example, in a WAN environment with mean connection times of 2 seconds [BMD99] and
a Web server throughput of 3000 connections per second, Little’s law (from queuing theory)
predicts that the average number of concurrent connections is the product, or 6000.

On the other hand, in a LAN environment with a round-trip delay of 2 msec, the average
number of concurrent connections drops to six. Note that if the throughput stays the same, in
the wide area setting a large fraction of the connections must be idle (waiting for replies) at
any given time.

Given this, the two main causes of overhead were two system calls used by the event-
driven server. The standard UNIX implementation of both these calls scales poorly with a large
number of connections. The two calls were:

• select(): Event-driven servers running on UNIX use the select() call for the FindActive()
call. Experiments by Banga and Mogul [BM98] show that more than half of the CPU is
used for kernel and user-level select() functions with 500 connections.

• ufalloc(): The server also needs to allocate the lowest unallocated descriptor for new
sockets or files. This seemingly simple call took around a third of the CPU time.

ufalloc() performance can easily be explained and fixed. Normally, finding a free descriptor
can be efficiently implemented using a free list of descriptors. Unfortunately, UNIX requires
choosing the lowest unused descriptor. For example, if the currently allocated descriptor
list has the elements (in unsorted order) 9, 1, 5, 4, 2, then one cannot determine that the lowest
unallocated number is 3 without traversing the entire unsorted list. Fortunately, a simple change

154 C H A P T E R 6 Transferring Control

to the kernel implementation (P15, use efficient data structures) can reduce this overhead to
nearly zero.6

6.4.2 Existing Use and Implementation of select()
Assuming that ufalloc() overhead can easily be minimized by changing the kernel implementa-
tion, it is important to improve the remaining bottleneck caused by the select() implementation
in an event-driven server. Because the causes of the problem are more complex, this section
starts by reviewing the use and implementation of select() in order to understand the various
sources of overhead.

PARAMETERS

Select() is called as follows:

• Input: An application calls select() with three bitmaps of descriptors (one for descriptors it
wishes to read from, one for those it wishes to write from, and one for those it wishes to
hear exceptions from) as well as a timeout value.

• Interim: The application is blocked if there is no descriptor ready.

• Output: When something of interest occurs, the call returns with number of ready
descriptors (passed by value as an integer) and the specific lists of descriptors of each
category (passed by reference, by overwriting input bitmaps).

USAGE IN A WEB SERVER

Having understood the parameters of the select() call, it is important to understand how select()
could be used by an event-driven Web server. A plausible use of select() is as follows [BM98].
The server application thread stays in a loop with three major components:

• Initialize: The application first zeroes out bitmaps and sets bits for descriptors of interest
for read and write. For example, the server application may be interested in reading from
file descriptors and writing and reading from network sockets open to clients.

• Call: The application then calls select() with bitmaps it built in the previous step, and it
blocks if no descriptor is ready at the point of call; if a timeout occurs, the application does
exception processing.

• Respond: After the call returns, the application linearly walks through returned bitmaps
and invokes appropriate read and write handlers for descriptors corresponding to set bit
positions.

Note that the costs of building the bitmaps in Step 1 and scanning the bitmaps in Step 3
are charged to the user, though they are directly attributable to the costs of preparing for and
responding to a select() call.

6While the reader familiar with algorithms will immediately think of a heap, a better solution, which exploits
typical computer architectures, is explored in Exercise 3.

6.4 Fast Select 155

IMPLEMENTATION

Having understood the parameters of the select() call, it is important to understand how select()
is implemented in the kernel of a typical UNIX variant [WS95]. The kernel does the following
(annotated with sources of overhead):

• Prune: The kernel starts by using the bitmaps passed as parameters to build a summary of
descriptors marked in at least one bitmap (called the selected set).

This requires a linear search through bitmaps of size N regardless of how many descriptors
the application is currently interested in.

• Check: Next, for each descriptor in the selected set, the kernel checks if the descriptor is
ready; if not, the kernel queues the application thread ID on the select queue of the
descriptor. The kernel puts the calling application thread to sleep if no descriptors are
ready.

This requires investigation of all selected descriptors, independent of how many are actually
ready. This step is more expensive than simply scanning a bitmap.

• Resume: When I/O occurs to make a descriptor ready (i.e., a packet arrives to a socket that
the server is waiting for data from), the kernel I/O module checks its select queue and
wakes up all threads waiting for a descriptor.

This requires scheduler overhead, which seems fundamentally unavoidable without polling
or busy waiting.

• Rediscover: Finally, select() rediscovers the list of ready descriptors by making a scan of
all selected descriptors to see which have become ready between the time select() was put
to sleep and was later awakened. This requires repeating the same expensive checks made
in Step 2.

They are repeated despite the fact that the I/O module knew which descriptors became ready
but did not inform the select() implementation.

6.4.3 Analysis of Select()
We start by describing opportunities for optimization in the existing select() implementation
and then use our principles to suggest strategies to improve performance.

OBVIOUS WASTE IN Select() IMPLEMENTATION

Principle P1 seeks to remove obvious waste. In order to apply Principle P1, it helps to catalog
the sources of “obvious waste” in the select() implementations. With each source of waste,
we also attach a scapegoat that can be blamed for the waste.

1. Recreating interest on each call: The same bitmap is used for input and output. This
overloading causes the application to rebuild the bitmaps from scratch, though it may
be interested in most of the same descriptors across consecutive calls to select(). For

156 C H A P T E R 6 Transferring Control

example, if only 10 bits change in a bitmap of size 6000 on each call, the application still
has to walk through 6000 bits, to set each if needed.

Blame this on either the interface (API) or on the lack of incremental computing in the
application.

2. Rechecking state after resume: No information is passed from a protocol module (that
wakes up a thread sleeping on a socket) to the select() call that is invoked when the thread
resumes. For example, if the TCP module receives data on socket 9, on which thread 1 is
sleeping, the TCP module will ensure that thread 1 is woken up. However, no information
is passed to thread 1 as to who woke up thread 1; thus thread 1 must again check all
selected sockets to determine that socket 9 indeed has data. Clearly, the TCP module
knew this when it woke up thread 1.

Blame the kernel implementation.

3. Kernel rechecks readiness for descriptors known not to be ready: The Web server
application is typically interested in a socket until connection failure or termination.
In that case, why repeat tests for readiness if no change in state has been observed? For
example, assume that socket 9 is a connection to a remote client with a delay of 1 second
to send and receive network packets. Assume that at time t a request is sent to the client
on socket 9 and the server is waiting for a response, which arrives at t + 1 seconds.
Assume that in the interval from t to t + 1, the server thread calls select() 15,000 times.
Each time select() is called the kernel makes an expensive check of socket 9 to determine
that no data has arrived. Instead, the kernel can infer this from the fact that the socket was
checked at time t and no network packet has been received for this socket since time t.
Thus 15,000 expensive and useless checks can be avoided; when the packet finally arrives
at time t + 1, the TCP module can pass information to reinstate checking of this
socket.

Blame the kernel implementation.

4. Bitmaps linear with descriptor size: Both kernel and user have to scan bitmaps
proportional to the size of possible descriptors, not to the amount of useful work returned.
For example, if there are 6000 possible descriptors a Web server may have to deal with at
peak load, the bitmaps are of length 6000. Suppose during some period there are 100
concurrent clients, of which only 10 are ready during each call to select(). Both kernel
and application are scanning and copying bitmaps of size 6000, though the application is
only interested in 200 bits and only 10 bits are set when each select() returns.

Blame the API.

STRATEGIES AND PRINCIPLES TO FIX SELECT

Given the sources of waste just listed, some simple strategies can be applied using our
algorithmic principles.

6.4 Fast Select 157

• Recreate interest on each call: Consider changing the API (P9) to use separate bitmaps for
input and output. Alternatively, preserve the API and use incremental computation. (P12a)

• Recheck state after resume: Pass information between protocol modules that know when a
descriptor is ready and the select module. (P9)

• Have kernel recheck readiness for descriptors known not to be ready. Kernel keeps state
across calls so that it does not recheck readiness for descriptors known not to be ready.
(P12a, use incremental computation)

• Use bitmaps linear with ready size, not descriptor size: Change the API in a fundamental
way to avoid the need for state-based queries about all descriptors represented by
bitmaps. (P9)

6.4.4 Speeding Up Select() without Changing the API
Banga and Mogul [BM98] show how to eliminate the first three (of the four) elements of waste
listed earlier.

1. Avoid rebuilding bitmaps from scratch: The application code is changed to use two bitmaps
of descriptors it is interested in. Bitmap A is used for long-term memory, and bitmap
B is used as the actual parameter passed by reference to select(). Thus between calls
to select(), only the (presumably few) descriptors that have changed have to be updated
in bitmap A. Before calling select(), bitmap A is copied to bitmap B. Because copy can
proceed a word at a time, the copy is more efficient than a laborious bit-by-bit inspection
of the bitmap. In essence, the new bitmap is being computed incrementally. (P12a)

2. Avoid rechecking all descriptors when select() wakes up: To avoid this overhead, the
kernel implementation is modified such that each thread keeps a hints set H that records
sockets that have become ready since the last time the thread called select(). The protocol
or I/O modules are modified such that when new data arrives (network packet, disk I/O
completes), the corresponding descriptor index is written to the hints set of all threads that
are on the select queue for that descriptor. Finally, after a thread wakes up in select(), only
the descriptors in H are checked. The essence of this optimization is passing hints
between layers. (P9)

3. Avoid rechecking descriptors known not to be ready: The fundamental observation is that
a descriptor that is waiting for data need not be checked until asynchronous notification
occurs (e.g., the descriptor is placed in hints set H described earlier). Clearly, however,
any newly arriving descriptors (e.g., newly opened sockets) must be checked. A third,
subtle point is that even after network data has arrived for a socket (e.g., 1500 bytes), the
application may read only 200 bytes. Thus a descriptor must be checked for readiness
even after data first arrives, until there is no more data left (i.e., application reads all data)
to signify readiness.

To implement these ideas, besides the hints set H for each thread, the kernel
implementation keeps two more sets. The first is an interested set I of all descriptors the
thread is interested in. The second is a set of descriptors R that are known to be ready.
The interested set I reflects long-term interest; for example, a socket is placed in I the first
time it is mentioned in a select() call and is removed only when the socket is disconnected

158 C H A P T E R 6 Transferring Control

or reused. Let the set passed to select() be denoted by S. Then I is updated to
Inew = Iold ∪ S. Note that this incorporates newly selected descriptors without losing
previously selected descriptors.7

Next, the kernel checks only those descriptors that are in Inew but are either (i) in the
hints set H or (ii) not in Iold or (iii) in the old ready set Rold . Note that these three
predicates reflect the three categories discussed two paragraphs back. They represent
either recent activity, newly declared interest, or unconsumed data resulting from prior
activity. The descriptors found by the check to be ready are recorded in Rnew. Finally, the
select() call returns to the user the elements in Rnew ∩ S. This is because the user only
cares about the readiness of descriptors specified in the selecting set S.

As an example, socket 15 may be checked when it is first mentioned in a select() call
and so enters I; socket 15 may be checked next when a network packet of 500 bytes
arrives, causing socket 15 to enter H; finally, socket 15 may be checked repeatedly as part
of R until the application consumes all 500 bytes, at which point socket 15 leaves R.
The basis of this optimization is P12, adding state for speed. The optimization maintains
state across calls (P12) to reduce redundant checks.

6.4.5 Speeding Up Select() by Changing the API
The technique described in Section 6.4.4 improves performance considerably by eliminating
the first three (and chief) sources of overhead in select(). However, it does so by maintaining
extra state (P12) in the form of three more sets of descriptors (i.e., H, I , and R) that are also
maintained as bitmaps. This, taken together with the selection set S passed in each call, requires
the scanning and updating of four separate bitmaps.

In a situation where a large number of connections are present but only a few are active at
any instant, this fundamentally still requires paying some small overhead, proportional to the
total number of connections as opposed to the number of active connections. This is the fourth
source of “waste” enumerated earlier, and it appears unavoidable given the present API.

Further, as we saw earlier, even the modified fast select() potentially checks a descriptor
multiple times for each event such as a packet arrival (if the application does not consume all
the data at once). Such additional checks are unavoidable because select() provides the state
of each descriptor.

If one looks closely at the interface, what the application fundamentally requires is to be
notified of the stream of events (e.g., file I/O completed, network packet arrived) that causes
changes in state. Event-based notifications appear, on the surface, to have some obvious
drawbacks that may have prevented them from being used in the past.

• Asynchronous Notification: If the application is notified as soon as an event occurs, this
can take excessive overhead and be difficult to program. For example, when an application
is servicing socket 5, a packet to socket 12 may arrive. Interrupting the application to
inform it of the new packet may be a bad idea.

• Excessive Event Rate: The application is interested in the events that cause state change
and not in the raw event stream. For a large Web transfer, several packets may arrive to a
socket and the application may wish to get one notification for a batch, and not one for

7The reader may wonder whether it suffices to set I = S. The exercises explore some of the issues with this
alternative implementation.

6.5 Avoiding System Calls 159

every packet. The overhead for each notification is in terms of communication costs (CPU)
as well as storage for each notification.

Principle P6 suggests designing efficient specialized routines to overcome bottlenecks.
In this spirit, Banga, Mogul, and Druschel [BMD99] describe a new event-based API that
avoids both these problems.

• Synchronous Inquiry: As in the original select() call, the application can inquire for
pending events. For example, in the previous example, the application continues to service
socket 5 and all other active sockets before asking for (and being told about) events such
as packet arrival on socket 5.

• Coalescing of Events: If a second event occurs for a descriptor while a first event has been
queued for notification, the second notification is omitted. Thus there can be at most one
outstanding event notification per descriptor.

The use of this new API is straightforward and roughly follows the style in which appli-
cations use the old select() API. The application stays in a loop in which it asks synchronously
for the next set of events and goes to sleep if there are none. When the call returns, the applica-
tion goes through each event notification and invokes the appropriate read or write handlers.
Implicitly, the setting up of a connection registers interest in the corresponding descriptor,
while disconnection removes the descriptor from the interest list.

The implementation is as follows. Associated with each thread is a set of descriptors in
which it is interested. Each descriptor (e.g., socket) keeps a reverse mapping list of all threads
interested in the descriptor. On I/O activity (e.g., data arrival on a socket), the I/O module
uses its reverse mapping list to identify all potentially interested threads. If the descriptor is in
the thread’s interested set, a notification event is added to a queue of pending events for that
thread.

A simple per-thread bitmap, one bit per descriptor, is used to record the fact that an event
is pending in the queue and is used to avoid multiple event notifications per descriptor. Finally,
when the application asks for the next set of events, these are returned from the pending queue.8

6.5 AVOIDING SYSTEM CALLS

For now forget about the intervening discussion of select(), and recall the discussion of user-
level networking. We seem to have gotten the kernel out of the picture on the receipt or sending
of a packet, but sadly that is not quite the case. When an application wants to send data, it
must somehow tell the adaptor where the data is.

When the application wants to receive data, it must specify buffers where the received
packet data should be written to. Today, in UNIX this is typically done using system calls,
where the application tells the kernel about data it wishes to send and buffers it wishes to
receive to. Even if we implement the protocol in user space, the kernel must service these
system calls (which can be expensive; see Chapter 2) for every packet sent and received.

This appears to be required because there can be several applications sending and receiving
data from a common adaptor; since the adaptor is a shared resource, it seems unthinkable for

8This simple description glosses over some tricky race conditions and overflow conditions.

160 C H A P T E R 6 Transferring Control

Application

Kernel

Page 10X: =10

TLB:

F I G U R E 6.8 Reading and writing to memory is not mediated by the kernel.

Application

Kernel

Page 12

TLB:

Page 18

VP 10:
Descriptors

18, 12 List of allowed
pages for ADC

VP 10

F I G U R E 6.9 Application device channels.

an application to write directly to the device registers of a network adaptor without kernel
mediation to check for malicious or erroneous use. Or is it?

A simple analogy suggests that alternatives may be possible. In Figure 6.8 we see that
when an application wants to set the value of a variable X equal to 10, it does not actually
make a call to the kernel. If this were the case, every read and write in a program would be
slowed down very badly. Instead, the hardware determines the virtual page of X, translates it to
a physical page (say, 10) via the TLB, and then allows direct access as long as the application
has Page 10 mapped into its virtual memory.

If Page 10 is not mapped into the application’s virtual memory, the hardware generates an
exception and causes the kernel to intervene to determine why there is a page access violation.
Notice that the kernel was involved in setting up the virtual memory for the application (only the
kernel should be allowed to do so, for reasons of security) and may be involved if the application
violates its page accesses that the kernel set up. However, the kernel is not involved in every
access. Could we hope for a similar approach for application access to adaptor memory to
avoid wasted system calls (P1)?

To see if this is possible we need to examine more carefully what information an appli-
cation sends and receives from an adaptor. Clearly, we must prevent incorrect or malicious
applications from damaging other applications or the kernel itself. Figure 6.9 shows an appli-
cation that wishes to receive data directly from the adaptor. Typically, an application that does
so must queue a descriptor. A descriptor is a small piece of information that describes the
buffer in main memory where the data for the next packet (for this application) should be
written to. Thus we should consider carefully and separately both descriptor memory as well
as the actual buffer memory.

We can deal with descriptor memory quite easily by recalling that the adaptor memory
is memory mapped. Suppose that the adaptor has 10,000 bytes of memory that is considered

6.5 Avoiding System Calls 161

memory on the bus and that the physical page size of the system is 1000 bytes. This means
that the adaptor has 10 physical pages. Suppose we allocate two physical pages to each of five
high-performance applications (e.g., Web, FTP) that want to use the adaptor to transfer data.
Suppose the Web application gets two physical pages, 9 and 10. Then the kernel maps the
physical pages 9 and 10 into the Web application’s page table and the physical pages 3 and 4
into the FTP application’s page table.

Now the Web application can write directly to physical pages 9 and 10 without any danger;
if it tries to write into pages 3 and 4, the virtual memory hardware will generate an exception.
Thus we are exploiting existing hardware (P4c) in the form of the TLB to protect access to
pages. So now let us assume that Page 10 is a sequence of free buffer descriptors written by
the Web application; each buffer descriptor describes a page of main memory (assume this can
be done using just 32 bits) that will be used to receive the next packet described for the Web
application.

For example, Page 10 could contain the sequence 18, 12 (see Figure 6.9). This means that
the Web application has currently queued physical pages 18 and 12 for the next incoming packet
and its successor. We assume that pages 18 and 12 are in main memory and are physically
locked pages that were assigned to the Web application by the kernel when the Web application
first started.

When a new packet arrives for the Web application, the adaptor will demultiplex the
packet to the descriptor Page 10 using a packet filter, and then it will write the data of the
packet (using DMA) to Page 18. When it is done, the adaptor will write the descriptor 18 to
a page of written page descriptors (exactly as in fbufs), say, Page 9, that the Web application
is authorized to read. It is up to the Web application to finish processing written pages and
periodically to queue new free buffer descriptors to the adaptor.

This sounds fine, but there is a serious security flaw. Suppose the Web application, through
malice or error, writes the sequence 155, 120 to its descriptor page (which it can do). Suppose
further that Page 155 is in main memory and is where the kernel stores its data structures. When
the adaptor gets the next packet for the Web application it will write it to Page 155, overwriting
the kernel data structures. This causes a serious problem, at least causing the machine to crash.

Why, you may ask, can’t virtual memory hardware detect this problem? The reason is that
virtual memory hardware (observe the position of the TLB in Figure 6.8) only protects against
unauthorized access by processes running on the CPU. This is because the TLB intercepts
every READ (or WRITE) access done by the CPU and can do checks. However, devices like
adaptors that do DMA bypass the virtual memory system and access memory directly.

This is not a problem in practice because applications cannot program the devices (such
as disks, adaptors) to read or write to specific places at the application’s command. Instead,
access is always mediated by the kernel. If we are getting rid of the kernel, then we have to
ensure that everything the application can instruct the adaptor to do is carefully scrutinized.

The solution used in the application device channel (ADC) [DDP94] solution promoted
by Druschel, Davy, and Peterson is to have the kernel pass (P9, pass hints in interfaces)
the adaptor a list of valid physical pages that each application using the adaptor can access
directly. This can be done once when the application first starts and before data transfer begins.
In other words, the time-consuming computation involved in authorizing pages is shifted in
time (P2) from the data transfer phase to application initialization. For example, when the Web
application first starts, it can ask the kernel for two physical pages, say, 18 and 12, and then
ask the kernel to authorize the use of these pages to the adaptor.

162 C H A P T E R 6 Transferring Control

The kernel is then bypassed for normal data operation. However, if now the Web applica-
tion queues the descriptor 155 and a new packet arrives, the adaptor will first check the number
155 against its authorized list for the application (i.e., 18, 12). Since 155 is not in the list, the
adaptor will not overwrite the kernel data structures (phew!).

In summary, ADCs are based on shifting protection functions in space (P3c) from the
kernel to the adaptor, using some precomputed information (list of allowed physical pages,
P2a) passed from the kernel to the adaptor (P9), and augmented with the normal virtual
memory hardware (P4c).

The architecture community has, in recent years, been promoting the use of active mes-
sages [vECea92], for similar reasons. An active message is a message that carries the address
of the user-level process that will handle the packet.9

An active message (such as the ADC approach) avoids kernel intervention and tempo-
rary buffering by using preallocated buffers or by using small messages that are responded to
directly by the application, thus providing low latency. Low latency, in turn, allows computa-
tion and communication to overlap in parallel machines. The active messages implementation
[vECea92] allowed only small messages or (large) block transfer. The fast messages implemen-
tation [PKC97] goes further to combine user-level scatter–gather interfaces and flow control
to enable uniform high performance for a continuum from short to long messages.

WHAT ARE KERNELS GOOD FOR?

It is important to consider this question because the ADC and active message approaches
bypass the kernel. Kernels are good for protection (protecting the system and good users from
malice or errors) and for scheduling resources among different applications. Thus if we remove
the kernel from the run-time data path, it is up to the solution to provide these services in lieu
of the kernel. For example, ADCs do protection using the virtual memory hardware (to protect
descriptors) and adaptor enforcement (to protect buffer memory).

It also must multiplex the physical communication link (especially on the sending side)
among the different application device channels and provide some sort of fairness. To do this
in every device would require replicating traditional kernel code in every device; however,
it can be argued that some devices, such as the disk and the network adaptor, are special in
terms of their performance needs and are worth giving special treatment. There is a movement
afoot to make some of these ideas commercial based on the ADC idea and the UUNet solution
(similar to ADCs and proposed concurrently) advocated at Cornell [vEBea95]. We now briefly
describe this proposal, known as virtual interface architecture (VIA).

6.5.1 The Virtual Interface Architecture (VIA) Proposal
Virtual interface architecture (VIA [CIC97]) is a commercial standard that advocates the ideas
inADCs. The term virtual interface makes sense because one can think of an application device
channel as providing each application with its own virtual interface that it can manipulate
without kernel intervention. The virtual interfaces are, of course, multiplexed on a single
physical interface. VIA was proposed by an industry consortium that includes Microsoft,
Compaq, and Intel.

9This is a way of avoiding packet filters completely by passing more information in packets, but it is a bit
scary in a networking environment because of the security risks; however, it is typically used only within clusters of
machines that trust each other.

6.6 Reducing Interrupts 163

VIA uses the following terminology that can easily be understood based on the earlier
discussion.

• Registered Memory: These are regions of memory that the application uses to send and
receive data. These regions are authorized for the application to read and write from; they
are also pinned down to avoid paging.

• Descriptor: To send or receive a packet, the application uses a user-level library (libvia)
to construct a descriptor that is just a data structure with information about the buffer, such
as a pointer. VIA allows a descriptor to refer to multiple buffers in registered memory (for
scatter–gather) and allows different memory protection tags. Descriptors can be added to a
descriptor queue.

• Doorbells: These represent an unspecified method to communicate descriptors to the
network interface. This can be done via writing part of the interface card’s memory or by
triggering an interrupt on the card; it varies from implementation to implementation.
Doorbells are pointers to descriptors, thus leading to a second level of indirection.

The VIA standard has a few problems that are partly addressed in Dittia et al. [DPJ97]
and Buonadonna et al. [BGC02]. These problems (with some sample solutions) are:

• Small message performance: To actually send data requires following a doorbell to a
descriptor (quite large, around 45 bytes [BGC02]) to the data. For small messages, this can
be high overhead. (One way to fix this problem suggested in Buonadonna et al. [BGC02]
is to combine the descriptor and the data for small messages.)

• Doorbell memory: Just as registered memory is protected, so must doorbells be protected
(as in the ADC proposal). Thus the VIA specification requires that each doorbell be
mapped to a separate user page, which is a waste of the virtual address space for small
descriptors. (One way to avoid this is to combine multiple descriptors into a single page,
as suggested in Dittia et al. [DPJ97]. However, this requires some additional machinery.)

The VIA specifications [CIC97] are somewhat vague. For more details the reader may
wish to consult more complete system implementations (such as Refs. BGC02 and DPJ97).

6.6 REDUCING INTERRUPTS

We have worked our way down the hierarchy of control overheads from process scheduling
to select call implementations to system calls. At the bottom of the list is interrupt overhead.
While involving less overhead than process scheduling or system calls, interrupt overhead can
be substantial. Each time a packet arrives, fielding the corresponding interrupt from the device
disrupts processor pipelines and requires some context switching to service the interrupt. There
is no way to avoid interrupts completely. However, one can reduce interrupt overhead using
the following tricks.

• Interrupt only for significant events: For example, in the ADC solution, the adaptor does
not need to interrupt the processor on every packet reception but only for the first packet
received in a stream of packets (we can assume the application will check for more packets
received) and when the queue of free buffer descriptors becomes empty. This can reduce

164 C H A P T E R 6 Transferring Control

interrupt overhead to 1 in N packets received, if N packets are received in a burst. This is
just an application of batching, or expense sharing (P2c).

• Polling: The idea here is that the processor (CPU) keeps checking to see if packets have
arrived and the adaptor never interrupts. This can be more overhead than interrupt-driven
processing if the number of packets received is low, but it can become more efficient for
high throughput data streams. Another variation is clocked interrupts [ST]: The CPU
periodically polls when a timer fires.

• Application controlled: An even more radical idea, once proposed by Dave Clark, is that
the sender be able to control when the receiver interrupts by passing a bit in the packet
header. For example, a sending FTP could set the interrupt bit only for the last data packet
in a file transfer. This is another example of P10, passing hints in protocol headers. It is
probably too radical for use. However, a more recent paper [DPJ97] proposes implemen-
ting a refinement of this idea in an ATM chip that was indeed fabricated.

In general, the use of batching works quite well in practice. However, in some implemen-
tations, such as the first bridge implementation (described in Chapter 10), the use of polling is
also very effective. Thus more radical ideas, such as clocked or application-controlled inter-
rupts, have become less useful. Note that the RDMA ideas described in Chapter 5 also have the
great potential advantage of removing the need for both per-packet system calls and per-packet
interrupts for a large data transfer.

6.6.1 Avoiding Receiver Livelock
Besides inefficiencies due to the cost of handling interrupts, interrupts can interact with oper-
ating system scheduling to drive end-system throughput to zero, a phenomenon known as
receiver livelock. Recall that in Example 8 of Chapter 2 we showed that in BSD UNIX the
arrival of a packet generates an interrupt. The processor then jumps to the interrupt handler
code, bypassing the scheduler, for speed. The interrupt handler copies the packet to a kernel
queue of IP packets waiting to be consumed, makes a request for an operating system thread
(called a software interrupt), and exits.

Recall also that under high network load, the computer can enter what is called receiver
livelock [MR97], in which the computer spends all its time processing incoming packets, only
to discard them later because the applications never run. If there is a series of back-to-back
packet arrivals, only the highest-priority interrupt handler will run, possibly leaving no time
for the software interrupt and certainly none for the browser process. Thus either the IP or
socket queues will fill up, causing packets to be dropped after resources have been invested in
their processing.

One basic technique that seems necessary [MR97] is to turn off interrupts when too little
application processing is occurring. This can be done by keeping track of how much time is
spent in interrupt routines for a device and masking off that device if the fraction spent exceeds
a specified percentage of total time. However, merely doing so can drop all packets that arrive
during overload, including well-behaved and important packet flows.

A very nice solution to this problem is described by Druschel and Banga [DB96],10 who
suggest combating this problem via two mechanisms. First, they suggest using a separate

10This solution was also explored in the Exercises for Chapter 2.

6.7 Conclusions 165

queue per destination socket instead of a single shared queue. When a packet arrives, early
demultiplexing (Chapter 8) is used to place the packet in the appropriate per-socket queue.
Thus if a single socket’s queues fill up because its application is not reading packets, other
sockets can still make progress.

The second mechanism is to implement the protocol processing at the priority of the
receiving process and as part of the context of the received process (and not a separate software
interrupt). First, this removes the unfair practice of charging protocol processing for application
X to the application, Y , that was running when the packet for X arrives. Second, it means that if
an application is running slowly, its per-socket queue fills up and its particular packets will be
dropped, allowing others to progress. Third, and most importantly, since protocol processing
is done at a lower priority (application processing), it greatly alleviates the livelock problem
caused by the partial processing (i.e., protocol processing only) of many packets without the
corresponding application processing required to remove these packets from the socket queue.

This mechanism, called lazy receiver processing (LRP), essentially uses lazy evaluation
(P2b), not so much for efficiency but for fairness and to avoid livelock. Solutions that require
less drastic changes are described in Mogul and Ramakrishnan [MR97].

6.7 CONCLUSIONS

After the basic restructuring to avoid copying, control overhead is probably the next most
important overhead to attack in a networking application. From reducing the overhead of
process scheduling to limiting system calls to reducing interrupt overhead, fast server imple-
mentations must reduce unnecessary overheads due to these causes. Newer operating systems,
such as Linux, are making giant strides in reducing the inherent control overhead costs. How-
ever, modern architectures are getting faster in the processing of instructions using cached data
without a commensurate speedup in context switching and interrupt processing.

This chapter started by surveying basic techniques for reducing process-scheduling
overhead for networking code. These lessons have been taken to heart by the networking
community. Hardly any implementor worth his or her salt will do something egregious, such
as structuring each layer as a separate process, and not resort freely to upcalls. However, the
deeper lesson of Figure 6.3 is not the seemingly arcane structure, but the implicit idea of
user-level networking. User-level networking was not developed at the time Clark presented
his paper, and it is still not very well known. Note that user-level networking, together with
application device channels, makes possible technologies such as VIA, which may become
part of real systems in order to avoid system calls when sending and receiving packets.

On the other hand, the art of structuring processing in the application context — for
example, a Web server — has received attention only more recently. While event-driven servers
(augmented with helper processes) satisfactorily balance the need to maximize concurrency
and minimize context-switching overhead, the software engineering aspects of such designs
still leave many questions unanswered. Will the event-driven approach suffice in a production
environment with rapid changes and facilitate debugging? The staged event-driven approach is
a step in this direction, but the engineering of large Web servers will surely require more work.

The event-driven approach also relies on the fast implementation of equivalents of
the select() call. While the UNIX approaches have fundamental scalability problems, it is

166 C H A P T E R 6 Transferring Control

reassuring that other popular operating systems, such as Windows [BMD99], have much more
efficient APIs.

Allowing applications to communicate directly with network devices using a protected
virtual interface is an idea that seems to be gaining ground through the VIA standard. Ideally,
adaptors are designed to enable VIA or similar mechanisms. Finally, while interrupts are
fundamentally unavoidable, their nuisance value can be greatly mitigated by the use of batching
and the use of polling in appropriate environments.

Figure 6.1 shows a list of the techniques used in this chapter, with the corresponding
principles. In summary, while Epicetus urged his readers to control their passions, we feel it
is equally important for implementors of networking code to be passionate about control.

6.8 EXERCISES

1. Packet Filters and Upcalls: In the description on upcalls (Figure 6.3), we showed that
the system figured out which application the packet was for by upcalling a transport
routine. But if you can do that, who needs packet filters anyway? What hidden
assumption is being made here?

2. Comparing Web Server Structuring Models: In the text we compared various server
structuring mechanisms with respect to simple metrics such as scheduling efficiency and
CPU concurrency. Consider the following other metrics for comparison.

• Disk Concurrency: Some systems employ multiple disks and do disk scheduling. Why
might the event-driven approach have problems in such an environment, compared to a
multithreaded approach? Does the event-driven approach with helper processes have
the same problems?

• Gathering Statistics: Web servers need to keep statistics on usage patterns for
accounting. Why might gathering statistics be more complex in process-per-client and
thread-per-client architectures? Why is it simpler in an event-driven architecture?

3. Algorithms versus Algorithmics in ufalloc() Reimplementation: In this exercise we
will consider how to efficiently reimplement ufalloc() to find the lowest unallocated
descriptor.

• First consider using a binary heap. For N identifiers, how many memory accesses are
required? How much space is required, in bits?

• Assume that the machine has a W -bit (e.g., for the Alpha, W = 64) word and that there
is an efficient instruction (or set of instructions) to find the rightmost zero in a W -bit
word. Suppose the allocated descriptors are represented as set bits in a large bitmap
(P14) of size N . Show how to augment this bitmap with some extra state (P12) to
efficiently compute the lowest unallocated descriptor.

• What are the space and time costs of this scheme compared to a simple heap? Can a
simple heap be made faster by the (standard) trick of increasing the radix of the heap
to have K > 1 elements in every heap node?

6.8 Exercises 167

4. Modified Implementation of Fast select(): The text explains how elements are added to
the sets I , H, and R but does not specify completely how they are removed. Explain how
elements are removed, especially with respect to the hints set H.

5. Modified Implementation of Fast select(): In the fast select implementation of Banga
and Mogul [BM98], consider changing the implementation as follows:

(a) First, Inew is set equal to S (and not to Iold ∪ S as before).

(b) Rnew is computed as before.

(c) What is returned to the user is Rnew (and not Rnew ∩ S) as before.

Answer the following questions.

• Explain in words what is different from this implementation and the one proposed by
Banga and Mogul.

• Explain why this implementation may require one to be careful about how it removes
elements from the hints set H in order not to miss state changes due to newly arriving
packets.

• Explain how this scheme can be inferior to the existing implementation, assuming no
application changes. Find a worst-case scenario.

• Explain why this implementation can sometimes be better than the existing
implementation if the application is smart enough not to choose a socket in its selecting
set as long as it still has unread data. (In other words, if a socket has unconsumed data,
the application is smart enough not to select it until all data has been consumed.)

6. Comparing the APIC Approach to the ADC Approach: In the text we described the
ADC approach to application-level networking, thereby bypassing the kernel and
avoiding system calls. We want to compare this approach to an approach used in the APIC
chip. First use a search engine to locate and print out a paper called “The APIC Approach
to High-Performance Network Interface Design: Protected DMA and Other Techniques”
[DPJ97]. Read the paper carefully, and then answer the following questions about its
particular twists to the ADC design for a practical system.

• There are two types of memory the ADC approach protects: the device registers on
the adaptor, and the buffer memory containing the data. The first is protected by
overloading the virtual memory scheme; the second is protected by having the kernel
hand the adaptor a list of pages that an application can read/write from. Contrast this to
the APIC approach to protecting the device registers. Why is an access mask helpful?
Why is each connection register mapped both into the application and kernel memory?

• In the APIC, the buffer memory is protected by having the APIC read (from memory) a
kernel descriptor that contains validation information about the buffer. In the ADC
approach, the validating information is already in the adaptor. Why add this extra
complexity?

• In the APIC, there is a third kind of memory that needs to be protected: Buffer
descriptors contain links to other other descriptors, and this link memory needs
to be validated. Why is this not needed in the ADC approach?

168 C H A P T E R 6 Transferring Control

• A different way to do link notarization is to have the kernel create an array of pointers
to real buffers, one for each application. Only the kernel can read or write this array.
The applications queue buffer descriptors as offsets into this array. This is a standard
approach in systems called using one level of indirection. Compare this approach to the
APIC link notarization approach.

• A disadvantage of the APIC approach is that the adaptor has to do a number of READs
to main memory to do all its checks. How many such READs are required in the worst
case for a received packet? Why might this be insignificant?

• The paper describes splitting a packet into two pieces. Why is this needed? What
assumption does this method make about protocols (that an approach based on packet
filters does not need)?

C H A P T E R 7

Maintaining Timers

That was, is, and shall be: Time’s wheel runs back or stops.

— Robert Browning

A timer module in a system is analogous to a secretary who keeps track of all the appointments
of a busy executive. The executive tells the secretary to schedule appointments and sometimes
to cancel appointments before they occur. It is the secretary’s job to interrupt the executive
with a warning just before the scheduled time of an appointment. Many secretaries actually
do this using a so-called tickler file, which is a moving window over the next N days. When
the day’s appointments are done, the tickler file is rolled to bypass the current day. We will
find a strong analogy between a tickler file and a timing wheel, the main data structure of this
chapter.

The chapter is organized as follows. Section 7.1 describes why timers are needed. Sec-
tion 7.2 describes a model of a timer routine and the relevant parameters that are critical for
performance. Section 7.3 describes the simplest techniques for maintaining timers, some of
which are still appropriate in some cases. Section 7.4 introduces the main data structure, called
timing wheels. This is followed by two specific instantiations of timing wheels called hashed
wheels (in Section 7.5) and hierarchical timing wheels (in Section 7.6). The chapter ends with
a technique called soft timers (Section 7.8) that reduces timer overhead by amortizing timer
maintenance across other system calls. Figure 7.1 summarizes the principles applied in the
various timer schemes.

Q u i c k R e f e r e n c e G u i d e
The most useful section for an implementor is Section 7.5 on hashed timing wheels, versions of

which have appeared in many operating systems, such as FreeBSD and Linux.

7.1 WHY TIMERS?

Why do systems need timers? Systems need timers for failure recovery and also to implement
algorithms in which the notion of time or relative time is integral. Several kinds of failures
cannot be detected asynchronously. Some can be detected by periodic checking (e.g., disk
watchdog timers), and such timers always expire. Other failures can be only be inferred by

169

170 C H A P T E R 7 Maintaining Timers

P14
P2c,4

P15

P10

P4
P3
P11

Use array to store bounded timers
Leverage off time-of-day update

Using hashing or hierarchies

Pass handle to delete timer

Leverage off system calls, etc.
Relax need for accurate timers
Optimize for fast timers

Basic timing
wheels

Hashed, hierarchical
timing wheels

Any timer scheme

Soft timers

Number Principle Timer Technique

F I G U R E 7.1 Principles used by the timer schemes described in this chapter.

the lack of some positive action (e.g., message acknowledgment) within a specified period.
If failures are infrequent, these timers rarely expire.

Many systems also implement algorithms that use time or relative time. Examples include
algorithms that control the rate of production of some entity (e.g., rate-based flow control in
networks) and scheduling algorithms. These timers almost always expire.

The performance of algorithms to implement a timer module becomes an issue when any
of the following are true. First, performance becomes an issue if the algorithm is implemented
by a processor that is interrupted each time a hardware clock ticks and the interrupt overhead
is substantial. Second, it becomes an issue if fine-granularity timers are required. Third, it
becomes an issue if the average number of active timers is large.

If the hardware clock interrupts the host every tick and the interval between ticks is on the
order of microseconds, then the interrupt overhead is substantial. Most host operating systems
offer timers of coarse granularity (milliseconds or seconds). Alternatively, in some systems
finer-granularity timers reside in special-purpose hardware. In either case, the performance of
the timer algorithms will be an issue because they determine the latency incurred in starting
or stopping a timer and the number of timers that can be simultaneously outstanding.

As an example, consider communications between members of a distributed system. Since
messages can be lost in the underlying network, timers are needed at some level to trigger
retransmissions. A host in a distributed system can have several timers outstanding. Consider,
for example, a server with 200 connections and three timers per connection. Further, as
networks scale to gigabit speeds, both the required resolution and the rate at which timers are
started and stopped will increase.

Some network implementations (e.g., the BSD TCP implementation) do not use a timer
per packet; instead, only a few timers are used for the entire networking package. The BSD
TCP implementation gets away with two timers because the TCP implementation maintains
its own timers for all outstanding packets and uses a single kernel timer as a clock to run
its own timers. TCP maintains its packet timers in the simplest fashion: Whenever its single
kernel timer expires, it ticks away at all its outstanding packet timers. For example, many TCP
implementations use two timers: a 200-msec timer and a 500-msec timer.

The naive method works reasonably well if the granularity of timers is low and losses are
rare. However, it is desirable to improve the resolution of the retransmission timer to allow

7.2 Model and Performance Measures 171

speedier recovery. For example, the University of Arizona has a TCP implementation called
TCP Vegas [BMP94] that performs better than the commonly used TCP Reno. One of the
reasons TCP Reno has bad performance when experiencing losses is the coarse granularity of
the timeouts.

Besides faster error recovery, fine-granularity timers also allow network protocols to more
accurately measure small intervals of time. For example, accurate estimates of round-trip
delay are important for the TCP congestion-control algorithm [Jac88] and the SRM (scalable
reliable multicast) framework [FJM+95] that is implemented in the Wb conferencing tool
[McC92]. Finally, many multimedia applications routinely use timers, and the number of
such applications is increasing. An example can be found in Siemens’ CHANNELS run-time
system for multimedia [BSV95], where each audio stream uses a timer with granularity that
lies between 10 and 20 msec. For multimedia and other real-time applications, it is important
to have worst-case bounds on the processing time to start and stop timers.

Besides networking applications, process control and other real-time applications will
benefit from large numbers of fine-granularity timers. Also, the number of users on a system
may grow large enough to lead to a large number of outstanding timers. This is the reason
cited for redesigning the timer facility by the developers of the IBM VM/XA SP1 operating
system [Dav89].

In the following sections, we will describe a family of schemes for efficient timer imple-
mentations based on a data structure called a timing wheel. We will also describe performance
results based on a UNIX implementation and survey some of the systems that have implemented
timer packages based on the ideas in this chapter.

7.2 MODEL AND PERFORMANCE MEASURES

A timer module [VL87] has four component routines:

StartTimer (Interval, RequestId, ExpiryAction): The client calls this routine to start a timer
that will expire after “Interval” units of time. The client supplies a RequestId that is used
to distinguish this timer from other timers the client has outstanding. Finally, the client
can specify what action must be taken on expiry, for instance, calling a client-specified
routine or setting an event flag.

StopTimer (RequestId): This routine uses its knowledge of the client and RequestId to locate
the timer and stop it.

PerTickBookkeeping: Let the granularity of the timer be T units. Then every T units this
routine checks whether any outstanding timers have expired; if so, it calls StopTimer,
which in turn calls the next routine.

ExpiryProcessing: This routine does the ExpiryAction specified in the StartTimer call.

The first two routines are activated on client calls; the last two are invoked on timer ticks.
The timer is often an external hardware clock.

Two performance measures can be used to choose between algorithms described in the
rest of this chapter. Both are parameterized by n, the average (or worst-case) number of
outstanding timers. They are the space (Space) required for the timer data structures and the
latency (Latency), or the time between the invoking of a routine in the timer module and its
completion. Assume that the caller of the routine blocks until the routine completes. Both the
average and worst-case latency are of interest.

172 C H A P T E R 7 Maintaining Timers

10:23:12 10:23:24 10:24:03qhead

F I G U R E 7.2 Timer queue example used to illustrate Scheme 2.

7.3 SIMPLEST TIMER SCHEMES

The two simplest schemes for timer implementation are, in fact, commonly used. In the first
scheme, StartTimer finds a memory location and sets that location to the specified timer
interval. Every T units, PerTickBookkeeping will decrement each outstanding timer; if any
timer becomes zero, ExpiryProcessing is called.

This scheme is extremely fast for all but PerTickBookkeeping. It also uses one record
per outstanding timer, the minimum space possible. It is appropriate if there are only a
few outstanding timers, if most timers are stopped within a few ticks of the clock, and if
PerTickBookkeeping is done with suitable performance by special-purpose hardware.

Note that instead of doing a Decrement, we can store the absolute time at which timers
expire and do a Compare. This option is valid for all timer schemes we describe; the choice
between them will depend on the size of the time-of-day field, the cost of each instruction, and
the hardware on the machine implementing these algorithms. In this chapter we will use the
Decrement option, except when describing Scheme 2.

In a second simple scheme, used in older versions of UNIX, PerTickBookkeeping latency
is reduced at the expense of StartTimer performance. Timers are stored in an ordered list.
Unlike Scheme 1, we will store the absolute time at which the timer expires, not the interval
before expiry. The timer that is due to expire at the earliest time is stored at the head of the
list. Subsequent timers are stored in increasing order, as shown in Figure 7.2. In Figure 7.2 the
lowest timer is due to expire at absolute time 10 hours, 23 minutes, and 12 seconds.

Because the list is sorted, PerTickBookkeeping need only increment the current clock
time and compare it with the head of the list. If they are equal or if the time of day is greater,
it deletes that list element and calls ExpiryProcessing. It continues to delete elements at the
head of the list until the expiry time of the head of the list is strictly less than the time of
day. StartTimer searches the list to find the position to insert the new timer. In the example,
StartTimer will insert a new timer, due to expire at 10:24:01, between the second and third
elements.

The worst-case latency to start a timer is O(n). The average latency depends on the
distribution of timer intervals (from time started to time stopped) and on the distribution of the
arrival process according to which calls to StartTimer are made.

StopTimer need not search the list if the list is doubly linked. When StartTimer inserts
a timer into the ordered list, it can store a pointer to the element. StopTimer can then use this
pointer to delete the element in O(1) time from the doubly linked list. This can be used by any
timer scheme. This is an application of P9, passing hints in layer interfaces. More precisely,
the user passes a handle to the timer in the StopTimer interface.

If this scheme is implemented by a host processor, the interrupt overhead on every
tick can be avoided if there is hardware support to maintain a single timer. The hardware
timer is set to expire at the time at which the timer at the head of the list is due to expire.

7.4 Timing Wheels 173

The hardware intercepts all clock ticks and interrupts the host only when a timer actually
expires. Unfortunately, some processor architectures do not offer this capability.

As for Space, Scheme 1 needs the minimum space possible; Scheme 2 needs O(n) extra
space for the forward and back pointers between queue elements.

A linked list is one way of implementing a priority queue. For large n, tree-based data
structures are better. These include unbalanced binary trees, heaps, post-order and end-order
trees, and leftist trees [CLR90, VD75]. They attempt to reduce the latency in Scheme 2 for
StartTimer from O(n) to O(log(n)). In Myhrhaug [Myh] it is reported that this difference is
significant for large n and that unbalanced binary trees are less expensive than balanced binary
trees.

Unfortunately, unbalanced binary trees easily degenerate into a linear list; this can happen,
for instance, if a set of equal timer intervals is inserted. It would, however, be a good idea
to compare the performance of timing wheels against an implementation using simple binary
heaps. We will lump these algorithms together as Scheme 3: tree-based algorithms.

Thus the three simple schemes take time that is least logarithmic in the number of timers for
either StartTimer or PerTickBookkeeping. This a problem for high-speed implementations.
The next section shows how to do better.

7.4 TIMING WHEELS

The design of the first scheme follows a common problem solving paradigm:

First solve a simpler problem, and then use the insight to solve the more complex problem.

The simpler problem we tackle first is as follows. Suppose timers are all set for some small
interval, say, MaxInterval, and let the granularity of the timer be 1 unit. This suggests the
use of P4, bucket-sorting techniques, instead of the sorting techniques suggested by Schemes
2 and 3. However, bucket sorting is really used for static sorting of a set of numbers. Here,
new numbers keep being added and deleted, and we still want to maintain order. (In technical
algorithmic terms, the timer data structure must implement a priority queue that allows the
operations of addition, deletion, and finding the smallest element.) What is the bucket-sorting
equivalent of a priority queue?

Given this motivation, it is not hard to have the following picture (shown in Figure 7.3)
float into the reader’s mind. Imagine that current time is represented by a pointer to an element
in a circular array with dimensions [0, MaxInterval − 1]. On every timer tick (for per-tick
bookkeeping) we simply increment the pointer by 1 mod the size of the array.

To set a timer at j units past current time, we index (Figure 7.3) into Element i + j mod
MaxInterval and put the timer at the head of a list of timers that will expire at a time =
CurrentTime + j units. Each tick we increment the current timer pointer (mod MaxInterval)
and check the array element being pointed to. If the element is 0 (no list of timers waiting
to expire), then no more work is done on that timer tick. But if it is nonzero, then we do
ExpiryProcessing on all timers that are stored in that list. Thus the latency for StartTimer

is O(1); PerTickBookkeeping is O(1) except when timers expire, but this is the best possible.
If the timer lists are doubly linked and, as before, we store a pointer to each timer record, then
the latency of StopTimer is also O(1).

174 C H A P T E R 7 Maintaining Timers

Element 0

Element 1

Element i

Element i + j

Element
MAXINTERVAL – 1

Current time

List of timers to
expire at This Time

F I G U R E 7.3 Array of lists used by Scheme 4 for timer intervals up to MAXINTERVAL.

We can describe this array somewhat more picturesquely as a timing wheel, where the
wheel turns one array element every timer unit. For a secretary, this is similar to a tickler
file. For sorting experts, this is similar to a bucket sort that trades off memory for processing.
However, since the timers change value every time instant, intervals are entered as offsets
from the current time pointer. It is sufficient if the current time pointer increases every time
instant.

A bucket sort sorts N elements in O(M) time using M buckets, since all buckets have to
be examined. This is inefficient for large M > N . In timer algorithms, however, the crucial
observation is that some entity needs to do O(1) work per tick to update the current time;
it costs only a few more instructions for the same entity to step through an empty bucket. This
is a nice example of using Principle P4 (leveraging system components) and P2c (expense
sharing).

The system is already doing some work per tick to increment time. Thus what matters when
figuring out the cost of the algorithm is only the additional expense caused by the algorithm,
not the cost taken in isolation as is typically measured in algorithms classes. Note that this
assumption would be false if the system did not do some work on every clock tick and, instead,
relied on a piece of hardware to keep the time of day. What matters, unlike the sort, is not the
total amount of work to sort N elements, but the average (and worst-case) part of the work that
needs to be done per timer tick.

Still, memory is finite: It is difficult to justify 232 words of memory to implement 32-bit
timers. So how would you generalize this idea to larger timer values? If you haven’t seen it
before, try to come up with your own ideas before reading further.

One naive solution is to implement timers within some range using this scheme and
the allowed memory. Timers greater than this value are implemented using, say, Scheme
2. Alternatively, this scheme can be extended in two ways to allow larger values of the timer
interval with modest amounts of memory. The two techniques are motivated by two algorithmic
techniques (P15): hashing and radix sort.

7.5 Hashed Wheels 175

Element 0

Element 1

Element 10

Element 30

Element 256

Current time

List of timers that have
hashed into this bucket

F I G U R E 7.4 Array of lists used by Schemes 5 and 6 for arbitrary-size timers: basically a hash table.

7.5 HASHED WHEELS

The design of the first extension follows a second common problem-solving paradigm:

Use analogies to derive techniques for the problem at hand from solutions to a different problem.

Many ideas first occur by analogy, even if the analogy is not always exact. The previous
scheme has an obvious analogy to inserting an element in an array using the element value as
an index. If there is insufficient memory, can we hash the element value to yield an index?
For example, if the table size is a power of 2, an arbitrary-size timer can easily be divided by
the table size; the remainder (low-order bits) is added to the current time pointer to yield the
index within the array. The result of the division (high-order bits) is stored in a list pointed to
by the index.

In Figure 7.4, let the table size be 256 and the timer be a 32-bit timer. The remainder on
division is the last 8 bits. Let the value of the last 8 bits be 20. Then the timer index is 10
(current time pointer) + 20 (remainder) = 30. The 24 high-order bits are then inserted into a
list that is pointed to by the 30th element.

Other methods of hashing are possible. For example, any function that maps a timer value
to an array index could be used. We will defend our choice at the end of Section 7.5. However,
we now come to a fork in the road for our design. Whatever hash function we use, there are
two ways to maintain each list.

The most straightforward way, which seems best until we look a little closer, is to do
Scheme 2 within each bucket. This clearly generalizes Scheme 2 while improving its perfor-
mance because each of the “little” lists should be smaller than a single list. Now for the details.
Unfortunately, its performance depends on the hash function because StartTimer can be slow
because the 24-bit quantity must be inserted into the correct place in the list. The worst-case
latency for StartTimer is still O(n).

176 C H A P T E R 7 Maintaining Timers

Assuming that a worst-case StartTimer latency of O(n) is unacceptable, we can maintain
each time list as an unordered list instead of an ordered list. At first glance this seems like a
bad idea. We have certainly made StartTimer faster; but if lists are unordered, then it seems
that per tick we will have to do a lot more work, seemingly a bad trade-off. Let us look a little
closer, however.

Clearly, StartTimer now has a worst-case and average latency of O(1). PerTick-
Bookkeeping now does take longer. Every timer tick, we increment the pointer (mod
TableSize); if there is a list there, we must decrement the high-order bits for every element in
the array, exactly as in Scheme 1. However, if the hash table has the property described earlier,
then the average size of the list will be O(1).

We can make a stronger statement about the average behavior regardless of how the
hash distributes. This is perhaps not quite so obvious. Notice that every TableSize ticks,
we decrement once all timers that are still living. Thus for n timers, we do n/TableSize work
on average per tick. If n < TableSize, then we do O(1) work on average per tick. If all n timers
hash into the same bucket, then every TableSize ticks we do O(n) work, but for intermediate
ticks we do O(1) work. What this means is that if we want to keep the per-tick work small
and bounded, we simply arrange that the number of buckets is some factor larger than the
maximum number of concurrent timers we support. We can even reduce this work as much as
we want by increasing the number of buckets. This is an example of a result about amortized
complexity, which is stronger than a result about average complexity.

Thus the hash distribution in Scheme 6 controls only the “burstiness” (variance) of the
latency of PerTickBookkeeping, not the average latency. Since the worst-case latency of
PerTickBookkeeping is always O(n) (all timers expire at the same time), we believe that the
choice of hash function for Scheme 6 is insignificant. Obtaining the remainder after dividing
by a power of 2 is cheap and, consequently, recommended. Further, using an arbitrary hash
function to map a timer value into an array index would require PerTickBookkeeping to
compute the hash on each timer tick, which would make it more expensive.

7.6 HIERARCHICAL WHEELS

The second extension of the basic scheme exploits the concept of hierarchy. To represent the
number 1000000 we need only 7 digits instead of 1000000 because we represent numbers
hierarchically in units of 1’s, 10’s, 100’s, etc. Similarly, to represent all possible timer values
within a 32-bit range, we do not need a 232-element array. Instead we can use a number of
arrays, each of different granularity. For instance, we can use four arrays as follows:

• A 100-element array in which each element represents a day

• A 24-element array in which each element represents an hour

• A 60-element array in which each element represents a minute

• A 60-element array in which each element represents a second

Thus instead of 100 * 24 * 60 * 60 = 8.64 million locations to store timers up to 100 days,
we need only 100 + 24 + 60 + 60 = 244 locations.

As an example, consider Figure 7.5. Let the current time be 11 days, 10 hours, 24 minutes,
30 seconds. Then to set a timer of 50 minutes and 45 seconds, we first calculate the absolute

7.6 Hierarchical Wheels 177

Current hour
pointer = 10

Current minute
pointer = 24

Current second
pointer = 30

HOUR
ARRAY

MINUTE
ARRAY

SECOND
ARRAY

Timer record with remaining time = 15 minutes
and 15 seconds

F I G U R E 7.5 Hierarchical set of arrays of lists used by Scheme 7 to “map” time more efficiently.

time at which the timer will expire, which is 11 days, 11 hours, 15 minutes, 15 seconds. Then we
insert the timer into a list beginning 1 (11 − 10 hours) element ahead of the current hour pointer
in the hour array. We also store the remainder (15 minutes and 15 seconds) in this location.
We show this in Figure 7.5, ignoring the day array, which does not change during the example.

The seconds array works as usual: Every time the hardware clock ticks we increment the
second pointer. If the list pointed to by the element is nonempty, we do ExpiryProcessing for
elements in that list. However, the other three arrays work slightly differently.

Even if there are no timers requested by the user of the service, there will always be a
60-second timer that is used to update the minute array, a 60-minute timer to update the hour
array, and a 24-hour timer to update the day array. For instance, every time the 60-second
timer expires, we will increment the current minute timer, do any required ExpiryProcessing

for the minute timers, and reinsert another 60-second timer.
Returning to the example, if the timer is not stopped, eventually the hour timer will

reach 11. When the hour timer reaches 11, the list is examined; ExpiryProcessing will insert
the remainder of the seconds (15) in the minute array, 15 elements after the current minute
pointer(0). Of course, if the minutes remaining were zero, we could go directly to the second
array. At this point, the table will look like Figure 7.6.

Eventually, the minute array will reach the 15th element; as part of ExpiryProcessing we
will move the timer into the second array 15 seconds after the current value. Fifteen seconds
later, the timer will actually expire, at which point the user-specified ExpiryProcessing is
performed.

The choice between Scheme 6 and Scheme 7 is tricky. For small values of T and
large values of M, Scheme 6 can be better than Scheme 7 for both StartTimer and
PerTickBookkeeping. However, for large values of T and small values of M, Scheme 7 will
have a better average cost (latency) for PerTickBookkeeping but a greater cost for StartTimer

latency.
Observe that if the timer precision is allowed to decrease with increasing levels in the

hierarchy, then we need not migrate timers between levels. For instance, in our earlier example

178 C H A P T E R 7 Maintaining Timers

Current hour
pointer = 11

Current minute
pointer = 0

Current second
pointer = 0

HOUR
ARRAY

MINUTE
ARRAY

SECOND
ARRAY

Timer record with remaining time = 15 seconds

Element 15

F I G U R E 7.6 The previous example, but after the hour component of the timer expires (using
Scheme 7).

we would round off to the nearest hour and only set the timer in hours. When the hour
timer goes off, we do the user-specified ExpiryProcessing without migrating to the minute
array. Essentially, we now have different timer modes, one for hour timers, one for minute
timers, etc. This reduces PerTickBookkeeping overhead further, at the cost of a loss in
precision of up to 50% (e.g., a timer for 1 minute and 30 seconds that is rounded to 1 minute).
Alternatively, we can improve the precision by allowing just one migration between adjacent
lists.

7.7 BSD IMPLEMENTATION

Adam Costello has implemented [CV98b] a new version of the BSD UNIX callout and timer
facilities. Current BSD kernels take time proportional to the number of outstanding timers to
set or cancel timers. The new implementation, which is based on Scheme 6, takes constant
time to start, stop, and maintain timers; this leads to a highly scalable design that can support
thousands of outstanding timers without much overhead.

In the existing BSD implementation, each callout is represented by a callout structure
containing a pointer to the function to be called (c_func), a pointer to the function’s argument
(c_arg), and a time (c_time) expressed in units of clock ticks. Outstanding callouts are kept
in a linked list, sorted by their expiration times. The c_time member of each callout structure
is differential, not absolute — the first callout in the list stores the number of ticks from now
until expiration, and each subsequent callout in the list stores the number of ticks between its
own expiration and the expiration of its predecessor.

In BSD UNIX, callouts are set and canceled using timeout() and untimeout(), respec-
tively. timeout(func, arg, time) registers func(arg) to be called at the specified time.
untimeout(func, arg) cancels the callout with matching function and argument. Because
the calltodo list must be searched linearly, both operations take time proportional to the
number of outstanding callouts. Interrupts are locked out for the duration of the search.

7.8 Obtaining Fine-Granularity Timers 179

The Costello implementation is based on Scheme 6. Unfortunately, the existing time-

out()/untimeout() interface in BSD does not allow the passing of handles, which was used
in all our schemes to quickly cancel a timer. The Costello implementation used two solutions
to this problem. For calls using the existing interface, a search for a callout given a function
pointer and argument is done using a hash table. A second solution was also implemented:
A new interface function was defined for removing a callout (unsetcallout()) that takes a
handle as its only argument. This allows existing code to use the old interface and new appli-
cations to use the new interface. The performance difference between these two approaches
appears to be slight, so the hash table approach appears to be preferable.

In the new implementation, the timer routines are guaranteed to lock out interrupts only
for a small, bounded amount of time. The new implementation also extends the setitimer()

interface to allow a process to have multiple outstanding timers, thereby reducing the need
for users to maintain their own timer packages. The changes to the BSD kernel are small (548
lines of code added, 80 removed) and are available on the World Wide Web. The details of
this new implementation are described elsewhere [CV98b]; the written report contains several
important implementation details that are not given here.

7.8 OBTAINING FINE-GRANULARITY TIMERS

As networks grow faster, one might expect retransmission timers to grow smaller as round-
trip delays to destinations decrease. If round-trip delays fall to microseconds, it makes sense
to expect the retransmit timers to fall to microseconds as well. Unfortunately, with the BSD
approach, one is stuck with a 200-msec timer even when round-trip delays fall to microseconds.
The use of a timing wheel by TCP can allow finer-granularity retransmission timers. But the
timers can still be no smaller than the granularity of the timer tick, which is typically 1 msec.
Thus timer granularity on most systems is rarely finer than 1 msec.

Now many CPUs provide a programmable hardware interrupt chip that can be programmed
to interrupt the CPU at a desired frequency. For example, most Pentium CPUs come with an
Intel 8253 timer chip. Thus an apparently simple method to improve timer resolution is to
increase the frequency of the clock interrupt to, say, 100 kHz. Together with the use of a
timing wheel, this would appear to provide timer granularities in the order of 10 µsec.

Unfortunately, there is a flaw in the argument. As we have argued in the model section,
modern CPUs tend to keep a lot of state to speed up processing. This includes pipeline state,
the use of a large number of registers, and caches and TLBs. An interrupt causes high overhead,
because it involves the saving and restoring of CPU state, and can cause changes to locality
patterns that result in cache and TLB misses after exiting the interrupt handler. Measurements
inAron and Druschel [AD99] show that the cost of an interrupt on a 300- or 500-Mhz Pentium is
around 4.5 µsec. Worse, as processors get faster there is no indication that interrupt processing
times will improve.

Thus having a hardware interrupt every 100 kHz will result in roughly 45% overhead
merely for responding to interrupts! Since this is clearly infeasible, we must look for a better
idea. As the problem is defined, considering the timer module as a black box leaves us no way
out. However, systems thinking provides a solution to our dilemma by considering principle
P4 again and leveraging off other system components. Observe that the life of a CPU is chock
full of other kinds of transition events that involve state saving and restoring and changes in

180 C H A P T E R 7 Maintaining Timers

locality patterns. Such transition events include system calls (e.g., a call to a device handler),
exceptions (e.g., a page fault), and hardware interrupts (e.g., an interrupt from the network
adaptor).

If we place a check for expired timers as part of the code for such transition events, the
overhead for state saving and locality changes is already part of the transition event and is not
increased significantly by the timer handler. This is good. Unfortunately, unlike the hardware
clock interrupt, the frequency of transition events is unpredictable. This is bad.

Still, it is worthwhile experimenting with a real CPU and measuring the distribution of
the times between transition events. Experiments over a wide range of benchmarks in Aron
and Druschel [AD99] show that the mean delay between transition events varies from 5 to
30 µsec, depending on what the CPU is running, that delays over 100 µsec occur in only 6%
of the cases, and that the maximum delay never exceeded 1 msec.

The data suggests an interesting use of P3, relaxing system requirements. Instead of
providing a “hard” timer facility that always provides microsecond timers, we provide a “soft”
timer [AD99] facility that often provides 10-µsec timers. We can also bound the error of the
soft timer facility by adding a hardware clock interrupt every 1 msec. Thus soft timers are
useful for applications that can benefit from an expected case (P11) of tens of microseconds
and a worst case of 1 msec.

Fortunately, a large fraction of applications that use timers can benefit from such
approximate timers. Consider failure recovery, for example, fast retransmission. If most
retransmissions are fast except for the occasional retransmission that takes 1 msec, failure
performance will improve. Also, consider algorithms where the rate of production of some
entity is being controlled. As long as the algorithm correctness can tolerate variability or jit-
ter in the rate, performance should improve in the expected case. For example, Aron and
Druschel [AD99] show how a TCP connection can be rate controlled to send packets roughly
every 12 µsec. The finer rate control decreases the burstiness of the data, but deviations in the
rate do not affect correctness.

It is also tempting to speculate that the right way to handle microsecond, or even nanosec-
ond, timers is to add hardware (P5). Such hardware could be in the form of a timer chip that
completely handles all timers within the chip using timing wheels or a d-heap. Thus the chip has
an internal hardware clock, and the hardware clock interrupt is fielded within the chip; the CPU
is interrupted only when a timer expires. However, if timers are frequently cancelled, there
can be considerable overhead for the CPU to cancel timers by communicating with the chip.

7.9 CONCLUSIONS

This chapter describes two techniques for efficient timer implementation. The first technique,
timing wheels, reduces the overhead of a timer implementation to constant time, regardless of
the number of outstanding timers. This allows a timer facility to provide a very large number
of timers, a useful feature for today’s Internet servers, which sometimes service thousands of
concurrent clients. The second technique, soft timers, reduces the operating system overhead
incurred by PerTickBookkeeping. This allows a timer facility to provide fine-grained timers
in the expected case, a useful feature as Internet link speeds increase. The principles used
within these two schemes are summarized in Figure 7.1.

When timing wheels were first described [VL87], they were generally considered as
solving a useless problem. As one system designer put it at the time, “If it ain’t broke, why

7.10 Exercises 181

fix it?” — a valid question. It helps, however, to think of schemes for problems that you
project will appear in the future. The following information is taken from Justin Gibbs, a key
implementor of FreeBSD, though its references to actual product use may be dated.

The scalability of FreeBSD is tested daily on the Internet. Yahoo! serves all of its content
through 500 FreeBSD servers distributed throughout the world. Hotmail, the largest provider
of Web-based e-mail services, initially used FreeBSD for both e-mail routing and Web services.
Thousands of ISPs, including two of the largest ISPs in the nation, Best Internet and USWest,
rely on FreeBSD to provide Internet news services, packet routing, Web hosting, and shell
services for their users. Not only does FreeBSD perform well for its installed base of over a
million desktop users, but it has also proven itself in some of the most demanding applications
on the Internet.

FreeBSD has achieved its scalability through continuous attention to system performance.
In the latter half of 1997, it became apparent that the timer services used in the FreeBSD
kernel would soon became a bottleneck for system throughput. Timer events are employed
in several applications that require per-transaction, time-based, notifications. As the number
and/or frequency of transactions is scaled higher, the load on the timer interface increases
linearly. As an example, the FreeBSD kernel schedules a “watch dog” timer for every disk
transaction, which, if fired, initiates error recovery actions. On a typical server machine,
over 15% of the CPU was consumed by timer event scheduling under a modest load of 250
concurrent disk transactions. Analysis of the algorithms employed by the old timer interfaces
showed that the CPU load would rise linearly with the number of concurrent transactions.
System scalability was compromised.

After finding a bug in the Costello implementation that he fixed, Justin Gibbs implemented
Hashed Wheels in FreeBSD. Justin’s implementation reduced timer overhead in the FreeBSD
benchmarks to a fraction of a percent of total CPU usage. The new algorithm also ensures
near constant overhead regardless of the transactional load, guaranteeing that the timer facility
will scale to many thousands of transactions with ease. Many other operating systems, such
as Linux, now use the same idea, as do most real-time operating systems, including ones used
in routers. Attention to algorithmics can bear fruit in the long run.

7.10 EXERCISES

1. Better Hash Functions: Currently hashed wheels use a very simple and primitive hash
function (low-order bits). Find a way to use your favorite hash function to do hashed
wheels. (Hint: Consider working with absolute time and not relative time.) What
particular aspect of performance of a timer module would a better hash function improve?
(This idea is due to Travis Newhouse.)

2. Hierarchical Wheels versus Hashed Wheels and Heaps: Current implementations of
timing wheels use hashed wheels.

• What is one possible advantage of hierarchical wheels over hashed wheels? Can you
quantify the difference precisely?

• Suppose we do hierarchical wheels by dividing a 32-bit timer into four chunks of 8 bits
apiece. What is the difference between such a timing wheel and a 256-way d-heap?
When might the heap be a better solution?

C H A P T E R 8

Demultiplexing

Biologically the species is the accumulation of the experiments of all its successful
individuals since the beginning.

— H. G. Wells

A protocol, like a copy center or an ice cream parlor, should be able to serve multiple clients.
The clients of a protocol could be end users (as in the case of the file transfer protocol), software
programs (for example, when the tool traceroute uses the Internet protocol), or even other
protocols (as in the case of the email protocol SMTP, which uses TCP).

Thus when a message arrives, the receiving protocol must dispatch the received message
to the appropriate client. This function is called demultiplexing. Demultiplexing is an integral
part of data link, routing, and transport protocols. It is a fundamental part of the abstract
protocol model of Chapter 2.

Traditionally, demultiplexing is done layer by layer using a demultiplexing field contained
in each layer header of the received message. Called layered demultiplexing, this is shown in
Figure 8.1. For example, working from bottom to top in the picture, a packet may arrive on
the Ethernet at a workstation. The packet is examined by the Ethernet driver, which looks at
a so-called protocol type field to decide what routing protocol (e.g., IP, IPX) is being used.
Assuming the type field specifies IP, the Ethernet driver may upcall the IP software.

After IP processing, the IP software inspects the protocol ID field in the IP header to
determine the transport protocol (e.g., TCP or UDP?). Assuming it is TCP, the packet will
be passed to the TCP software. After doing TCP processing, the TCP software will examine
the port numbers in the packet to demultiplex the packet to the right client, say, to a process
implementing HTTP.

Traditional demultiplexing is fairly straightforward because each layer essentially does
an exact match on some field or fields in the layer header. This can be done easily, using, say,
hashing, as we describe in Chapter 10. Of course, the lookup costs add up at each layer.

By contrast, this chapter concentrates on early demultiplexing, which is a much more
challenging task at high speeds. Referring back to Figure 8.1, early demultiplexing deter-
mines the entire path of protocols taken by the received packet in one operation, when
the packet first arrives. In the last example, early demultiplexing would determine in one
fell swoop that the path of the Web packet was Ethernet, IP, TCP, Web. A possibly better
term is delayered demultiplexing. However, this book uses the more accepted name of early
demultiplexing.

182

C H A P T E R 8 Demultiplexing 183

UDP
port
TCP

protocol ID
IP

(type)
Ethernet

OSI?

F I G U R E 8.1 Traditional layered demultiplexing has each layer demultiplex a packet to the next layer
software above using a field in the layer header.

P9

P1
P4c

P15

P2

Pass header specifications from user to kernel

Use CFG to avoid unnecessary tests
Use a register-based specification language

Factor common checks using a generalized trie

Specialize code when classifier is modified

CSPF

BPF

Pathfinder

DPF

Number Principle Used In

F I G U R E 8.2 Principles used in the various demultiplexing techniques discussed in this chapter.

This chapter is organized as follows. Section 8.1 delineates the reasons for early demulti-
plexing, and Section 8.2 outlines the goals of an efficient demultiplexing solution. The rest of
the chapter studies various implementations of early demultiplexing. The chapter starts with
the pioneering CMU/Stanford packet filter (Section 8.3), moves on to the commonly used
Berkeley packet filter (Section 8.4), and ends with more recent proposals, such as Pathfinder
(Section 8.5) and DPF (Section 8.6).

The demultiplexing techniques described in this chapter (and the corresponding principles
used) are summarized in Figure 8.2.

Q u i c k R e f e r e n c e G u i d e
The Berkeley packet filter (BPF) is freely available. However, other demultiplexing algorithms are more

efficient. The implementor who wishes to design a demultiplexing routine should consider PathFinder,
described in Section 8.5. While dynamic packet filter (DPF, see Section 8.6) is even faster, many
implementors may find the need for dynamic code generation in DPF to be an obstacle.

184 C H A P T E R 8 Demultiplexing

8.1 OPPORTUNITIES AND CHALLENGES OF EARLY DEMULTIPLEXING

Why is early demultiplexing a good idea? The following basic motivations were discussed in
Chapter 6.

• Flexible User-Level Implementations: The original reason for early demultiplexing was to
allow flexible user-level implementation of protocols without excessive context switching.

• Efficient User-Level Implementations: As time went on, implementors realized that early
demultiplexing could also allow efficient user-level implementations by minimizing the
number of context switches. The main additional trick was to structure the protocol
implementation as a shared library that can be linked to application programs.

However, there are other advantages of early demultiplexing.

• Prioritizing Packets: Early demultiplexing allows important packets to be prioritized and
unnecessary ones to be discarded quickly. For example, Chapter 6 shows that the problem
of receiver livelock can be mitigated by early demultiplexing of received packets to place
packets directly on a per-socket queue. This allows the system to discard messages for
slow processes during overload while allowing better behaved processes to continue
receiving messages. More generally, early demultiplexing is crucial in providing quality-
of-service guarantees for traffic streams via service differentiation. If all traffic is de-
multiplexed into a common kernel queue, then important packets can get lost when the
shared buffer fills up in periods of overload. Routers today do packet classification for
similar reasons (Chapters 12 and 14). Early demultiplexing allows explicit scheduling
of the processing of data flows; scheduling and accounting can be combined to prevent
anomalies such as priority inversion.

• Specializing Paths: Once the path for a packet is known, the code can be specialized to
process the packet because the wider context is known. For example, rather than have each
layer protocol check for packet lengths, this can be done just once in the spirit of P1,
avoiding obvious waste. The philosophy of paths is taken to its logical conclusion in
Mosberger and Peterson [MP96], who describe an operating system in which paths are
first-class objects.

• Fast Dispatching: This chapter and Chapter 6 have already described an instance of this
idea using packet filters and user-level protocol implementations. Early demultiplexing
avoids per-layer multiplexing costs; more importantly, it avoids the control overhead that
can sometimes be incurred in delayered multiplexing.

8.2 GOALS

If early demultiplexing is a good idea, is it easy to implement? Early demultiplexing is partic-
ularly easy to implement if each packet carries some information in the outermost (e.g., data
link or network) header, which identifies the final endpoint. This is an example of P14, passing
information in layer headers. For example, if the network protocol is a virtual circuit protocol
such as ATM, the ATM virtual circuit identifier (VCI) can directly identify the final recipient
of the packet.

8.3 CMU/Stanford Packet Filter: Pioneering Packet Filters 185

However, protocols such as IP do not offer such a convenience. MPLS does offer this
convenience, but MPLS is generally used only between routers, as described in Chapter 11.
Even using a protocol such as ATM, the number of available VCIs may be limited. In lieu of a
single demultiplexing field, more complex data structures are needed that we call packet filters
or packet classifiers.

Such data structures take as input a complete packet header and map the input to an end-
point or path. Intuitively, the endpoint of a packet represents the receiving application process,
while the path represents the sequence of protocols that need to be invoked in processing the
packet prior to consumption by the endpoint. Before describing how packet filters are built,
here are the goals of a good early-demultiplexing algorithm.

• Safety: Many early-demultiplexing algorithms are implemented in the kernel based on
input from user-level programs. Each user program P specifies the packets it wishes to
receive. As with Java programs, designers must ensure that incorrect or malicious users
cannot affect other users.

• Speed: Since demultiplexing is done in real time, the early-demultiplexing code should
run quickly, particularly in the case where there is only a single filter specified.

• Composability: If N user programs specify packet filters that describe the packets they
expect to receive, the implementation should ideally compose these N individual packet
filters into a single composite packet filter. The composite filter should have the property
that it is faster to search through the composite filter than to search each of the N filters
individually, especially for large N .

This chapter takes a mildly biological view, describing a series of packet filter species, with
each successive adaptation achieving more of the goals than the previous one. Not surprisingly,
the earliest species is nearly extinct, though it is noteworthy for its simplicity and historical
interest.

8.3 CMU/STANFORD PACKET FILTER: PIONEERING PACKET FILTERS

The CMU/Stanford packet filter (CSPF) [MRA87] was developed to allow user-level protocol
implementations in the Mach operating system. In the CSPF model, application programs
provide the kernel with a program describing the packets they wish to receive. The program
supplied by A operates on a packet header and returns true if the packet should be routed
to application A. Like the old Texas Instrument calculators, the programming language is a
stack-based implementation of an expression tree model.

As shown in Figure 8.3, the leaves of the tree represent simple test predicates on packet
headers. An example of a test predicate is equality comparison with a fixed value; for example,
in Figure 8.3, ETHER.TYPE = ARP represents a check of whether the Ethernet type field in
the received packet matches the constant value specified for ARP (address resolution protocol)
packets. The other nodes in the tree represent boolean operations such as AND and OR.

Thus the left subtree of the expression tree in Figure 8.3 represents any ARP packet sent
from source IP address X , while the right subtree represents any IP packet sent from source IP
address X . Since the root represents an OR operation, the overall tree asks for all IP or ARP
packets sent by a source X . Such an expression could be provided by a debugging tool to the
kernel on behalf of a user who wished to examine IP traffic coming from source X.

186 C H A P T E R 8 Demultiplexing

ARP.SRC
= X

ETHER.TYPE
= ARP

IP.SRC
= X

ETHER.TYPE
= IP

OR

AND AND

4 Compares
4 Booleans

All IP and ARP
packets from X

F I G U R E 8.3 The CMU/Stanford packet filter (CSPF) allows applications to provide programs that
specify an expression tree representing the packets they wish to receive. The tree shown here effectively
asks for all IP and ARP packets sent by IP source address X.

While the expression tree model provides a declarative model of a filter, such filters
actually use an imperative stack-based language to describe expression trees. To provide
safety, CSPF provides stack instructions of limited power; to bound running times there are no
jumps or looping constructs. Safety is also achieved by checking program loads and stores in
real time to eliminate wild memory references. Thus stack references are monitored to ensure
compliance with the stack range, and references to packets are vetted to ensure they stay within
the length of the packet being demultiplexed.

8.4 BERKELEY PACKET FILTER: ENABLING HIGH-PERFORMANCE MONITORING

CSPF guarantees security by using instructions of limited power and by doing run-time bounds
checking on memory accesses. However, CSPF is not composable and has problems with
speed. The next mutation in the design of packet filters occurred with the introduction of the
Berkeley packet filter (BPF) [MJ93].

The BPF designers were particularly interested in using BPF as a basis for high-
performance network-monitoring tools such as tcpdump, for which speed was crucial.
They noted two speed problems with the use of even a single CSPF expression tree of the
kind shown in Figure 8.3

• Architectural Mismatch: The CSPF stack model was invented for the PDP-11 and hence is
a poor match to modern RISC architectures. First, the stack must be simulated at the price
of an extra memory reference for each Boolean operation to update the stack pointer.
Second, RISC architectures gain efficiency from storing variables in fast registers and
doing computation directly from registers. Thus to gain efficiency in a RISC architecture,
as many computations as possible should take place using a register value before it is
reused. For instance, in Figure 8.3, the CSPF model will result in two separate loads from
memory for each reference to the Ethernet type field (to check equality with ARP and IP).
On modern machines, it would be better to reduce memory references by storing the type
field in a register and finishing all comparisons with the type field in one fell swoop.

8.4 Berkeley Packet Filter: Enabling High-Performance Monitoring 187

• Inefficient Model: Even ignoring the extra memory references required by CSPF, the
expression tree model often results in more operations than are strictly required. For
example, in Figure 8.3, notice that the CSPF expression takes four comparisons to evaluate
all the leaves. However, notice that once we know that the Ethernet type is equal to ARP
(if we are evaluating from left to right), then the extra check for whether the IP source
address is equal to X is redundant (Principle P1, seek to avoid waste). The main problem is
that in the expression tree model there is no way to “remember” packet parse state as the
computation progresses. This can be fixed by a new model that builds a state machine.

CSPF had two other minor problems. It could only parse fields at fixed offsets within
packet headers; thus it could not be used to access a TCP header encapsulated within an IP
header, because this requires first parsing the IP header-length field. CSPF also processes
headers using only 16-bit fields; this doubles the number of operations required for 32-bit
fields such as IP addresses.

The Berkeley packet filter (BPF) fixes these problems as follows. First, it replaces the
stack-based language with a register-based language, with an indirection operator that can
help parse TCP headers. Fields at specified packet offsets are loaded into registers using a
command such as “LOAD [12]”, which loads the Ethernet type field, which happens to start
at an offset of 12 bytes from the start of an Ethernet packet.

BPF can then do comparisons and jumps such as “JUMP_IF_EQUAL ETHERTYPE_IP,
TARGET1, TARGET2”. This instruction compares the accumulator register to the IP Ethernet
type field; if the comparison is true, the program jumps to line number TARGET1; otherwise
it jumps to TARGET2. BPF allows working in 8-, 16-, and 32-bit chunks.

More fundamentally, BPF uses a control flow graph model of computation, as illus-
trated in Figure 8.4. This is basically a state machine starting with a root, whose state is
updated at each node, following which it transitions to other node states, shown as arcs to
other nodes. The state machine starts off by checking whether the Ethernet type field is that
of IP; if true, it need only check whether the IP source field is X to return true. If false,
it needs to check whether the Ethernet type field is ARP and whether the ARP source is X.
Notice that in the left branch of the state machine we do not check whether the IP source
address is X . Thus the worst-case number of comparisons is 3 in Figure 8.4, compared to 4 in
Figure 8.3.

The Berkeley packet filter is used as a basis for a number of tools, including the well-
known tcpdump tool by which users can obtain a readable transcript of TCP packets flowing
on a link. BPF is embedded into the BSD kernel as shown in Figure 8.5.

When a packet arrives on a network link, such as an Ethernet, the packet is processed
by the appropriate link-level driver and is normally passed to the TCP/IP protocol stack for
processing. However, if BPF is active, BPF is first called. BPF checks the packet against
each currently specified user filter. For each matching filter, BPF copies as many bytes as are
specified by the filter to a per-filter buffer. Notice that multiple BPF applications can cause
multiple copies of the same packet to be buffered. The figure also shows another common BPF
application besides tcpdump, the reverse ARP demon (rarpd).

There are two small features of BPF that are also important for high performance. First,
BPF filters packets before buffering, which avoids unnecessary waste (P1) when most of the
received packets are not wanted by BPF’s applications. The waste is not just memory for
buffers but also for the time required to do a copy (Chapter 5).

188 C H A P T E R 8 Demultiplexing

ARP.SRC
= X

ETHER.TYPE
= ARP

IP.SRC
= X

ETHER.TYPE
= IP

3 ComparesTF

T

F I G U R E 8.4 The Berkeley packet filter uses a state machine or control flow graph as its underlying
model, which enables it to avoid redundant comparisons when compared to Figure 8.3.

TCPDUMP rarpd

Buffer Buffer

Filter Filter

Link-level
driver

Link-level
driver

TCP/IP

Protocol stack

USER

KERNEL

KERNEL

NETWORK

BPF

F I G U R E 8.5 Packets arriving on a link are sent to both BPF (for potential logging) and the protocol
stack (for normal protocol processing). BPF applies all currently specified filters and queues the packet
to the appropriate buffer if the filter indicates a match.

Second, since packets can arrive very fast and the read() system call is quite slow, BPF
allows batch processing (P2c) and allows multiple packets to be returned to the monitoring
application in one call. To handle this and yet allow packet boundaries to be distinguished, BPF
adds a header to each packet that includes a time stamp and length. Users of tcpdump do not
have to use this interface; instead, tcpdump offers a more user-friendly interface: Interface
commands are compiled to BPF instructions.

8.5 Pathfinder: Factoring out Common Checks 189

8.5 PATHFINDER: FACTORING OUT COMMON CHECKS

BPF is a more refined adaptation than CSPF becauses it increases speed for a single filter.
However, every packet must still be compared with each filter in turn. Thus the processing
time grows with the number of filters. Fortunately, this is not a problem for typical BPF usage.
For example, a typical Tcpdump application may provide only a few filters to BPF.

However, this is not true if early demultiplexing is used to discriminate between a large
number of packet streams or paths. In particular, each TCP connection may provide a filter,
and the number of concurrent TCP connections in a busy server can be large. The need to
deal with this change in environment (user-level networking) led to another successful muta-
tion, called Pathfinder [BGP+94]. Pathfinder goes beyond BPF by providing composability.
This allows scaling to a large number of users.

To motivate the Pathfinder solution, imagine there are 500 filters, each of which is exactly
the same (Ethernet type field is IP, IP protocol type is TCP) except that each specifies a different
TCP port pair. Doing each filter sequentially would require comparing the Ethernet type of the
packet 500 times against the (same) IP Ethernet type field and comparing the IP protocol field
500 times against the (same) TCP protocol value. This is wasteful (P1).

Next, comparing the TCP port numbers in the packet to each of the 500 port pairs specified
in each of the 500 filters is not obvious waste. However, this is exactly analogous to a linear
search for exact matching. This suggests that integrating all the individual filters into a single
composite filter can considerably reduce unnecessary comparisons when the number of individ-
ual filters is large. Specifically, this can be done using hashing (P15, using efficient data struc-
tures) to perform exact search; this can replace 500 comparisons with just a few comparisons.

A data structure for this purpose is shown in Figure 8.6. The basic idea is to superimpose
the CFGs for each filter in BPF so that all comparisons on the same field are placed in a single
node. Finally, each node is implemented as a hash table containing all comparison values to
replace linear search with hashing.

Figure 8.6 shows an example with at least four filters, two of which specify TCP packets
with destination port numbers 2 and 5; for now ignore the dashed line to TCP port 17, which
will be used as an example of filter insertion in a moment. Besides the TCP filters, there are
one or more filters that specify ARP packets and one or more filters that specify packets that
use the OSI protocol.

The root node corresponds to the Ethernet type field; the hash table contains values for
each possible Ethernet type field value used in the filters. Each node entry has a value and
a pointer. Thus the ARP entry points to nodes that further specify what type of ARP packets
must be received; the OSI entry does likewise. Finally, the Ethernet type field corresponding
to IP points to a node corresponding to the IP protocol field.

In the IP protocol field node, one of the values corresponding to TCP (which has value
6) will point to the TCP node. In the TCP node, there are three values pointing to the three
possible destination port values of 2 and 5 (recall that the 17 has not been inserted yet). When
a TCP packet arrives, demultiplexing proceeds as follows.

Search starts at the root, and the Ethernet type field is hashed to find a matching value
corresponding to IP. The pointer of this value leads to the IP node, where the IP protocol type
field is hashed to find a matching value corresponding to TCP. The value pointer leads to the
TCP node, where the destination port value in the packet is hashed to lead to the final matching
filter.

190 C H A P T E R 8 Demultiplexing

IP cells

TCP cells

Ethernet cells

ARP

OSI

Port
2

Port
5

Port
17

Add branches after best matching
prefix when adding new filter.

F I G U R E 8.6 The Pathfinder data structure integrates several versions of the BPF control flow graph
integrated into a composite structure. In the composite structure all the different field values specified
in different filters for a given header field are placed in a single node. Rather than search these values
linearly, the header field values are placed in a hash table.

The Pathfinder data structure has a strong family resemblance to a common data structure
called a trie, which is more fully described in Chapter 11. Briefly, a trie is a tree in which
each node contains an array of pointers to subtries; each array contains one pointer for each
possible value of a fixed-character alphabet.

To search the trie for a keyword, the keyword is broken into characters, and the ith
character is used to index into the ith node on the path, starting with the root. Searching in
this way at node i yields a pointer that leads to node i + 1, where search continues recursively.
One can think of the Pathfinder structure as generalizing a trie by using packet header fields
(e.g., Ethernet type field) as the successive characters used for search and by using hash tables
to replace the arrays at each node.

It is well known that tries provide fast insertions of new keys. Given this analogy, it is
hardly surprising that Pathfinder has a fast algorithm to insert or delete a filter. For instance,
consider inserting a new filter corresponding to TCP port 17. As in a trie, the insert algorithm
starts with a search for the longest matching prefix (Chapter 11) of this new filter.

This longest match corresponds to the path Ethernet Type = IP and IP Protocol =
TCP. Since this path has already been created by the other two TCP filters, it need not be
replicated. The insertion algorithm only has to add branches (in this case, a single branch)
corresponding to the portion of the new filter beyond the longest match. Thus the hash table
in the TCP node need only be updated to add a new pointer to the port 17 filter.

More precisely, the basic atomic unit in Pathfinder is called a cell. A cell specifies a field
of bits in a packet header (using an offset, length, and a mask), a comparison value, and a
pointer. For example, ignoring the pointer, the cell that checks whether the IP protocol field is

8.5 Pathfinder: Factoring out Common Checks 191

TCP is (9, 1, 0xff, 6) — the cell specifies that the ninth byte of the IP header should be masked
with all 1’s and compared to the value 6, which specifies TCP.

Cells of a given user are strung together to form a pattern for that user. Multiple patterns
are superimposed to form the Pathfinder trie by not recreating cells that already exist. Finally,
multiple cells that specify identical bit fields but different values are coalesced using a hash
table.

Besides using hash tables in place of arrays, Pathfinder also goes beyond tries by making
each node contain arbitrary code. In effect, Pathfinder recognizes that a trie is a specialized
state machine that can be generalized by performing arbitrary operations at each node in the
trie. For instance, Pathfinder can handle fragmented packets by allowing loadable cells in
addition to the comparison cells described earlier. This is required because for a fragmented
packet only the first fragment specifies the TCP headers; what links the fragments together is
a common packet ID described in the first fragment.

Pathfinder handles fragmentation by placing an additional loadable cell (together with the
normal IP comparison cell specifying, say, a source address) that is loaded with the packet ID
after the first fragment arrives. A cell is specified as loadable by not specifying the comparison
value in a cell.

The loadable cell is not initially part of the Pathfinder trie but is instead an attribute of the
IP cells. If the first fragment matches, the loaded cell is inserted into the Pathfinder trie and
now matches subsequent fragments based on the newly loaded packet ID. After all fragments
have been removed, this newly added cell can be removed. Finally, Pathfinder handles the
case when the later fragments arrive before the first fragment by postponing their processing
until the first fragment arrives.

Although Pathfinder has been described so far as a tree, the data structure can be generalized
to a directed acyclic graph (DAG). A DAG allows two different filters to initially follow
different paths through the Pathfinder graph and yet come together to share a common path
suffix. This can be useful, for instance, when providing a filter for TCP packets for destination
port 80 that can be fragmented or unfragmented. While one needs a separate path of cells to
specify fragmented and unfragmented IP packets, the two paths can point to a common set of
TCP cells.

Finally, Pathfinder also allows the use of OR links that lead from a cell. The idea is that
each of the OR links specify a value, and each of the OR links is checked to find a value that
matches and then that link is followed.

In order to prioritize packets during periods of congestion, as in Chapter 6, the demul-
tiplexing routine must complete in the minimum time it takes to receive a packet. Software
implementations of Pathfinder are fast but are typically unable to keep up with line speeds. For-
tunately, the Pathfinder state machine can be implemented in hardware to run at line speeds.
This is analogous to the way IP lookups using tries can be made to work at line speeds
(Chapter 11).

The hardware prototype described in Bailey et al. [BGP+94] trades functionality for speed.
It works in 16-bit chunks and implements only the most basic cell functions; it does, however,
implement fragmentation in hardware. The limited functionality implies that the Pathfinder
hardware can only be used as a cache to speed up Pathfinder software that handles the less
common cases. A prototype design running at 100 MHz was projected to take 200 nsec to
process a 40-byte TCP message, which is sufficient for 1.5 Gbps. The design can be scaled to

192 C H A P T E R 8 Demultiplexing

higher wire speeds using faster clock rates, faster memories, and a pipelined traversal of the
state machine.

8.6 DYNAMIC PACKET FILTER: COMPILERS TO THE RESCUE

The Pathfinder story ends with an appeal to hardware to handle demultiplexing at high speeds.
Since it is unlikely that most workstations and PCs today can afford dedicated demultiplexing
hardware, it appears that implementors must choose between the flexibility afforded by early
demultiplexing and the limited performance of a software classifier. Thus it is hardly surprising
that high-performance TCP [CJRS89], active messages [vCGS92], and Remote Procedure Call
(RPC) [TNML93] implementations use hand-crafted demultiplexing routines.

Dynamic packet filter [EK96] (DPF) attempts to have its cake (gain flexibility) and eat it
(obtain performance) at the same time. DPF starts with the Pathfinder trie idea. However, it
goes on to eliminate indirections and extra checks inherent in cell processing by recompiling
the classifier into machine code each time a filter is added or deleted. In effect, DPF produces
separate, optimized code for each cell in the trie, as opposed to generic, unoptimized code that
can parse any cell in the trie.

DPF is based on dynamic code generation technology [Eng96], which allows code to be
generated at run time instead of when the kernel is compiled. DPF is an application of Principle
P2, shifting computation in time. Note that by run time we mean classifier update time and
not packet processing time.

This is fortunate because this implies that DPF must be able to recompile code fast enough
so as not to slow down a classifier update. For example, it may take milliseconds to set up a
connection, which in turn requires adding a filter to identify the endpoint in the same time.
By contrast, it can take a few microseconds to receive a minimum-size packet at gigabit rates.
Despite this leeway, submillisecond compile times are still challenging.

To understand why using specialized code per cell is useful, it helps to understand two
generic causes of cell-processing inefficiency in Pathfinder:

• Interpretation Overhead: Pathfinder code is indeed compiled into machine instructions
when kernel code is compiled. However, the code does, in some sense, “interpret” a
generic Pathfinder cell. To see this, consider a generic Pathfinder cell C that specifies a
4-tuple: offset, length, mask, value. When a packet P arrives, idealized machine code
to check whether the cell matches the packet is as follows:

LOAD R1, C(Offset); (* load offset specified in cell into register R1 *)
LOAD R2, C(length); (* load length specified in cell into register R1 *)
LOAD R3, P(R1, R2); (* load packet field specified by offset into R3 *)
LOAD R1, C(mask); (* load mask specified in cell into register R1 *)
AND R3, R1; (* mask packet field as specified in cell *)
LOAD R2, C(value); (* load value specified in cell into register R5 *)
BNE R2, R3; (* branch if masked packet field is not equal to value *)

Notice the extra instructions and extra memory references in Lines 1, 2, 4, and 6 that are
used to load parameters from a generic cell in order to be available for later comparison.

8.6 Dynamic Packet Filter: Compilers to the Rescue 193

• Safety-Checking Overhead: Because packet filters written by users cannot be trusted, all
implementations must perform checks to guard against errors. For example, every
reference to a packet field must be checked at run time to ensure that it stays within the
current packet being demultiplexed. Similarly, references need to be checked in real time
for memory alignment; on many machines, a memory reference that is not aligned to a
multiple of a word size can cause a trap. After these additional checks, the code fragment
shown earlier is more complicated and contains even more instructions.

By specializing code for each cell, DPF can eliminate these two sources of overhead by
exploiting information known when the cell is added to the Pathfinder graph.

• Exterminating Interpretation Overhead: Since DPF knows all the cell parameters when the
cell is created, DPF can generate code in which the cell parameters are directly encoded
into the machine code as immediate operands. For example, the earlier code fragment to
parse a generic Pathfinder cell collapses to the more compact cell-specific code:

LOAD R3, P(offset, length); (* load packet field into R3 *)
AND R3, mask; (* mask packet field using mask in instruction *)
BNE R3, value; (* branch if field not equal to value *)

Notice that the extra instructions and (more importantly) extra memory references to load
parameters have disappeared, because the parameters are directly placed as immediate
operands within the instructions.

• Mitigating Safety-Checking Overhead: Alignment checking can be reduced in the
expected case (P11) by inferring at compile time that most references are word aligned.
This can be done by examining the complete filter. If the initial reference is word aligned
and the current reference (offset plus length of all previous headers) is a multiple of the
word length, then the reference is word aligned. Real-time alignment checks need only be
used when the compile time inference fails, for example, when indirect loads are
performed (e.g., a variable-size IP header). Similarly, at compile time the largest offset
used in any cell can be determined and a single check can be placed (before packet
processing) to ensure that the largest offset is within the length of the current packet.

Once one is onto a good thing, it pays to push it for all it is worth. DPF goes on to
exploit compile-time knowledge in DPF to perform further optimizations as follows. A first
optimization is to combine small accesses to adjacent fields into a single large access. Other
optimizations are explored in the exercises.

DPF has the following potential disadvantages that are made manageable through careful
design.

• Recompilation Time: Recall that when a filter is added to the Pathfinder trie (Figure 8.6),
only cells that were not present in the original trie need to be created. DPF optimizes this
expected case (P11) by caching the code for existing cells and copying this code directly
(without recreating them from scratch) to the new classifier code block. New code must be
emitted only for the newly created cells. Similarly, when a new value is added to a hash
table (e.g., the new TCP port added in Figure 8.6), unless the hash function changes, the
code is reused and only the hash table is updated.

194 C H A P T E R 8 Demultiplexing

• Code Bloat: One of the standard advantages of interpretation is more compact code.
Generating specialized code per cell appears to create excessive amounts of code,
especially for large numbers of filters. A large code footprint can, in turn, result in
degraded instruction cache performance. However, a careful examination shows that the
number of distinct code blocks generated by DPF is only proportional to the number of
distinct header fields examined by all filters. This should scale much better than the
number of filters. Consider, for example, 10,000 simultaneous TCP connections, for which
DPF may emit only three specialized code blocks: one for the Ethernet header, one for the
IP header, and one hash table for the TCP header.

The final performance numbers for DPF are impressive. DPF demultiplexes messages
13–26 times faster than Pathfinder on a comparable platform [EK96]. The time to add a filter,
however, is only three times slower than Pathfinder. Dynamic code generation accounts for
only 40% of this increased insertion overhead.

In any case, the larger insertion costs appear to be a reasonable way to pay for faster
demultiplexing. Finally, DPF demultiplexing routines appear to rival or beat hand-crafted
demultiplexing routines; for instance, a DPF routine to demultiplex IP packets takes 18 instruc-
tions, compared to an earlier value, reported in Clark [Cla85], of 57 instructions. While the
two implementations were on different machines, the numbers provide some indication of
DPF quality.

The final message of DPF is twofold. First, DPF indicates that one can obtain both perfor-
mance and flexibility. Just as compiler-generated code is often faster than hand-crafted code,
DPF code appears to make hand-crafted demultiplexing no longer necessary. Second, DPF
indicates that hardware support for demultiplexing at line rates may not be necessary. In fact,
it may be difficult to allow dynamic code generation on filter creation in a hardware implemen-
tation. Software demultiplexing allows cheaper workstations; it also allows demultiplexing
code to benefit from processor speed improvements.

Technology Changes Can Invalidate Design Assumptions

There are several examples of innovations in architecture and operating systems
that were discarded after initial use and then returned to be used again. While this may
seem like the whims of fashion (“collars are frilled again in 1995”) or reinventing the
wheel (“there is nothing new under the sun”), it takes a careful understanding of current
technology to know when to dust off an old idea, possibly even in a new guise.

Take, for example, the core of the telephone network used to send voice calls via
analog signals. With the advent of fiber optics and the transistor, much of the core
telephone network now transmits voice signals in digital formats using the T1 and
SONET hierarchies. However, with the advent of wavelength-division multiplexing in
optical fiber, there is at least some talk of returning to analog transmission.

Thus the good system designer must constantly monitor available technology to
check whether the system design assumptions have been invalidated. The idea of using
dynamic compilation was mentioned by the CSPF designers in Mogul et al. [MRA87]
but was was not considered further. The CSPF designers assumed that tailoring code to
specific sets of filters (by recompiling the classifier code whenever a filter was added)
was too “complicated.”

8.8 Exercises 195

Dynamic compilation at the time of the CSPF design was probably slow and also not
portable across systems; the gains at that time would have also been marginal because of
other bottlenecks. However, by the time DPF was being designed, a number of systems,
including VCODE [Eng96], had designed fairly fast and portable dynamic compilation
infrastructure. The other classifier implementations in DPF’s lineage had also eliminated
other bottlenecks, which allowed the benefits of dynamic compilation to stand out more
clearly.

8.7 CONCLUSIONS

While it may be trite to say that necessity is the mother of invention, it is also often true.
New needs drive new innovations; the lack of a need explains why innovations did not occur
earlier. The CSPF filter was implemented when the major need was to avoid a process context
switch; having achieved that, improved filter performance was only a second-order effect.
BPF was implemented when the major need was to implement a few filters very efficiently to
enable monitoring tools like tcpdump to run at close to wire speeds. Having achieved that,
scaling to a large number of filters seemed less important.

Pathfinder was implemented to support user-level networking in the x-kernel [HP91], and
to allow Scout [MP96] to use paths as a first-class object that could be exploited in many
ways. Having found a plausible hardware implementation, perhaps improved software perfor-
mance seemed less important. DPF was implemented to provide high-performance networking
together with complete application-level flexibility in the context of an extensible operating
system [EKO95]. Figure 8.2 presents a summary of the techniques used in this chapter, together
with the major principles involved.

As in the H. G. Wells quote at the start of the chapter, the DPF species does represent the
accumulation of the experiments of all its successful individuals. All filter implementations
borrow from CSPF the intellectual leap of separating demultiplexing from packet processing,
together with the notion that application demultiplexing specifications can be safely exported
to the kernel. DPF and Pathfinder in turn borrow from BPF the basic notion of exploiting
the underlying architecture using a register-based, state-machine model. DPF borrows from
Pathfinder the notion of using a generalized trie to factor out common checks.

8.8 EXERCISES

1. Other Uses of Early Demultiplexing: Besides the uses of early demultiplexing already
described, consider the following potential uses.

• Quality of Service: Why might early demultiplexing help offer different qualities of
service to different packets in an end system? Give an example.

• Integrated Layer Processing: Integrated layer processing (ILP) was studied in
Chapter 5. Discuss why early demultiplexing may be needed for ILP.

• Specializing Code: Once the path of a protocol is known, one can possibly specialize
the code for the path, just as DPF specializes the code for each node. Give an example
of how path information could be exploited to create more efficient code.

196 C H A P T E R 8 Demultiplexing

2. Further DPF Optimizations: Besides the optimizations already described consider the
following other optimizations that DPF exploits.

• Atom Coalescing: It often happens that a node in the DPF tree checks for two smaller
field values in the same word. For example, the TCP node may check for a source port
value and a destination port value. How can DPF do these checks more efficiently?
What crucial assumption does this depend on, and how can DPF validate this
assumption?

• Optimizing Hash Tables: When DPF adds a classifier, it may update the hash table at
the node. Unlike Pathfinder, the code can be specialized to the specific set of values in
each hash table. Explain why this can be used to provide a more efficient
implementation for small tables and for collision handling in some cases.

C H A P T E R 9

Protocol Processing

Household tasks are easier and quicker when they are done by somebody else.

— James Thorpe

Our mental image of a musician is often associated with giving a recital, and our image of a
researcher may involve his mulling over a problem. However, musicians spend more time in
less glamorous tasks, such as practicing scales, and researchers spend more time than they wish
on mundane chores, such as writing grants. Mastery of a vocation requires paying attention to
many small tasks and not just to a few big jobs.

Similarly, tutorials on efficient protocol implementation often emphasize methods of
avoiding data-touching overhead and structuring techniques to reduce control overhead. These,
of course, were the topics covered in Chapters 5 and 6. This is entirely appropriate because
the biggest improvements in endnode implementations often come from attention to such
overhead.

However, having created a zero-copy implementation with minimal context switching —
and there is strong evidence that modern implementations of network appliances have learned
these lessons well – new bottlenecks invite scrutiny. In fact, a measurement study by Kay and
Pasquale [KP93] shows that these other bottlenecks can be significant.

There are a host of other protocol implementation tasks that can become new bottlenecks.
Chapters 7 and 8 have already dealt with efficient timer and demultiplexing implementations.
This chapter deals briefly with some of the common remaining tasks: buffer management,
checksums, sequence number bookkeeping, reassembly, and generic protocol processing.

The importance of these protocol-processing “chores” may be increasing, for the following
reasons. First, link speeds in the local network are already at gigabit levels and are going higher.
Second, market pressures are mounting to implement TCP, and even higher-level application
tasks, such as Web services and XML, in hardware. Third, there is a large number of small
packets in the Internet for which data manipulation overhead may not be the dominant factor.

This chapter is organized as follows. Section 9.1 delves into techniques for managing
buffer, that is, techniques for fast buffer allocation and buffer sharing. Section 9.2 presents
techniques for implementing CRCs (mostly at the link level) and checksums (mostly at the
transport level). Section 9.3 deals with the efficient implementation of generic protocol process-
ing, as exemplified by TCP and UDP. Finally, Section 9.4 covers the efficient implementation
of packet reassembly.

The techniques presented in this chapter (and the corresponding principles) are summa-
rized in Figure 9.1.

197

198 C H A P T E R 9 Protocol Processing

P4b

P4b

P2b

P14

P13

Use linear buffers, not mbuf chains

Buddy system without coalescing

Sequential chunk allocation, lazy chunk creation

Efficient buffer stealing

Dynamic buffer thresholds

Linux sk_buf

BSD 4.2 malloc()

J-machine

SFQ

Number Principle Used In

P2a CRC multiple bits at a time using table lookup Many CRC chips

P2b Lazy carry evaluation Fast checksums

P12a Recompute header checksum RFC 1624

P4c Compute data link and application CRC Infiniband

P11 BSD TCP

P3c

Predict next TCP header

Shift fragmentation from router to source Path MTU

P11 Fast fragment reassembly

F I G U R E 9.1 Principles used in the various protocol-processing techniques discussed in this chapter.

Q u i c k R e f e r e n c e G u i d e
The first part of Section 9.1 describes a number of buffering strategies, including UNIX mbufs

and Linux sk_bufs, as well as a variety of efficient memory allocators, such as the Kingsley allocator.
Implementors interested in fast cyclic redundancy check (CRC) algorithms should read Section 9.2.1;
those interested in fast IP checksums should read Section 9.2.2. The first few pages of Section 9.3
describe the classic TCP processing optimization called header prediction.

9.1 BUFFER MANAGEMENT

All protocols have to manage buffers. In particular, packets travel up and down the protocol
stack in buffers. The operating system must provide services to allocate and deallocate buffers.
This requires managing free memory; finding memory of the appropriate size can be challeng-
ing, especially because buffer allocation must be done in real time. Section 9.1.1 describes a
simple systems solution for doing buffer allocation at high speeds, even for requests of variable
sizes.

If the free space must be shared between a number of connections or users, it may also be
important to provide some form of fairness so that one user cannot hog all the resources. While
static limits work, in some cases it may be preferable to allow dynamic buffer limits, where
a process in isolation can get as many buffers as it needs but relinquishes extra buffers when

9.1 Buffer Management 199

other processes arrive. Section 9.1.2 describes two dynamic buffer-limiting schemes that can
be implemented at high speeds.

9.1.1 Buffer Allocation
The classical BSD UNIX implementation, called mbufs, allowed a single packet to be stored as
a linear list of smaller buffers, where a buffer is a contiguous area of memory.1 The motivation
for this technique is to allow the space allocated to the packet to grow and shrink (for example,
as it passes up and down the stack). For instance, it is easy to grow a packet by prepending a
new mbuf to the current chain of mbufs. For even more flexibility, BSD mbufs come in three
flavors: two small sizes (100 and 108 bytes) and one large size (2048 bytes, called a cluster).

Besides allowing dynamic expansion of a packet’s allocated memory, mbufs make efficient
use of memory, something that was important around 1981, when mbufs were invented. For
example, a packet of 190 bytes would be allocated two mbufs (wasting around 20 bytes), while
a packet of 450 bytes would be allocated five mbufs (wasting around 50 bytes).

However, dynamic expansion of a packet’s size may be less important than it sounds
because the header sizes for important packet paths (e.g., Ethernet, IP, TCP) are well known
and can be preallocated. Similarly, saving memory may be less important in workstations today
than increasing the speed of packet processing. On the other hand, the mbuf implementation
makes accessing and copying data much harder because it may require traversing the list.

Thus very early on, Van Jacobson designed a prototype kernel that used what we called
pbufs. As Jacobson put it in an email note [Jac93]: “There is exactly one, contiguous, packet
per pbuf (none of that mbuf chain stupidity).”

While pbufs have sunk into oblivion, the Linux operating system currently uses a very
similar idea [Cox96] for network buffers called sk_buf. These buffers, like pbufs, are linear
buffers with space saved in advance for any packet headers that need to be added later. At times,
this will incur wasted space to handle the worst-case headers, but the simpler implementation
makes this worthwhile. Both sk_bufs and pbufs relax the specification of a buffer to avoid
unnecessary generality (P7) and trade memory for time (P4b).

Given that the use of linear buffer sizes, as in Linux, is a good idea, how do we allocate
memory for packets of various sizes? Dynamic memory allocation is a hard problem in general
because users (e.g., TCP connections) deallocate at different times, and these deallocations
can fragment memory into a patchwork of holes of different sizes.

The standard textbook algorithms, such as First-Fit and Best-Fit [WJea95], effectively
stroll through memory looking for a hole of the appropriate size. Any implementor of a high-
speed networking implementation, say, TCP, should be filled with horror at the thought of
using such allocators. Instead, the following three allocators should be considered.

SEGREGATED POOL ALLOCATOR

One of the fastest allocators, due to Chris Kingsley, was distributed along with BSD 4.2
UNIX. Kingsley’s malloc() implementation splits all of memory into a set of segregated pools
of memory in powers of 2. Any request is rounded up to its closest power of 2, a table lookup
is done to find the corresponding pool list, and a buffer is allocated from the head of that list
if available. The pools are said to be segregated because when a request of a certain size fails

1Craig Partridge attributes the invention of mbufs to Rob Gurwitz [PBW04].

200 C H A P T E R 9 Protocol Processing

there is no attempt made to carve up available larger buffers or to coalesce contiguous smaller
buffers.

Such carving up and coalescing is actually done by a more classical scheme called the
buddy system (see Wilson et al. [WJea95] for a thorough review of memory allocators). Refrain-
ing from doing so clearly wastes memory (P4b, trading memory for speed). If all the requests
are for exactly one pool size, then the other pools are wasted. However, this restraint is not as
bad as it seems because allocators using the buddy system have a far more horrible worst case.

Suppose, for example, that all requests are for size 1 and that every alternate buffer is than
deallocated. Then, using the buddy system, memory degenerates into a series of holes of size
1 followed by an allocation of size 1. Half of memory is unused, but no request of size greater
than 2 can be satisfied. Notice that this example cannot happen with the Kingsley allocator
because the size-1 requests will only deplete the size-1 pool and will not affect the other pools.
Thus trafficking between pools may help improve the expected memory utilization but not the
worst-case utilization.

LINUX ALLOCATOR

The Linux allocator [Che01], originally written by Doug Lea, is sometimes referred to as
dlmalloc(). Like the Kingsley allocator, the memory is broken into pools of 128 sizes. The first
64 pools contain memory buffers of exactly one size each, from 16 through 512 bytes in steps
of 8. Unlike the case of power-of-2 allocation, this prevents more than 8 bytes of waste for the
common case of small buffers. The remaining 64 pools cover the other, higher sizes, spaced
exponentially.

The Linux allocator [Che01] does merge adjacent free buffers and promotes the coalesced
buffer to the appropriate pool. This is similar to the buddy system and hence is subject to the
same fragmentation problem of any scheme in which the pools are not segregated. However,
the resulting memory utilization is very good in practice.

A useful trick to tuck away in your bag of tricks concerns how pools are linked together.
The naive way would be to create separate free lists for each pool using additional small nodes
that point to the corresponding free buffer. But since the buffer is free, this is obvious waste
(P1). Thus the simple trick, used in Linux and possibly in other allocators, is to store the link
pointers for the pool free lists in the corresponding free buffers themselves, thereby saving
storage.

The Lea allocator uses memory more efficiently than the Kingsley allocator but is more
complex to implement. This may not be the best choice for a wire-speed TCP implementation
that desires both speed and the efficient use of memory.

BATCH ALLOCATOR

One alternative idea for memory allocation, which has an even simpler hardware implemen-
tation than Kingsley’s allocator, leverages batching (P2c). The idea, shown in Figure 9.2, is
for the allocator to work in large chunks of memory. Each chunk is allocated sequentially.
A pointer Curr is kept to the point where the last allocation terminated. A new request of size B
is allocated after Curr, and Curr increases to Curr + B. This is extremely fast, handles variable
sizes, and does not waste any memory — up to the point, that is, when the chunk is used up.

The idea is that when the chunk is used up, another chunk is immediately available.
Of course, there is no free lunch — while the second chunk is being used, some spare chunk
must be created in the background. The creation of this spare chunk can be done by software,

9.1 Buffer Management 201

B

Curr Replenish spare copy
in background using

page remapping

F I G U R E 9.2 Sequentially allocating from a large chunk and using a spare chunk. The magic comes
from using the time it takes to completely allocate a chunk to create a new chunk.

while allocates can easily be done in hardware. Similar ideas were presented in the context of
the MIT J-machine [DCea87], which relied on an underlying fast messaging service.

Creating a spare chunk can be done in many ways. The problem, of course, is that
deallocates may not be done in the same order as allocates, thus creating a set of holes in
the chunks that need somehow to be coalesced. Three alternatives for coalescing present
themselves. If the application knows that eventually all allocated buffers will be freed, then
using some more spare chunks may suffice to ensure that before any chunk runs out some
chunk will be completely scavenged. However, this is a dangerous game.

Second, if memory is accessed through a level of indirection, as in virtual memory, and
the buffers are allocated in virtual memory, it is possible to use page remapping to gather
together many scattered physical memory pages to appear as one contiguous virtual memory
chunk. Finally, it may be worth considering compaction. Compaction is clearly unacceptable
in a general-purpose allocator like UNIX, where any number of pieces of memory may point
to a memory node. However, in network applications using buffers or other treelike structures,
compaction may be feasible using simple local compaction schemes [SV00].

9.1.2 Sharing Buffers
If buffer allocation was not hard enough, consider making it harder by asking also for a fairness
constraint.2 Imagine that an implementation wishes to fairly share a group of buffers among
a number of users, each of whom may wish to use all the buffers. The buffers should be
shared roughly equally among the active users that need these buffers. This is akin to what in
economics is called Pareto optimality and also to the requirements for fair queuing in routers
studied in Chapter 14. Thus it is not surprising that the following buffer-stealing algorithm
was invented [McK91] in the context of a stochastic fair queuing (SFQ) algorithm.

BUFFER STEALING

One way to provide roughly Pareto optimality among users is as follows. When all buffers are
used up and a new user (whose allocated buffers are smaller than the highest current allocation)
wishes one more buffer, steal the extra buffer from the highest buffer user. It is easy to see
that even if one user initially grabs all the buffers when other users become active, they can
get their fair share by stealing.

2However, to make things easier in return, this section assumes constant-size buffer allocation with all its
potential memory wastage.

202 C H A P T E R 9 Protocol Processing

262830

Highest
P4 P2 P3

P1
P1 28

F I G U R E 9.3 The Mckenney algorithm for buffer stealing finesses the need for logarithmic heap
overhead by relying on the fact that buffer values change by at most 1 on any operation.

The problem is that a general solution to the problem of buffer stealing uses a heap.
A heap has O(log n) cost, where n is the number of users with current allocations. How can
this be made faster?

Once again, as is often the case in algorithmics versus algorithms, the problem is caused
by reading too much into the specification. If allocations keep changing in arbitrary increments
and the algorithm wishes always to find the highest allocation, a logarithmic heap implemen-
tation is required. However, if we can relax the specification (and this seems reasonable in
practice) to assume that a user steals one buffer at a time, then the allocated amounts change
not in arbitrary amounts but only by +1 or −1. This observation results in a constant-time
algorithm (the Mckenney algorithm, Figure 9.3), which also assumes that buffer allocations
fall in a bounded set. For each allocation size i, the algorithm maintains a list of processes
that have size exactly i. The algorithm maintains a variable called Highest that points to the
highest amount allocated to any process.

When a process P wishes to steal a buffer, the algorithm finds a process Q with the highest
allocation at the head of the list pointed to by Highest. While doing so, process P gains a buffer
and Q loses a buffer. The books are updated as follows.

When process P gets buffer i + 1, P is removed from list i and added to list i +1, updating
Highest if necessary. When process Q loses buffer i + 1, Q is removed from list i + 1 and
added to list i, updating Highest = i if the Highest list becomes empty.

Notice this could become arbitrarily inefficient if P and Q could change their allocations
by sizes larger than 1. If Q could reduce its allocation by, say, 100 and there are no other users
with the same original allocation, then the algorithm would require stepping through 100 lists,
looking for the next possible value of highest. Because the maximum amount an allocation
can change by is 1, the algorithm moves through only one list. In terms of algorithmics, this
is an example of the special opportunities created by the use of finite universes (P14 suggests
the use of bucket sorting and bitmaps for finite universes).

DYNAMIC THRESHOLDS

Limiting access by any one flow to a shared buffer is also important in shared memory
switches (Chapter 13). In the context of shared memory switches, Choudhury and Hahne
describe an algorithm similar to buffer stealing that they call Pushout. However, even using

9.2 Cyclic Redundancy Checks and Checksums 203

the buffer-stealing algorithm due to McKenney [McK91], Pushout may be hard to implement
at high speeds.

Instead, Choudhury and Hahne [CH98] propose a useful alternative mechanism called
dynamic buffer limiting. They observe that maintaining a single threshold for every flow is
either overly limiting (if the threshold is too small) or unduly dangerous (if the threshold is too
high). Using a static value of threshold is no different from using a fixed window size for flow
control. But TCP uses a dynamic window size that adapts to congestion. Similarly, it makes
sense to exploit a degree of freedom (P13) and use dynamic thresholds.

Intuitively, TCPwindow flow control increases a connection’s window size if there appears
to be unused bandwidth, as measured by the lack of packet drops. Similarly, the simplest way
to adapt to congestion in a shared buffer is to monitor the free space remaining and to increase
the threshold proportional to the free space. Thus user i is limited to no more than cF bytes,
where c is a constant and F is the current amount of free space. If c is chosen to be a power of 2,
this scheme only requires the use of a shifter (to multiply by c) and a comparator (to compare
with cF). This is far simpler than even the buffer-stealing algorithm.

Choudhury and Hahne recommend a value of c = 1. This implies that a single user is
limited to taking no more than half the available bandwidth. This is because when the user
takes half, the free space is equal to the user allocation and the threshold check fails. Similarly,
if c = 2, any user is limited to no more than 2/3 of the available buffer space. Thus unlike
buffer stealing, this scheme always holds some free space in reserve for new arrivals, trading
slightly suboptimal use of memory for a simpler implementation.

Now suppose there are two users and that c = 1. One might naively think that since each
user is limited to no more than half, two active users are limited to a quarter. The scheme does
better, however. Each user now can take 1/3, leaving 1/3 free. Next, if two new users arrive
and the old users do not free their buffers, the two new users can get up to 1/9 of the buffer
space.

Thus, unlike buffer stealing, the scheme is not fair in a short-term sense. However, if the
same set of users is present for sufficiently long periods, the scheme should be fair in a long-
term sense. In the previous example, after the buffers allocated to the first two users are
deallocated, a fairer allocation should result.

9.2 CYCLIC REDUNDANCY CHECKS AND CHECKSUMS

Once a TCP packet is buffered, typically a check is performed to see whether the packet
has been corrupted in flight or in a router’s memory. Such checks are performed by either
checksums or cyclic redundancy checks (CRCs). In essence, both CRCs and checksums are
hash functions H on the packet contents. They are designed so that if errors convert a packet
P to corrupted packet P′, then H(P) �= H(P′) with high probability.

In practice, every time a packet is sent along a link, the data link header carries a link level
CRC. But in addition, TCP computes a checksum on the TCP data. Thus a typical TCP packet
on a wire carries both a CRC and a checksum. While this may appear to be obvious waste (P1),
it is a consequence of layering. The data link CRC covers the data link header, which changes
from hop to hop. Since the data link header must be recomputed at each router on the path,
the CRC does not catch errors caused within routers. While this may seem unlikely, routers do
occasionally corrupt packets [SP00] because of implementation bugs and hardware glitches.

204 C H A P T E R 9 Protocol Processing

Given this, the CRC is often calculated in hardware by the chip (e.g., Ethernet receiver)
that receives the packet, while the TCP checksum is calculated in software in BSD UNIX. This
division of labor explains why CRC and checksum implementations are so different. CRCs
are designed to be powerful error-detection codes, catching link errors such as burst errors.
Checksums, on the other hand, are less adept at catching errors; however, they tend to catch
common end-to-end errors and are much simpler to implement in software.

The rest of this section describes CRC and then checksum implementation. The section
ends with a clever way, used in Infiniband implementations, to finesse the need for software
checksums by using two CRCs in each packet, both of which can easily be calculated by the
same piece of hardware.

9.2.1 Cyclic Redundancy Checks
The CRC “hash” function is calculated by dividing the packet data, treated as a number, with
a fixed generator G. G is just a binary string of predefined length. For example, CRC-16 is the
string 11000000000000101, of length 17; it is called CRC-16 because the remainder added to
the packet turns out to be 16 bits long.

Generators are easier to remember when written in polynomial form. For example, the
same CRC-16 in polynomial form becomes x16 + x15 + x2 + 1. Notice that whenever xi is
present in the generator polynomial, position i is equal to 1 in the generator string. Whatever
CRC polynomial is picked (and CRC-32 is very common), the polynomial is published in the
data link implementation specification and is known in advance to both receiver and sender.

A formal description of CRC calculation is as follows. Let r be the number of bits in the
generator string G. Let M be the message whose CRC is to be calculated. The CRC is simply
the remainder c of 2r−1M (i.e., M left-shifted by r −1 bits) when divided by G. The only catch
is the division is mod-2 division, which is illustrated next.

Working out the mathematics slightly, 2r−1M = k.G + c. Thus 2r−1M + c = k.G
because addition is the same as subtraction in mod-2 arithmetic, a fact strange but true. Thus,
even ignoring the preceding math, the bottom line is that if we append the calculated CRC c
to the end of the message, the resulting number divides the generator G.

Any bit errors that cause the sent packet to change to some other packet will be caught as
long as the resulting packet is not divisible by G. CRCs, like good hash functions, are effective
because common errors based on flipping a few bits (random errors) or changing any bit in
a group of contiguous bits (burst errors) are likely to create a packet that does not divide G.
Simple analytical properties of CRCs are derived in Tanenbaum [Tan81].

For the implementor, however, what matters is not why CRC works but how to implement
it. The main thing to learn is how to compute remainders using mod-2 division. The algorithm
uses a simple iteration in which the generator G is progressively “subtracted” from the message
M until the remainder is “smaller” than the generator G. This is exactly like ordinary division
except that “subtraction” is now exclusive-OR, and the definition of whether a number is
“smaller” depends on whether its most significant bit (MSB) is 0.

More precisely, a register R is loaded with the first r bits of the message. At each stage
of the iteration, the MSB of R is checked. If it is 1, R is “too large” and the CRC string G
is “subtracted” from R. Subtraction is done by exclusive-OR (EX-OR) in mod-2 arithmetic.
Assuming that the MSB of the generator is always 1, this zeroes out the MSB of R. Finally, if
the MSB of R is already 0, R is “small enough” and there is no need to EX-OR.

9.2 Cyclic Redundancy Checks and Checksums 205

1 11 1 01 0 0

1 11
0 01

0 00
1 00
1 11
0 11

Generator Shifted message

F I G U R E 9.4 CRC is calculated by dividing the shifted message with the generator. The intent is to
shift in all the message bits and to zero out any most significant bits that are set. Horizontal lines indicate
EX-OR operations. Vertical lines denote shifting in the next message bit. Dashed lines show where the
generator is brought down. The generator is used for the EX-OR when the MSB of the current result is
1; if not, zero is used.

A single iteration completes by left-shifting R so that the MSB of R is lost, and the next
message bit gets shifted in. The iterations continue until all messages are shifted in and the
MSB of register R is 0. At this point register R contains the required checksum.

For example, let M = 110 and G = 111. Then 2r−1M = 11000. Then the checksum c is
calculated as shown in Figure 9.4. In the first step of Figure 9.4, the algorithm places the first
3 bits (110) of the shifted message in R. Since the MSB of 110 is 1, the algorithm hammers
away at R by EX-ORing R with the generator G = 111 to get 001. The first iteration completes
by shifting out the MSB and (Figure 9.4, topmost vertical arrow) shifting in the fourth message
bit, to get R = 010.

In the second iteration, the MSB of R is 0 and so the algorithm desists. This is represented
in Figure 9.4 by computing the EX-OR of R with 000 instead of the generator. As usual, the
MSB of the result is shifted in, and the last message bit, also a zero, is shifted in to get R = 100.
Finally, in the third iteration, because the MSB of R is 1, the algorithm once again EX-ORs
R with the generator. The algorithm terminates at this point because the MSB of R is 0. The
resulting checksum is R without the MSB, or 11.

NAIVE IMPLEMENTATION

Cyclic redundancy checks have to be implemented at a range of speeds from 1 Gbit/sec to slower
rates. Higher-speed implementations are typically done in hardware. The simplest hardware
implementation would mimic the foregoing description and use a shift register that shifts in
bits one at time. Each iteration requires three basic steps: checking the MSB, computing the
EX-OR, and then shifting.

The naive hardware implementation shown in Figure 9.5 would require three clock cycles
to shift in a bit; doing a comparison for the MSB in one cycle and the actual EX-OR in another

Divisor

Current remainder

Message bits
shifted in

F I G U R E 9.5 Naive hardware implementation requires three clock cycles per bit.

206 C H A P T E R 9 Protocol Processing

R4 R3 R2 R1 R0� � �

Generator String � 1 1 0 1 0 1

Message bits

F I G U R E 9.6 Linear feedback shift register (LFSR) implementation of a CRC remainder calculation. The EX-
ORs are combined with a shift by placing EX-OR gates (the circles) to the right of some registers. Specifically,
an EX-OR gate is placed to the right of register i if bit i in the generator string (see dashed lines) is set. The only
exception is (what would have been) register R5. Such a register need not be stored because it corresponds to the
MSB, which is always shifted out.

cycle and the shift in the third cycle. However, a cleverer implementation can be used to shift
in one bit every clock cycle by combining the test for MSB, the EX-OR, and the shift into a
single operation.

IMPLEMENTATION USING LINEAR FEEDBACK SHIFT REGISTERS

In Figure 9.6 the remainder R is stored as five separate 1-bit registers, R4 through R0, instead of
a single 5-bit register, assuming a 6-bit generator string. The idea makes use of the observation
that the EX-OR needs to be done only if the MSB is 1; thus in the process of shifting left the
MSB, we can feed back the MSB to the appropriate bits of the remainder register. The remaining
bits are EX-ORed during their shift to the left.

Notice that in Figure 9.6, an EX-OR gate is placed to the right of register i if bit i in the
generator string (see dashed lines) is set. The reason for this rule is as follows. Compared to
the simple iterative algorithm, the hardware of Figure 9.6 effectively combines the left shift of
iteration J together with the MSB check and EX-OR of iteration J + 1. Thus the bit that will
be in position i in iteration J + 1 is in position i − 1 in iteration J .

If this is grasped (and this requires shifting one’s mental pictures of iterations), the test
for the MSB (i.e., bit 5) in iteration J + 1 amounts to checking MSB − 1 (i.e., bit 4 in R4) in
iteration J . If bit 4 is 1, then an EX-OR must be performed with the generator. For example, the
generator string has a 1 in bit 2, so R2 must be EX-ORed with a 1 in iteration J + 1. But bit 2
in iteration J + 1 corresponds to bit 1 in iteration J . Thus the EX-OR corresponding to R2 in
iteration J + 1 can be achieved by placing an EX-OR gate to the right of R2: The bit that will
be placed in R2 is EX-ORed during its transit from R1.

Notice that the check for MSB has been finessed in Figure 9.6 by using the output of R4
as an input to all the EX-OR gates. The effect of this is that if the MSB of iteration J + 1 is
1 (recall that this is in R4 during iteration J), then all the EX-ORs are performed. If not, and
if the MSB is 0, no EX-ORs are done, as desired; this is the same as EX-ORing with zero in
Figure 9.4.

The implementation of Figure 9.6 is called a linear feedback shift register (LFSR), for
obvious reasons. This is a classical hardware building block, which is also useful for the
generation of random numbers for, say, QoS (Chapter 14). For example, random numbers
using, say, the Tausworth implementation can be generated using three LFSRs and an EX-OR.

9.2 Cyclic Redundancy Checks and Checksums 207

FASTER IMPLEMENTATIONS

The bottleneck in the implementation of Figure 9.6 is the shifting, which is done one bit at
a time. Even at one bit every clock cycle, this is very slow for fast links. Most logic on
packets occurs after the bit stream arriving from the link has been deserialized3 into wider
words of, say, size W . Thus the packet-processing logic is able to operate on W bits in a single
clock cycle, which allows the hardware clock to run W times slower than the interarrival time
between bits.

Thus to gain speed, CRC implementations have to shift W bits at a time, for W > 1.
Suppose the current remainder is r and we shift in W more message bits whose value as a
number is, say, n. Then in essence the implementation needs to find the remainder of (2W · r + n)
in one clock cycle.

If the number of bits in the current remainder register is small, the remainder of 2W · r can
be precomputed (P2a) for all r by table lookup. This is the basis of a number of software CRC
implementations that shift in, say, 8 bits at a time. In hardware, it is faster and more space
efficient to use a matrix of XOR gates to do the same computation. The details of the parallel
implementation can be found in Albertengo and Riccardo [AR90], based on the original idea
described by Sarwate [Sar88].

9.2.2 Internet Checksums
Since CRC computation is done on every link in the Internet, it is done in hardware by link
chips. However, the software algorithm, even shifting 8 bits at a time, is slow. Thus TCP
chose to use a more efficient error-detection hash function based on summing the message
bits. Just as accountants calculate sums of large sets of numbers by column and by row to
check for errors, a checksum can catch errors that change the resulting sum.

It is natural to calculate the sum in units of the checksum size (16 bits in TCP), and
some reasonable strategy must be followed when the sum of the 16-bit units in the message
overflows the checksum size. Simply losing the MSB will, intuitively, lose information about
16-bit chunks computed early in the summing process. Thus TCP follows the strategy of an
end-around carry. When the MSB overflows, the carry is added to the least significant bit
(LSB). This is called one’s complement addition.

The computation is straightforward. The specified portion of each TCP packet is summed
in 16-bit chunks. Each time the sum overflows, the carry is added to the LSB. Thus the main
loop will naively consist of three steps: Add the next chunk; test for carry; if carry, add to LSB.
However, there are three problems with the naive implementation.

• Byte Swapping: First, in some machines, the 16-bit chunks in the TCP message may be
stored byte-swapped. Thus it may appear that the implementation has to reverse each pair
of bytes before addition.

• Masking: Second, many machines use word sizes of 32 bits or larger. Thus the naive
computation may require masking out 16-bit portions.

• Check for Carry: Third, the check for carry after every 16-bit word is added can
potentially slow down the loop as compared to ordinary summation.

3This is done by what is often called a SERDES chip, for serializer–deserializer chip.

208 C H A P T E R 9 Protocol Processing

ABA B

F I G U R E 9.7 The 1’s complement addition of two 16-bit quantities stays the same (except for byte
reversal) when the quantities are represented in byte-reversed form. This is because carries from any
bit position flow to the same next-bit position in both original and byte-reversed formats. Consider, for
example, how the MSB of B flows to the LSB of A in both formats.

All three problems can be solved by not being tied to the reference implementation (P8)
and, instead, by fitting the computation to the underlying hardware (P4c). The following ideas
and Figure 9.7 are taken from Partridge [Par93].

• Ignore byte order: Figure 9.7 shows that swapping every word before addition on a
byte-reversed machine is obvious waste (P1). The figure shows that whether or not AB is
stored byte reversed as BA, any carry from the MSB of byte B still flows to the LSB of
byte A. Similarly, in both cases, any carry from the MSB of byte A flows to the LSB of
byte B. Thus any 1’s-complement addition done on the byte-reversed representation will
have the same answer as in the original, except byte reversed. This in turn implies that it
suffices to add in byte-reversed form and to do a final byte reversal only at the end.

• Use natural word length: If a machine has a 32- or 64-bit word, the most natural thing to
do is to maintain the running sum in the natural machine word size. All that happens is that
carries accumulate in the higher-order 16 bits of the machine word, which need to be
added back to the lower 16 bits in a final operation.

• Lazy carry evaluation: Using a larger word size has the nice side effect of allowing lazy
evaluation (P2b) of carry checking. For example, using a 32-bit word allows an unrolled
loop that checks for carries only after every 16 additions [Ste94], because it takes 16
additions in the worst case to have the carry overflow from bit 32.

In addition, as noted in Chapter 5, the overhead of reading in the checksum data into
machine registers can be avoided by piggybacking on the same requirement for copying data
from the network device into user buffers, and vice versa.

HEADER CHECKSUM

Finally, besides the TCP and UDP checksums on the data, IP computes an additional 1’s-
complement checksum on just the IP header. This is crucial for network routers and other
hardware devices that need to recompute Internet checksums.

Hardware implementations of header checksum can benefit from parallel and incremental
computation. One strategy for parallelism is to break up the data being checksummed into W
16-bit words and to compute W different 1’s-complement sums in parallel, with a final operation
to fold these W sums into one 16-bit checksum. A complete hardware implementation of this
idea with W = 2 is described in Touch and Parham [TP96].

The strategy for incremental computation is defined precisely in RFC 1624 [Rij94].
In essence, if a 16-bit field m in the header changes to m′, the header checksum can be recal-
culated by subtracting m and adding in m′ to the older checksum value. There is one subtlety,

9.3 Generic Protocol Processing 209

having to do with the two representations of zero in 1’s-complement arithmetic [Rij94], that
is considered further in the exercises.

9.2.3 Finessing Checksums
The humble checksum’s reason for existence, compared to the more powerful CRC, is the
relative ease of checksum implementation in software. However, if there is hardware that
already computes a data link CRC on every data link frame, an obvious question is: Why
not use the underlying hardware to compute another checksum on the data? Doing otherwise
results in extra computation by the receiving processor and appears to be obvious waste (P1).
Once again, it is only obvious waste when looking across layers; at each individual layer (data
link, transport) there is no waste.

Clearly, the CRC changes from hop to hop, while the TCP checksum should remain
unchanged to check for end-to-end integrity. Thus if a CRC is to be used for both purposes,
two CRCs have to be computed. The first is the usual CRC, and the second should be on some
invariant portion of the packet that includes all the data and does not change from hop to hop.

One of the problems with exploiting the hardware (P4c) to compute the equivalent of the
TCP checksum is knowing which portion of the packet must be checksummed. For example,
TCP and UDP include some fields of the IP header4 in order to compute the end-to-end
checksum. The TCP header fields may also not be at a fixed offset because of potential TCP
and IP options. Having a data link hardware device understand details of higher-layer headers
seems to violate layering.

On the other hand, all the optimizations that avoid data copying and described in Chapter 5
also violate layering in a similar sense. Arguably, it does not matter what a single endnode
does internally as long as the protocol behavior, as viewed externally by a black-box tester,
meets conformance tests. Further, there are creative structuring techniques (P8, not being tied
to reference implementations) of the endnode software that can allow lower layers access to
this form of information.

The Infiniband architecture [AS00] does specify that end system hardware compute two
CRCs. The usual CRC is called the variant CRC; the CRC on the data, together with some
of the header, is called the invariant CRC. Infiniband transport and network layer headers are
simpler than those of TCP, and thus computing the invariant portion is fairly simple.

However, the same idea could be used even for a more complex protocol, such as TCP
or IP, while preserving endnode software structure. This can be achieved by having the upper
layers pass information about offsets and fields (P9) to the lower layers through layer interfaces.
Asecond option to avoid passing too many field descriptions is to precompute the pseudoheader
checksum/CRC as part of the connection state [Jac93] and instead to pass the precomputed
value to the hardware.

9.3 GENERIC PROTOCOL PROCESSING

Section 9.1 described techniques for buffering a packet, and Section 9.2 described techniques
to efficiently compute packet checksums. The stage is now set to actually process such a packet.
The reader unfamiliar with TCP may wish first to consult the models in Chapter 2.

4These portions form what is called the TCP and UDP pseudoheader [Ste94].

210 C H A P T E R 9 Protocol Processing

Since TCP accounts for 90% of traffic [Bra98] in most sites, it is crucial to efficiently
process TCP packets at close to wire speeds. Unfortunately, a first glance at TCP code is
daunting. While the TCP sender code is relatively simple, Stevens [Ste94] says:

TCP input processing is the largest piece of code that we examine in this text.
The function tcp_input is about 1100 lines of code. The processing of incoming
segments is not complicated, just long and detailed.

Since TCP appears to be complex, Greg Chesson and Larry Green formed Protocol
Engines, Inc., in 1987, which proposed an alternative protocol called XTP [Che89]. XTP
was carefully designed with packet headers that were easy to parse and streamlined processing
paths. With XTP threatening to replace TCP, Van Jacobson riposted with a carefully tuned
implementation of TCP in BSD UNIX that is well described in Stevens [Ste94]. This imple-
mentation was able to keep up with even 100-Mbps links. As a result, while XTP is still used
[Che89], TCP proved to be a runaway success.

Central to Jacobson’s optimized implementation is a mechanism called header prediction
[Jac93]. Much of the complexity of the 1100 lines of TCP receive processing comes when
handling rare cases. Header prediction provides a fast path through the thicket of exceptions
by optimizing the expected case (P11).

TCP HEADER PREDICTION

The first operation on receiving a TCP packet is to find the protocol control block (PCB) that
contains the state (e.g., receive and sent sequence numbers) for the connection of which the
packet is a part. Assuming the connection is set up and that most workstations have only a
few concurrent connections, the few active connection blocks can be cached. The BSD UNIX
code [Ste94] maintains a one-behind cache containing the PCB of the last segment received;
this works well in practice for workstation implementations.

After locating the PCB, the TCP header must be processed. A good way to motivate header
prediction, found in Partridge [Par93], comes from looking at the fields in the TCP header, as
shown in Figure 9.8.

After a connection is set up, the destination and source ports are fixed. Since IP networks
work hard to send packets in order, the sequence number is likely to be the next in sequence
after the last packet received. The control bits, often called flag bits, are typically off, with
the exception of the ack bit, which is always set after the initial packet is sent. Finally, most
of the time the receiver does not change its window size, and the urgent pointer is irrelevant.

Source port Destination port

Sequence number

Ack number

Offset control bits Window

Checksum Urgent pointer

High
info

fields

F I G U R E 9.8 TCP header fields: The fields most likely to change are the checksum and the ack fields.
The other fields carry very little information and can often be predicted from past values.

9.3 Generic Protocol Processing 211

Thus the only two fields whose information content is high are the ack number and checksum
fields.

Motivated by this observation, header prediction identifies the expected case as one of
two possibilities: receiving a pure acknowledgment (i.e., the received segment contains no
data) or receiving a pure data packet (i.e., the received segment contains an ack field that
conveys no new information). In addition, the packet should also reflect business as usual
in the following precise sense: No unexpected TCP flags should be set, and the flow control
window advertised in the packet should be no different from what the receiver had previously
advertised. In pseudocode (simplified from Ref. Jac93):

IF (No unexpected flags) AND (Window in packet is as before)
AND (Packet sequence number is the next expected) THEN

IF (Packet contains only headers and no data)
Do Ack Processing

/* Release acked bytes, stop timers, awaken process */
ELSE IF (Packet does not ack anything new) /* pure data */

Copy data to user buffer while checksumming;
Update next sequence number expected;
Send Acks if needed and release buffer;

ENDIF
ELSE /* header prediction failed -- take long path */
...

Clearly, this code is considerably shorter than the complete TCP receive processing code.
However, some of the checks can be made more efficient by leveraging off the fact that most
machines can do efficient comparisons in units of a machine word size (P4a, exploit locality).

For example, consider the TCP flags contained in the control bits of Figure 9.8. There are
six flags, each encoded as a bit: SYN, FIN, RESET, PUSH, URG, ACK. If it is business as
usual, all the flags must be clear, with the exception of ACK, which must be set, and PUSH,
which is irrelevant. Checking for each of these conditions individually would require several
instructions to extract and compare each bit.

Instead, observe that the flags field is the fourth word of the TCPheader and that the window
size is contained in the last 16 bits. In the header prediction code, the sender precomputes (P2a)
the expected value of this word by filling in all the expected values of the flag and using the
last advertised value of the window size.

The expected value of the fourth TCP header word is stored in the PCB entry for the
connection. Given this setup, the first two checks in the pseudocode shown earlier can be
accomplished in one stroke by comparing the fourth word of the TCP header in the incoming
packet with the expected value stored in the PCB. If all goes well, and tests indicate they often
do, the expected value of the fourth field is computed only at the start of the connection. It is
this test that explains the origin of the name header prediction: A portion of the header is being
predicted and checked against an incoming segment.

The pseudocode described earlier is abstracted from the implementation by Jacobson in a
research kernel [Jac93] that claims to do TCP receiving processing in 30 Sun SPARC instruc-
tions! The BSD UNIX code given in Stevens [Ste94] is slightly more complicated, having to
deal with mbufs and with the need to eliminate other possibilities, such as the PAWS test [Ste94].

212 C H A P T E R 9 Protocol Processing

The discussion so far has been limited to TCP receive processing because it is more
complex than sending a TCP segment. However, a dual of header prediction exists for the
sender side. If only a few fields change between segments, the sender may benefit from
keeping a template TCP (and IP) header in the connection block. When sending a segment,
the sender need only fill in the few fields that change into the template. This is more efficient if
copying the TCP header is more efficient than filling in each field. Caching of sending packet
headers is implemented in the Linux kernel.

Before finishing this topic, it is worth recalling Caveat Q8 and examining how sensitive
this optimization is to the system environment. Originally, header prediction was targeted at
workstations. The underlying assumption (that the next segment is for the same connection
and is one higher in sequence number than the last received segment) works well in this case.

Clearly, the assumption that the next segment is for the same connection works poorly
in a server environment. This was noted as early as Jacobson [Jac93], who suggested using a
hash of the port numbers to quickly locate the protocol control block. McKenney and Dove
confirmed this by showing that using hashing to locate the PCB can speed up receive processing
by an order of magnitude in an OLTP (online transaction processing) environment

The FIFO assumption is much harder to work around. While some clever schemes can
be used to do sequence number processing for out-of-order packets, there are some more
fundamental protocol mechanisms in TCP that build on the FIFO assumption. For example, if
packets can be routinely misordered, TCP receivers will send duplicate acknowledgments. In
TCP’s fast retransmit algorithm [Ste94], TCP senders use three duplicate acknowledgments to
infer a loss (see Chapter 14).

Thus lack of FIFO behavior can cause spurious retransmissions, which will lower perfor-
mance more drastically as compared to the failure of header prediction. However, as TCP
receivers evolve to do selective acknowledgment [FMM+99], this could allow fast TCP
processing of out-of-order segments in the future.

9.3.1 UDP Processing
Recall that UDP is TCP without error recovery, congestion control, or connection management.
As with TCP, UDP allows multiplexing and demultiplexing using port numbers. Thus UDP
allows applications to send IP datagrams without the complexity of TCP. Although TCP is by
far the dominant protocol, many important applications, such as videoconferencing, use UDP.
Thus it is also important to optimize UDP implementations.

Because UDP is stateless, header prediction is not relevant: One cannot store past headers
that can be used to predict future headers. However, UDP shares with TCP two potentially
time-consuming tasks: demultiplexing to the right protocol control block, and checksumming,
both of which can benefit from TCP-style optimizations [PP93].

Caching of PCB entries is more subtle in UDP than in TCP. This is because PCBs may need
to be looked up using wildcarded entries for, say, the remote (called foreign) IP address and
port. Thus there may be PCB 1 that specifies local port L with all the other fields wildcarded,
and PCB 2 that specifies local port L and remote IP address X. If PCB 1 is cached and a packet
arrives destined for PCB 2, then the cache can result in demultiplexing the packet for the wrong
PCB. Thus caching of wildcarded entries is not possible in general; address prefixes cannot be
cached for purposes of route lookup (Chapter 11), for similar reasons.

Partridge and Pink [PP93] suggest a simple strategy to get around this issue. A PCB entry,
such as PCB 1, that can “hide” or match another PCB entry is never allowed to be cached.

9.4 Reassembly 213

Subject to this restriction, the UDP implementation of Partridge and Pink [PP93] caches both
the PCB of the last packet received and the PCB of the last packet sent. The first cache handles
the case of a train of received packets, while the second cache handles the common case of
receiving a response to the last packet sent. Despite the cache restrictions, these two caches
still have an 87% hit rate in the measurements of Partridge and Pink [PP93].

Finally, Partridge and Pink [PP93] also implemented a copy-and-checksum loop for UDP
as in TCP. In the BSD implementation, UDP’s sosend was treated as a special case of sending
over a connected socket. Instead, Partridge and Pink propose an efficient special-purpose
routine that first calculates the header checksum and then copies the data bytes to the network
buffer while updating the checksum. (Some of these ideas allowed Cray machines to vectorize
the checksum loop in the early 1990s.) With similar optimizations used for receive processing,
Partridge and Pink report that the checksum cost is essentially zero for CPUs that are limited
by memory access time and not processing.

9.4 REASSEMBLY

Both header prediction for TCP and even the UDP optimizations of Partridge and Pink [PP93]
assume that the received data stream has no unusual need for computation. For example,
TCP segments are assumed not to contain window size changes or to have flags set that need
attention. Besides these, an unstated assumption so far is that the IP packets do not need to be
reassembled.

Briefly, the original IP routing protocol dealt with diverse links with different maximum
packet sizes or Maximum Transmission Units (MTUs) by allowing routers to slice up IPpackets
into fragments. Each fragment is identified by a packet ID, a start byte offset into the original
packet, and a fragment length. The last fragment has a bit set to indicate it is the last. Note
that an intermediate router can cause a fragment to be itself fragmented into multiple smaller
fragments. IP routing can also cause duplicates, loss, and out-of-order receipt of fragments.

At the receiver, Humpty Dumpty (i.e., the original packet) can be put together as follows.
The first fragment to arrive at the receiver sets up the state that is indexed by the corresponding
packet ID. Subsequent fragments are steered to the same piece of state (e.g., a linked list of
fragments based on the packet ID). The receiver can tell when the packet is complete if the last
fragment has been received and if the remaining fragments cover all the bytes in the original
packets length, as indicated by each fragment’s offset. If the packet is not reassembled after a
specified time has elapsed, the state is timed out.

While fragmentation allows IP to deal with links of different MTU sizes, it has the fol-
lowing disadvantages [KM87]. First, it is expensive for a router to fragment a packet because
it involves adding a new IP header for fragment, which increases the processing and memory
bandwidth needs. Second, reassembly at endnodes is considered expensive because deter-
mining when a complete packet has been assembled potentially requires sorting the received
fragments. Third, the loss of a fragment leads to the loss of a packet; thus when a fragment is
lost, transmission of the remaining fragments is a waste of resources.

The current Internet strategy [KM87] is to shift the fragmentation computation in space
(P3c) from the router and the receiver to the sender. The idea behind the so-called path MTU
scheme is that the onus falls on the sender to compute a packet size that is small enough to
pass through all links in the path from sender to receiver. Routers can now refuse to fragment

214 C H A P T E R 9 Protocol Processing

a packet, sending back a control message to the receiver. The sender uses a list of common
packet sizes (P11, optimizing the expected case) and works its way down this list when it
receives a refusal.

The path MTU scheme nicely illustrates algorithmics in action by removing a problem
by moving to another part of the system. However, a misconception has arisen that path MTU
has completely removed fragmentation in the Internet. This is not so. Almost all core routers
support fragmentation in hardware, and a significant amount of fragmented traffic has been
observed [SMC01] on Internet backbone links many years after the path MTU protocol was
deployed.

Note that the path MTU protocol requires the sender to keep state as to the best current
packet size to use. This works well if the sender uses TCP, but not if the sender uses UDP,
which is stateless. In the case of UDP, path MTU can be implemented only if the application
above UDP keeps the necessary state and implements path MTU. This is harder to deploy
because it is harder to change many applications, unlike changing just TCP. Thus at the time
of writing, shared file system protocols such as NFS, IP within IP encapsulation protocols, and
many media player and game protocols run over UDP and do not support path MTU. Finally,
many attackers compromise security by splitting an attack payload across multiple fragments.
Thus intrusion detection devices must often reassemble IP fragments to check for suspicious
strings within the reassembled data.

Thus it is worth investigating fast reassembly algorithms because common programs such
as NFS do not support the path MTU protocol and because real-time intrusion detection systems
must reassemble packets at line speeds to detect attacks hidden across fragments. The next
section describes fast reassembly implementations at receivers.

9.4.1 Efficient Reassembly
Figure 9.9 shows a simple data structure, akin to the one used in BSD UNIX, for reassem-
bling a data packet. Assume that three fragments for the packet with ID 1080 have arrived.
The fragments are sorted in a list by their starting offset number. Notice that there are over-
lapping bytes because the first fragment contains bytes 1–10, while the second contains 2–21.

Thus if a new fragment with packet ID 1080 arrives containing offsets 25–30, the imple-
mentation will typically search through the list, starting from the head, to find the correct
position. The correct position is between start offsets 2 and 40 and so is after the second
list item.

Each time a fragment is placed in the list, the implementation can check during list traversal
if all required bytes have been received up to this fragment. If so, it continues checking to
the end of the list to see if all bytes have been received and the last fragment has the last
fragment bit set. If these conditions are met, then all required fragments have arrived; the

1–10 2–21 40–50

Paste here

25–30

Packet
1080

F I G U R E 9.9 One data structure for reassembly is a linked list of fragments that is indexed by packet
ID and sorted by the start byte offset (first field). The second field is the end offset. Thus the fragment
that starts at offset 25 is inserted after the second list element.

9.4 Reassembly 215

implementation then traverses the list again, copying the data of each fragment into another
buffer at the specified offset, potentially avoiding copying overlapping portions.

The resulting implementation is quite complex and slow and typically requires an extra
copy. Note that to insert a fragment, one has to locate the packet ID’s list and then search
within the list. This requires two linear searches. Is IP reassembly fundamentally hard?

Oddly enough, there exists a counterexample reassembly protocol that has been imple-
mented in hardware at gigabit speeds: the ATM AAL-5 cell reassembly protocol [Par93],
which basically describes how to chop up IP packets into 53-byte ATM cells while allowing
reassembly at the cells into packets at the receiver. What makes the AAL-5 reassembly algo-
rithm simple to implement in hardware is not the fixed-length cell (the implementation can be
generalized to variable-length cells) but the fact that cells can only arrive in FIFO order.

If cells can arrive only in FIFO order, it is easy to paste each successive cell into a buffer
just after where the previous cell was placed. When the last cell arrives carrying a last cell bit
(just as in IP), the packet’s CRC is checked. If the CRC computes, the packet is successfully
reassembled. Note that ATM does not require any offset fields because packets arrive in order
on ATM virtual circuits.

Unlike ATM cells, IP datagrams can arrive (theoretically) in any order, because IP uses a
datagram (post office) model as opposed to a virtual circuit (telephony) model. However, we
have just seen that header prediction, and in fact the fast retransmission algorithm, depends
crucially on the fact that in the expected case, IP segments arrive in order (P11, optimizing the
expected case). Combining this observation with that of the AAL-5 implementation suggests
that one can obtain an efficient reassembly algorithm, even in hardware, by optimizing for the
case of FIFO arrival of fragments, as shown in Figure 9.10.

Figure 9.10 maintains the same sorted list as in Figure 9.9 but also keeps a pointer to the
end of the list. Optimizing for the case that fragments arrive in order and are nonoverlapping,
when a fragment containing bytes 22–30 arrives, the implementation checks the ending byte
number of the last received fragment (stored in a register, equal to 21) against the start offset of
the new fragment. Since 22 is 21 + 1, all is well. The new end byte is updated to the end byte
of the new fragment (30), and the pointer is updated to point to the newly arrived fragment
after linking it at the end of the list. Finally, if the newly arriving fragment is a last fragment,
reassembly is done.

Compared to the implementation in Figure 9.9, the check for completion as well as the
check to find out where to place a fragment takes constant and not linear time. Similarly, one
can cache the expected packet ID (as in the TCP or UDP PCB lookup implementations) to
avoid a list traversal when searching for the fragment list. Finally, using data structures such
as pbufs instead of mbufs, even the need for an extra copy can be avoided by directly copying
a received fragment into the buffer at the appropriate offset.

1–10 11–21

Paste here

22–30

Packet
1080

Expected
offset

F I G U R E 9.10 This implementation is similar to that of Figure 9.9, except it optimizes for the case
that the fragments are nonoverlapping and arrive in order.

216 C H A P T E R 9 Protocol Processing

If the expected case fails, the implementation can revert to the standard BSD processing.
For example, Chandranmenon and Varghese [CV98a], which describe this expected-case
optimization in which the code keeps two lists and directly reuses the existing BSD code
(which is hard to get right!) when the expected case fails. The expected case is reported by
Chandranmenon and Varghese [CV98a] as taking 38 SPARC instructions, which is comparable
with Jacobson’s TCP estimates.

As with header prediction, it is worth applying Caveat Q8 and examining the sensitivity of
this optimization of this implementation to the assumptions. Actually, it turns out to be pretty
bad. This is because measurements indicate that many recent implementations, including
Linux, have senders send out fragments in reverse order! Thus fragments arrive in reverse
order 9% of the time [SMC01].

This seemingly eccentric behavior is justified by the fact that it is only the last fragment
that carries the length of the entire packet; by sending it first the sender allows the receiver to
know what length buffer to allocate after the first fragment is received, assuming the fragments
arrive in FIFO order. Note that the FIFO assumption still holds true. However, Figure 9.10
has a concealed but subtle additional assumption: that fragments will be sent in offset order.
Before reading further, think how you might modify the implementation of Figure 9.10 to
handle this case.

The solution, of course, is to use the first fragment to decide which of two expected cases
to optimize for. If the first fragment is the first fragment (offset 0), then the implementation
uses the mode described in Figure 9.10. If the first fragment is the last (last bit set), the
implementation jumps to a different state, where it expects fragments in reverse order. This is
just the dual of Figure 9.10, where the next fragment should have its last byte number to be 1
less (as opposed to 1 more) than the start offset of the previous fragment. Similarly, the next
fragment is expected to be pasted at the start of the list and not the end.

9.5 CONCLUSIONS

This chapter describes techniques for efficient buffer allocation, CRC and checksum calcula-
tion, protocol processing such as TCP, and finally reassembly.

For buffer allocation, techniques such as the use of segregated pools and batch allocation
promise fast allocation with potential trade-offs: the lack of storage efficiency (for segregated
pools) versus the difficulty of coalescing noncontiguous holes (for batch allocation). Buffer
sharing is important to use memory efficiently and can be done by efficiently stealing buffers
from large users or by using dynamic thresholds.

For CRC calculation, efficient multibit remainder calculation finesses the obvious waste
(P1) of calculating CRCs one bit at a time, even using LFSR implementations. For checksum
calculation, the main trick is to fit the computation to the underlying machine architecture,
using large word lengths, lazy checks for carries, and even parallelism. The optimizations
for TCP, UDP, and reassembly are all based on optimizing simple expected cases (e.g., FIFO
receipt, no errors) that cut through a welter of corner cases that the protocol must check for
but rarely occur. Figure 9.1 presents a summary of the techniques used in this chapter together
with the major principles involved.

Beyond the specific techniques, there are some general lessons to be gleaned. First, when
considering the buffer-stealing algorithm, it is tempting to believe that finding the user with

9.6 Exercises 217

the largest buffer allocation requires a heap, which requires logarithmic time. However, as
with timing wheels in Chapter 7, Mckenney’s algorithm exploits the special case that buffer
sizes only increase and decrease by 1.

The general lesson is that for algorithmics, special cases matter. Theoreticians know this
well; for example, the general problem of finding a Hamiltonian cycle [CLR90] is hard for
general graphs but is trivial if the graph is a ring. In fact, the practitioner of algorithmics
should look for opportunities to change the system to permit special cases that permit efficient
algorithms.

Second, the dynamic threshold scheme shows how important it is to optimize one’s degrees
of freedom (P13), especially when considering dynamic instead of static values for parameters.
This is a very common evolutionary path in many protocols: for example, collision-avoidance
protocols evolved from using fixed backoff times to using dynamic backoff times in Ethernet;
transport protocols evolved from using fixed window sizes to using dynamic window sizes to
adjust to congestion; finally, the dynamic threshold scheme of this chapter shows the power
of allowing dynamic buffer thresholds.

Third, the discussion of techniques for buffer sharing shows why algorithmics — at least in
terms of abstracting common networking tasks and understanding a wide spectrum of solutions
for these tasks — can be useful. For example, when writing this chapter it became clear that
buffer sharing is also part of many credit-based protocols, such as Ozveren et al. [OSV94] (see
the protocol in Chapter 15) — except that in such settings a sender is allocating buffer space at
a distant receiver. Isolating the abstract problem is helpful because it shows, for instance, that
the dynamic threshold scheme of Choudhury and Hahne can provide finer grain buffer sharing
than the technique of Ozveren et al. [OSV94].

Finally, the last lesson from header prediction and fast reassembly is that attempts to design
new protocols for faster implementation can often be countered by simpler implementations.
In particular, arguing that a protocol is “complex” is often irrelevant if the complexities can
be finessed in the expected case.

As a second example, a transport protocol [SN89] was designed to allow efficient sequence
number processing for protocols that used large windows and could handle out-of-order deliv-
ery. The protocol embedded concepts such as chunks of contiguous sequence numbers into
the protocol for this purpose. Simple implementation tricks described in the patent [TVHS92]
can achieve much the same effect, using large words to effectively represent chunks without
redesigning the protocol.

Thus history teaches that attempts to redesign protocols for efficiency (as opposed to more
functionality) should be viewed with some scepticism.

9.6 EXERCISES

1. Dynamic Buffer Thresholds and Credit-Based Flow Control: Read the credit-based
protocol described in Chapter 15. Consider how to modify the buffer-sharing protocol of
Chapter 15 to use dynamic thresholds. What are some of the possible benefits? This last
question is ideally answered by a simulation, which would make it a longer-term class
project.

2. Incremental Checksum Computation: RFC 1141 states that when an IP header with
checksum H is modified by changing some 16-bit field value (such as the TTL field) m to

218 C H A P T E R 9 Protocol Processing

a new value m′, then the new checksum should become H + m + m′, where X denotes
the 1’s complement of X . While this works most of the time, the right equation, described
in RFC 1624, is to compute (H + m + m′): This is slightly more inefficient but correct.
This should show that tinkering with the computation can be tricky and requires proofs.

To see the difference between these two implementations, consider an example given
in RFC 1624 with an IP header in which a 16-bit field m = 0x5555 changes to
m′ = 0x3285. The 1’s-complement sum of all the remaining header bytes is 0xCD7A.
Compute the checksum both ways and show that they produce different results. Given
that these two results are really the same in 1’s complement notation (different
representations of zero), why might it cause trouble at the receiver?

3. Parallel Checksum Computation: Figure out how to modify checksum calculation in
hardware so as to work on W chunks of the packet in parallel and finally to fold all the
results.

4. Hardware Reassembly: Suppose the FIFO assumption is not true and fragments arrive
out of order. In this problem your assignment is to design an efficient hardware reassembly
scheme for IP fragments subject to the restrictions stated in Chapter 2. One idea you could
exploit is to have the hardware DMA engine that writes the fragment to a buffer also write
a control bit for every word written to memory. This only adds a bit for every 32 bits.

When all the fragments have arrived, all the bits are set. You could determine
whether all bits are set by using a summary tree, in which all the bits are leaves and each
node has 32 children. A node’s bit is set if all its children’s bits are set. The summary tree
does not require any pointers because all node bit positions can be calculated from child
bit positions, as in a heap. Describe the algorithms to update the summary tree when a
new fragment arrives. Consider hardware alternatives in which packets are stored in
DRAM and bitmaps are stored in SRAM, as well as other creative possibilities.

P A R T III

Playing with Routers

My work is a game, a very serious game.

— M. C. Escher

Part I dealt with models and principles and Part II dealt with applying these models and
principles to endnodes. The third part of this book deals with router algorithmics. This
is the application of network algorithmics to building fast routers. However, many of
the techniques apply to bridges, gateways, measurement devices, and firewalls. The
techniques are applied mostly in a hardware setting, and much of it has to do with
processing packets at wire speeds as links get faster. We study exact lookups, prefix
lookups, packet classification, switching, and QoS. We also study some other chores
within a router, such as striping and flow control across chip-to-chip links within a
router.

C H A P T E R 10

Exact-Match Lookups

“Challenge-and-response” is a formula describing the free play of forces that pro-
vokes new departures in individual and social life. An effective challenge stimulates
men to creative action.

— Arnold Toynbee

In Part III, for simplicity of terminology, we will generically refer to interconnect devices
as routers. Each chapter in Part III addresses the efficient implementation of a key function
for such routers. In the simplest model of a router forwarding path, the destination address
of a packet is first looked up to determine a destination port; the packet is then switched to
the destination port; finally, the packet is scheduled at the destination port to provide QoS
guarantees. In addition, modern high-performance routers also subject packets to internal
striping (to gain throughput) and to internal credit-based flow control (to prevent loss on chip-
to-chip links). The chapters are arranged to follow the same order, from lookups to switching
to QoS.

Thus the first three chapters concentrate on the surprisingly difficult problem of state
lookup in routers. The story begins with the simplest exact match lookups in this chapter,
progresses to longest-prefix lookups in Chapter 11, and culminates with the most complex
classification lookups in Chapter 12.

What is an exact-match lookup? Exact-match lookups represent the simplest form of
database query. Assume a database with a set of tuples; each tuple consists of a unique fixed-
length key together with some state information. A query specifies a key K . The goal is to
return the state information associated with the tuple whose key is K .

Now, exact-match queries are easily implemented using well-studied techniques, such
as binary search and hash tables [CLR90]. However, they are still worth studying in this
book, for two reasons. First, in the networking context the models and metrics for lookups are
different from the usual algorithmic setting. Such differences include the fact that lookups must
complete in the time to receive a packet, the use of memory references rather than processing
as a measure of speed, and the potential use of hardware speedups. Exact-match lookups offer
the simplest opportunity to explore these differences. A second reason to study exact-match
lookups is that they are crucial for an important networking function, called bridging1, that is
often integrated within a router.

1A device commonly known as a LAN switch typically implements bridge functionality.

221

222 C H A P T E R 1 0 Exact-Match Lookups

P15
P5

P15
P2a

P5

Use efficient data structures: binary search table
Hardware FPGA for lookup only

Use efficient data structure: perfect hashing
Precompute hash function with bounded collisions

Pipeline binary search

First bridge

Gigaswitch
FDDI bridge

Number Principle Used In

F I G U R E 10.1 Principles used in the various exact-match lookup techniques discussed in this chapter.

This chapter is organized around a description of the history of bridges. This is done for
one chapter in the book, in the hope of introducing the reader to the process of algorithmics at
work in a real product that changed the face of networking. This chapter also describes some
of the stimuli that lead to innovation and introduces some of the people responsible for it.

Arnold Toynbee [TC72] describes history using a challenge–response theory, in which
civilizations either grow or fail in response to a series of challenges. Similarly, the history of
bridges can be described as a series of three challenges, which are described in the three sections
of this chapter: Ethernets Under Fire (Section 10.1), Wire Speed Forwarding (Section 10.2),
and Scaling Lookups to Higher Speeds (Section 10.3). The responses to these challenges led
to what is now known as 802.1 spanning tree bridges [IEE97].

The techniques described in this chapter (and the corresponding principles) are summa-
rized in Figure 10.1.

Q u i c k R e f e r e n c e G u i d e
The implementor interested in fast exact-match schemes should consider either parallel hashing

techniques inspired by perfect hashing (Section 10.3.1) or pipelined binary search (Section 10.3.2).

10.1 CHALLENGE 1: ETHERNET UNDER FIRE

The first challenge arose in the late 1980s. Ethernet, invented in the 1970s as a low-cost,
high-bandwidth interconnect for personal computers, was attacked as behaving poorly at large
loads and being incapable of spanning large distances. Recall that if two or more nodes on
an Ethernet send data at the same time, a collision occurs on the shared wire. All senders
then compute a random retransmission time and retry, where the randomization is chosen to
minimize the probability of further collisions.

Theoretical analyses (e.g., Bux and Grillo [BG85]) claimed that as the utilization of an
Ethernet grew, the effective throughput of the Ethernet dropped to zero because the entire
bandwidth was wasted on retransmissions. A second charge against Ethernet was its small
distance limit of 1.5 km, much smaller than the limits imposed by, say, the IBM token ring.

While the limited-bandwidth charge turned out to be false in practice [BMK88], it
remained a potent marketing bullet for a long time. The limited-distance charge was, and

10.1 Challenge 1: Ethernet under Fire 223

Bridge

C↑

A↓

C

BA

F I G U R E 10.2 Toward designing a bridge connecting two Ethernets.

remains, a true limitation of a single Ethernet. In this embattled position, network marketing
people at Digital Equipment Corporation (DEC) around 1980 pleaded with their technical
experts for a technical riposte to these attacks. Could not their bright engineers find a clever
way to “extend” a single Ethernet such that it could become a longer Ethernet with a larger
effective bandwidth?

First, it was necessary to discard some unworkable alterntives. Physical layer bit repeaters
were unworkable because they did not avoid the distance and bandwidth limits of ordinary
Ethernets. Extending an Ethernet using a router did, in theory, solve both problems but intro-
duced two other problems. First, in those days, routers were extremely slow and could hardly
keep up with the speed of the Ethernet.

Second, there were at least six different routing protocols in use at that time, including
IBM’s SNA, Xerox’s SNS, DECNET, and Appletalk. Hard as it may be to believe now, the
Internet protocols were then only a small player in the marketplace. Thus a router would have
to be a complex beast capable of routing multiple protocols (as Cisco would do a few years
later), or one would have to incur the extra cost of placing multiple routers, one for each
protocol. Thus the router solution was considered a nonstarter.

Routers interconnect links using information in the routing header, while repeaters inter-
connect links based on physical-layer information, such as bits. However, in classical network
layering there is an intermediate layer called the data link layer. For an Ethernet, the data link
layer is quite simple and contains a 48-bit unique Ethernet destination address.2 Why is it not
possible, the DEC group argued, to consider a new form of interconnection based only on the
data link layer? They christened this new beast a data link layer relay, or a bridge.

Let us take an imaginary journey into the mind of Mark Kempf, an engineer in the
Advanced Development Group at DEC, who invented bridges in Tewksbury, MA, around 1980.
Undoubtedly, he drew something like Figure 10.2, which shows two Ethernets connected by
a bridge; the lower Ethernet line contains stations A and B, while the upper Ethernet contains
station C.

The bridge should make the two Ethernets look like one big Ethernet so that when A sends
an Ethernet packet to C it magically gets to C without A’s having to even know there is a
bridge in the middle. Perhaps Mark reasoned as follows in his path to a final solution.

Packet Repeater: Suppose A sends a packet to C (on the lower Ethernet) with destination
address C and source address A. Assume the bridge picks up the entire packet, buffers it, and

2Note that Ethernet 48-bit addresses have no relation to 32-bit Internet addresses.

224 C H A P T E R 1 0 Exact-Match Lookups

waits for a transmission opportunity to send it on the upper Ethernet. This avoids the physical
coupling between the collision-resolution processes on the two Ethernets that would be caused
by using a bit repeater. Thus the distance span increases to 3 km, but the effective bandwidth
is still that of one Ethernet, because every frame is sent on both Ethernets.

Filtering Repeater: The frame repeater idea in Figure 10.2 causes needless waste (P1)
when A sends a packet to B by sending the packet unnecessarily on the upper Ethernet.
This waste can be avoided if the bridge has a table that maps station addresses to Ethernets.
For example, suppose the bridge in Figure 10.2 has a table that maps A and B to the lower
Ethernet and C to the upper Ethernet. Then on receipt of a packet from A to B on the lower
Ethernet, the bridge need not forward the frame because the table indicates that destination B
is on the same Ethernet the packet was received on. If, say, a fraction p of traffic on each Eth-
ernet is to destinations on the same Ethernet (locality assumption), then the overall bandwidth
of the two Ethernet systems becomes (1 + p) times the bandwidth of a single Ethernet. This
follows because the fraction p can be simultaneously sent on both Ethernets, increasing overall
bandwidth by this fraction. Hence both bandwidth and distance increase. The only difficulty
is figuring out how the mapping table is built.

Filtering Repeater with Learning: It is infeasible to have a manager build a mapping
table for a large bridged network. Can the table be built automatically? One aspect of Principle
P13 (exploit degrees of freedom) is Polya’s [Pol57] problem-solving question: “Have you
used all the data?” So far, the bridge has looked only at destination addresses to forward the
data. Why not also look at source addresses? When receiving a frame from A to B, the bridge
can look at the source address field to realize that A is on the lower Ethernet. Over time, the
bridge will learn the ports through which all active stations can be reached.

Perhaps Mark rushed out after his insight, shouting “Eureka!” But he still had to work out
a few more issues. First, because the table is initially empty, bridges must forward a packet,
perhaps unnecessarily, when the location of the destination has not been learned. Second, to
handle station movement, table entries must be timed out if the source address is not seen for
some time period T . Third, the entire idea generalizes to more than two Ethernets connected
together without cycles, to bridges with more than two Ethernet attachments, and to links other
than Ethernets that carry destination and source addresses. But there was a far more serious
challenge that needed to be resolved.

10.2 CHALLENGE 2: WIRE SPEED FORWARDING

When the idea was first proposed, some doubting Thomas at DEC noticed a potential flaw.
Suppose in Figure 10.2 that A sends 1000 packets to B and that A then follows this burst by
sending, say, 10 packets to C. The bridge receives the thousand packets, buffers them, and
begins to work on forwarding (actually discarding) them. Suppose the time that the bridge
takes to look up its forwarding table is twice as long as the time it takes to receive a packet.
Then after a burst of 1000 back-to-back packets arrive, a queue of 500 packets from A to B
will remain as a backlog of packets that the bridge has not even examined.

Since the bridge has a finite amount of buffer storage for, say, 500 packets, when the
burst from A to C arrives they may be dropped without examination because the bridge has
no more buffer storage. This is ironic because the packets from A to B that are in the buffer
will be dropped after examination, but the bridge has dropped packets from A to C that needed
to be forwarded. One can change the numbers used in this example but the bottom line is

10.2 Challenge 2: Wire Speed Forwarding 225

Packet memory
plus

lookup memoryLookup
engineProcessor

Ethernet chip

Ethernet chip
Ethernet 1

Ethernet 2

F I G U R E 10.3 Implementation of the first Ethernet-to-Ethernet bridge.

unchanged: If the bridge takes more time to forward a packet than the minimum packet arrival
time, there are always scenarios in which packets to be forwarded will be dropped, because
the buffers are filled with packets that will be discarded.

The critics were quick to point out that routers did not have this problem3 because routers
dealt only with packets addressed to the router. Thus if a router were used, the router–Ethernet
interface would not even pick up packets destined for B, avoiding this scenario.

To finesse this issue and avoid interminable arguments, Mark proposed an implementation
that would do wire speed forwarding between two Ethernets. In other words, the bridge would
look up the destination address in the table (for forwarding) and the source address (for learning)
in the time it took a minimum-size packet to arrive on an Ethernet. Given a 64-byte minimum
packet, this left 51.2 µsec to forward a packet. Since a two-port bridge could receive a
minimum-size packet on each of its Ethernets every 51.2 µsec, this actually translated into
doing two lookups (destination and source) every 25.6 µsec.

It is hard to appreciate today, when wire speed forwarding has become commonplace,
how astonishing this goal was in the early 1980s. This is because in those days one would be
fortunate to find an interconnect device (e.g., router, gateway) that worked at kilobit rates, let
alone at 10 Mbit/sec. Impossible, many thought. To prove them wrong, Mark built a prototype
as part of the Advanced Development Group in DEC. A schematic of his prototype, which
became the basis for the first bridge, is shown in Figure 10.3.

The design in Figure 10.3 consists of a processor (the first bridge used a Motorola 68000),
two Ethernet chips (the first bridge used AMD Lance chips), a lookup chip (which is described
in more detail later), and a four-ported shared memory. The memory could be read and written
by the processor, the Ethernet chips, and the lookup engine.

The data flow through the bridge was as follows. Imagine a packet P sent on Ethernet 1.
Both Ethernet chips were set in “promiscuous mode,” whereby they received all packets.

3Oddly enough even routers have the same problem of distinguishing important packets from less important
ones in times of congestion, but this was not taken seriously in the 1980s.

226 C H A P T E R 1 0 Exact-Match Lookups

Thus the bits of P are captured by the upper Ethernet chip and stored in the shared memory
in a receive queue. The processor eventually reads the header of P, extracts the destination
address D, and gives it to the lookup engine.

The lookup engine looks up D in a database also stored in the shared memory and returns
the port (upper or lower Ethernet) in around 1.3 µsec. If the destination is on the upper
Ethernet, then the packet buffer pointer is moved to a free queue, effectively discarding the
packet; otherwise, the buffer pointer is moved to the transmit queue of the lower Ethernet
chip. The processor also provides the source address S in packet P to the lookup engine for
learning.

His design paid careful attention to algorithmics in at least three areas to achieve wire
speed forwarding at a surprisingly small manufacturing cost of around $1000.

• Architectural Design: To minimize cost, the memory was cheap DRAM with a cycle time
of 100 nsec that was used for packet buffers, scratch memory, and the lookup database.
The four-port memory (including the separate connection from the lookup engine to the
memory) and the buses were carefully designed to maximize parallelism and minimize
interference. For example, while the lookup engine worked on doing lookups to memory,
the processor continued to do useful work. Note that the processor has to examine the
receive queues of both Ethernet chips in dovetailed fashion to check for packets to be
forwarded from either the top or bottom Ethernets. Careful attention was paid to memory
bandwidth, including the use of page mode (Chapter 2).

• Data Copying: The Lance chips used DMA (Chapter 5) to place packets in the memory
without processor control. When a packet was to be forwarded between the two Ethernets,
the processor only flipped a pointer from the receive queue of one Ethernet chip to the
transmit queue of the other processor.

• Control Overhead: As with most processors, the interrupt overhead of the 68000 was
substantial. To minimize this overhead, the processor used polling, staying in a loop after
a packet interrupt and servicing as many packets as arrive, in order to reduce context-
switching overhead (Chapter 6). When the receive queues are empty, the processor moves
to doing other chores, such as processing control traffic. The first data packet arrival after
such an idle period interrupts the processor, but this interrupt overhead is spread over the
entire batch of packets that arrive before another idle period begins.

• Lookups: Very likely, Mark went through the eight cautionary questions found in
Chapter 3. First, to avoid any complaints, he decided to use binary search (P15, efficient
data structures) for lookup because of its determinism. Second, having a great deal of
software experience before he began designing hardware, he wrote some sample 68000
code and determined that software binary search lookup was the bottleneck (Q2 in
Chapter 3) and would exceed his packet processing budget of 25.6 µsec. Eliminating the
destination and source lookup would allow him to achieve wire speed forwarding (Q3).
Recall that each iteration of binary search reads an address from the database in memory,
compares it with the address that must be looked up, and uses this comparison to
determine the next address to be read. With added hardware (P5), the comparison can be
implemented using combinatorial logic (Chapter 2), and so a first-order approximation of
lookup time is the number of DRAM memory accesses. As the first product aimed for a

10.2 Challenge 2: Wire Speed Forwarding 227

table size of 8000,4 this required log2 8000 memory accesses of 100-nsec each, yielding a
lookup time of 1.3 µsec. Given that the processor does useful work during the lookup, two
lookups for source and destination easily fit within a 25.6-µsec budget (Q4).

To answer Q5 in Chapter 3 as to whether custom hardware is worthwhile, Mark found that
the lookup chip could be cheaply and quickly implemented using a PAL (programmable array
logic; see Chapter 2). To answer Q7, his initial prototype met wire speed tests constructed
using logic analyzers. Finally, Q8, which asks about the sensitivity to environment changes,
was not relevant to a strictly worst-case design like this.

The 68000 software, written by Bob Shelley, also had to be carefully constructed to
maximize parallelism. After the prototype was built, Tony Lauck, then head of DECNET,
was worried that bridges would not work correctly if they were placed in cyclic topologies.
For example, if two bridges are placed between the same pair of Ethernets, messages sent on
one Ethernet will be forwarded at wire speed in the loop between bridges. In response, Radia
Perlman, then the DEC routing architect, invented her celebrated spanning tree algorithm.
The algorithm ensures that bridges compute a loop-free topology by having redundant bridges
turn off appropriate bridge ports.

While you can read up on the design of the spanning tree algorithm in Perlman’s book
[Per92], it is interesting to note that there was initial resistance to implementing her algorithm,
which appeared to be “complex” when compared to simple, fast bridge data forwarding.
However, the spanning tree algorithm used control messages, called Hellos, that are not
processed in real time.

A simple back-of-the-envelope calculation by Tony Lauck related the number of instruc-
tions used to process a hello (at most 1000), the rate of hello generation (specified at that time
to be once every second), and the number of instructions per second of the Motorola 68000
(around 1 million). Lauck’s vision and analysis carried the day, and the spanning tree algorithm
was implemented in the final product.

Manufactured at a cost of $1000, the first bridge was initially sold at a markup of around
eight, ensuring a handsome profit for DEC when sales initially climbed. In 1986 Mark Kempf
was awarded U.S. Patent 4,597,07, titled “Bridge circuit for interconnecting networks.” DEC
made no money from patent licensing, choosing instead to promote the IEEE 802.1 bridge
interconnection standards process.

Together with the idea of self-learning bridges, the spanning tree algorithm has passed
into history. Ironically, one of the first customers complained that the bridge did not work
correctly; field service later determined that the customer had connected two bridge ports to
the same Ethernet, and the spanning tree had (rightly) turned the bridge off! While features
like autoconfigurability and provable fault tolerance have only recently been added to Internet
protocols, they were part of the bridge protocols in the 1980s.

The success of Ethernet bridges led to proposals for several other types of bridges con-
necting other local area networks and even wide area bridges. The author even remembers
working with John Hart (who went on to become CTO of 3Com) and Fred Baker (who went
on to become a Cisco Fellow) on building satellite bridges that could link geographically
distributed sites. While some of the initital enthusiasm to extend bridges to supplant routers

4This allows a bridged Ethernet to have only 8000 stations. While this is probably sufficient for most customer
sites, later bridge implementations raised this figure to 16K and even 64K.

228 C H A P T E R 1 0 Exact-Match Lookups

was somewhat extreme, bridges found their most successful niche in cheaply interconnecting
similar local area networks at wire speeds.

However, after the initial success of 10-Mbps Ethernet bridges, enginers at DEC began
to worry about bridging higher-speed LANs. In particular, DEC decided, perhaps unwisely,
to concentrate their high-speed interconnect strategy around 100-Mbps FDDI token rings
[UNH01]. Thus in the early 1990s, engineers at DEC and other companies began to worry about
building a bridge to interconnect two 100-Mpbs FDDI rings. Could wire speed forwarding,
and especially exact-match lookups, be made 10 times faster?

10.3 CHALLENGE 3: SCALING LOOKUPS TO HIGHER SPEEDS

First, let’s understand why binary search forwarding does not scale to FDDI speeds. Binary
search takes log2 N memory accesses to look up a bridge database, where N is the size of
the database. As bridges grew popular, marketing feedback indicated that the database size
needed to be increased from 8K to 64K. Thus using binary search, each search would take
16 memory accesses. Doing a search for the source and destination addresses using 100-nsec
DRAM would then take 3.2 µsec.

Unlike Ethernet, where small packets are padded to ensure a minimum size of 64 bytes,
a minimum-size packet consisting of FDDI, routing, and transport protocol headers could be
as small as 40 bytes. Given that a 40-byte packet can be received in 3.2 µsec at 100 Mbps,
two binary search lookups would use up all of the packet-processing budget for a single link,
leaving no time for other chores, such as inserting and removing from link chip queues.

One simple approach to meet the challenge of wire speed forwarding is to retain binary
search but to use faster hardware (P5). In particular, faster SRAM (Chapter 2) could be used
to store the database. Given a factor of 5–10 decrease in memory access time using SRAM in
place of DRAM, binary search will easily scale to wire speed FDDI forwarding.

However, this approach is unsatisfactory, for two reasons. First, it is more expensive,
because SRAM is more expensive than DRAM. Second, using faster memory gets us lookups
at FDDI speeds but will not work for the next speed increment (e.g., Gigabit Ethernet). What
is needed is a way to reduce the number of memory accesses associated with a lookup so that
bridging can scale with link technology. Of the two following approaches to bridge-lookup
scaling, one is based on hashing and the other on hardware parallelism.

10.3.1 Scaling via Hashing
In the 1990s, DEC decided to build a fast crossbar switch connecting up to 32 links, called
the Gigaswitch [SKO+94]. The switch-arbitration algorithms used in this switch will be
described in Chapter 13. This chapter concentrates on the bridge-lookup algorithms used
in the Gigaswitch. The vision of the original designers, Bob Simcoe and Bob Thomas, was
to have the Gigaswitch be a switch connecting point-to-point FDDI links without implement-
ing bridge forwarding and learning. Bridge lookups were considered to be too complex at
100-Mbps speeds.

Into the development arena strode a young software designer who changed the prod-
uct direction. Barry Spinney, who had implemented an Ada compiler in his last job, was
determined to do hardware design at DEC. Barry suggested that the Gigaswitch be converted
to a bridge interconnecting FDDI local area networks. To do so, he proposed designing an

10.3 Challenge 3: Scaling Lookups to Higher Speeds 229

D(x) * M(x) mod G(x)

S D
BACKUP

CAM

F I G U R E 10.4 Gigaswitch hashing uses a hash function with a programmable multiplier, a small,
balanced binary tree in every hash bucket, and a backup CAM to hold the rare case of entries that result
in more than seven collisions.

FDDI-to-Gigaswitch network controller (FGC) chip on the line cards that would implement a
hashing-based algorithm for lookups. The Gigaswitch article [SKO+94] states that each bridge
lookup makes at most four reads from memory.

Now, every student of algorithms [CLR90] knows that hashing, on average, is much
faster (constant time) than binary search (logarithmic time). However, the same student also
knows that hashing is much slower in the worst case, potentially taking linear time because
of collisions. How, then, can the Gigaswitch hash lookups claim to take at most four reads to
memory in the worst case even for bridge databases of size 64K, whereas binary search would
require 16 memory accesses?

The Gigaswitch trick has its roots in an algorithmic technique (P15) called perfect hashing
[DKea88]. The idea is to use a parameterized hash function, where the hash function can
be changed by varying some parameters. Then appropriate values of the parameters can be
precomputed (P2a) to obtain a hash function such that the worst-case number of collisions is
small and bounded.

While finding such a good hash function may take (in theory) a large amount of time, this
is a good trade-off because this new station’s addresses do not get added to local area networks
at a very rapid rate. On the other hand, once the hash function has been picked, lookup can be
done at wire speeds.

Specifically, the Gigaswitch hash function treats each 48-bit address as a 47-degree poly-
nomial in the Galois field of order 2, GF(2). While this sounds impressive, this is the same
arithmetic used for calculating CRCs; it is identical to ordinary polynomial arithmetic, except
that all additions are done mod 2. A hashed address is obtained by the equation A(X) ∗ M(X)
mod G(X), where G(X) is the irreducible polynomial X48 + X36 + X25 + X10 + 1, M(X) is
a nonzero, 47-degree programmable hash multiplier, and A(X) is the address expressed as a
47-degree polynomial.

The hashed address is 48 bits. The bottom 16 bits of the hashed address is then used as
an index into a 64K-entry hash table. Each hash table entry [see Figure 10.4 as applied to
the destination address lookup, with D(x) being used in place of A(x)] points to the root of a
balanced binary tree of height at most 3. The hash function has the property that it suffices to
use only the remaining high-order 32 bits of the hashed address to disambiguate collided keys.

Thus the binary tree is sorted by these 32-bit values, instead of the original 48-bit keys.
This saves 16 bits to be used for associated lookup information. Thus any search is guaranteed
to take no more than four memory accesses, one to lookup the hash table and three more to
navigate a height-3 binary tree.

230 C H A P T E R 1 0 Exact-Match Lookups

It turns out that picking the multiplier is quite easy in practice. The coefficients of M(x) are
picked randomly. Having picked M(x) it sometimes happens that a few buckets have more than
seven colliding addresses. In such a case, these entries are stored in a small hardware lookup
database called a Content Addressable Memory or CAM (studied in more detail in Chapter 11).

The CAM lookup occurs in parallel with the hash lookup. Finally, in the extremely rare
case when several dozen addresses are added to the CAM (say, when new station addresses
are learned that cause collisions), the central processor initiates a rehashing operation and
distributes the new hash function to the line cards. It is perhaps ironic that rehashing occured
so rarely in practice that one might worry whether the rehashing code was adequately tested!

The Gigaswitch became a successful product, allowing up to 22 FDDI networks to be
bridged together with other link technologies, such as ATM. Barry Spinney was assigned U.S.
patent 5,920,900, “Hash-based translation method and apparatus with multiple-level collision
resolution.” While techniques based on perfect hashing [DKea88] have been around for a
while in the theoretical community, Spinney’s contribution was to use a pragmatic version of
the perfect hashing idea for high-speed forwarding.

10.3.2 Using Hardware Parallelism
Techniques based on perfect hashing do not completely provide worst-case guarantees. While
they do provide worst-case search times of three to four memory accesses, they cannot guar-
antee worst-case update times. It is conceivable that an update takes an unpredictably long
time while the software searches for a hash function with the specified bound on the number
of collisions.

One can argue that exactly the same guarantees are provided every moment by millions
of Ethernets around the world and that nondeterministic update times are far preferable to
nondeterministic search times. However, proving that long update times are rare in practice
requires either considerable experimentation or good analysis. This makes some designers
uncomfortable. It leads to a preference for search schemes that have bounded worst-case
search and update times.

An alternate approach is to apply hardware parallelism (P5) to a deterministic scheme such
as binary search. Binary search has deterministic search and update times; its only problem
is that search takes a logarithmic number of memory accesses, which is too slow. We can get
around this difficulty by pipelining binary search to increase lookup throughput (number of
lookups per second) without improving lookup latency. This is illustrated in Figure 10.5.

Probe 1

Probe 1
table

Probe 2
table

Probe 3
table

Probe 4
table

E

C

G

B

D

F

H

A
B
C
D
E
F
G
H

F I G U R E 10.5 Pipeling binary search for a database with keys A through H.

10.4 Summary 231

The idea is to have a logarithmic number of processing stages, each with its own memory
array. In Figure 10.5 the keys are the characters A through H. The first array has only the
root of the trie, the median element E. The second array corresponds to the quartile and third
quartile elements C and G, which are the possible keys at the second probe of binary search,
and so on. Search keys enter from the left and progress from stage to stage, carrying a pointer
that identifies which key in the corresponding stage memory must be compared to the search
key. The lookup throughput is nearly one per memory access, because there can be multiple
concurrent searches progressing through the stages in order.

Although the figure shows the elements in, say, Stage 2, C and G, as being separated by
their spacing in the original table, they can be packed together to save memory in the stages.
Thus the overall memory across all stages becomes equal to the memory in a nonpipelined
implementation. Indexing into each stage memory becomes slightly more tricky.

Assume Stage i has passed a pointer j to Stage j + 1 along with search key S. Stage j + 1
compares the search key S to its jth array entry. If the answer is equal, the search is finished
but continues flowing through the pipeline with no more changes. If the search key is smaller,
the search key is passed to stage i + 1 with the pointer j0 (i.e., j concatenated with bit 0); if the
search key is larger, the pointer passed is j1. For example, if the key searched for is F, then
the pointer becomes 1 when entering Stage 2 and becomes 10 when entering Stage 3.

The author first heard of this idea from Greg Waters, who later went on to implement IP
lookups for the core router company Avici. While the idea looks clever and arcane, there is
a much simpler way of understanding the final solution. Computer scientists are well aware
of the notion of a binary search tree [CLR90]. Any binary search table can be converted into
a fully balanced binary search tree by making the root the median element, and so on, along
the lines of Figure 10.5. Any tree is trivially pipelined by height, with nodes of height i being
assigned to Stage i.

The only problem with a binary search tree, as opposed to a table, is the extra space
required for pointers to children. However, it is well known that for a full binary search tree,
such as a heap [CLR90], the pointers can be implicit and can be calculated based on the history
of comparisons — as shown earlier. The upshot is that a seemingly abstruse trick can be seen
as the combination of three simple and well-known facts from theoretical computer science.

10.4 SUMMARY

This chapter on exact-match lookups is written as a story — the story of bridging. Three morals
can be drawn from this story.

First, bridging was a direct response to the challenge of efficiently extending Ethernets
without using routers or repeaters; wire speed forwarding was a direct response to the problem
of potentially losing important packets in a flood of less important packets. At the risk of
sounding like a self-help book, I hold that challenges are best regarded as opportunities and
not as annoyances. The mathematician Felix Klein [Bel86] used to say, “ You must always have
a problem; you may not find what you were looking for but you will find something interesting
on the way.” For example, it is clear that the main reason bridges were invented — the lack
of high-performance multiprotocol routers — is not the reason bridges are still useful today.

This brings us to the second moral. Today it is clear that bridges will never displace
routers, because of their lack of scalability using flat Ethernet addresses, lack of shortest-cost

232 C H A P T E R 1 0 Exact-Match Lookups

routing, etc. However, they remain interesting today because bridges are interconnect devices
with better cost for performance and higher flexibility than routers for interconnecting a small
number of similar local area networks. Thus bridges still abound in the marketplace, often
referred to as switches. What many network vendors refer to as a switch is a crossbar switch,
such as the Gigaswitch, that is capable of bridging on every interface. A few new features,
notably virtual LANs (VLANs) [Per92], have been added. But the core idea remains the same.

Third, the techniques introduced by the first bridge have deeply influenced the next gener-
ation of interconnect devices, from core routers to Web switches. Recall that Roger Bannister,
who first broke the 4-minute-mile barrier, was followed in a few months by several others.
In the same way, the first Ethernet bridge was quickly followed by many other wire speed
bridges. Soon the idea began to flow to routers as well. Other important concepts introduced
by bridges include the use of memory references as a metric, the notion of trading update time
for faster lookups, and the use of minimal hardware speedups. All these ideas carry over into
the study of router lookups in the next chapter.

In conclusion, the challenge of building the first bridge stimulated creative actions that
went far beyond the first bridge. While wire speed router designs are fairly commonplace
today, it is perhaps surprising that there are products still being announced that claim gigabit
wire speed processing rates for such abstruse networking tasks as encryption and even XML
transformations.

10.5 EXERCISE

1. ARP Caches: Another example of an exact-match lookup is furnished by ARP caches in
a router or endnode. In an Internet router, when a packet first arrives to a destination, the
router must store the packet and send an ARP request to the Ethernet containing the
packet. The ARP request is broadcast to all endnodes on the Ethernet and contains the IP
address of the destination. When the destination responds with an ARP reply containing
the Ethernet address of the destination, the router stores the mapping in an ARP table and
sends the stored data packet, with the destination Ethernet address filled in.

• What lookup algorithms can be used for ARP caches?

• Why might the task of storing data packets awaiting data translation result in packet
reordering?

• Some router implementations get around the reordering problem by dropping all data
packets that arrive to find that the destination address is not in the ARP table (however,
the ARP request is sent out). Explain the pros and cons of such a scheme.

C H A P T E R 11

Prefix-Match Lookups

You can look it up.

— Traditional

Consider a flight database in London that lists flights to a thousand U.S. cities. One alternative
would be to keep a record specifying the path to each of the thousand cities. Suppose, however,
that most flights toAmerica hub though Boston, except flights to California, which hub through
Los Angeles. This observation can be exploited to reduce the flight database from a thousand
entries to two prefix entries (USA* −− > Boston; USA.CA.* −− > LA).

A problem with this reduction is that a destination city like USA.CA.Fresno will now
match both the USA* and USA.CA.* prefixes; the database must return the longest match
(USA.CA.*). Thus prefixes have been used to compress a large database, but at the cost of a
more complex longest-matching-prefix lookup.

As described in Chapter 2, the Internet uses the same idea. In the year 2004, core routers
stored only around 150,000 prefixes, instead of potentially billions of entries for each possible
Internet address. For example, to a core router all the computers within a university, such as
UCSD, will probably be reachable by the same next hop. If all the computers within UCSD
are given the same initial set of bits (the network number, or prefix), then the router can store
one entry for UCSD instead of thousands of entries for each computer in UCSD.

The entire chapter is organized as follows. Section 11.1 provides an introduction to prefix
lookups. Section 11.2 describes attempts to finesse the need for IP lookups. Section 11.3
presents nonalgorithmic techniques for lookup based on caching and parallel hardware.
Section 11.4 describes the simplest technique based on unibit tries.

The chapter then transitions to describe six new schemes: multibit tries (Section 11.5),
level-compressed tries (Section 11.6), Lulea-compressed tries (Section 11.7), tree bitmap
(Section 11.8), binary search on prefix ranges (Section 11.9), and binary search on prefix
lengths (Section 11.10). The chapter ends with Section 11.11, describing memory allocation
issues for lookup schemes.

The techniques described in this chapter (and the corresponding principles) are summa-
rized in Figure 11.1.

233

234 C H A P T E R 1 1 Prefix-Match Lookups

P2a, P10

P2a, P10
P4a

P11

P5

P4b

Precompute indices

Pass indices computed at run time
Exploit ATM switch hardware

Cache whole IP addresses

Hardware parallel lookup

Expand prefixes to gain speed

IP switching

Tag switching

Lookup caches

CAMs

Controlled expansion

Number Principle Lookup Technique

P13 Strides as a degree of freedom Variable-stride tries

P4b
P12, P2a

Compress to gain speed
Precomputed count of bits set

Lulea tries

P15
P12
P2a

Add marker state
Precompute marker watch

Use efficient search Binary search on
prefix lengths

P2a Precompute range to prefix matching Binary search on
prefixes

F I G U R E 11.1 Principles involved in the various prefix-lookup schemes described in this chapter.

Q u i c k R e f e r e n c e G u i d e
The most important lookup algorithms for an implementor today are as follows. At speeds up to

10 Gbps in hardware or software using DRAM technology, the simplest and most effective scheme is
based on multibit tries (Section 11.5). At faster speeds, up to 40 Gbps, especially using more expensive
SRAM technology, the most effective algorithm described in this chapter is the tree bitmap (Section 11.8)
scheme. A simple reduction of prefix search to binary search is described in Section 11.9; using wide
memory words, this scheme is quite effective and, more importantly, is unencumbered by patents. Finally,
an important and often not well-appreciated point is the issue of memory allocation for compressed data
structures, which is introduced in Section 11.11. While these four sections will probably answer immediate
implementation needs, the remaining sections provide insight and alternatives that may help a designer
to invent new schemes.

11.1 INTRODUCTION TO PREFIX LOOKUPS

This section introduces prefix notation, explains why prefix lookup is used, and describes the
main metrics used to evaluate prefix lookup schemes.

11.1.1 Prefix Notation
Internet prefixes are defined using bits and not alphanumerical characters, of up to 32 bits in
length. To confuse matters, however, IP prefixes are often written in dot-decimal notation.

11.1 Introduction to Prefix Lookups 235

Thus, the 16-bit prefix for UCSD at the time of writing is 132.239. Each of the decimal
digits between dots represents a byte. Since in binary 132 is 10000100 and 239 is 11101111,
the UCSD prefix in binary can also be written as 1000010011101111*, where the wildcard
character * is used to denote that the remaining bits do not matter. All UCSD hosts have 32-bit
IP addresses beginning with these 16 bits.

Because prefixes can be variable length, a second common way to denote a prefix is
by slash notation of the form A/L. In this case A denotes a 32-bit IP address in dot-decimal
notation and L denotes the length of the prefix. Thus the UCSD prefix can also be denoted
as 132.239.0.0/16, where the length 16 indicates that only the first 16 bits (i.e., 132.239) are
relevant. A third common way to describe prefixes is to use a mask in place of an explicit prefix
length. Thus the UCSD prefix can also be described as 128.239.0.0 with a mask of 255.255.0.0.
Since 255.255.0.0 has 1’s in the first 16 bits, this implicitly indicates a length of 16 bits.1

Of these three ways to denote a prefix (binary with a wildcard at the end, slash notation,
and mask notation), the last two are more compact for writing down large prefixes. However,
for pedagogical reasons, it is much easier to use small prefixes as examples and to write them
in binary. Thus in this chapter we will use 01110* to denote a prefix that matches all 32-bit
IP addresses that start with 01110. The reader should easily be able to convert this notation to
the slash or mask notation used by vendors. Also, note that most prefixes are at least 8 bits in
length; however, to keep our examples simple, this chapter uses smaller prefixes.

11.1.2 Why Variable-Length Prefixes?
Before we consider how to deal with the complexity of variable-length-prefix matching, it
is worth understanding why Internet prefixes are variable length. Given a telephone number
such as 858-549-3816, it is a trivial matter to extract the first three digits (i.e., 858) as the area
code. If fixed-length prefixes are easier to implement, what is the advantage of variable-length
prefixes?

The general answer to this question is that variable-length prefixes make more efficient
use of the address space. This is because areas with a large number of endpoints can be assigned
shorter prefixes, while areas with a few endpoints can be assigned longer prefixes.

The specific answer comes from the history of Internet addressing. The Internet began with
a simple hierarchy in which 32-bit addresses were divided into a network address and a host
number; routers only stored entries for networks. For flexible address allocation, the network
address came in variable sizes: Class A (8 bits), Class B (16 bits), and Class C (24 bits). To
cope with exhaustion of Class B addresses, the Classless Internet Domain Routing (CIDR)
scheme [RL96] assigns new organizations multiple contiguous Class C addresses that can be
aggregated by a common prefix. This reduces core router table size.

Today, the potential depletion of the address space has led Internet registries to be very
conservative in the assignment of IP addresses. A small organization may be given only a small
portion of a Class C address, perhaps a /30, which allows only four IP addresses within the
organization. Many organizations are coping with these sparse assignments by sharing a few

1The mask notation is actually more general because it allows noncontiguous masks where the 1’s are not
necessarily consecutive starting from the left. Such definitions of networks actually do exist. However, they are
becoming increasingly uncommon and are nonexistent in core router prefix tables. Thus we will ignore this possibility
in this chapter.

236 C H A P T E R 1 1 Prefix-Match Lookups

IP addresses among multiple computers, using schemes such as network address translation,
or NAT.

Thus CIDR and NAT have helped the Internet handle exponential growth with a finite
32-bit address space. While there are plans for a new IP (IPv6) with a 128-bit address, the
effectiveness of NAT in the short run and the complexity of rolling out a new protocol have
made IPv6 deployment currently slow. Despite this, a brave new world containing billions of
wireless sensors may lead to an IPv6 resurgence.

The bottom line is that the decision to deploy CIDR helped save the Internet, but it has
introduced the complexity of longest-matching-prefix lookup.

11.1.3 Lookup Model
Recall the router model of Chapter 2. A packet arrives on an input link. Each packet carries a
32-bit Internet (IP) address.2

The processor consults a forwarding table to determine the output link for the packet. The
forwarding table contains a set of prefixes with their corresponding output links. The packet is
matched to the longest prefix that matches the destination address in the packet, and the packet
is forwarded to the corrresponding output link. The task of determining the output link, called
address lookup, is the subject of this chapter, which surveys lookup algorithms and shows that
lookup can be implemented at gigabit and terabit speeds.

Before searching for IP lookup solutions, it is important to be familiar with some basic
observations about traffic distributions, memory trends, and database sizes, which are shown
in Figure 11.2. These in turn will motivate the requirements for a lookup scheme.

First, a study of backbone traffic [TMW97] as far back as 1997 shows around 250,000
concurrent flows of short duration, using a fairly conservative measurement of flows. Mea-
surement data shows that this number is only increasing. This large number of flows means
caching solutions do not work well.

Second, the same study [TMW97] shows that roughly half the packets received by a
router are minimum-size TCP acknowledgments. Thus it is possible for a router to receive a
stream of minimum-size packets. Hence, being able to prefix lookups in the time to forward
a minimum-size packet can finesse the need for an input link queue, which simplifies system
design. A second reason is simple marketing: Many vendors claim wire speed forwarding,
and these claims can be tested. Assuming wire speed forwarding, forwarding a 40-byte packet
should take no more than 320 nsec at 1 Gbps, 32 nsec at 10 Gbps (OC-192 speeds), and 8 nsec
at 40 Gbps (OC-768).

Clearly, the most crucial metric for a lookup scheme is lookup speed. The third observation
states that because the cost of computation today is dominated by memory accesses, the simplest
measure of lookup speed is the worst-case number of memory accesses. The fourth observation
shows that backbone databases have all prefix lengths from 8 to 32, and so naive schemes will
require 24 memory accesses in the worst case to try all possible prefix lengths.

The fifth observation states that while current databases are around 150,000 prefixes,
the possible use of host routes (full 32-bit addresses) and multicast routes means that future
backbone routers will have prefix databases of 500,000 to 1 million prefixes.

2While most users deal with domain names, recall again that these names are translated to an IP address by a
directory service called DNS before packets are sent.

11.1 Introduction to Prefix Lookups 237

Observation Inference

1. 250,000 concurrent flows
 in backbone

2. 50% are TCP acks

3. Lookup dominated by
 memory accesses

4. Prefix lengths from 8–32

5. 150,000 prefixes today and
 multicast and host routes

6. Unstable BGP, multicast

7. Higher speeds need SRAM

8. IPv6, multicast delays

Caching works poorly
in backbone routers

Wire speed lookup needed
for 40-byte packets

Lookup speed measured by
number of memory accesses

Naive schemes take 24
memory accesses

With growth, require 500,000–
1 million prefixes

Updates in milliseconds to
seconds
Worth minimizing memory

32-bit lookups more crucial

F I G U R E 11.2 Some current data about the lookup problem and the corresponding implications for
lookup solutions.

The sixth observation refers to the speed of updates to the lookup data structure, for
example, to add or delete a prefix. Unstable routing-protocol implementations can lead to
requirements for updates on the order of milliseconds. Note that whether seconds or mil-
liseconds, this is several orders of magnitude below the lookup requirements, allowing
implementations the luxury of precomputing (P2a) information in data structures to speed
up lookup, at the cost of longer update times.

The seventh observation comes from Chapter 2. While standard (DRAM) memory is
cheap, DRAM access times are currently around 60 nsec, and so higher-speed memory (e.g.,
off- or on-chip SRAM, 1–10 nsec) may be needed at higher speeds. While DRAM memory
is essentially unlimited, SRAM and on-chip memory are limited by expense or unavailability.
Thus a third metric is memory usage, where memory can be expensive fast memory (cache in
software, SRAM in hardware) as well as cheaper, slow memory (e.g., DRAM, SDRAM).

Note that a lookup scheme that does not do incremental updates will require two copies of
the lookup database so that search can proceed in one copy while lookups proceed on the other
copy. Thus it may be worth doing incremental updates simply to reduce high-speed memory
by a factor of 2!

The eight observation concerns prefix lengths. IPv6 requires 128-bit prefixes. Multi-
cast lookups require 64-bit lookups because the full group address and a source address can
be concatenated to make a 64-bit prefix. However, the full deployment of both IPv6 and
multicast is in question. Thus at the time of writing, 32-bit IP lookups remain the most inter-
esting problem. However, this chapter does describe schemes that scale well to longer prefix
lengths.

238 C H A P T E R 1 1 Prefix-Match Lookups

In summary, the interesting metrics, in order of importance, are lookup speed, memory,
and update time. As a concrete example, a good on-chip design using 16 Mbits of on-chip
memory may support any set of 500,000 prefixes, do a lookup in 8 nsec to provide wire speed
forwarding at OC-192 rates, and allow prefix updates in 1 msec.

All the data described in this chapter is based on traces in [TMW97] and the routing
databases made available by the IPMA project [Mer]. Thus most academic papers and routing
vendors use the same databases to experimentally compare lookup schemes. The largest of
these, Mae East, is a reasonable model for a large backbone router.

The following notation is used consistently in reporting the theoretical performance of IP
lookup algorithms. N denotes the number of prefixes (e.g., 150,000 for large databases today),
and W denotes the length of an address (e.g., 32 for IPv4).

Finally, two additional observations can be exploited to optimize the expected case.

O1: Almost all prefixes are 24 bits or less, with the majority being 24-bit prefixes and the next
largest spike being at 16 bits. Some vendors use this to show worst-case lookup times
only for 24-bit prefixes; however, the future may lead to databases with a large number
of host routes (32-bit addresses) and integration of ARP caches.

O2: It is fairly rare to have prefixes that are prefixes of other prefixes, such as the prefixes 00*
and 0001*. In fact, the maximum number of prefixes of a given prefix in current databases
is seven.

While the ideal is a scheme that meets worst-case lookup time requirements, it is
desirable to have schemes that also utilize these observations to improve average storage
performance.

11.2 FINESSING LOOKUPS

The first instinct for a systems person is not to solve complex problems (like longest matching
prefix) but to eliminate the problem.

Observe that in virtual circuit networks such as ATM, when a source wishes to send data
to a destination, a call, analogous to a telephone call, is set up. The call number (VCI) at each
router is a moderate-size integer that is easy to look up. However, this comes at the cost of a
round-trip delay for call setup before data can be sent.

In terms of our principles, ATM has a previous hop switch pass an index (P10, pass hints
in protocol headers) into a next hop switch. The index is precomputed (P2a) just before data is
sent by the previous hop switch (P3c, shifting computation in space). The same abstract idea
can be used in datagram networks such as the Internet to finesse the need for prefix lookups.
We now describe two instantiations of this abstract idea: tag switching (Section 11.2.1) and
flow switching (Section 11.2.2).

11.2.1 Threaded Indices and Tag Switching
In threaded indices [CV96], each router passes an index into the next router’s forwarding
table, thereby avoiding prefix lookups. The indexes are precomputed by the routing protocol
whenever the topology changes. Thus in Figure 11.3, source S sends a packet to destination
D to the first router A as usual; however, the packet header also contains an index i into

11.2 Finessing Lookups 239

A, i

D i
B, j

D, �

D j D �

S A B D

Endnode
cache

Routing
table

Routing
table

F I G U R E 11.3 Replacing the need for a destination lookup in a datagram router by having each router
pass an index into the next router’s forwarding table.

D, 5, i D, B, j D, 6, j

Table sent
by A

Table sent
by B

Node R

Node D

Node A Node B

D, 6

j
D, 5

i

Cost 5 Cost 6

Cost 1Cost 3

F I G U R E 11.4 Setting up the threaded indexes or tags by modifying Bellman–Ford routing.

A’s forwarding table. A’s entry for D says that the next hop is router B and that B stores
its forwarding entry for D at index j. Thus A sends the packet on to B, but first it writes j
(Figure 11.3) as the packet index. This process is repeated, with each router in the path using
the index in the packet to look up its forwarding table.

The two main differences between threaded indices and virtual circuit indices (VCIs) are
as follows. First, threaded indexes are per destination and not per active source–destination
pair as in virtual circuit networks such as ATM. Second, and most important, threaded indexes
are precomputed by the routing protocol whenever the topology changes. As a simple example,
consider Figure 11.4, which shows a sample router topology where the routers run the Bellman–
Ford protocol to find their distances to destinations.

In Bellman–Ford (used, for example, in the intradomain protocol Routing Information
Protocol (RIP) [Per92]), a router R calculates its shortest path to D by taking the minimum of
the cost to D through each neighbor. The cost through a neighbor such as A is A’s cost to D
(i.e., 5) plus the cost from R to A (i.e., 3). In Figure 11.4, the best-cost path from R to D is
through router B, with cost 7. R can compute this because each neighbor of R (e.g., A, B)

240 C H A P T E R 1 1 Prefix-Match Lookups

passes its current cost to D to R, as shown in the figure. To compute indices as well, we
modify the basic protocol so that each neighbor reports its index for a destination in addition
to its cost to the destination. Thus, in Figure 11.4, A passes i and B passes j; thus when R
chooses B, it also uses B’s index j in its routing table entry for D. In summary, each router
uses the index of the minimal-cost neighbor for each destination as the threaded index for that
destination.

Cisco later introduced tag switching [Rea96], which is similar in concept to threaded
indices, except tag switching also allows a router to pass a stack of tags (indices) for multiple
routers downstream. Both schemes, however, do not deal well with hierarchies. Consider a
packet that arrives from the backbone to the first router in the exit domain. The exit domain is
the last autonomously managed network the packet traverses — say, the enterprise network in
which the destination of the packet resides.

The only way to avoid a lookup at the first router, R, in the exit domain is to have some
earlier router outside the exit domain pass an index (for the destination subnet) to R. But this is
impossible because the prior backbone routers should have only one aggregated routing entry
for the entire destination domain and can thus pass only one index for all subnets in that domain.
The only solution is either to add extra entries to routers outside a domain (infeasible) or to
require ordinary IP lookup at domain entry points (the chosen solution). Today tag switching
is flourishing in a more general form called multiprotocol label switching (MPLS) [Rea96].
However, neither tag switching nor MPLS completely avoids the need for ordinary IP lookups.

11.2.2 Flow Switching
A second proposal to finesse lookups was called flow switching [NMH97, PTS95]. Flow
switching also relies on a previous hop router to pass an index into the next hop router. Unlike
tag switching, however, these indexes are computed on demand when data arrives, and they
are then cached.

Flow switching starts with routers that contain an internal ATM switch and (potentially
slow) processors capable of doing IP forwarding and routing. Two such routers, R1 and R2,
are shown in Figure 11.5. When R2 first sends an IP packet to destination D that arrives on the
left input port of R1, the input port sends the packet to its central processor. This is the slow
path. The processor does the IP lookup and switches the packet internally to output link L. So
far nothing out of the ordinary.

R1R2

Slow path
Fast path

I

D

I, L L

M

Processor

F I G U R E 11.5 In IP switching, if R1 wishes to switch packets sent to D that are destined for output
link L, R1 picks an idle virtual circuit I , places the mapping I , L in its input port, and then sends I back to
R2. If R2 now sends packets to D labeled with VCI I , the packet will get switched directly to the output
link without going through the processor.

11.2 Finessing Lookups 241

Life gets more exciting if R1 decides to “switch” packets going to D. R1 may decide to do
so if, for instance, there is a lot of traffic going to D. In that case, R1 first picks an idle virtual
circuit identifier I , places the mapping I → L in its input port hardware, and then sends I back
to R2. If R2 now sends packets to D labeled with VCI I to the input port of R1, the input port
looks up the mapping from I to L and switches the packet directly to the output link L without
going through the processor.

Of course, R2 can repeat this switching process with the preceding router in the path, and
so on. Eventually, IP forwarding can be completely dispensed with in the switched portion of
a sequence of flow-switching routers.

Despite its elegance, flow switching seems likely to work poorly in the backbone. This
is because backbone flows are short lived and exhibit poor locality. A contrarian opinion is
presented in Molinero-Fernandez and McKeown [MM02], where the authors argue for the
resurrection of flow switching based on TCP connections. They claim that the current use of
circuit-switched optical switches to link core routers, the underutilization of backbone links
running at 10% of capacity, and increasing optical bandwidths all favor the simplicity of circuit
switching at higher speeds.

Both IP and tag switching are techniques to finesse the need for IP lookups by passing
information in protocol headers. Like ATM, both schemes rely on passing indices (P10).
However, tag switching precomputes the index (P2a) at an earlier time scale (topology change
time) than ATM (just before data transfer). On the other hand, in IP switching the indices are
computed on demand (P2c, lazy evaluation) after the data begins to flow. However, neither
tag nor IP switching completely avoids prefix lookups, and each adds a complex protocol. We
now look afresh at the supposed complexity of IP lookups.

11.2.3 Status of Tag Switching, Flow Switching, and Multiprotocol Label Switching
While tag switching and IP switching were originally introduced to speed up lookups, IP
switching has died away. However, tag switching in the more general form of multi-protocol-
label switchings (MPLS) [Cha97]) has reinvented itself as a mechanism for providing flow
differention to provide quality of service. Just as a VCI provides a simple label to quickly
distinguish a flow, a label allows a router to easily isolate a flow for special service. In effect,
MPLS uses labels to finesse the need for packet classification (Chapter 12), a much harder
problem than prefix lookups. Thus although prefix matching is still required, MPLS is also de
rigeur for a core router today.

Briefly, the required MPLS fast path forwarding is as follows. A packet with an MPLS
header is identified, a 20-bit label is extracted, and the label is looked up in a table that maps
the label to a forwarding rule. The forwarding rule specifies a next hop and also specifies the
operations to be performed on the current set of labels in the MPLS packet. These operations
can include removing labels (“popping the label stack”) or adding labels (“pushing on to the
label stack”).

Router MPLS implementations have to impose some limits on this general process to
guarantee wire speed forwarding. Possible limits include requiring that the label space be
dense, supporting a smaller number of labels than 220 (this allows a smaller amount of lookup
memory while avoiding a hash table), and limiting the number of label-stacking operations
that can be performed on a single packet.

242 C H A P T E R 1 1 Prefix-Match Lookups

11.3 NONALGORITHMIC TECHNIQUES FOR PREFIX MATCHING

In this section, we consider two other systems techniques for prefix lookups that do not rely
on algorithmic methods: caching and ternary CAMs. Caching relies on locality in address
references, while CAMs rely on hardware parallelism.

11.3.1 Caching
Lookups can be sped up by using a cache (P11a) that maps 32-bit addresses to next hops.
However, cache hit ratios in the backbone are poor [NMH97] because of the lack of locality
exhibited by flows in the backbone. The use of a large cache still requires the use of an exact-
match algorithm for lookup. Some researchers have advocated a clever modification of a CPU
cache lookup algorithm for this purpose [CP99]. In summary, caching can help, but it does not
avoid the need for fast prefix lookups.

11.3.2 Ternary Content-Addressable Memories
Ternary content-addressable memories (CAMs) that allow “don’t care” bits provide parallel
search in one memory access. Today’s CAMs can search and update in one memory cycle
(e.g., 10 nsec) and handle any combination of 100,000 prefixes. They can even be cascaded to
form larger databases. CAMs, however, have the following issues.

• Density Scaling: One bit in a TCAM requires 10–12 transistors, while an SRAM requires
4–6 transistors. Thus TCAMs will also be less dense than SRAMs or take more area.
Board area is a critical issue for many routers.

• Power Scaling: TCAMs take more power because of the parallel compare. CAM vendors
are, however, chipping away at this issue by finding ways to turn off parts of the CAM to
reduce power. Power is a key issue in large core routers.

• Time Scaling: The match logic in a CAM requires all matching rules to arbitrate so that the
highest match wins. Older-generation CAMs took around 10 nsec for an operation, but
currently announced products appear to take 5 nsec, possibly by pipelining parts of the
match delay.

• Extra Chips: Given that many routers, such as the Cisco GSR and the Juniper M160,
already have a dedicated Application Specific Integrated Circuit (ASIC) (or network
processor) doing packet forwarding, it is tempting to integrate the classification algorithm
with the lookup without adding CAM interfaces and CAM chips. Note that CAMs
typically require a bridge ASIC in addition to the basic CAM chip and sometimes require
multiple CAM chips.

In summary, CAM technology is rapidly improving and is supplanting algorithmic meth-
ods in smaller routers. However, for larger core routers that may wish to have databases of a
million routes in the future it may be better to have solutions (as we describe in this chapter)
that scale with standard memory technologies such as SRAM. SRAM is likely always to be
cheaper, faster, and denser than CAMs. While it is clearly too early to predict the outcome of
this war between algorithmic and TCAM methods, even semiconductor manufacturers have
hedged their bets and are providing both algorithmic and CAM-based solutions.

11.4 Unibit Tries 243

P1�
P2�
P3�
P4�
P5�
P6�
P7�
P8�
P9�

101*
111*
11001*
1*
0*
1000*
100000*
100*
110

F I G U R E 11.6 Sample prefix database used for the rest of this chapter. Note that the next hops
corresponding to each prefix have been omitted for clarity.

11.4 UNIBIT TRIES

It is helpful to start a survey of algorithmic techniques (P15) for prefix lookup with the simplest
technique: a unibit trie. Consider the sample prefix database of Figure 11.6. This database will
be used to illustrate many of the algorithmic solutions in this chapter. It contains nine prefixes,
called P1 to P9, with the bit strings shown in the figure.

In practice, there is a next hop associated with each prefix omitted from the figure.
To avoid clutter, prefix names are used to denote the next hops. Thus in the figure, an address
D that starts with 1 followed by a string of 31 zeroes will match P6, P7, and P8. The longest
match is P7.

Figure 11.7 shows a unibit trie for the sample database of Figure 11.6. A unibit trie is a tree
in which each node is an array containing a 0-pointer and a 1-pointer. At the root all prefixes
that start with 0 are stored in the subtrie pointed to by the 0-pointer and all prefixes that start
with a 1 are stored in the subtrie pointed to by the 1-pointer.

Each subtrie is then constructed recursively in a similar fashion using the remaining bits
of the prefixes allocated to the subtrie. For example, in Figure 11.7 notice that P1 = 101 is
stored in a path traced by following a 1-pointer at the root, a 0-pointer at the right child of the
root, and a 1-pointer at the next node in the path.

There are two other fine points to note. In some cases, a prefix may be a substring of
another prefix. For example, P4 = 1* is a substring of P2 = 111*. In that case, the smaller
string, P4, is stored inside a trie node on the path to the longer string. For example, P4 is stored
at the right child to the root; note that the path to this right child is the string 1, which is the
same as P4.

Finally, in the case of a prefix such as P3 = 11001, after we follow the first three bits,
we might naively expect to find a string of nodes corresponding to the last two bits. However,
since no other prefixes share more than the first 3 bits with P3, these nodes would only contain
one pointer apiece. Such a string of trie nodes with only one pointer each is a called a one-way
branch.

Clearly one-way branches can greatly increase wasted storage by using whole nodes
(containing at least two pointers) when only a single bit suffices. (The exercises will help you
quantify the amount of wasted storage.) A simple technique to remove this obvious waste (P1)
is to compress the one-way branches.

244 C H A P T E R 1 1 Prefix-Match Lookups

0

1

P4

1

0

P6

1

0

0

1

0

1
0

1

0

P5

0

P7

P8

P1

P3

P9

P2

ROOT

F I G U R E 11.7 The one-bit trie for the sample database of Figure 11.6.

In Figure 11.7, this is done by using a text string (i.e. “01”) to represent the pointers
that would have been followed in the one-way branch. Thus in Figure 11.7, two trie nodes
(containing two pointers apiece) in the path to P3 have been replaced by a single text string of
2 bits. Clearly, no information has been lost by this transformation. (As an exercise, determine
if there is another path in the trie that can similarly be compressed.)

To search for the longest matching prefix of a destination address D, the bits of D are used
to trace a path through the trie. The path starts with the root and continues until search fails by
ending at an empty pointer or at a text string that does not completely match. While following
the path, the algorithm keeps track of the last prefix encountered at a node in the path. When
search fails, this is the longest matching prefix that is returned.

For example, if D begins with 1110, the algorithm starts by following the 1-pointer at the
root to arrive at the node containing P4. The algorithm remembers P4 and uses the next bit
of D (a 1) to follow the 1-pointer to the next node. At this node, the algorithm follows the
1-pointer to arrive at P2. When the algorithm arrives at P2, it overwrites the previously stored
value (P4) by the newer prefix found (P2). At this point, search terminates, because P2 has no
outgoing pointers.

On the other hand, consider doing a search for a destination D′ whose first 5 bits are 11000.
Once again, the first 1 bit is used to reach the node containing P4. P4 is remembered as the
last prefix encountered, and the 1 pointer is followed to reach the rightmost node at height 2.

The algorithm now follows the third bit in D′ (a 0) to the text string node containing “01.”
Thus we remember P9 as the last prefix encountered. The fourth bit of D′ is a 0, which matches

11.5 Multibit Tries 245

the first bit of “01.” However, the fifth bit of D′ is a 0 (and not a 1 as in the second bit of “01”).
Thus the search terminates with P9 as the longest matching prefix.

The literature on tries [Knu73] does not use text strings to compress one-way branches
as in Figure 11.7. Instead, the classical scheme, called a Patricia trie, uses a skip count. This
count records the number of bits in the corresponding text string, not the bits themselves. For
example, the text string node “01” in our example would be replaced with the skip count “2”
in a Patricia trie.

This works fine as long as the Patricia trie is used for exact matches, which is what they
were used for originally. When search reaches a skip count node, it skips the appropriate
number of bits and follows the pointer of the skip count node to continue the search. Since bits
that are skipped are not compared for a match, Patricia requires that a complete comparison
between the searched key and the entry found by Patricia be done at the end of the search.

Unfortunately, this works very badly with prefix matching, an application that Patricia
tries were not designed to handle in the first place. For example, in searching for D′, whose
first 5 bits are 11000 in the Patricia equivalent of Figure 11.7, search would skip the last two
bits and get to P3. At this point, the comparison will find that P3 does not match D′.

When this happens, a search in a Patricia trie has to backtrack and go back up the trie
searching for a possible shorter match. In this example, it may appear that search could have
remembered P4. But if P4 was also encountered on a path that contains skip count nodes, the
algorithm cannot even be sure of P4. Thus it must backtrack to check if P4 is correct.

Unfortunately, the BSD implementation of IP forwarding [WS95] decided to use Patricia
tries as a basis for best matching prefix. Thus the BSD implementation used skip counts; the
implementation also stored prefixes by padding them with zeroes. Prefixes were also stored
at the leaves of the trie, instead of within nodes as shown in Figure 11.7. The result is that
prefix matching can, in the worst case, result in backtracking up the trie for a worst case of 64
memory accesses (32 down the tree and 32 up).

Given the simple alternative of using text strings to avoid backtracking, doing skip counts
is a bad idea. In essence, this is because the skip count transformation does not preserve
information, while the text string transformation does. However, because of the enormous
influence of BSD, a number of vendors and even other algorithms (e.g., Ref. NK98) have used
skip counts in their implementations.

11.5 MULTIBIT TRIES

Most large memories use DRAM. DRAM has a large latency (around 60 nsec) when compared
to register access times (2–5 nsec). Since a unibit trie may have to make 32 accesses for a
32-bit prefix, the worst-case search time of a unibit trie is at least 32 * 60 = 1.92 µsec. This
clearly motivates multibit trie search.

To search a trie in strides of 4 bits, the main problem is dealing with prefixes like 10101*
(length 5), whose lengths are not a multiple of the chosen stride length, 4. If we search 4 bits
at a time, how can we ensure that we do not miss prefixes like 10101*? Controlled prefix
expansion solves this problem by transforming an existing prefix database into a new database
with fewer prefix lengths but with potentially more prefixes. By eliminating all lengths that are
not multiples of the chosen stride length, expansion allows faster multibit trie search, at the
cost of increased database size.

246 C H A P T E R 1 1 Prefix-Match Lookups

P1�
P2�
P3�

P5�

P6�

P7�
P8�
P9�

101*
111*
11001*

0*

1000*

100000*
100*
110

101*
111*
110010*
110011*
000*
001*
010*
011*
100001
100010
100011
100000
100*
110*

Fails

Old
prefixes

New
prefixes

F I G U R E 11.8 Controlled expansion of the original prefix database shown on the left (which has five
prefix lengths, 1, 3, 4, 5, and 6) to an expanded database (which has only 2 prefix lengths, 3 and 6).

For example, removing odd prefix lengths reduces the number of prefix lengths from
32 to 16 and would allow trie search 2 bits at a time. To remove a prefix like 101* of length 3,
observe that 101* represents addresses that begin with 101, which in turn represents addresses
that begin with 1010* or 1011*. Thus 101* (of length 3) can be replaced by two prefixes of
length 4 (1010* and 1011*), both of which inherit the next hop forwarding entries of 101*.

However, the expanded prefixes may collide with an existing prefix at the new length. In
that case, the expanded prefix is removed. The existing prefix is given priority because it was
originally of longer length.

In essence, expansion trades memory for time (P4b). The same idea can be used to remove
any chosen set of lengths except length 32. Since trie search speed depends linearly on the
number of lengths, expansion reduces search time.

Consider the sample prefix database shown in Figure 11.6, which has nine prefixes, P1
to P9. The same database is repeated on the left of Figure 11.8. The database on the right
of Figure 11.8 is an equivalent database, constructed by expanding the original database to
contain prefixes of lengths 3 and 6 only. Notice that of the four expansions of P6 = 1000* to
6 bits, one collides with P7 = 100000* and is thus removed.

11.5.1 Fixed-Stride Tries
Figure 11.9 shows a trie for the same database as Figure 11.8, using expanded tries with a
fixed stride length of 3. Thus each trie node uses 3 bits. The replicated entries within trie nodes
in Figure 11.9 correspond exactly to the expanded prefixes on the right of Figure 11.8. For
example, P6 in Figure 11.8 has three expansions (100001, 100010, 100011).

These three expanded prefixes are pointed to by the 100 pointer in the root node of
Figure 11.9 (because all three expanded prefixes start with 100) and are stored in the 001, 010,
and 011 entries of the right child of the root node. Notice also that the entry 100 in the root node
has a stored prefix P8 (besides the pointer pointing to P6’s expansions), because P8 = 100* is
itself an expanded prefix.

11.5 Multibit Tries 247

000
001
010
011
100
101
110
111

000
001
010
011
100
101
110
111

000
001
010
011
100
101
110
111

P5
P5
P5
P5
P8
P1
P9
P2

P3
P3

P7
P6
P6
P6

F I G U R E 11.9 Expanded trie (which has two strides of 3 bits each) corresponding to the prefix
database of Figure 11.8.

Thus each trie node element is a record containing two entries: a stored prefix and a pointer.
Trie search proceeds 3 bits at a time. Each time a pointer is followed, the algorithm remembers
the stored prefix (if any). When search terminates at an empty pointer, the last stored prefix in
the path is returned.

For example, if address D begins with 1110, search for D starts at the 111 entry at the root
node, which has no outgoing pointer but a stored prefix (P2). Thus search for D terminates
with P2. A search for an address that starts with 100000 follows the 100 pointer in the root (and
remembers P8). This leads to the node on the lower right, where the 000 entry has no outgoing
pointer but a stored prefix (P7). The search terminates with result P7. Both the pointer and
stored prefix can be retrieved in one memory access using wide memories (P5b).

A special case of fixed-stride tries, described in Gupta et al. [GLM98], uses fixed strides
of 24, 4, and 4. The authors observe that DRAMs with more than 224 locations are becoming
available, making even 24-bit strides feasible.

11.5.2 Variable-Stride Tries
In Figure 11.9, the leftmost leaf node needs to store the expansions of P3 = 11001*, while
the rightmost leaf node needs to store P6 (1000*) and P7 (100000*). Thus, because of P7, the
rightmost leaf node needs to examine 3 bits. However, there is no reason for the leftmost leaf
node to examine more than 2 bits because P3 contains only 5 bits, and the root stride is 3 bits.
There is an extra degree of freedom that can be optimized (P13).

In a variable-stride trie, the number of bits examined by each trie node can vary, even for
nodes at the same level. To do so, the stride of a trie node is encoded with the pointer to the
node. Figure 11.9 can be transformed into a variable-stride trie (Figure 11.10) by replacing the
leftmost node with a four-element array and encoding length 2 with the pointer to the leftmost

248 C H A P T E R 1 1 Prefix-Match Lookups

000
001
010
011
100
101
110
111

000
001
010
011
100
101
110
111

00
01
10
11

P5
P5
P5
P5
P8
P1
P9
P2

P3

P7
P6
P6
P6

3 bits

2 bits

F I G U R E 11.10 Transforming the fixed-stride trie of Figure 11.9 into a variable-stride trie by encoding
the stride of each trie node along with a pointer to the node. Notice that the leftmost leaf node now only
contains four locations (instead of eight), thus reducing the number of locations from 24 to 20.

node. The stride encoding costs 5 bits. However, the variable stride trie of Figure 11.10 has
four fewer array entries than the trie of Figure 11.9.

Our example motivates the problem of picking strides to minimize the total amount of
trie memory. Since expansion trades memory for time, why not minimize the memory needed
by optimizing a degree of freedom (P13), the strides used at each node? To pick the variable
strides, the designer first specifies the worst-case number of memory accesses. For example,
with 40-byte packets at 1-Gbps and 80-nsec DRAM, we have a time budget of 320 nsec,
which allows only four memory accesses. This constrains the maximum number of nodes in
any search path (four in our example).

Given this fixed height, the strides can be chosen to minimize storage. This can be done
using dynamic programming [SV99] in a few seconds, even for large databases of 150,000
prefixes. A degree of freedom (the strides) is optimized to minimize the memory used for a
given worst-case tree height.

A trie is said to be optimal for height h and a database D if the trie has the smallest storage
among all variable-stride tries for database D, whose height is no more than h. It is easy to
prove (see exercises) that the trie of Figure 11.10 is optimal for the database on the left of
Figure 11.8 and height 2.

The general problem of picking an optimal stride trie can be solved recursively
(Figure 11.11). Assume the tree height must be h. The algorithm first picks a root with stride s.
The y = 2s possible pointers in the root can lead to y nonempty subtries T1, . . . Ty. If the s-bit
pointer pi leads to subtrie Ti, then all prefixes in the original database D that start with pi must
be stored in Ti. Call this set of prefixes Di.

Suppose we could recursively find the optimal Ti for height h−1 and database Di. Having
used up one memory access at the root node, there are only h − 1 memory accesses left to

11.5 Multibit Tries 249

s Cost � 2s

Cost � sum of costs of
covering T1 through Ty,
each of height at most h�1

T1

T2

Ty

Ty�1

F I G U R E 11.11 Picking an optimum variable-stride trie via dynamic programming.

navigate each subtrie Ti. Let Ci denote the storage cost required, counted in array locations,
for the optimal Ti. Then for a fixed root stride s, the cost of the resulting optimal trie C(s) is 2s

(cost of root node in array locations) plus
∑y

i=1 Ci. Thus the optimal value of the initial stride
is the value of s, where 1 ≤ s ≤ 32, that minimizes C(s).

A naive use of recursion leads to repeated subproblems. To avoid repeated subproblems,
the algorithm first constructs an auxiliary 1-bit trie. Notice that any subtrie Ti in Figure 11.11
must be a subtrie N of the 1-bit trie. Then the algorithm uses dynamic programming to construct
the optimal cost and trie strides for each subtrie N in the original 1-bit trie for all values of
height from 1 to h, building bottom-up from the smallest-height subtries to the largest-height
subtries. The final result is the optimal strides for the root (of the 1-bit subtrie) with height h.
Details are described in Srinivasan and Varghese [SV99].

The final complexity of the algorithm is easily seen to be O(N ∗ W2 ∗ h), where N is the
number of original prefixes in the original database, W is the width of the destination address,
and h is the desired worst-case height. This is because there are N ∗W subtries in the 1-bit trie,
each of which must be solved for heights that range from 1 to h, and each solution requires a
minimization across at most W possible choices for the initial stride s. Note that the complexity
is linear in N (the largest number, around 150,000 at the time of writing) and h (which should
be small, at most 8), but quadratic in the address width (currently 32). In practice, the quadratic
dependence on address width is not a major factor.

For example, Srinivasan and Varghese [SV99] show that using a height of 4, the optimized
Mae–East database required 423 KB of storage, compared to 2003 KB for the unoptimized
version. The unoptimized version uses the “natural” stride lengths 8, 8, 8, 8. The dynamic
program took 1.6 seconds to run on a 300-MHz Pentium Pro. The dynamic program is even
simpler for fixed-stride tries and takes only 1 msec to run. However, the use of fixed strides
requires 737 KB instead of 423 KB.

Clearly, 1.6 seconds is much too long to let the dynamic program be run for every update
and still allow millisecond updates [LMJ97]. However, backbone instabilities are caused by
pathologies in which the same set of prefixes S are repeatedly inserted and deleted by a router
that is temporarily swamped [LMJ97]). Since we had to allocate memory for the full set,
including S, anyway, the fact that the trie is suboptimal in its use of memory when S is
deleted is irrelevant. On the other hand, the rate at which new prefixes get added or deleted
by managers seems more likely to be on the order of days. Thus a dynamic program that

250 C H A P T E R 1 1 Prefix-Match Lookups

takes several seconds to run every day seems reasonable and will not unduly affect worst-case
insertion and deletion times while still allowing reasonably optimal tries.

11.5.3 Incremental Update
Simple insertion and deletion algorithms exist for multibit tries. Consider the addition of a
prefix P. The algorithm first simulates search on the string of bits in the new prefix P up to and
including the last complete stride in prefix P. Search will terminate either by ending with the
last (possibly incomplete) stride or by reaching a nil pointer. Thus for adding P10 = 1100* to
the database of Figure 11.9, search follows the 110-pointer and terminates at the leftmost leaf
trie node X .

For the purposes of insertion and deletion, for each node X in the multibit trie, the algorithm
maintains a corresponding 1-bit trie, with the prefixes stored in X. This auxiliary structure need
not be in fast memory. Also, for each node array element, the algorithm stores the length of
its present best match. After determining that P10 must be added to node X, the algorithm
expands P10 to the stride of X. Any array element to which P10 expands (which is currently
labeled with a prefix of a length smaller than P10) must be overwritten with P10.

Thus in adding P10 = 1100*, the algorithm must add the expansions of 0* into node X.
In particular, the 000 and 001 entries in node X must be updated to be P10.

If the search ends before reaching the last stride in the prefix, the algorithm creates new trie
nodes. For example, if the prefix P11 = 1100111* is added, search fails at node X when a nil
pointer is found at the 011 entry. The algorithm then creates a new pointer at this location that
is made to point to a new trie node that contains P11. P11 is then expanded in this new node.

Deletion is similar to insertion. The complexity of insertion and deletion is the time to
perform a search (O(W)) plus the time to completely reconstruct a trie node (O(S), where S
is the maximum size of a trie node). For example, using 8-bit trie nodes, the latter cost will
require scanning roughly 28 = 256 trie node entries. Thus to allow for fast updates, it is crucial
to also limit the size of any trie node in the dynamic program described earlier.

11.6 LEVEL-COMPRESSED (LC) TRIES

An LC trie [NK98] is a variable-stride trie in which every trie node contains no empty entries.
An LC-trie is built by first finding the largest-root stride that allows no empty entries and then
recursively repeating this procedure on the child subtries. An example of this procedure is
shown in Figure 11.12, starting with a 1-bit trie on the left and resulting in an LC trie on the
left. Notice that P4 and P5 form the largest possible full-root subtrie — if the root stride is
2, then the first two array entries will be empty. The motivation, of course, is to avoid empty
array elements, to minimize storage.

However, general variable-stride tries are more tunable, allowing memory to be traded
for speed. For example, the LC trie representation using a 1997 snapshot of Mae–East has
a trie height of 7 and needs 700 KB of memory. By comparison, an optimal variable-stride
trie [SV99] has a trie height of 4 using 400 KB. Recall also that the optimal variable-stride
calculates the best trie for a given target height and thus would indeed produce the LC trie if
the LC trie were optimal for its height.

11.6 Level-Compressed (LC) Tries 251

P5 P4

P8 P2P9P1

P6 P3

P7

P8
P1
P9
P2

P5
P4

P3P6

P7

0 1

F I G U R E 11.12 The level-compressed (LC) trie scheme decomposes the 1-bit trie recursively into
full subtries of the largest size possible (left). The children in each full subtrie (shown by the dotted
boxes) are then placed in a trie node to form a variable-stride trie that is specific to the database chosen.

P8
P1
P9
P2

P5
P4

P3P6

P8

P8
P1
P3
P2

P5
P4

P6

P3

P8

Layout nodes
contiguously in

breadth-first order

F I G U R E 11.13 Array representation of LC tries.

In its final form, the variable-stride LC trie nodes are laid out in breadth-first order
(first the root, then all the trie nodes at the second level from left to right, then third-level
nodes, etc.), as shown on the right of Figure 11.13. Each pointer becomes an array off-
set. The array layout and the requirement for full subtries make updates slow in the worst
case. For example, deleting P5 in Figure 11.12 causes a change in the subtrie decomposition.
Worse, it causes almost every element in the array representation of Figure 11.13 to be moved
upward.

252 C H A P T E R 1 1 Prefix-Match Lookups

11.7 Lulea-Compressed Tries

Though LC tries and variable-stride tries attempt to compress multibit tries by varying the stride
at each node, both schemes have problems. While the use of full arrays allows LC tries not to
waste any memory because of empty array locations, it also increases the height of the trie,
which cannot then be tuned. On the other hand, variable-stride tries can be tuned to have short
height, at the cost of wasted memory because of empty array locations in trie nodes. The Lulea
approach [DBCP97], which we now describe, is a multibit-trie scheme that uses fixed-stride
trie nodes of large stride but uses bitmap compression to reduce storage considerably.

We know that a string with repetitions (e.g., AAAABBAAACCCCC) can be compressed
using a bitmap denoting repetition points (i.e., 10001010010000) together with a compressed
sequence (i.e., ABAC). Similarly, the root node of Figure 11.9 contains a repeated sequence
(P5, P5, P5, P5) caused by expansion.

The Lulea scheme [DBCP97] avoids this obvious waste by compressing repeated informa-
tion using a bitmap and a compressed sequence without paying a high penalty in search time.
For example, this scheme used only 160 KB of memory to store the Mae–East database. This
allows the entire database to fit into expensive SRAM or on-chip memory. It does, however,
pay a high price in insertion times.

Some expanded trie entries (e.g., the 110 entry at the root of Figure 11.9) have two values,
a pointer and a prefix. To make compression easier, the algorithm starts by making each entry
have exactly one value by pushing prefix information down to the trie leaves. Since the leaves
do not have a pointer, we have only next-hop information at leaves and only pointers at nonleaf
nodes. This process is called leaf pushing.

For example, to avoid the extra stored prefix in the 110 entry of the root node of Figure 11.9,
the P9 stored prefix is pushed to all the entries in the leftmost trie node, with the exception of
the 010 and 011 entries (both of which continue to contain P3). Similarly, the P8 stored prefix
in the 100 root node entry is pushed down to the 100, 101, 110, and 111 entries of the rightmost
trie node. Once this is done, each node entry contains either a stored prefix or a pointer but
not both.

The Lulea scheme starts with a conceptual leaf-pushed expanded trie and replaces consec-
utive identical elements with a single value. A node bitmap (with 0’s corresponding to removed
positions) is used to allow fast indexing on the compressed nodes.

Consider the root node in Figure 11.9. After leaf pushing, the root has the sequence P5,
P5, P5, P5, ptr1, P1, ptr2, P2 (ptr1 is a pointer to the trie node containing P6 and P7, and ptr2 is
a pointer to the node containing P3). After replacing consecutive values with the first value, we
get P5, -, -, -, ptr1, P1, ptr2, P2, as shown in the middle frame of Figure 11.14. The rightmost
frame shows the final result, with a bitmap indicating removed positions (10001111) and a
compressed list (P5, ptr1, P1, ptr2, P2).

If there are N original prefixes and pointers within an original (unexpanded) trie node, the
number of entries within the compressed node can be shown never to be more than 2N + 1.
Intuitively, this is because N prefixes partition the address space into at most 2N + 1 disjoint
subranges and each subrange requires at most one compressed node entry.

Search uses the number of bits specified by the stride to index into the current trie node,
starting with the root and continuing until a null pointer is encountered. However, while
following pointers, an uncompressed index must be mapped to an index into the compressed
node. This mapping is accomplished by counting bits within the node bitmap.

11.7 Lulea-Compressed Tries 253

000
001
010
011
100
101
110
111

P5
P5
P5
P5

P1

P2

P5
–
–
–

ptr1
P1
ptr2
P2

1
0
0
0
1
1
1
1

P5
ptr1
P1
ptr2
P2

F I G U R E 11.14 Compressing the root node of Figure 11.9 (after leaf pushing) using the Lulea bitmap
compression scheme.

Consider the data structure on the right of Figure 11.14 and a search for an address that starts
with 100111. If we were dealing with just the uncompressed node on the left of Figure 11.14,
we could use 100 to index into the fifth array element to get ptr1. However, we must now obtain
the same information from the compressed-node representation on the right of Figure 11.14.

Instead, we use the first three bits (100) to index into the root-node bitmap. Since this is
the second bit set (the algorithm needs to count the bits set before a given bit), the algorithm
indexes into the second element of the compressed node. This produces a pointer ptr1 to the
rightmost trie node. Next, imagine the rightmost leaf node of Figure 11.9 (after leaf pushing)
also compressed in the same way. The node contains the sequence P7, P6, P6, P6, P8, P8, P8,
P8. Thus the corresponding bitmap is 11001000, and the compressed sequence is P7, P6, P8.

Thus in the rightmost leaf node, the algorithm uses the next 3 bits (111) of the destination
address to index into bit 8. Since this bit is a 0, the search terminates: There is no pointer to
follow in the equivalent uncompressed node. However, to retrieve the best matching prefix (if
any) at this node, the algorithm must find any prefix stored before this entry.

This would be trivial with expansion because the value P8 would have been expanded into
the 111 entry; but since the expanded sequence of P8 values has been replaced by a single P8
value in the compressed version, the algorithm has to work harder. Thus the Lulea algorithm
counts the number of bits set before position 8 (which happens to be 3) and then indexes into
the third element of the compressed sequence. This gives the correct result, P8.

The Lulea paper [DBCP97] describes a trie that uses fixed strides of 16, 8, and 8. But how
can the algorithm efficiently count the bits set in a large bitmap, for example, a 16-bit stride
uses 64K bits? Before you read on, try to answer this question using principles P12 (adding
state for speed) and P2a (precomputation).

To speed up counting set bits, the algorithm accompanies each bitmap with a summary
array that contains a cumulative count (precomputed) of the number of set bits associated with
fixed-size chunks of the bit map. Using 64-bit chunks, the summary array takes negligible
storage. Counting the bits set up to position i now takes two steps. First, access the summary
array at position j, where j is the chunk containing bit i. Then access chunk j and count the
bits in chunk j up to position i. The sum of the two values gives the count.

While the Lulea paper uses 64-bit chunks, the example in Figure 11.15 uses 8-bit chunks.
The large bitmap is shown from left to right, starting with 10001001, as the second array from
the top. Each 8-bit chunk has a summary count that is shown as an array above the bitmap.

254 C H A P T E R 1 1 Prefix-Match Lookups

0 3 5 . . NumSet[J]

10001001 10000001 10011000

J 011

8 3

NumSet[J]�1

Uncompressed index Compressed index

F I G U R E 11.15 To allow fast counting of the bits set even in large bitmaps (e.g., 64 Kbits), the bitmap
is divided into chunks and a summary count of the bits set before each chunk precomputed.

The summary count for chunk i counts the cumulative bits in the previous chunks of the bitmap
(not including chunk i).

Thus the first chunk has count 0, the second has count 3 (because 10001001 has three bits
set), and the third has count 5 (because 10001001 has two bits set, which added to the previous
chunk’s value of 3 gives a cumulative count of 5).

Consider searching for the bits set up to position X in Figure 11.15, where X can be written
as J011. Clearly, X belongs to chunk J . The algorithm first looks up the summary count array
to retrieve numSet[J]. This yields the number of bits set up to but not including chunk J . The
algorithm then retrieves chunk J itself (10011000) and counts the number of bits set until the
third position of chunk J . Since the first three bits of chunk J are 100, this yields the value 1.
Finally, the desired overall bit count is numSet[J] + 1.

Notice that the choice of the chunk size is a trade-off between memory size and speed.
Making a chunk equal to the size of the bitmap will make counting very slow. On the other
hand, making a chunk equal to a bit will require more storage than the original trie node!
Choosing a 64-bit chunk size makes the summary array size only 1/64 the size of the original
node, but this requires counting the bits set within a 64-bit chunk. Counting can easily be done
using special instructions in software and via combinational logic in hardware.

Thus search of a node requires first indexing into the summary table, then indexing into
the corresponding bitmap chunk to compute the offset into the compressed node, and finally
retrieving the element from the compressed node. This can take three memory references per
node, which can be quite slow.

The final Lulea scheme also compresses entries based on their next-hop values (entries
with the same next-hop values can be considered the same even though they match different
prefixes). Overall the Lulea scheme has very compact storage. Using an early (1997) snap-
shot of the Mae–East database of around 40,000 entries, the Lulea paper [DBCP97] reports
compressing the entire database to around 160 KB, which is roughly 32-bits per prefix.

This is a very small number, given that one expects to use at least one 20-bit pointer
per prefix in the database. The compact storage is a great advantage because it allows the
prefix database to potentially fit into limited on-chip SRAM, a crucial factor in allowing prefix
lookups to scale to OC-768 speeds.

Despite compact storage, the Lulea scheme has two disadvantages. First, counting bits
requires at least one extra memory reference per node. Second, leaf pushing makes worst-case

11.8 Tree Bitmap 255

insertion times large. A prefix added to a root node can cause information to be pushed to
thousands of leaves. The full tree bitmap scheme, which we study next, overcomes these
problem by abandoning leaf pushing and using two bitmaps per node.

11.8 TREE BITMAP

The tree bitmap [EDV] scheme starts with the goal of achieving the same storage and speed
as the Lulea scheme, but it adds the goal of fast insertions. While we have argued that fast
insertions are not as important as fast lookups, they clearly are desirable. Also, if the only way
to handle an insertion or deletion is to rebuild the Lulea-compressed trie, then a router must
keep two copies of its routing database, one that is being built and one that is being used for
lookups. This can potentially double the storage cost from 32 bits per prefix to 64 bits per
prefix. This in turn can halve the number of prefixes that can be supported by a chip that places
the entire database in on-chip SRAM.

To obtain fast insertions and hence avoid the need for two copies of the database, the first
problem in Lulea that must be handled is the use of leaf pushing. When a prefix of small length
is inserted, leaf pushing can result in pushing down the prefix to a large number of leaves,
making insertion slow.

11.8.1 Tree Bitmap Ideas
Thus the first and main idea in the tree bitmap scheme is that there be two bitmaps per trie
node, one for all the internally stored prefixes and one for the external pointers. Figure 11.16
shows the tree bitmap version of the root node in Figure 11.14.

Recall that in Figure 11.14, the prefixes P8 = 100* and P9 = 110* in the original database
are missing from the picture on the left side because they have been pushed down to the leaves
to accommodate the two pointers (ptr1, which points to nodes containing longer prefixes such
as P6 = 1000*, and ptr2, which points to nodes containing longer prefixes such as P3 =
11001*). This results in the basic Lulea trie node, in which each element contains either a
pointer or a prefix but not both. This allows the use of a single bitmap to compress a Lulea
node, as shown on the extreme right of Figure 11.14.

By contrast, the same trie node in Figure 11.16 is split into two compressed arrays, each
with its own bitmap. The first array, shown vertically, is a pointer array, which contains
a bitmap denoting the (two) positions where nonnull pointers exist and a compressed array
containing the nonnull pointers, ptr1 and ptr2.

The second array, shown horizontally, is the internal prefix array, which contains a list of
all the prefixes within the first 3 bits. The bitmap used for this array is very different from the
Lulea encoding and has one bit set for every possible prefix stored within this node. Possible
prefixes are listed lexicographically, starting from ∗, followed by 0∗ and 1∗, and then on to
the length-2 prefixes (00*, 01*, 10*, 11*), and finally the length-3 prefixes. Bits are set when
the corresponding prefixes occur within the trie node.

Thus in Figure 11.16, the prefixes P8 and P9, which were leaf pushed in Figure 11.14,
have been resurrected and now correspond to bits 12 and 14 in the internal prefix bitmap.
In general, for an r-bit trie node, there are 2r+1 −1 possible prefixes of lengths r or less, which
requires the use of a (2r+1 − 1) bitmap. The scheme gets its name because the internal prefix

256 C H A P T E R 1 1 Prefix-Match Lookups

000
001
010
011
100
101
110
111

0
0
0
0
1
0
1
0

ptr1
ptr2

0 1 1 0 0 0 0 0 0 0 0 1 1 1 1

P5 P4 P8 P1 P9 P2

* 0* 1* 00* 01* 10* 11* 000*001*010*011*100*101*110*111*

P1�101* P2�111* P4�1* P5�0* P8�100* P9�110*

F I G U R E 11.16 The tree bitmap scheme allows the compression of Lulea without sacrificing fast
insertions by using two bitmaps per node. The first bitmap describes internally stored prefixes, and the
second describes valid versus null pointers.

bitmap represents a trie in a linearized format: Each row of the trie is captured top-down from
left to right.

The second idea in the tree bitmap scheme is to keep the trie nodes as small as possible to
reduce the required memory access size for a given stride. Thus a trie node is of fixed size and
contains only a pointer bitmap, an internal prefix bitmap, and child pointers. But what about
the next-hop information associated with any stored prefixes?

The trick is to store the next hops associated with the internal prefixes stored within each
trie node in a separate array associated with this trie node. Putting next-hop pointers in a
separate result array potentially requires two memory accesses per trie node (one for the trie
node and one to fetch the result node for stored prefixes).

However, a simple lazy evaluation strategy (P2b) is not to access the result nodes until
search terminates. Upon termination, the algorithm makes a final access to the correct result
node. This is the result node that corresponds to the last trie node encountered in the path that
contained a valid prefix. This adds only a single memory reference at the end, in addition to
the one memory reference required per trie node.

The third idea is to use only one memory access per node, unlike Lulea, which uses at
least two memory accesses. Lulea needs two memory accesses per node because it uses large
strides of 8 or 16 bits. This increases the bitmap size so much that the only feasible way to
count bits is to use an additional chunk array that must be accessed separately. The tree bitmap
scheme gets around this by simply using smaller-stride nodes, say, of 4 bits. This makes the
bitmaps small enough that the entire node can be accessed by a single wide access (P4a, exploit
locality). Combinatorial logic (Chapter 2) can be used to count the bits.

11.8.2 Tree Bitmap Search Algorithm
The search algorithm starts with the root node and uses the first r bits of the destination address
(corresponding to the stride of the root node, 3 in our example) to index into the pointer bitmap
at the root node at position P. If there is a 1 in this position, there is a valid child pointer.
The algorithm counts the number of 1’s to the left of this 1 (including this 1) and denotes this
count by I . Since the pointer to the start position of the child pointer block (say, y) is known,
as is the size of each trie node (say, S), the pointer to the child node can be calculated as
y + (I ∗ S).

11.9 Binary Search on Ranges 257

Before moving on to the child, the algorithm must also check the internal bitmap to see
if there are one or more stored prefixes corresponding to the path through the multibit node
to position P. For example, suppose P is 101 and a 3-bit stride is used at the root node
bitmap, as in Figure 11.16. The algorithm first checks to see whether there is a stored internal
prefix 101*. Since 101* corresponds to the 13th bit position in the internal prefix bitmap,
the algorithm can check if there is a 1 in that position (there is one in the example). If there
was no 1 in this position, the algorithm would back up to check whether there is an internal
prefix corresponding to 10*. Finally, if there is a 10* prefix, the algorithm checks for the
prefix 1*.

This search algorithm appears to require a number of iterations, proportional to the loga-
rithm of the internal bitmap length. However, for bitmaps of up to 512 bits or so in hardware,
this is just a matter of simple combinational logic. Intuitively, such logic performs all iterations
in parallel and uses a priority encoder to return the longest matching stored prefix.

Once it knows there is a matching stored prefix within a trie node, the algorithm does not
immediately retrieve the corresponding next-hop information from the result node associated
with the trie node. Instead, the algorithm moves to the child node while remembering the
stored-prefix position and the corresponding parent trie node. The intent is to remember the
last trie node T in the search path that contained a stored prefix, and the corresponding prefix
position.

Search terminates when it encounters a trie node with a 0 set in the corresponding position
of the extending bitmap. At this point, the algorithm makes a final access to the result array
corresponding to T to read off the next-hop information. Further tricks to reduce memory
access width are described in Eatherton’s MS thesis [Eat], which includes a number of other
useful ideas.

Intuitively, insertions in a tree bitmap are very similar to insertions in a simple multibit trie
wihout leaf pushing. A prefix insertion may cause a trie node to be changed completely; a new
copy of the node is created and linked in atomically to the existing trie. Compression results
in Eatherton et al. [EDV] show that the tree bitmap has all the features of the Lulea scheme, in
terms of compression and speed, along with fast insertions. The tree bitmap also has the ability
to be tuned for hardware implementations ranging from the use of RAMBUS-like memories
to on-chip SRAM.

11.9 BINARY SEARCH ON RANGES

So far, all our schemes (unibit tries, expanded tries, LC tries, Lulea tries, tree bitmaps) have
been trie variants. Are there other algorithmic paradigms (P15) to the longest-matching-prefix
problem? Now, exact matching is a special case of prefix matching. Both binary search and
hashing [CLR90] are well-known techniques for exact matching. Thus we should consider
generalizing these standard exact-matching techniques to handle prefix matching. In this sec-
tion, we examine an adaptation of binary search; in the next section, we look at an adaptation
of hashing.

In binary search on ranges [LSV98], each prefix is represented as a range, using the start
and end of the range. Thus the range endpoints for N prefixes partition the space of addresses
into 2N + 1 disjoint intervals. The algorithm [LSV98] uses binary search to find the interval in
which a destination address lies. Since each interval corresponds to a unique prefix match, the

258 C H A P T E R 1 1 Prefix-Match Lookups

0000
1000
1010
1011
1111

–
P4
P1
P4
–

–
P4
P1
P1
P4

��

P1P4

Prefixes P4�1*, P1�101*
P1 P1

P1P4

P4

P4 P4

– – –

1010

1000 1011

0000 1111

F I G U R E 11.17 Binary search on values of a tiny subset of the sample database, consisting of only
prefixes P4 = 1* and P1 = 101*.

algorithm precomputes this mapping and stores it with range endpoints. Thus prefix matching
takes log2(2N) memory accesses.

Consider a tiny routing table with only two prefixes, P4 = 1* and P1 = 101*. This is a
small subset of the database used in Figure 11.8. Figure 11.17 shows how the binary search
data structure is built as a table (left) and as a binary tree (right).

The starting point for this scheme is to consider a prefix as a range of addresses. To keep
things simple, imagine that addresses are 4 bits instead of 32 bits. Thus P4 = 1* is the range
1000 to 1111, and P1 = 101* is the range 1010 to 1011. Next, after adding in the range for the
entire address space (0000 to 1111), the endpoints of all ranges are sorted into a binary search
table, as shown on the left of Figure 11.17.

In Figure 11.17, the range endpoints are drawn vertically on the left. The figure also shows
the ranges covered by each of the prefixes. Next, two next-hop entries are associated with each
endpoint. The leftmost entry, called the > entry, is the next hop corresponding to addresses
that are strictly greater than the endpoint but strictly less than the next range endpoint in sorted
order. The rightmost entry, called the = entry, corresponds to addresses that are exactly equal
to the endpoint.

For example, it should be clear from the ranges covered by the prefixes that any addresses
greater than or equal to 0000 but stricly less than 1000 do not match any prefix. Hence the
entries corresponding to 0000 are −, to denote no next hop.3 Similarly, any address greater
than or equal to 1000 but strictly less than 1010 must match prefix P4 = 1*.

The only subtle case, which illustrates the need for two separate entries for > and =, is
the entry for 1011. If an address is strictly greater than 1011 but strictly less than the next entry,
1111, then the best match is P4. Thus the > pointer is P4. On the other hand, if an address is
exactly equal to 1011, its best match is P1. Thus the = pointer is P1.

The entire data structure can be built as a binary search table, where each table entry
has three items, consisting of an endpoint, a > next-hop pointer, and a = next-hop pointer.
The table has at most 2N entries, because each of N prefixes can insert two endpoints. Thus
after the next-hop values are precomputed, the table can be searched in log2 2N time using
binary search on the endpoint values. Alternatively, the table can be drawn as a binary tree, as
shown on the right in Figure 11.17. Each tree node contains the endpoint value and the same
two next-hop entries.

3In a core router, no prefix match implies that the message should be dropped; in a router within a domain, no
prefix match is often sent to the so-called default route.

11.10 Binary Search on Prefix Lengths 259

The description so far shows that binary search on values can find the longest prefix match
after log2 2N time. However, the time can be reduced using binary trees of higher radix, such
as B-trees. While such trees require wider memory accesses, this is an attractive trade-off for
DRAM-based memories, which allow fast access to consecutive memory locations (P4a).

Computational geometry [PS85] offers a data structure called a range tree for finding
the narrowest range. Range trees offer fast insertion times as well as fast O(log2 N) search
times. However, there seems to be no easy way to increase the radix of range trees to obtain
O(logM N) search times for M > 2.

As described, this data structure can easily be built in linear time using a stack and an
additional trie. It is not hard to see that even with a balanced binary tree (see exercises), adding a
short prefix can change the > pointers of a large number of prefixes in the table. A trick to allow
fast insertions and deletions in logarithmic time is described in Warkhede et al. [WSV01b].

Binary search on prefix values is somewhat slow when compared to multibit tries. It also
uses more memory than compressed trie variants. However, unlike the other trie schemes, all
of which are subject to patents, binary search is free of such restrictions. Thus at least a few
vendors have implemented this scheme into hardware. In hardware, the use of a wide memory
access (to reduce the base of the logarithm) and pipelining (to allow one lookup per memory
access) can make this scheme sufficiently fast.

11.10 BINARY SEARCH ON PREFIX LENGTHS

In this section, we adapt another classical exact-match scheme, hashing, to longest prefix
matching. Binary search on prefix lengths finds the longest match using log2 W hashes, where
W is the maximum prefix length. This can provide a very scalable solution for 128-bit IPv6
addresses. For 128-bit prefixes, this algorithm takes only seven memory accesses, as opposed
to 16 memory accesses using a multibit trie with 8-bit strides. To do so, the algorithm first
segregates prefixes by length into separate hash tables. More precisely, it uses an array L of
hash tables such that L[i] is a pointer to a hash table containing all prefixes of length i.

Assume the same tiny routing table, with only two prefixes, P4 = 1* and P1 = 101*,
of lengths 1 and 3, respectively, that was used in Figure 11.17. Recall that this is a small
subset of Figure 11.8. The array of hash tables is shown horizontally in the top frame (A) of
Figure 11.18. The length-1 hash table storing P4 is shown vertically on the left and is pointed to
by position 1 in the array; the length-3 hash table storing P1 is shown on the right and is pointed
to by position 3 in the array; the length-2 hash table is empty because there are no prefixes of
length 2.

Naively, a search for address D would start with the greatest-length hash table l (i.e.,
3), would extract the first l bits of D into Dl, and then search the length-l hash table for Dl.
If search succeeds, the best match has been found; if not, the algorithm considers the next
smaller length (i.e., 2). The algorithm moves in decreasing order among the set of possible
prefix lengths until it either finds a match or runs out of lengths.

The naive scheme effectively does linear search among the distinct prefix lengths.
The analogy suggests a better algorithm: binary search (P15). However, unlike binary search
on prefix ranges, this is binary search on prefix lengths. The difference is major. With 32
lengths, binary search on lengths takes five hashes in the worst case; with 32,000 prefixes,
binary search on prefix ranges takes 16 accesses.

260 C H A P T E R 1 1 Prefix-Match Lookups

1 2 3

Length-1
table

Length-2
table

Length-3
table

1 2 3

1 2 3

P4 � 1*
bmp � P4

P1 � 101*
bmp � P1

P4 � 1*
bmp � P4

10
P1 � 101*
bmp � P1

P4 � 1*
bmp � P4

10
bmp � P4

P1 � 101*
bmp � P1

A) Naive

B) With markers

C) Markers and
 precomputation

F I G U R E 11.18 From naive linear search on the possible prefix lengths to binary search.

Binary search must start at the median prefix length, and each hash must divide the possible
prefix lengths in half. A hash search gives only two values: found and not found. If a match
is found at length m, then lengths strictly greater than m must be searched for a longer match.
Correspondingly, if no match is found, search must continue among prefixes of lengths strictly
less than m.

For example, in Figure 11.18, part (A), suppose search begins at the median length-2
hash table for an address that starts with 101. Clearly, the hash search does not find a match.
But there is a longer match in the length-3 table. Since only a match makes search move to the
right half, an “artificial match,” or marker, must be introduced to force the search to the right
half when there is a potentially longer match.

Thus part (B) introduces a bolded marker entry 10, corresponding to the first two bits
of prefix P1 = 101, in the length-2 table. In essence, state has been added for speed (P12).
The markers allow probe failures in the median to rule out all lengths greater than the median.

Search for an address D that starts with 101 works correctly. Search for 10 in the length-2
table (in Part (B) of Figure 11.18) results in a match; search proceeds to the length-3 table,
finds a match with P1, and terminates. In general, a marker for a prefix P must be placed

11.11 Memory Allocation in Compressed Schemes 261

at all lengths that binary search will visit in a search for P. This adds only a logarithmic
number of markers. For a prefix of length 32, markers are needed only at lengths 16, 24, 28,
and 30.

Unfortunately, the algorithm is still incorrect. While markers lead to potentially longer
prefixes, they can also cause search to follow false leads. Consider a search for an address D′
whose first three bits are 100 in part (B) of Figure 11.18. Since the median table contains 10,
search in the middle hash table results in a match. This forces the algorithm to search in the
third hash table for 100 and to fail. But the correct best matching prefix is at the first hash table
— i.e., P4 = 1*. Markers can cause the search to go off on a wild goose chase! On the other
hand, a backtracking search of the left half would result in linear time.

To ensure logarithmic time, each marker node M contains a variable M.bmp, where M.bmp
is the longest prefix that matches string M. This is precomputed when M is inserted into its
hash table. When the algorithm follows marker M and searches for prefixes of lengths greater
than M, and if the algorithm fails to find such a longer prefix, then the answer is M.bmp. In
essence, the best matching prefix of every marker is precomputed (P2a). This avoids searching
all lengths less than the median when a match is obtained with a marker.

The final version of the database containing prefixes P4 and P1 is shown in part (C) of
Figure 11.18. A bmp field has been added to the 10 marker that points to the best matching
prefix of the string 10 (i.e., P4 = 1*). Thus when the algorithm searches for 100 and finds a
match in the median length-2 table, it remembers the value of the corresponding bmp entry P4
before it searches the length-3 table. When the search fails (in the length-3 table), the algorithm
returns the bmp field of the last marker encountered (i.e., P4).

A trivial algorithm for building the simple binary search data structure from scratch is as
follows. First determine the distinct prefix lengths; this determines the sequence of lengths to
search. Then add each prefix P in turn to the hash table corresponding to length(P). For each
prefix, also add a marker to all hash tables corresponding to lengths L < length(P) that binary
search will visit (if one does not already exist). For each such marker M, use an auxiliary
1-bit trie to determine the best matching prefix of M. Further refinements are described in
Waldvogel et al. [WVTP01].

While the search algorithm takes five hash table lookups in the worst case for IPv4, we
note that in the expected case most lookups should take two memory accesses. This is because
the expected case observation O1 shows that most prefixes are either 16 or 24 bits (at least
today). Thus doing binary search at 16 and then 24 will suffice for most prefixes.

The use of hashing makes binary search on prefix lengths somewhat difficult to implement
in hardware. However, its scalability to large prefix lengths, such as IPv6 addresses, has made
it sufficiently appealing to some vendors.

11.11 MEMORY ALLOCATION IN COMPRESSED SCHEMES

With the exception of binary search and fixed-stride multibit tries, many of the schemes
described in this chapter need to allocate memory in different sizes. Thus if a compressed trie
node grows from two to three memory words, the insertion algorithm must deallocate the old
node of size 2 and allocate a new node of size 3. Memory allocation in operating systems is a
somewhat heuristic affair, using algorithms, such as best-fit and worst-fit, that do not guarantee
worst-case properties.

262 C H A P T E R 1 1 Prefix-Match Lookups

In fact all standard memory allocators can have a worst-case fragmentation ratio that is
very bad. It is possible for allocates and deallocates to conspire to break up memory into a
patchwork of holes and small allocated blocks. Specifically, if Max is the size of the largest
memory allocation request, the worst-case scenario occurs when all holes are of size Max − 1
and all allocated blocks are of size 1. This can occur by allocating all of memory using requests
of size 1, followed by the appropriate deallocations. The net result is that only 1

Max of memory
is guaranteed to be used, because all future requests may be of size Max.

The allocator’s use of memory translates directly into the maximum number of prefixes
that a lookup chip can support. Suppose that — ignoring the allocator — one can show that
20 MB of on-chip memory can be used to support 640,000 prefixes in the worst case. If one
takes the allocator into account and Max = 32, the chip can guarantee supporting only 20,000
prefixes!

Matters are not helped by the fact that CAM vendors at the time of writing were advertising
a worst-case number of 100,000 prefixes, with 10-nsec search times and microsecond update
times. Thus, given that algorithmic solutions to prefix lookup often compress data structures
to fit into SRAM, algorithmic solutions must also design memory allocators that are fast and
that minimally fragment memory.

There is an old result [Rob74] that says that no allocator that does not compact memory
can have a utilization ratio better than 1

log2 Max . For example, this is 20% for Max = 32.
Since this is unacceptable, algorithmic solutions involving compressed data structures must
use compaction. Compaction means moving allocated blocks around to increase the size of
holes.

Compaction is hardly ever used in operating systems, for the following reason. If you
move a piece of memory M, you must correct all pointers that point to M. Fortunately, most
lookup structures are trees, in which any node is pointed to by at most one other node. By
maintaining a parent pointer for every tree node, nodes that point to a tree node M can be
suitably corrected when M is relocated. Fortunately, the parent pointer is needed only for
updates and not for search. Thus the parent pointers can be stored in an off-chip copy of the
database used for updates in the route processor, without consuming precious on-chip SRAM.

Even after this problem is solved, one needs a simple algorithm that decides when to
compact a piece of memory. The existing literature on compaction is in the context of garbage
collection (e.g., Refs. Wil92, LB96) and tends to use global compactors that scan through all
of memory in one compaction cycle. To bound insertion times, one needs some form of local
compactor that compacts only a small amount of memory around the region affected by an
update.

11.11.1 Frame-Based Compaction
To show how simple local compaction schemes can be, we first describe an extremely simple
scheme that does minimal compaction and yet achieves 50% worst-case memory utilization.
We then extend this to improve utilization to closer to 100%.

In frame merging, assume that all M words of memory are divided into M
Max frames of

size Max. Frame merging seeks to keep the memory utilization to at least 50%. To do so, all
nonempty frames should be at least 50% full. Frame merging maintains the following simple

11.12 Lookup-Chip Model 263

invariant: All but one unfilled frame is at least 50% full. If so, and if M
Max is much larger than

1, this will yield a guaranteed utilization of almost 50%.
Allocate and deallocate requests are handled [SV00] with the help of tags added to each

word that help identify free memory and allocated blocks. The only additional restriction is
that all holes be contained within a frame; holes are not allowed to span frames.

Call a frame flawed if it is nonempty but is less than 50% utilized. To maintain the invariant,
frame merging has one additional pointer to keep track of the current flawed frame, if any.
Now, an allocate could cause a previously empty frame to become flawed if the allocation is
less than Max

2 .
Similarly, a deallocate could cause a frame that was filled more than 50% to become less

than 50% full. For example, consider a frame that contains two allocated blocks of size 1 and
size Max − 1 and hence has a utilization of 100%. The utilization could reduce to 1

Max if the
block of Max − 1 is deallocated. This could cause two frames to become flawed, which would
violate the invariant.

A simple trick to maintain the invariant is as follows. Assume there is already a flawed
frame F and that a new flawed frame, F ′, appears on the scene. The invariant is maintained by
merging the contents of F and F ′ into F. This is clearly possible because both frames F and
F ′ were less than half full. Note that the only compaction done is local and is limited to the
two flawed frames, F and F ′. Such local compaction leads to fast update times.

The worst-case utilization of frame merging can be improved by increasing the frame size
to kMax and by changing the definition of a flawed frame to be one whose utilization is less
than k

k + 1 . The scheme described earlier is a special case with k = 1. Increasing k improves
the utilization, at the cost of increased compaction. More complex allocators with even better
performance are described in Sikka and Varghese [SV00].

11.12 LOOKUP-CHIP MODEL

Given speed increases to OC-768 speeds, lookup schemes will probably be implemented on
chips rather than on network processors, at least for the very highest speeds. Figure 11.19

On- or off-chip SRAM

Search Update

Input
key

UpdateSearch
result

Wide memory access;
time multiplexed between
search and update

F I G U R E 11.19 Model of a lookup chip that does a search in hardware using a common SRAM that
could be on or off chip.

264 C H A P T E R 1 1 Prefix-Match Lookups

describes a model of a lookup chip that does search and update. The chip has a Search
and an Update process, both of which access a common SRAM memory that is either
on or off chip (or both). The Update process allows incremental updates and (potentially)
does a memory allocation/deallocation and a small amount of local compaction for every
update.

The actual updates can be done either completely on chip, partially in software, or
completely in software. If a semiconductor company wishes to sell a lookup chip using a
complex update algorithm (e.g., for compressed schemes), it may be wiser also to provide
an update algorithm in hardware. If the lookup chip is part of a forwarding engine, how-
ever, it may be simpler to relegate the update process completely to a separate CPU on the
line card.

Each access to SRAM can be fairly wide if needed, even up to 1000 bits. This is quite
feasible today using a wide bus. The search and update logic can easily process 1000 bits in
parallel in one memory cycle time. Recall that wide word accesses can help — for example,
in the tree bitmap and binary search on values schemes — to reduce search times.

Search and Update use time multiplexing to share access to the common SRAM that stores
the lookup database. Thus the Search process is allowed S consecutive accesses to memory,
and then the Update process is allowed K accesses to memory. If S is 20 and K is 2, this allows
Update to steal a few cycles from Search while slowing down Search throughput by only a
small fraction. Note that this increases the latency of Search by K memory accesses in the
worst case; however, since the Search process is likely to be pipelined, this can be considered
a small additional pipeline delay.

The chip has pins to receive inputs for Search (e.g., keys) and Update (e.g., update type,
key, result) and can return search outputs (e.g., result). The model can be instantiated for
various types of lookups, including IP lookups (e.g., 32-bit IP addresses as keys and next hops
as results), bridge lookups (48-bit MAC addresses as keys and output ports as results), and
classification (e.g., packet headers as keys and matching rules as results).

Each addition or deletion of a key can result in a call to deallocate a block and to allocate a
different-size block. Each allocate request can be in any range from 1 to Max memory words.
There is a total of M words that can be allocated. The actual memory can be either off chip,
on chip, or both. Clearly, even off-chip solutions will cache the first levels of any lookup tree
on chip. On-chip memory is attractive because of its speed and cost. Unfortunately, on-chip
memory was limited by current processes to around 32 Mbits at the time of writing. This makes
it difficult to support databases of 1 million prefixes.

Internally, the chip will very likely be heavily pipelined. The lookup data structure is
partitioned into several pieces, each of which is concurrently worked on by separate stages of
logic. Thus the SRAM will likely be broken into several smaller SRAMs that can be accessed
independently by each pipeline stage.

There is a problem [SV00] with statically partitioning SRAM between pipeline stages,
because memory needs for each stage can vary as prefixes are inserted and deleted. One possible
solution is to break the single SRAM into a fairly large number of smaller SRAMs that can be
dynamically allocated to the stages via a partial crossbar switch. However, designing such a
crossbar at very high speeds is not easy.

All the schemes described in this chapter can be pipelined because they are all fundamen-
tally based on trees. All nodes at the same depth in a tree can be allocated to the same pipeline
stage.

11.13 Conclusions 265

11.13 CONCLUSIONS

It is important to gain some perspective after the large number of isolated lookup variants
described in this chapter. Thus we conclude with a summary of the state of the art in lookups,
and a survey of the common principles used in their design.

State of the Art in Lookups: Lookup schemes are coming under severe pressure in
core routers as both table sizes (up to 1 million prefixes) and speed (up to 40 Gbps) ratchet
upwards. MPLS, once thought to be a way to finesse lookups, is now mostly used to avoid
packet classification for traffic engineering purposes. CAMs are nibbling away at even the
core router space, but the large cost, power, and board real estate issues of large CAMs remain
issues. Thus many core router vendors are still using and designing algorithmic schemes for
lookups.

Oddly enough, even after the algorithmic riches explored in this chapter, simple unibit
tries together with SRAM and pipelining work well, even at 40-Gbps speeds. This is because
path-compressed unibit tries are relatively compact; their slow search times can be offset by a
pipeline together with an initial array lookup. Recall, however, that pipelining is trickier than
it looks because of the need to partition memory among stages.

At slower speeds of up to 10 Gbps, simple multibit tries using controlled prefix expansion
work well with DRAM. While DRAM is slow, it is plentiful and cheap. The use of RAMBUS-
like technologies can allow lookup pipelining even with network processors. The simplicity
of this scheme has proved attractive to a number of vendors.

Some vendors even use binary search on values; its speed and memory use are reasonable,
especially with B-trees with wide memories to reduce tree height. The binary-search-on-ranges
scheme is also unencumbered with patents.

At the highest speeds, the number of pipeline stages can be reduced from 20 to 5 using
multibit tries. However, multibit tries must be compressed to fit into limited SRAM, when on
or off chip. While Lulea’s compression is remarkable, it appears that the algorithm can be used
today only via custom solutions sold by a company called Effnet. The Lulea scheme also has
slow updates. By contrast, the tree bitmap scheme has fast updates and can be tailored to a
wide variety of hardware settings [EDV]. However, there may be patents that restrict the use
of tree bitmap as well. It is used today in Cisco’s CRS-1 Router.

Finally, binary search on prefix lengths is attractive because of its scaling properties to
large address lengths. Unfortunately, its use of hashing makes it hard to guarantee lookup times.
Similarly, the slow deployment of IPv6 and multicast, both of which increase the importance
of long address lookup, have made this scheme less attractive. It is, however, used by a few
vendors in software implementations. It may be a contender in the future.

The bottom line is that algorithmic solutions together with pipelining can scale with link
speeds as long as SRAM speeds scale to match packet arrival times. All the schemes studied
in this chapter can be pipelined to provide one lookup per memory access time. The choice
between CAMs and algorithmic schemes will continue to be hard to quantify and will probably
be made on an ad hoc basis for each product.

However, fundamentally, if compressed trie schemes can use less than 32 bits per prefix,
compressed tries appear to use fewer transistors and less power than CAMs. This is because in
a CAM the lookup logic is distributed in each of N memory cells, whereas in an algorithmic
solution the lookup logic, albeit more complicated, is distributed among a small, constant

266 C H A P T E R 1 1 Prefix-Match Lookups

number of stages. A careful VLSI scaling analysis of these two approaches would be very
useful.

Underlying Principles: Although this is a chapter about lookups and thinking about
lookups requires paying attention to current market trends, it is important not to forget that
this is a book about underlying principles. It is plausible that routers in the misty future may
use all-optical switches and all-optical processing, even for lookups. In that case, the specific
algorithms described in this chapter may be discarded; but perhaps the underlying design
principles will remain.

Although the schemes described in this chapter require some algorithmic thinking, they
also employ many of the other principles we have stressed. The schemes make heavy use of
precomputation, which trades slower insert/delete times for fast search times. The schemes
also exploit hardware features such as wide memories, distinguish fast and slow memories,
trade memory for time, and optimize the degrees of freedom in a given design. Figure 11.1
summarizes the schemes and the principles used in them.

Finally, this chapter cannot hope to do justice to all the interesting IP lookup schemes that
have been published in the academic and patent literature. You can look it up.

11.14 EXERCISES

1. Caching Prefixes: Suppose we have the prefixes 10*, 100*, and 1001*. Hugh Hopeful
would like to cache prefixes instead of entire 32-bit addresses. Hugh’s scheme keeps a
set of prefixes in the cache (fast memory), in addition to the complete set of prefixes in
slow memory. Hugh’s scheme first does a best-matching-prefix search in the cache; if a
matching prefix is found, the next hop of the prefix is used. If no matching prefix is
found, a best-matching-prefix search is done for the entire database and the resulting
prefix cached. Periodically, prefixes that have not been matched for a while are flushed
from the cache. Alyssa P. Hacker quickly gives Hugh a counterexample to show him that
his scheme is flawed and that caching prefixes is tricky (if not impossible). Can you?

2. Encoding Prefixes in a Constant Length: We said in the text that encoding prefixes
like 10*, 100*, and 1000* in a fixed length could not be done by padding prefixes with
zeroes. It clearly can be done by padding with zeroes and adding an encoding of the
prefix length. We want to study a more efficient method.

• How many possible prefixes on 32 bits can there be?

• Show how to encode all such prefixes using a fixed length of 33 bits. Make sure that
10*, 100*, and 1000* encode to different values.

• Can you use this fixed-length encoding of prefixes to have the multiple hash tables
used in Section 11.10 be packed into a single hash table? Why might this help to
decrease the chances of hash collisions for a given memory size?

3. Quantifying the Benefits of Compressing One-Way Branches:

• For a unibit trie that does not compress one-way branches, show that the maximum
number of trie nodes can be O(N · W), where N is the number of prefixes and W is the
maximum prefix length. (Hint: Generate a trie that uses log2 N levels to generate N
nodes, and then hang a long string of N − W nodes from each of the N nodes.)

11.14 Exercises 267

• Show that a unibit trie with text strings to compress one-way branches can have at
most 2N trie nodes and 2N text strings.

• Extend your analysis to multibit trie nodes with a fixed stride. How would you
implement text string compression in such tries?

4. Controlled Prefix Expansion: Code up an efficient algorithm that expands a set of
prefixes to any target set of lengths L1, . . . , Lk . Check your algorithm using the sample
database of Figure 11.8. What is the complexity of your algorithm?

5. Optimal Variable-Stride Trie: Prove that the varied-stride trie of Figure 11.10 is
optimal for a trie height of 2. Use the recursive formulation shown in the text.

6. Reducing Memory References in Lulea: The naive approach to counting bits shown in
Figure 11.15 should take three memory references (to access numSet, to read the
appropriate chunk of the bitmap, and to access the compressed trie node for the actual
information.) Show how to use P4a to combine the first two accesses into a single access.

7. Next Node versus Leaf Pushing in Lulea: Before we applied Lulea compression, we
first leaf pushed the expanded trie of Figure 11.9. The motivation was to make every
entry either a pointer or a prefix but not both. Suppose we have a special prefix entry at
the top of every trie node; if any entry in a trie node has pointer p and prefix P, we push
P to the top of the node pointed to by p. Thus we would push the prefix P8 in the 100
entry of the root of Figure 11.9 to the top of the rightmost trie node.

• We cited leaf pushing as one of the reasons for slow insertion times in the Lulea
scheme. Does next-node pushing allow incremental insertion for the Lulea scheme?

• How would you modify trie search to take into account the fact that prefixes can be
stored at the top of (potentially large) trie nodes? How would this increase the search
time (in memory accesses) of the Lulea scheme?

8. CAM Node Compression: Instead of using the Lulea scheme for compression, we
could just store all the prefixes within a trie node without expansion. If we use small trie
nodes (3- or 4-bit strides), a chip can potentially read all the entries in a node and
internally do a comparison to find the best-matching prefix within the node. Describe the
details of such a scheme.

9. Tree Bitmap Algorithm: The tree bitmap algorithm described in the text requires
rooting through the internal prefix bitmap to decide if there was a matching prefix at a
trie node N before moving on. This requires a greater access width (to access the internal
prefix bitmaps) and more time. Consider adding state to the next node in the search path
(P12) and one more final memory access to avoid this overhead.

10. Multicolumn Binary Search: In Chapter 4 we saw how to efficiently use binary search
when the identifiers were wide. Explain how to combine this idea with that of binary
search on prefixes explained in this chapter in order to do IPv6 lookups (up to 128-bit
prefixes). How does this scheme compare with the other schemes in terms of lookup
performance for IPv6?

11. Binary Search with Fast Incremental Updates: (This is difficult.) Find a way to
remove all the problems of updates to binary search. The key problem is that if a large

268 C H A P T E R 1 1 Prefix-Match Lookups

prefix range R contains lots of disjoint prefix ranges R1, . . . Rk , then the spaces between
the ranges Rk must be precomputed to map to R. If we now add a new prefix range, R′,
that is contained in R but still contains R1 through Rk , then all the spaces between the
ranges Rk must be changed to map to the new range, R′. Since k can be O(n), this could
lead to a O(n) update. Try to avoid this problem by storing the binary search database as
a tree and storing information about precomputed prefixes that cover the space between
ranges as high as possible in the tree, as opposed to storing in the leaves. Details can be
found in Warkhede et al. [WSV01b].

12. Counterexamples for Binary Search on Prefix Lengths: Even in industry, it is often
useful to show by counter example that worst cases can actually exist. This ensures that
we are not doing unnecessary work, and it also silences people who say that the worst
case will never be too bad. Imagine that Hugh Hopeful is working for the same startup
building an IP lookup chip. The company is now considering using binary search on
prefix lengths.

• Suppose we use only markers and no precomputation. This would make insertion a lot
faster. Hugh Hopeful suggests that backtracking can only lead to a logarithmic
number of extra accesses. Find an example that leads to linear time.

• Hugh Hopeful finds that in practice real databases add only 25% extra marker storage,
much less than the log2 W multiplicative factor that we claimed. This is important
because he would like to boast of a larger number of prefixes that his chip can handle
for the given amount of memory. Give a worst-case example to show that we can add
log2 W entries per marker.

13. Rope Search: Binary search on prefix lengths can be improved by what is called rope
search in Waldvogel et al. [WVTP01]. If we ever get a match with some entry M at
length m, we only search further among the set of lengths corresponding to prefixes that
are extensions of M. The basic technique we studied earlier will continue to search
among all lengths greater than m in the current set of lengths R. However, many of the
lengths l > m may not have a prefix that is an extension of M. Thus this optimization
can result in more than halving the set of possible lengths on each match. It may not help
the worst case, but it can considerably help the average case. Try to work out details of
such a scheme. In particular, a naive approach would keep a list of all potentially
matching lengths (O(W) space, where W is the length of an address) with each prefix.
Find a way to reduce the state kept with each marker to O(log W). Details can be found
in Waldvogel et al. [WVTP01].

14. Invariant for Binary Search on Prefix Lengths: Designing and proving algorithms
that correct via invariants is a useful technique even in network algorithmics. The
standard invariant for ordinary binary search when searching for key K is: “K is not in
the table, or K is in the current range R.” Standard binary search starts with R equal to
the entire table and constantly halves the range while maintaining the invariant. Find a
similar invariant for binary search on prefix ranges.

15. Semiperfect Hashing: Hardware chips can fetch up to 1000 bits at a time using wide
buses. Exploit this observation to allow up to X collisions in each hash table entry,
where the X colliding entries are stored at adjacent locations. Code up a perfect hashing

11.14 Exercises 269

implementation (of 1000 IP addresses using a set of random hash functions), and
compare the amount of memory needed with an implementation based on semiperfect
hashing.

16. Removing Redundancies in Lookup Tables: Besides the use of compressed structures,
another technique to reduce the size of IP lookup tables (especially when the tables are
stored in on-chip SRAM) is to remove redundancy. One simple example of redundancy
is when a prefix P is longer than a prefix P′ and they both have the same next hop.
Which prefix can be removed from the table? Can you think of other examples of
removing redundancy? How would you implement such compression? Draves et al.
[DKVZ99] describe a dynamic programming algorithm for compression, but even
simpler alternatives can be effective.

17. Implementing Tries for Best Matching Prefix: (Due to V. Srinivasan.) The problem is
to use tries to implement a file name completion routine in C or C++, similar to ones
found in many shells. Given a unique prefix, the query should return the entire string.
For example, with the words angle, epsilon, and eagle: Search(a) should return angle,
Search(e) should return “No unique completion,” Search(ea), Search(eag), etc. should
return eagle; and Search(b) should return “No matching entries found.” Assume all
lowercase alphabets. To obtain an index into a trie array use:

index= charVariable - ’a’.

The following definition of a trie node may be helpful.

#defineALPHA26
structTRIENODE
{
intcompletionStatus;
charcompletion[MAXLEN];
structTRIENODE*next[ALPHA];
}

Can other techniques discussed in the text (e.g., binary search) be applied to this
problem? Are insertion costs significant?

C H A P T E R 12

Packet Classification

A classification is a definition comprising a system of definitions.

— Friedrich von Schlegel

Traditionally, the post office forwards messages based on the destination address in each
letter. Thus all letters to Timbuctoo were forwarded in exactly the same way at each post
office. However, to gain additional revenue, the post office introduced service differentiation
between ordinary mail, priority mail, and express mail. Thus forwarding at the post office is
now a function of the destination address and the traffic class. Further, with the spectre of
terrorist threats and criminal activity, forwarding could even be based on the source address,
with special screening for suspicious sources.

In exactly the same way, routers have evolved from traditional destination-based forward-
ing devices to what are called packet classification routers. In modern routers, the route and
resources allocated to a packet are determined by the destination address as well as other header
fields of the packet, such as the source address and TCP/UDP port numbers.

Packet classification unifies the forwarding functions required by firewalls, resource reser-
vations, QoS routing, unicast routing, and multicast routing. In classification, the forwarding
database of a router consists of a potentially large number of rules on key header fields. A given
packet header can match multiple rules. So each rule is given a cost, and the packet is forwarded
using the least-cost matching rule.

This chapter is organized as follows. The packet classification problem is motivated in
Section 12.1. The classification problem is formulated precisely in Section 12.2, and the
metrics used to evaluate rule schemes are described in Section 12.3. Section 12.4 presents
simple schemes such as linear search and CAMs. Section 12.5 begins the discussion of more
efficient schemes by describing an efficient scheme called grid of tries that works only for rules
specifying values of only two fields. Section 12.6 transitions to general rule sets by describing
a set of insights into the classification problem, including the use of a geometric viewpoint.

Section 12.7 begins the transition to algorithms for the general case with a simple idea
to extend 2D schemes. A general approach based on divide-and-conquer is described in
Section 12.8. This is followed by three very different examples of algorithms based on divide-
and-conquer: simple and aggregated bit vector linear search (Section 12.9), cross-producting
(Section 12.10), and RFC, or equivalenced cross-producting (Section 12.11). Section 12.12
presents the most promising of the current algorithmic approaches, an approach based on
decision trees.

270

12.1 Why Packet Classification? 271

P12
P2a

P15
P2a

P15
P12,2a

P11

P4a

Add marker state
Precompute filter info

Use Dest and SRC tries
Precompute switch pointers

Divide-and-conquer by first doing field lookups

Exploit lack of general ranges

Exploit bitmap memory locality

Rectangle and
tuple search

Grid of tries

Bit vector, pruned tuple,
cross-producting

Multiple 2D planes

Num Principle Lookup Technique

P11 Exploit small number of prefixes that match any field Pruned tuple

P11a,4a Exploit crossproduct locality On-demand cross-product

P1 Avoid redundant crossproducts Equivalent cross-producting

Bit vector scheme

F I G U R E 12.1 Summary of the principles used in the classification algorithms described in this
chapter.

This chapter will continue to exhibit the set of principles introduced in Chapter 3, as
summarized in Figure 12.1. The chapter will also illustrate three general problem-solving
strategies: solving simpler problems first before solving a complex problem, collecting
different viewpoints, and exploiting the structure of input data sets.

Q u i c k R e f e r e n c e G u i d e
The most important lookup algorithms for an implementor today are as follows. If memory is not an

issue, the fastest scheme is one called recursive flow classification (RFC), described in Section 12.11. If
memory is an issue, a simple scheme that works well for classifiers up to around 5000 rules is the Lucent
bit vector scheme (Section 12.9). For larger classifiers, the best trade-off between speed and memory
is provided by decision tree schemes, such as HiCuts and HyperCuts (Section 12.12). Unfortunately, all
these algorithms are based on heuristics and cannot guarantee performance on all databases. If guaranteed
performance is required for more than two field classifiers, there is no alternative but to consider hardware
schemes such as ternary CAMs.

12.1 WHY PACKET CLASSIFICATION?

Packet forwarding based on a longest-matching-prefix lookup of destination IP addresses is
fairly well understood, with both algorithmic and CAM-based solutions in the market. Using
basic variants of tries and some pipelining (see Chapter 11), it is fairly easy to perform one
packet lookup every memory access time.

272 C H A P T E R 1 2 Packet Classification

Unfortunately, the Internet is becoming more complex because of its use for mission-
critical functions executed by organizations. Organizations desire that their critical activities
not be subverted either by high traffic sent by other organizations (they require QoS guarantees)
or by malicious intruders (they require security guarantees). Both QoS and security guarantees
require a finer discrimination of packets, based on fields other than the destination. This is
called packet classification. To quote John McQuillan [McQ97]:

Routing has traditionally been based solely on destination host numbers. In the future
it will also be based on source host or even source users, as well as destination URLs
(universal resource locators) and specific business policies. . . . Thus, in the future,
you may be sent on one path when you casually browse the Web for CNN headlines.
And you may be routed an entirely different way when you go to your corporate Web
site to enter monthly sales figures, even though the two sites might be hosted by the
same facility at the same location. . . . An order entry form may get very low latency,
while other sections get normal service. And then there are Web sites comprised of
different servers in different locations. Future routers and switches will have to use
class of service and QoS to determine the paths to particular Web pages for particular
end users. All this requires the use of layers 4, 5, and above.

This new vision of forwarding is called packet classification. It is also sometimes called
layer 4 switching, because routing decisions can be based on headers available at layer 4 or
higher in the OSI architecture. Examples of other fields a router may need to examine include
source addresses (to forbid or provide different service to some source networks), port fields
(to discriminate between traffic types, such as Napster and E-mail), and even TCP flags (to
distinguish between externally and internally initiated connections). Besides security and QoS,
other functions that require classification include network address translation (NAT), metering,
traffic shaping, policing, and monitoring.

Several variants of packet classification have already established themselves on the Inter-
net. First, many routers implement firewalls [CB95] at trust boundaries, such as the entry and
exit points of a corporate network. A firewall database consists of a series of packet rules that
implement security policies. A typical policy may be to allow remote login from within the
corporation but to disallow it from outside the corporation.

Second, the need for predictable and guaranteed service has led to proposals for reservation
protocols, such as DiffServ [SWG], that reserve bandwidth between a source and a destination.
Third, the cries for routing based on traffic type have become more strident recently — for
instance, the need to route Web traffic between Site 1 and Site 2 on, say, Route A and other
traffic on, say, Route B. Figure 12.2 illustrates some of these examples.

Classifiers historically evolved from firewalls, which were placed at the edges of networks
to filter out unwanted packets. Such databases are generally small, containing 10–500 rules,
and can be handled by ad hoc methods. However, with the DiffServ movement, there is
potential for classifiers that could support 100,000 rules for DiffServ and policing applications
at edge routers.

While large classifiers are anticipated for edge routers to enforce QoS via DiffServ, it
is perhaps surprising that even within the core, fairly large (e.g., 2000-rule) classifiers are
commonly used for security. While these core router classifiers are nowhere near the anticipated
size of edge router classifiers, there seems no reason why they should not continue to grow
beyond the sizes reported in this book. For example, many of the rules appear to be denying

12.2 Packet-Classification Problem 273

D

*

Y

S1

S2

X

Forward via L1

Drop all traffic

Video

*

*

To Traffic Type Forwarding Directive

Reserve 50 Mbps

R

S2

S1

L2

L1

D

Subnet X Subnet Y

From

DATABASE AT ROUTER R

F I G U R E 12.2 Example of rules that provide traffic-sensitive routing, a firewall rule, and resource
reservation. The first rule routes video traffic from S1 to D via L1; not shown is the default routing to D,
which is via L2. The second rule blocks traffic from an experimental site, S2, from accidentally leaving
the site. The third rule reserves 50 Mbps of traffic from an internal network X to an external network
Y, implemented perhaps by forwarding such traffic to a special outbound queue that receives special
scheduling guarantees; here X and Y are prefixes.

traffic from a specified subnetwork outside the ISP to a server (or subnetwork) within the ISP.
Thus, new offending sources could be discovered and new servers could be added that need
protection. In fact, we speculate that one reason why core router classifiers are not even bigger
is that most core router implementations slow down (and do not guarantee true wire speed
forwarding) as classifier sizes increase.

12.2 PACKET-CLASSIFICATION PROBLEM

Traditionally, the rules for classifying a message are called rules and the packet-classification
problem is to determine the lowest-cost matching rule for each incoming message at a router.

Assume that the information relevant to a lookup is contained in K distinct header
fields in each message. These header fields are denoted H[1], H[2], . . . , H[K], where each
field is a string of bits. For instance, the relevant fields for an IPv4 packet could be the
destination address (32 bits), the source address (32 bits), the protocol field (8 bits), the
destination port (16 bits), the source port (16 bits), and TCP flags (8 bits). The number
of relevant TCP flags is limited, and so the protocol and TCP flags are combined into one
field — for example, TCP-ACK can be used to mean a TCP packet with the ACK bit set.1

1TCP flags are important for packet classification because the first packet in a connection does not have the
ACK bit set, while the others do. This allows a simple rule to block TCP connections initiated from the outside while
allowing responses to internally initiated connections.

274 C H A P T E R 1 2 Packet Classification

Other relevant TCP flags can be represented similarly; UDP packets are represented by
H[3] = UDP.

Thus, the combination (D, S, TCP-ACK, 63, 125) denotes the header of an IP packet with
destination D, source S, protocol TCP, destination port 63, source port 125, and the ACK
bit set.

The classifier, or rule database, router consists of a finite set of rules, R1, R2, . . . , RN . Each
rule is a combination of K values, one for each header field. Each field in a rule is allowed
three kinds of matches: exact match, prefix match, and range match. In an exact match, the
header field of the packet should exactly match the rule field — for instance, this is useful for
protocol and flag fields. In a prefix match, the rule field should be a prefix of the header field
— this could be useful for blocking access from a certain subnetwork. In a range match, the
header values should lie in the range specified by the rule — this can be useful for specifying
port number ranges.

Each rule Ri has an associated directive dispi, which specifies how to forward the packet
matching this rule. The directive specifies if the packet should be blocked. If the packet is to
be forwarded, the directive specifies the outgoing link to which the packet is sent and, perhaps,
also a queue within that link if the message belongs to a flow with bandwidth guarantees.

A packet P is said to match a rule R if each field of P matches the corresponding field of
R — the match type is implicit in the specification of the field. For instance, if the destination
field is specified as 1010∗, then it requires a prefix match; if the protocol field is UDP, then it
requires an exact match; if the port field is a range, such as 1024–1100, then it requires a range
match. For instance, let R = (1010∗, ∗, TCP, 1024–1080, ∗) be a rule, with disp = block.
Then, a packet with header (10101 . . . 111, 11110 . . . 000, TCP, 1050, 3) matches R and is
therefore blocked. The packet (10110 . . . 000, 11110 . . . 000, TCP, 80, 3), on the other hand,
doesn’t match R.

Since a packet may match multiple rules in the database, each rule R in the database is
associated with a nonnegative number, cost(R). Ambiguity is avoided by returning the least-
cost rule matching the packet’s header. The cost function generalizes the implicit precedence
rules that are used in practice to choose between multiple matching rules. In firewall applica-
tions or Cisco ACLs, for instance, rules are placed in the database in a specific linear order,
where each rule takes precedence over a subsequent rule. Thus, the goal there is to find the
first matching rule. Of course, the same effect can be achieved by making cost(R) equal to the
position of rule R in the database.

As an example of a rule database, consider the topology and firewall database [CB95]
shown in Figure 12.3, where a screened subnet configuration interposes between a company
subnetwork (shown on top left) and the rest of the Internet (including hackers). There is a
so-called bastion host M within the company that mediates all access to and from the external
world. M serves as the mail gateway and also provides external name server access. TI , TO are
network time protocol (NTP) sources, where TI is internal to the company and TO is external.
S is the address of the secondary name server, which is external to the company.

Clearly, the site manager wishes to allow communication from within the network to
TO and S and yet wishes to block hackers. The database of rules shown on the bottom of
Figure 12.3 implements this intention. Terse explanations of each rule are shown on the right
of each rule. Assume that all addresses of machines within the company’s network start with
the CIDR prefix Net. Thus M and TI both match the prefix Net. All packets matching any of
the first seven rules are allowed; the remaining (last rule) are dropped by the screening router.

12.3 Requirements and Metrics 275

M

M

M

M

TI

*

Net

*

*

*

*

*

123

*

*

*

25

53

53

23

123

*

*

*

*

*

S

*

TO

Net

*

*

Destination Destination
Port

Source
Port

Mail gateway M

Internal time
server TI

Secondary name
server S

Screening
router

Hacker to be
kept out!

Source

External time
server TO

Flags Comments

*

UDP

*

*

UDP

*

TCP

*

ack

Allow inbound mail

Allow DNS access

Secondary access

Incoming telnet

NTP time info

Outgoing packets

Return ACKs OK

Block everything!

F I G U R E 12.3 The top half of the figure shows the topology of a small company; the bottom half
shows a sample firewall database for this company as described in the book by Cheswick and Bellovin
[CB95]. The block flags are not shown in the figure; the first seven rules have block = false (i.e., allow)
and the last rule has block = true (i.e., block). We assume that all the addresses within the company
subnetwork (shown on top left) start with the prefix Net, including M and TI .

A more general firewall could arbitrarily interleave rules that allow packets with rules that drop
packets.

As an example, consider a packet sent to M from S with UDP destination port equal to 53.
This packet matches Rules 2, 3, and 8 but must be allowed through because the first matching
rule is Rule 2.

Note that this description uses N for the number of rules and K for the number of packet
fields. K is sometimes called the number of dimensions, for reasons that will become clearer
in Section 12.6.

12.3 REQUIREMENTS AND METRICS

The requirements for rule matching are similar to those for IP lookups (Chapter 11). We wish
to do packet classification at wire speed for minimum-size packets, and thus speed is the
dominant metric. To allow the database to fit in high-speed memory it is useful to reduce the

276 C H A P T E R 1 2 Packet Classification

amount of memory needed. For most firewall databases, insertion speed is not an issue because
rules are rarely changed.

However, this is not true for dynamic or stateful packet rules. This capability is useful, for
example, for handling UDP traffic. Because UDP headers do not contain an ACK bit that can
be used to determine whether a packet is the bellwether packet of a connection, the screening
router cannot tell the difference between the first packet sent from the outside to an internal
server (which it may want to block) and a response sent to a UDP request to an internal client
(which it may want to pass). The solution used in some products is to have the outgoing request
packet dynamically trigger the insertion of a rule (which has addresses and ports that match the
request) that allows the inbound response to be passed. This requires very fast update times, a
third metric.

12.4 SIMPLE SOLUTIONS

There are five simple solutions that are often used or considered: linear search, caching,
demultiplexing algorithms, MPLS, and content addressable memories (CAMs). While CAMs
have difficult hardware design issues, they effectively represent a parallelization of the simplest
algorithmic approach: linear search.

12.4.1 Linear Search
Several existing firewall implementations do a linear search of the database and keep track
of the best-match rule. Linear search is reasonable for small rule sizes but is extremely slow
for large rule sets. For example, a core router that does linear search among a rule set of
2000 rules (used at the time of writing by some ISPs) will considerably degrade its forwarding
performance below wire speed.

12.4.2 Caching
Some implementations even cache the result of the search keyed against the whole header.
There are two problems with this scheme. First, the cache hit rate of caching full IP addresses
in the backbones is typically at most 80–90% [Par96, NMH97]. Part of the problem is Web
accesses and other flows that send only a small number of packets; if a Web session sends just
five packets to the same address, then the cache hit rate is 80%. Since caching full headers
takes a lot more memory, this should have an even worse hit rate (for the same amount of
cache memory).

Second, even with a 90% hit rate cache, a slow linear search of the rule space will result
in poor performance.2 For example, suppose that a search of the cache costs 100 nsec (one
memory access) and that a linear search of 10,000 rules costs 1,000,000 nsec = 1 msec (one
memory access per rule). Then the average search time with a cache hit rate of 90% is still
0.1 msec, which is rather slow. However, caching could be combined with some of the fast
algorithms in this chapter to improve the expected search time even further. An investigation
of the use of caching for classification can be found in Xu et al. [XSD00].

2This is an application of a famous principle in computer architecture called Amdahl’s law.

12.4 Simple Solutions 277

12.4.3 Demultiplexing Algorithms
Chapter 8 describes the use of packet rules for demultiplexing and algorithms such as
Pathfinder, Berkeley packet filter, and dynamic path finder. Can’t these existing solutions
simply be reused? It is important to realize that the two problems are similar but subtly
different.

The first packet-classification scheme that avoids a linear search through the set of rules is
Pathfinder [BGP+94]. However, Pathfinder allows wildcards to occur only at the end of a rule.
For instance, (D, S, ∗, ∗, ∗) is allowed, but not (D, ∗, Prot, ∗, SourcePort). With this restriction,
all rules can be merged into a generalized trie — with hash tables replacing array nodes —
and rule lookup can be done in time proportional to the number of packet fields. DPF [EK96]
uses the Pathfinder idea of merging rules into a trie but adds the idea of using dynamic code
generation for extra performance. However, it is unclear how to handle intermixed wildcards
and specified fields, such as (D, ∗, Prot, ∗, SourcePort), using these schemes.

Because packet classification allows more general rules, the Pathfinder idea of using a trie
does not work well. There does exist a simple trie scheme (set-pruning tries; see Section 12.5.1)
to perform a lookup in time O(M), where M is the number of packet fields. Such schemes are
described in Decasper et al. [DDPP98] and Malan and Jahanian [MJ98]. Unfortunately, such
schemes require �(NK) storage, where K is the number of packet fields and N is the number
of rules. Thus such schemes are not scalable for large databases. By contrast, some of the
schemes we will describe require only O(NM) storage.

12.4.4 Passing Labels
Recall from Chapter 11 that one way to finesse lookups is to pass a label from a previous-
hop router to a next-hop router. One of the most prominent examples of such a technology
is multiprotocol label switching (MPLS) [Cha97]. While IP lookups have been able to keep
pace with wire speeds, the difficulties of algorithmic approaches to packet classification have
ensured an important niche for MPLS. Refer to Chapter 11 for a description of tag switching
and MPLS.

Today MPLS is useful mostly for traffic engineering. For example, if Web traffic between
two sites A and B is to be routed along a special path, a label-switched path is set up between
the two sites. Before traffic leaves site A, a router does packet classification and maps the Web
traffic into an MPLS header. Core routers examine only the label in the header until the traffic
reaches B, at which point the MPLS header is removed.

The gain from the MPLS header is that the intermediate routers do not have to repeat
the packet-classification effort expended at the edge router; simple table lookup suffices.
The DiffServ [SWG] proposal for QoS is actually similar in this sense. Classification is done
at the edges to mark packets that deserve special quality of service. The only difference is that
the classification information is used to mark the Type of Service [TOS] bits in the IP header,
as opposed to an MPLS label. Both are examples of Principle P10, passing hints in protocol
headers.

Despite MPLS and DiffServ, core routers still do classification at the very highest speeds.
This is largely motivated by security concerns, for which it may be infeasible to rely on label
switching. For example, Singh et al. [SBV04] describe a number of core router classifiers, the
largest of which contains 2000 rules.

278 C H A P T E R 1 2 Packet Classification

12.4.5 Content-Addressable Memories
Recall from Chapter 11 that a CAM is a content-addressable memory, where the first cell that
matches a data item will be returned using a parallel lookup in hardware. Aternary CAM allows
each bit of data to be either a 0, a 1, or a wildcard. Clearly, ternary CAMs can be used for rule
matching as well as for prefix matching. However, the CAMs must provide wide lengths —
for example, the combination of the IPv4 destination, source, and two port fields is 96 bits.

Because of problems with algorithmic solutions described in the remainder of this chapter,
there is a general belief that hardware solutions such as ternary CAMs are needed for core
routers, despite the problems [GM01] of ternary CAMs. There are, however, several reasons
to consider algorithmic alternatives to ternary CAMs, which were presented in Chapter 11.

Recall that these reasons include the smaller density and larger power of CAMs versus
SRAMs and the difficulty of integrating forwarding logic with the CAM. These problems
remain valid when considering CAMs for classification. An additional issue that arises is the
rule multiplication caused by ranges. In CAM solutions, each range has to be replaced by a
potentially large number of prefixes, thus causing extra entries. Some algorithmic solutions
can handle ranges in rules without converting ranges to rules.

These arguments are strengthened by the fact that, at the time of writing, several CAM
vendors were also considering algorithmic solutions, motivated by some of the difficulties
with CAMs. While better CAM cell designs that reduce density and power requirements may
emerge, it is still important to understand the corresponding advantages and disadvantages of
algorithmic solutions. The remainder of the chapter is devoted to this topic.

12.5 TWO-DIMENSIONAL SCHEMES

A useful problem-solving technique is first to solve a simpler version of a complex problem
such as packet classification and to use the insight gained to solve the more complex problem.
Since packet classification with just one field has been solved in Chapter 11, the next simplest
problem is two-dimensional packet classification.

Two-dimensional rules may be useful in their own right. This is because large backbone
routers may have a large number of destination–source rules to handle virtual private networks
and multicast forwarding and to keep track of traffic between subnets. Further, as we will see,
there is a heuristic observation that reduces the general case to the two-dimensional case.

Since there are only three distinct approaches to one-dimensional prefix matching — using
tries, binary search on prefix lengths, and binary search on ranges — it is worth looking for
generalizations of each of these distinct approaches. All three generalizations exist. However,
this chapter will describe only the most efficient of these (the generalization of tries) in this
section.

The appropriate generalization of standard prefix tries to two dimensions is called the grid
of tries. The main idea will be explained using an example database of seven destination–
source rules, shown in Figure 12.4. We arrive at the final solution by first considering two
naive variants.

12.5.1 Fast Searching Using Set-Pruning Tries
Consider the two-dimensional rule set in Figure 12.4. The simplest idea is first to build a trie on
the destination prefixes in the database and then to hang a number of source tries off the leaves

12.5 Two-Dimensional Schemes 279

0*

0*

0*

00*

00*

10*

*

Rule Destination Source

R1

R2

R3

R4

R5

R6

R7

10*

01*

1*

1*

11*

1*

00*

F I G U R E 12.4 An example with seven destination–source rules.

of the destination trie. Figure 12.5 illustrates the construction for the rules in Figure 12.4. Each
valid prefix in the destination trie points to a trie containing some source prefixes. The question
is: Which source prefixes should be stored in the source trie corresponding to each destination
prefix?

For instance, consider D = 00∗. Both rules R4 and R5 have this destination prefix, and so
the trie at D clearly needs to store the corresponding source prefixes 1∗ and 11∗. But storing
only these source prefixes is insufficient. This is because the destination prefix 0∗ in rules
R1, R2, and R3 also matches any destination that D matches. In fact, the wildcard destination
prefix ∗ of R7 also matches whatever D matches. This suggests that the source trie at D = 00
must contain the source prefixes for {R1, R2, R3, R4, R5, R7}, because these are the set of rules
whose destination is a prefix of D.

Figure 12.5 shows a schematic representation of this data structure for the database of
Figure 12.4. Note that S1 denotes the source prefix of rule R1, S2 of rule R2, and so on. Thus
each prefix D in the destination trie prunes the set of rules from the entire set of rules down
to the set of rules compatible with D. The same idea can be extended to more than two fields,
with each field value in the path pruning the set of rules further.

In this trie of tries, the search algorithm first matches the destination of the header in the
destination trie. This yields the longest match on the destination prefix. The search algorithm
then traverses the associated source trie to find the longest source match. While searching the
source trie, the algorithms keep track of the lowest-cost matching rule. Since all rules that
have a matching destination prefix are stored in the source trie being searched, the algorithm
finds the correct least-cost rule. This is the basic idea behind set-pruning trees [Decasper et al.,
DDPP98].

Unfortunately, this simple extension of tries from one to two dimensions has a memory-
explosion problem. The problem arises because a source prefix can occur in multiple tries.
In Figure 12.5, for instance, the source prefixes S1, S2, S3 appear in the source trie associated
with D = 00∗ as well as the trie associated with D = 0∗.

How bad can this replication get? A worst-case example forcing roughly N2 memory is
created using the set of rules shown in Figure 12.6. The problem is that since the destina-
tion prefix ∗ matches any destination header, each of the N /2 source prefixes are replicated

280 C H A P T E R 1 2 Packet Classification

0

0 0

1

Source Tries

Destination Trie

Trie of
S1, S2, S3,
S4, S5, S7

Trie of
S1, S2,
S3, S7

Trie of
S7

Trie of
S6, S7

F I G U R E 12.5 The set-pruning trie data structure in two dimensions corresponding to the database
of Figure 12.4. Destination Trie is a trie for the destination prefixes. The nodes corresponding to a valid
destination prefix in the database are shown as filled circles; others are shown as empty circles. Each
valid destination prefix D has a pointer to a trie containing the source prefixes that belong to rules whose
destination field is a prefix of D.

D1

D2

DN/2

*

*

*

Rule Destination Source

R1

R2

RN/2

RN/2�1

RN/2�2

RN

*

*

*

S1

S2

SN

…
…

F I G U R E 12.6 An example forcing N2/2 memory for two-dimensional set-pruning trees. Similar
examples, which apply to a number of other simple schemes, can be used to show O(NK) storage for
K-dimensional rules.

N /2 times, one for each destination prefix. The example (see exercises) can be extended to
show a O(Nk) bound for general set-pruning tries in K dimensions.

While set-pruning tries do not scale to large classifiers, the natural extension to more than
two fields has been used in Decasper et al. [DDPP98] as part of a router toolkit, and in Malan
and Jahanian [MJ98] as part of a flexible monitoring system. The performance of set-pruning
tries is also studied in Qiu et al. [QVS01]. One interesting optimization introduced in Decasper
et al. [DDPP98] and Malan and Jahanian [MJ98] is to avoid obvious waste (P1) when two

12.5 Two-Dimensional Schemes 281

subtries S1 and S2 have exactly the same contents. In this case, one can replace the pointers
to S1 and S2 by a pointer to a common subtrie, S. This changes the structure from a tree to
a directed acyclic graph (DAG). The DAG optimization can greatly reduce storage for set-
pruning tries (see Ref. QVS01 for other, related optimizations) and can be used to implement
small classifiers, say, up to 100 rules, in software.

12.5.2 Reducing Memory Using Backtracking
The previous scheme pays in memory in order to reduce search time. The dual idea is to pay
with time in order to reduce memory. In order to avoid the memory blowup of the simple trie
scheme, observe that rules associated with a destination prefix D are copied into the source
trie of D′ whenever D is a prefix of D′. For instance, in Figure 12.5, the prefix D = 00∗ has
two rules associated with it: R4 and R5. The other rules, R1, R2, R3, are copied into D’s trie
because their destination field 0∗ is a prefix of D.

The copying can be avoided by having each destination prefix D point to a source trie
that stores the rules whose destination field is exactly D. This requires modifying the search
strategy as follows: Instead of just searching the source trie for the best-matching desti-
nation prefix D, the search algorithm must now search the source tries associated with all
ancestors of D.

In order to search for the least-cost rule, the algorithm first traverses the destination trie
and finds the longest destination prefix D′ matching the header. The algorithm then searches the
source trie of D′ and updates the least-cost-matching rule. Unlike set-pruning tries, however,
the search algorithm is not finished at this point.

Instead, the search algorithm must now work its way back up the destination trie and
search the source trie associated with every prefix of D′ that points to a nonempty source trie.3

Since each rule now is stored exactly once, the memory requirement for the new structure
is O(NW), which is a significant improvement over the the previous scheme. Unfortunately,
the lookup cost for backtracking is worse than for set-pruning tries: In the worst case, the
lookup costs �(W2), where W is the maximum number of bits specified in the destination or
source fields.

The �(W2) bound on the search cost follows from the observation that, in the worst case,
the algorithm may end up searching W source tries, each at the cost of O(W), for a total of
O(W2) time. For W = 32 and using 1-bit tries, this is 1024 memory accesses. Even using 4-bit
tries, this scheme requires 64 memory accesses.

While backtracking can be very slow in the worst case, it turns out that all classification
algorithms exhibit pathological worst-case behavior. For databases encountered in practice,
backtracking can work very well. Qiu et al. [QVS01] describe experimental results using
backtracking and also describe potential hardware implementations on pipelined processors.

12.5.3 The Best of Both Worlds: Grid of Tries
The two naive variants of two-dimensional tries pay either a large price in memory (set-
pruning tries) or a large price in time (backtracking search). However, a careful examination

3Note that backtracking search can actually search the source tries corresponding to destination prefixes in any
order; this particular order was used only to motivate the grid-of-tries scheme. Another search order that minimizes
the state required for backtracking is described in Qiu et al. [QVS01].

282 C H A P T E R 1 2 Packet Classification

0

0 0

0

00

0

1

11

1

1

1
R4

R5 R2 R1

R3

R7

R6

Source Tries

Destination Trie

F I G U R E 12.7 Avoiding the memory blowup by storing each rule in exactly one trie.

of backtracking search reveals obvious waste (P1), which can be avoided using precomputa-
tion (P2a).

To see the wasted time in backtracking search, consider matching the packet with desti-
nation address 001 and source address 001 in Figure 12.7. The search in the destination trie
gives D = 00 as the best match. So the backtracking algorithm starts its search for the match-
ing source prefix in the associated source trie, which contains rules R4 and R5. However, the
search immediately fails, since the first bit of the source is 0. Next, backtracking search backs
up along the desination trie and restarts the search in the source trie of D = 0∗, the parent
of 00∗.

But backing up the trie is a waste because if the search fails after searching destination
bits 00 and source bit 0, then any matching rule must be shorter in the destination (e.g., 0) and
must contain all the source bits searched so far, including the failed bit. Thus backing up to
the source trie of D = 0∗ and then traversing the source bit 0 to the parent of R2 in Figure 12.7
(as done in backtracking search) is a waste.

The algorithm could predict that this sequence of bits would be traversed when it first
failed in the source trie of D = 00. This motivates a simple idea: Why not jump directly to the
parent of R2 from the failure point in the source trie of D = 00∗?

Thus in the new scheme (Figure 12.8), for each failure point in a source trie, the trie-
building algorithm precomputes what we call a switch pointer. Switch pointers allow search
to jump directly to the next possible source trie that can contain a matching rule. Thus in
Figure 12.8, notice that the source trie containing R4 and R5 has a dashed line labeled with
0 that points to a node x in the source trie containing {R1, R2, R3}. All the dashed lines in
Figure 12.8 are switch pointers. Please distinguish the dashed switch pointers from the dotted
lines that connect the destination and source tries.

Now consider again the same search for the packet with destination address 001 and source
address 001 in Figure 12.8. As before, the search in the destination trie gives D = 00 as the
best match. Search fails in the corresponding source trie (containing R4 and R5) because the
source trie contains a path only if the first source bit is a 1. However, in Figure 12.8, instead of
failing and backtracking, the algorithm follows the switch pointer labeled 0 directly to node x.

12.5 Two-Dimensional Schemes 283

0

0 0

0

00

0

1

11

1

1

1
R4

R5 R2 R1

R3

R7

R6

Source Tries

Destination Trie

0

0

0

0 x

y

F I G U R E 12.8 Improving the search cost with the use of switch pointers.

It then continues matching from node x, without skipping a beat, using the remaining bits of
the source.

Since the next bit of the source is a 0, the search in Figure 12.8 fails again. The search
algorithm once again follows the switch pointer labeled 0 and jumps to node y of the third
source trie (associated with the destination prefix ∗). Effectively, the switch pointers allow
skipping over all rules in the next ancestor source trie whose source fields are shorter than the
current source match. This in turn improves the search complexity from O(W2) to O(W).

It may help to define switch pointers more precisely. Call a destination string D′ an ancestor
of D if D′ is a prefix of D. Call D′ the lowest ancestor of D if D′ is the longest prefix of D in
the destination trie. Let T (D) denote the source trie pointed to by D. Recall that T (D) contains
the source fields of exactly those rules whose destination field is D.

Let u be a node in T (D) that fails on bit 0; that is, if u corresponds to the source prefix
s, then the trie T (D) has no string starting with s0. Let D′′ be the lowest ancestor of D whose
source trie contains a source string starting with prefix s0, say, at node v. Then we place a
switch pointer at node u pointing to node v. If no such node v exists, the switch pointer is nil.
The switch pointer for failure on bit 1 is defined similarly. For instance, in Figure 12.8, the
node labeled x fails on bit 0 and has a switch pointer to the node labeled y.

As a second example, consider the packet header (00∗, 10∗). Search starts with the first
source trie, pointed to by the destination trie node 00∗. After matching the first source bit, 1,
search encounters rule R4. But then search fails on the second bit. Search therefore follows the
switch pointer, which leads to the node in the second trie labeled with R1. The switch pointers
at the node containing R1 are both nil, and so search terminates. Note, however, that search
has missed the rule R3 = (0∗, 1∗), which also matches the packet header. While in this case
R3 has higher cost than R1, in general the overlooked rule could have lower cost.

Such problems can be avoided by having each node in a source trie maintain a variable
storedRule. Specifically, a node v with destination prefix D and source prefix S stores in
storedRule(v) the least-cost rule whose destination field is a prefix of D and whose source field
is a prefix of S. With this precomputation, the node labeled with R1 in Figure 12.8 would store
information about R3 instead of R1 if R3 had lower cost than R1.

284 C H A P T E R 1 2 Packet Classification

Finally, here is an argument that the search cost in the final scheme is at most 2W . The time
to find the best destination prefix is at most W . The remainder of the time is spent traversing
the source tries. However, in each step, the length of the match on the source field increases
by 1 — either by traversing further down in the same trie or by following a switch pointer to
an ancestral trie. Since the maximum length of the source prefixes is W , the total time spent
in searching the source tries is also W . The memory requirement is O(NW), since each of the
N rules is stored only once, and each rule requires O(W) space.

Note that k-bit tries (Chapter 11) can be used in place of 1-bit tries by expanding each
destination or source prefix to the next multiple of k. For instance, suppose k = 2. Then, in
the example of Figure 12.8, the destination prefix 0∗ of rules R1, R2, R3 is expanded to 00
and 01. The source prefixes of R3, R4, R6 are expanded to 10 and 11. Using k-bit expansion, a
single prefix can expand to 2k−1 prefixes. The total memory requirement grows from 2NW to
NW2k /k, and so the memory increases by the factor 2k−1/k. On the other hand, the depth of
the trie reduces to W /k, and so the total lookup time becomes O(W /k).

The bottom line is that by using multibit tries, the time to search for the best matching rule
in an arbitrarily large two-dimensional database is effectively the time for two IP lookups.

Just as the grid of tries represents a generalization of familiar trie search for prefix matching,
there is a corresponding generalization of binary search on prefix lengths (Chapter 11) that
searches a database of two field rules in 2W hashes, where W is the length of the larger of the
two fields. This is a big gap from the log W time required for prefix matching using binary
search on prefix lengths. In the special case where the rules do not overlap, the search time
reduces even further to log2 W , as shown in Warkhede et al. [WSV01a]. While these results
are interesting theoretically, they seem to have less relevance to real routers, mostly because
of the difficulties of implementing hashing in hardware.

12.6 APPROACHES TO GENERAL RULE SETS

So far this chapter has concentrated on the special case of rules on just two header fields.
Before moving to algorithms for rules with more than two fields, this section brings together
some insights that inform the algorithms in later sections. Section 12.6.1 describes a geometric
view of classification that provides visual insight into the problem. Section 12.6.2 utilizes the
geometric viewpoint to obtain bounds on the fundamental difficulty of packet classification in
the general case. Section 12.6.3 describes several observations about real rule sets that can be
exploited to provide efficient algorithms that will be described in subsequent sections.

12.6.1 Geometric View of Classification
A second problem-solving technique that is useful is to collect different viewpoints for the
same problem. This section describes a geometric view of classification that was introduced
by Lakshman and Staliadis [LS98] and independently by Adisehsu [Adi98].

Recall from Chapter 11 that we can view a 32-bit prefix like 00∗ as a range of addresses
from 000 . . . 00 to 001 . . . 11 on the number line from 0 to 232. If prefixes correspond to line
segments geometrically, two-dimensional rules correspond to rectangles (Figure 12.9), three-
dimensional rules to cubes, and so on. A given packet header is a point. The problem of packet
classification reduces to finding the lowest-cost box that contains the given point.

12.6 Approaches to General Rule Sets 285

R2 R1 R3

1*

0*

01* 10* 11*

1*

F I G U R E 12.9 Geometric view of the first three rules, R1, R2, R3, in the rule database of Figure 12.4.
For example, the rule R1 = 0∗, 10∗ is the box whose projection on the destination axis is the range
corresponding to 0∗ and whose projection on the source axis is the range corresponding to 10∗. Note
that because R3 = 0∗, 1∗ has the same destination range as R1 and a source range that strictly includes
the range of R1, the dashed box, R3, contains the box R1.

Figure 12.9 shows the geometric view of the first three two-dimensional rules in
Figure 12.4. Destination addresses are represented on the y-axis and source addresses on the
x-axis. In the figure, some sample prefix ranges are marked off on each axis. For example, the
two halves of the y-axis are the prefix ranges 0∗ and 1∗. Similarly, the x-axis is divided into
the four prefix ranges 00∗, 01∗, 10∗, and 11∗. To draw the box for a rule like R1 = 0∗, 10∗,
draw the 0∗ range on the y-axis and the 10∗ range on the x-axis, and extend the range lines
to meet, forming a box. Multiple-rule matches, such as R1 and R2, correspond to overlapping
boxes.

The first advantage of the geometric view is that it enables the application of algorithms
from computational geometry. For example, Lakshman and Staliadis [LS98] adapt a technique
from computational geometry known as fractional cascading to do binary search for two-
field rule matching in O(log N) time, where N is the number of rules. In other words, two-
dimensional rule matching is asymptotically as fast as one-dimensional rule matching using
binary search. This is consistent with the results for the grid of tries. The result also generalizes
binary search on values for prefix searching as described in Chapter 11.

Unfortunately, the constants for fractional cascading are quite high. Perhaps this sug-
gests that adapting existing geometric algorithms may actually not result in the most efficient
algorithms. However, the second and main advantage of the geometric viewpoint is that it is
suggestive and useful.

For example, the geometric view provides a useful metric, the number of disjoint (i.e.,
nonintersecting) classification regions. Since rules can overlap, this is not the number of rules.
In two dimensions, for example, with N rules one can create N2 classification regions by
having N /2 rules that correspond geometrically to horizontal strips together with N /2 rules
that correspond geometrically to vertical strips. The intersection of the N /2 horizontal strips
with the N /2 vertical strips creates O(N2) disjoint classification regions. For example, the
database in Figure 12.6 has this property. Similar constructions can be used to generate O(NK)
regions for K-dimensional rules.

286 C H A P T E R 1 2 Packet Classification

As a second example, the database of Figure 12.9 has four classification regions: the rule
R1, the rule R2, the points in R3 not contained in R1, and all points not contained in R1, R2, or
R3. We will use the number of classification regions later to characterize the complexity of a
given classifier or rule database.

12.6.2 Beyond Two Dimensions: The Bad News
The success of the grid of tries may make us optimistic about generalizing to larger dimensions.
Unfortunately, this optimism is misplaced; either the search time or the storage blows up
exponentially with the number of dimensions K for K > 2.

Using the geometric viewpoint just described, it is easy to adapt a lower bound from
computational geometry. Thus, it is known that general multidimensional range searching
over N ranges in k dimensions requires �((log N)K−1) worst-case time if the memory is
limited to about linear size [Cha90b, Cha90a] or requires O(NK) size memory. While log N
could be reasonable (say, 10 memory accesses), log4 N will be very large (say, 10,000 memory
accesses). Notice that this lower bound is consistent with solutions for the two-dimensional
cases that take linear storage but are as fast as O(log N).

The lower bound implies that for perfectly general rule sets, algorithmic approaches to
classification require either a large amount of memory or a large amount of time. Unfortu-
nately, classification at high speeds, especially for core routers, requires the use of limited
and expensive SRAM. Thus the lower bound seems to imply that content address memories
are required for reasonably sized classifiers (say, 10,000 rules) that must be searched at high
speeds (e.g., OC-768 speeds).

12.6.3 Beyond Two Dimensions: The Good News
The previous subsection may have left the reader wondering whether there is any hope left for
algorithmic approaches to packet classification in the general case. Fortunately, real databases
have more structure, which can be exploited to efficiently solve multidimensional packet
classification using algorithmic techniques.

The good news about packet classification can be articulated using four observations.
Subsequent sections describe a series of heuristic algorithms, all of which do very badly in the
worst case but quite well on databases that satisfy one or more of the assumptions.

The expected case can be characterized using four observations drawn from a set of firewall
databases studied in Srinivasan et al. [SVSW98] and Gupta and McKeown [GM99b] (and not
from publically available lookup tables as in the previous chapter). The first is identical to an
observation made in Chapter 11 and repeated here. The observations are numbered starting
from O2 to be consistent with observation O1 made in the lookup chapter.

O2: Prefix containment is rare. It is somewhat rare to have prefixes that are prefixes of other
prefixes, as, for example, the prefixes 00* and 0001*. In fact, the maximum number of
prefixes of a given prefix in lookup tables and classifiers is seven.

O3: Many fields are not general ranges. For the destination and source port fields, most rules
contain either specific port numbers (e.g., port 80 for Web traffic), the wildcard range
(i.e., ∗), or the port ranges that separate server ports from client ports (1024 or greater and
less than 1024). The protocol field is limited to either the wildcard or (more commonly)
TCP, UDP. This field also rarely contains protocols such as IGMP and ICMP. While other
TCP fields are sometimes referred to, the most common reference is to the ACK bit.

12.7 Extending Two-Dimensional Schemes 287

O4: The number of disjoint classification regions is small. This is perhaps the most interesting
observation. Harking back to the geometric view, the lower bounds in Chazelle [Cha90a]
depend partly on the worst-case possibility of creating NK classification regions using N
rules. Such rules require either NK space or a large search time. However, Gupta and
McKeown [GM99b], after an extensive survey of 8000 rule databases, show that the
number of classification regions is much smaller than the worst case. Instead of being
exponential in the number of dimensions, the number of classification regions is linear in
N , with a small constant.

O5: Source–Destination matching: In Singh et al. [BSV03], several core router classifiers
used by real ISPs are analyzed and the following interesting observation is made. Almost
all packets match at most five distinct source–destination values found in the classifier.
No packet matched more than 20 distinct source–destination pairs. This is a somewhat
more refined observation than O4 because it says that the number of classification regions
is small, even when projected only to the source and destination fields. By “small,” we
mean that the number of regions grows much more slowly than N , the size of the classifier.

12.7 EXTENDING TWO-DIMENSIONAL SCHEMES

The simplest general scheme uses observation O5 to trivially extend any efficient 2D scheme
to multiple dimensions. A number of algorithms simply use linear search to search through
all possible rules. This scales well in storage but poorly in time. The source–destination
matching observation leads to a very simple idea depicted in Figure 12.10. Use source–
destination address matching to reduce linear searching to just the rules corresponding to
source–destination prefix pairs in the database that match the given packet header.

By observation O5, at most 20 rules match any packet when considering only the source
and destination fields. Thus pruning based on source–destination fields will reduce the number
of rules to be searched to less than 20, compared to searching the entire database. For example,
Singh at al. [SBV04] describe a database with 2800 rules used by a large ISP.

Thus in Figure 12.10, the general idea is to use any efficient two-dimensional matching
scheme to find all distinct source–destination prefix pairs (S1, D1) . . . (St , Dt) that match a
header. For each distinct pair (Si, Di) there is a linear array or list with all rules that contain
(Si, Di) in the source and destination fields. Thus in the figure, the algorithm has to traverse
the list at (S1, D1), searching through all the rules for R5, R6, R2, and R4. Then the algorithm
moves on to consider the lists at (S2, D2), and so on.

This structure has two important advantages:

• Each rule is represented only once without replication. However, one may wish to
replicate rules to reduce search times even further.

• The port range specifications stay as ranges in the individual lists without the associated
blowup associated with range translation in, say, CAMs.

Since the grid-of-tries implementation described earlier is one of the most efficient two-
dimensional schemes in the literature, it is natural to instantiate this general schema by using
a grid of tries as the two-dimensional algorithm in Figure 12.10.

Unfortunately, it turns out that there is a delicacy about extending the grid of tries. In the
the grid of tries, whenever one rule, R, is at least as specific in all fields as a second rule, R′,

288 C H A P T E R 1 2 Packet Classification

Any 2D search
algorithm for finding all

matches for a pair (S, D)

(S1, D1) . . . (Sp, Dp) . . . (St, Dt)

R5

R6

R2

R4

R8

R3

R7

R1

F I G U R E 12.10 Extending two-dimensional schemes.

rule R′ precomputes its matching directive to be that of R if R is the lower cost of the two rules.
This allows the traversal through the grid of tries to safely skip rule R when encountering rule
R′. While this works correctly with two-field rules, it requires some further modifications to
handle the general case.

One solution, equivalent to precomputing rule costs, is to precompute the list for R′ to
include all the list elements for R. Unfortunately, this approach can increase storage because
each rule is no longer represented exactly once. A more sophisticated solution, called the
extended grid of tries (EGT) and described in Baboescu et al. [BSV03], is based on extra
traversals beyond the standard grid of tries.

The performance of EGT can be described as follows.

Assumption: The extension of two-dimensional schemes depends critically on observation O5.
Performance: The scheme takes at least one grid-of-tries traversal plus the time to linearly

search c rules, where c is the constant embodied in observation O5. Assuming linear
storage, the search performance can increase [BSV03] by an additive factor representing
the time to search for less specific rules. The addition of a new rule R requires only
rebuilding of the individual two-dimensional structure of which R is a part. Thus rule
update should be fairly fast.

12.8 USING DIVIDE-AND-CONQUER

The next three schemes (bit vector linear search, on-demand cross-producting, and equiva-
lenced cross-producting) all exploit the simple algorithmic idea (P15) of divide-and-conquer.
Divide-and-conquer refers to dividing a problem into simpler pieces and then efficiently com-
bining the answers to the pieces. We briefly motivate a skeletal framework of this approach in
this section. The next three sections will flesh out specific instantiations of this framework.

12.9 Bit Vector Linear Search 289

Destination
Prefixes

M

T1

Net

Default

Source
Prefixes

S

T0

Net

Default

DstPort
Prefixes

25

53

23

123

Default

SrcPort
Prefixes

123

Default

Flags
Prefixes

UDP

TCP-ACK

Default

* * * *4 4 5 2 3 � 480

F I G U R E 12.11 The database of Figure 12.3 “sliced” into columns where each column contains the
set of prefixes corresponding to a particular field.

Chapter 11 has already outlined techniques to do lookups on individual fields. Given this
background, the common idea in all three divide-and-conquer algorithms is the following. Start
by slicing the rule database into columns, with the ith column storing all distinct prefixes (or
ranges) in field i. Then, given a packet P, determine the best-matching prefix (or narrowest-
enclosing range) for each of its fields separately. Finally, combine the results of the best-
matching-prefix lookups on individual fields. The main problem, of course, lies in finding
an efficient method for combining the lookup of individual fields into a single compound
lookup.

All the divide-and-conquer algorithms conceptually start by slicing the database of
Figure 12.3 into individual prefix fields. In the sliced columns, from now on we will sometimes
refer to the wildcard character ∗ by the string default. Recall that the mail gateway M and
internal NTP agent TI are full IP addresses that lie within the prefix range of Net. The sliced
database corresponding to Figure 12.3 is shown in Figure 12.11.

Clearly, any divide-and-conquer algorithm starts by doing an individual lookup in each
column and then combines the results. The next three sections show that each of the three
schemes returns different results with lookup and follows different strategies to combine the
individual field results, despite using the same sliced database shown in Figure 12.11.

12.9 BIT VECTOR LINEAR SEARCH

Consider doing a match in one of the individual columns in Figure 12.11, say, the destination
address field, and finding a bit string S as the longest match. Clearly, this lookup result
eliminates any rules that do not match S in this field. Then the search algorithm can do a
linear search in the set of all remaining rules that match S. The logical extension is to perform
individual matches in each field; each field match will prune away a number of rules, leaving
a remaining set. The search algorithm needs to search only the intersection of the remaining
sets obtained by each field lookup.

This would clearly be a good heuristic for optimizing the average case if the remaining
sets are typically small. However, one can guarantee performance even in the worst case

290 C H A P T E R 1 2 Packet Classification

M

T1

Net

*

Destination
Prefixes

| 11110111

| 00001111

| 00000111

| 00000101

Source
Prefixes

S

T0

Net

*

| 11110011

| 11011011

| 11010111

| 11010011

DstPort
Prefixes

25

53

23

123

*

| 10000111

| 01100111

| 00010111

| 00001111

| 00000111

SrcPort
Prefixes

123

*

| 11111111

| 11110111

Flags
Prefixes

UDP

TCP

*

| 11111101

| 10110111

| 10110101

F I G U R E 12.12 The sliced database of Figure 12.11 together with bit vectors for every possible sliced
value. The bit vector has 8 bits, one corresponding to each of the eight possible rules in Figure 12.3. Bit
j is set for value M in field i if value M matches Rule j in field i.

(to some extent) by representing the remaining sets as bitmaps and by using wide memories
to retrieve a large number of set members in a single memory access (P4a, exploit locality).

In more detail, as in Section 12.8, divide-and-conquer is used to slice the database, as in
Figure 12.11. However, in addition with each possible value M of field i, the algorithm stores
the set of rules S(M) that match M in field i as a bit vector. This is easy to do when building
the sliced table. The algorithm that builds the data structure scans through the rules linearly to
obtain the rules that match M using the match rule (e.g., exact, prefix, or range) specified for
the field.

For example, Figure 12.12 shows the sliced database of Figure 12.11 together with bit
vectors for each sliced field value. The bit vector has 8 bits, one corresponding to each of the
eight possible rules in Figure 12.3. Bit j is set for value M in field i if value M matches Rule j
in field i.

Consider the destination prefix field and the first value M in Figure 12.12. If we compare it
to Figure 12.3, we see that the first four rules specify M in this field. The fifth rule specifies T1
(which does not match M), and the sixth and eighth rules specify a wildcard (which matches
M). Finally, the seventh rule specifies the prefix Net (which matches M, because Net is assumed
to be the prefix of the company network in which M is the mail gateway). Thus the bitmap for
M is 11110111, where the only bit not set is the fifth bit. This is because the fifth rule has T1,
which does not match M.

When a packet header arrives with fields H[1] . . . H[K], the search algorithm first performs
a longest-matching-prefix lookup in each field i to obtain matches Mi and the corresponding
set S(Mi) of matching rules. The search algorithm then proceeds to compute the intersection
of all the sets S(Mi) and returns the lowest-cost element in the intersection set.

But if rules are arranged in nondecreasing order of cost and all sets are bitmaps, then the
intersection set is the AND of all K bitmaps. Finally, the lowest-cost element corresponds
to the index of the first bit set in the intersection bitmap. But, the reader may object, since
there are N rules, the intersected bitmaps are N bits long. Hence, computing the AND requires
O(N) operations. So the algorithm is effectively doing a linear search after slicing and doing
individual field matches. Why not do simple linear search instead?

12.9 Bit Vector Linear Search 291

The reason is subtle and requires a good grasp of models and metrics. Basically, the
preceding argument above is correct but ignores the large constant-factor improvement that is
possible using bitmaps. Thus computing theAND of K bit vectors and searching the intersection
bit vector is still an O(K · N) operation; however, the constants are much lower than doing
naive linear search because we are dealing with bitmaps. Wide memories (P4a) can be used
to make these operations quite cheap, even for a large number of rules.

This is because the cost in memory accesses for these bit operations is N ·(K+1)/W memory
accesses, where W is the width of a memory access. Even with W = 32, this brings down
the number of memory accesses by a factor of 32. A specialized hardware classification chip
can do much better. Using wide memories and wide buses (the bus width is often the limiting
factor), a chip can easily achieve W = 1000 with today’s technology. As technology scales,
one can expect even larger memory widths.

For example, using W = 1000 and k = 5 fields, the number of memory accesses for 5000
rules is 5000 ∗ 6/1000 = 30. Using 10-nsec SRAM, this allows a rule lookup in 300 nsec,
which is sufficient to process minimum-size (40-byte) packets at wire speed on a gigabit link.
By using K-fold parallelism, the further factor of K +1 can be removed, allowing 30,000 rules.
Of course, even linear search can be parallelized, using N-way parallelism; what matters is
the amount of parallelism that can be employed at reasonable cost.

Using our old example, consider a lookup for a packet to M from S with UDP destination
port equal to 53 and source port equal to 1029 in the database of Figure 12.3, as represented
by Figure 12.12. This packet matches Rules 2, 3, and 8 but must be allowed through because
the first matching rule is Rule 2.

Using the bit vector algorithm just described (see Figure 12.12), the longest match in the
destination field (i.e., M) yields the bitmap 11110111. The longest match in the source field
(i.e., S) yields the bitmap 11110011. The longest match in the destination port field (i.e., 53)
yields the bitmap 01100111. The longest match in the source port field (i.e., the wildcard)
yields the bitmap 11110111; the longest match in the protocol field (i.e., UDP) yields the
bitmap 11111101. The AND of the five bitmaps is 01100001. This bitmap corresponds to
matching Rules 2, 3, and 8. The index of the first bit set is 2. This corresponds to the second
rule, which is indeed the correct match.

The bit vector algorithm was described in detail in Lakshman and Stidialis [LS98] and also
in a few lines in a paper on network monitoring [MJ98]. The first paper [LS98] also describes
some trade-offs between search time and memory. A later paper [BV01] shows how to add
more state for speed (P12) by using summary bits. For every W bits in a bitmap, the summary
is the OR of the bits. The main intuition is that if, say, W2 bits are zero, this can be ascertained
by checking W summary bits.

The bit vector scheme is a good one for moderate-size databases. However, since the heart
of the algorithm relies on linear search, it cannot scale to both very large databases and very
high speeds.

The performance of this scheme can be described as follows.

Assumption: The number of rules will stay reasonably small or will grow only in proportion
to increases in bus width and parallelism made possible by technology improvements.

Performance: The number of memory accesses is N · (K + 1)/W plus the number of mem-
ory accesses for K longest-matching-prefix or narrowest-range operations. The memory
required is that for the K individual field matches (see schemes in Chapter 11) plus

292 C H A P T E R 1 2 Packet Classification

1

2

3

4

5

6

•

•

479

480

M, S, 25, 123, UDP

M, S, 25, 123, TCP-ACK

M, S, 25, 123, default

M, S, 25, default, UDP

M, S, 25, default, TCP-ACK

M, S, 25, default, default

 • • •

 • • •

default, default, default, default, TCP-ACK

default, default, default, default, default

Rule 1

Rule 1

Rule 1

Rule 1

Rule 1

Rule 1

•

•

Rule 8

Rule 8

Number Cross Product Matching Rule

• • • • •

F I G U R E 12.13 A sample of the cross products obtained by cross-producting the individual prefix
tables of Figure 12.11.

potentially N2K bits. Recall that N is the number of rules, K is the number of fields,
and W is the width of a memory access. Updating rules is slow and generally requires
rebuilding the entire database.

12.10 CROSS-PRODUCTING

This section describes a crude scheme called cross-producting [SVSW98]. In the next section,
we describe a crucial refinement we call equivalenced cross-producting (but called RFC by
the authors [GM99b]) that makes cross-producting more feasible. The top of each column in
Figure 12.11 indicates the number of elements in the column. Consider a 5-tuple, formed by
taking one value from each column. Call this a cross product. Altogether, there are 4 ∗ 4 ∗ 5 ∗
2 ∗ 3 = 480 possible cross products. Some sample cross products are shown in Figure 12.13.
Considering the destination field to be most significant and the flags field to be least significant,
and pretending that values increase down a column, cross products can be ordered from the
smallest to the largest, as in any number system.

A key insight into the utility of cross products is as follows.

Given a packet header H, if the longest-matching-prefix operation for each field H[i] is concate-
nated to form a cross product C, then the least-cost rule matching H is identical to the least-cost
rule matching C.

Suppose this were not true. Since each field in C is a prefix of the corresponding field in
H, every rule that matches C also matches H. Thus the only case in which H has a different
matching rule is if there is some rule R that matches H but not C. This implies that there is

12.11 Equivalenced Cross-Producting 293

some field i such that R[i] is a prefix of H[i] but not of C[i], where C[i] is the contribution
of field i to cross product C. But since C[i] is a prefix of H[i], this can happen only if R[i]
is longer than C[i]. But that contradicts the fact that C[i] is the longest-matching prefix in
column/field i.

Thus, the basic cross-producting algorithm [SVSW98] builds a table of all possible cross
products and precomputes the least-cost rule matching each cross product. This is shown in
Figure 12.13. Then, given a packet header, the search algorithm can determine the least-cost
matching rule for the packet by performing K longest-matching-prefix operations, together
with a single hash lookup of the cross-product table. In hardware, each of the K prefix lookups
can be done in parallel.

Using our example, consider matching a packet with header (M, S, UDP, 53, 57) in the
database of Figure 12.3. The cross product obtained by performing best-matching prefixes on
individual fields is (M, S, UDP, 53, default). It is easy to check that the precomputed rule for
this cross product is Rule 2 — although Rules 3 and 8 also match the cross product, Rule 2
has the least cost.

The naive cross-producting algorithm suffers from a memory explosion problem: In the
worst case, the cross-product table can have NK entries, where N is the number of rules and
K is the number of fields. Thus, even for moderate values, say, N = 100 and K = 5, the table
size can reach 1010, which is prohibitively large.

One idea to reduce memory is to build the cross products on demand (P2b, lazy evaluation)
[SVSW98]: Instead of building the complete cross-product table at the start, the algorithm
incrementally adds entries to the table. The prefix tables for each field are built as before, but
the cross-product table is initially empty. When a packet header H arrives, the search algorithm
performs a longest-matching prefixes on the individual fields to compute a cross-product
term C.

If the cross-product table has an entry for C, then of course the associated rule is returned.
However, if there is no entry for C in the cross-product table, the search algorithm finds the
best-matching rule for C (possibly using a linear search of the database) and inserts that entry
into the cross-product table. Of course, any subsequent packets with cross product C will yield
fast lookups.

On-demand cross-producting can improve both the building time of the data structure and
its storage cost. In fact, the algorithm can treat the cross-product table as a cache and remove
all cross products that have not been used recently. Caching based on cross products can be
more effective than full header caching because a single cross product can represent multiple
headers (see Exercises). However, a more radical improvement of cross-producting comes
from the next idea, which essentially aggregates cross products into a much smaller number
of equivalence classes.

12.11 EQUIVALENCED CROSS-PRODUCTING

Gupta and McKeown [GM99b] have invented a scheme called recursive flow classification
(RFC), which is an improved form of cross-producting that significantly compresses the
cross-product table, at a slight extra expense in search time. We prefer to call their scheme
equivalenced cross-producting, for the following reason. The scheme works by building larger
cross products from smaller cross products; the main idea is to place the smaller cross products

294 C H A P T E R 1 2 Packet Classification

into equivalence classes before combining them to form larger cross products. This equiva-
lencing of partial cross products considerably reduces memory requirements, because several
original cross-product terms map into the same equivalence class.

Recall that in simple cross-producting when a header H arrives, the individual field
matches are immediately concatenated to form a cross product that is then looked up in a
cross-product table. By contrast, equivalenced cross-producting builds the final cross product
in several pairwise combining steps instead of in one fell swoop.

For example, one could form the destination–source cross product and separately form
the destination port–source port cross product. Then, a third step can be used to combine these
two cross products into a cross product on the first four fields, say, C′. A fourth step is then
needed to combine C′ with the protocol field to form the final cross product, C. The actual
combining sequence is defined by a combining tree, which can be chosen to reduce overall
memory.

Just forming the final cross product in several pairwise steps does not reduce memory
below NK . What does reduce memory is the observation that when two partial cross products
are combined, many of these pairs are equivalent: Geometrically, they correspond to the same
region of space; algebraically, they have the same set of compatible rules.

Thus the main trick is to give each class a class number and to form the larger cross
products using the class numbers instead of the original matches. Since the algebraic view
is easier for computation, we will describe an example of equivalencing using the first two
columns of Figure 12.11 under the algebraic view.

Figure 12.14 shows the partial cross products formed by only the destination and source
columns in Figure 12.11. For each pair (e.g., M, S) we compute the set of rules that are
compatible with such a pair of matches exactly, as in the bit vector linear search scheme. In
fact, we can find the bit vector of any pair, such as M, S, by taking the intersection of the rule
bitmaps for M and S in Figure 12.12. Thus from Figure 12.12, since the rule bitmap for M is
11110111 and the bitmap for S is 11110011, the intersection bitmap for M, S is 11110011, as
shown in Figure 12.14.

Doing this for each possible pair, we soon see that several bitmaps repeat themselves. For
example, M, T0, and M, ∗ (second and fourth entries in Figure 12.14) have the same bitmap.
Two rules that have the same bitmap are assigned to the same equivalence class, and each class
is given a class number. Thus in Figure 12.14, the classes are numbered starting with 1; the
table-building algorithm increments the class number whenever it encounters a new bitmap.
Thus, there are only eight distinct class numbers, compared to 16 possible cross products,
because there are only eight distinct bitmaps.

Now assume we combine the two port columns to form six classes from 10 possible
cross products. When we combine the port pairs with the destination–source pairs, we com-
bine all possible combinations of the destination–source and port pair class numbers and not
the original field matches. Thus after combining all four columns we get 6 ∗ 8 = 48 cross
products. Note that in Figure 12.11, naive cross-producting will form 4 ∗ 4 ∗ 5 ∗ 2 = 160
cross products from the first four columns. Thus we have saved a factor of nearly 3 in
memory.

Of course, we do not stop here. After combining the destination–source and port pair class
numbers we equivalence them again using the same technique. When combining class number
C with class number C′, the bitmap for C, C′ is the intersection of the bitmaps for C and C′.
Once again pairs with identical bitmaps are equivalenced into groups. After this is done, the

12.11 Equivalenced Cross-Producting 295

M, S

M, T0

M, Net

M, *

T1, S

T1, T0

T1, Net

T1, *

Net, S

Net, T0

Net, Net

Net, *

*, S

*, T0

*, Net

*, *

C1

C2

C3

C2

C4

C5

C6

C4

C4

C4

C6

C4

C7

C7

C8

C7

11110011

11010011

11010111

11010011

00000011

00001011

00000111

00000011

00000011

00000011

00000111

00000011

00000001

00000001

00000100

00000001

Destination–
source

prefix pairs

Class
number

Rule
bitmap

F I G U R E 12.14 Forming the partial cross products of the first two columns in Figure 12.11 and then
assigning these cross products into the same equivalence class if they have the same rule set (rule bitmap).
Notice that 16 partial cross products form only eight classes.

final cross product is formed by combining the classes corresponding to the first four columns
with the matches in the fifth column.

Our example combined fields 1 and 2, then fields 3 and 4, and then the first four and
finally combined in the fifth (Figure 12.15). Clearly, other pairings are possible, as defined
by a binary tree with the fields as nodes and edges representing pairwise combining steps.
One could choose the optimal combining tree to reduce memory.

The search process is similar to cross-producting, except the cross products are calculated
pairwise (just as they are built) using the same tree. Each pairwise combining uses the two
class numbers as input into a table that outputs the class number of the combination. Finally,
the class number of the root of the tree is looked up in a table to yield the best-matching rule.
Since each class has the same set of matching rules, it is easy to precompute the lowest-cost
matching rule for the final classes. Note that the search process does not need to access the
rule bitmaps, as is needed for the bit vector linear search scheme. The bitmaps are used only
to build the structure.

296 C H A P T E R 1 2 Packet Classification

Destination Source DstPort SrcPort Protocol

Final cross product

F I G U R E 12.15 The combining tree used in the example.

Clearly, each pairwise combining step can take O(N2) memory because there can be N
distinct field values in each field. However, the total memory falls very short of the NK worst-
case memory for real rule databases. To see why this might be the case, we return to the
geometric view.

Using a survey of 8000 rule databases, Gupta and McKeown [GM99b] observe that all
databases studied have only O(N) classification regions, instead of the NK worst-case number
of classification regions. It is not hard to see that when the number of classification regions is
NK , then the number of cross products in the equivalenced scheme and in the naive scheme is
also NK .

But when the number of classification regions is linear, equivalenced cross-producting
can do better. However, it is possible to construct counterexamples where the number of
classification regions is linear but equivalenced cross-producting takes exponential memory.
Despite such potentially pathological cases, the performance of RFC can be summarized as
follows.

Assumption: There is a series of subspaces of the complete rule space (as embodied by nodes
in the combining tree) that all have a linear number of classification regions. Note that this
is stronger than O4 and even O5. For example, if we combine two fields i and j first, we
require that this intermediate two-dimensional subspace have a linear number of regions.

Performance: The memory required is O(N2) ∗ T , where T is the number of nodes in the
combining tree. The sequential performance (in terms of time) is O(T) memory accesses,
but the time required in a parallel implementation can be O(1) because the tree can be
pipelined. Note that the O(N2) memory is still very large in practice and would preclude
the use of SRAM-based solutions.

12.12 DECISION TREE APPROACHES

This chapter ends with a description of a very simple scheme that performs well in practice,
better even than RFC and comparable to or better than the extended grid of tries. This scheme
was introduced by Woo [Woo00]. A similar idea, with range tests replacing bit tests, was
independently described by Gupta and McKeown [GM99a].

12.12 Decision Tree Approaches 297

The basic idea is extremely close to the simple set-pruning tries described in Section 12.5.1,
with the addition of some important degrees of freedom. Recall that set-pruning tries work one
field at a time; thus in Figure 12.8, the algorithm tests all the bits for the destination address
before testing all the bits for the source address. The extension to multiple fields in Decasper
et al. [DDPP98] similarly tests all the bits of one field before moving on to another field. The
set-pruning trie can be seen as an instance of a general decision tree.

Clearly, an obvious degree of freedom (P13) not considered in set-pruning tries is to
arbitrarily interleave the bit tests for all fields. Thus the root of the trie could test for (say) bit
15 of the source field; if the bit is 0, this could lead to a node that tests for, say, bit 22 of the
port number field. Clearly, there is an exponential number of such decision trees. The schemes
in Woo [Woo00] and Gupta and McKeown [GM99a] build the final decision tree using local
optimization decisions at each node to choose the next bit to test. A simple criterion used in
Gupta and McKeown [GM99a] is to balance storage and time.

A second important degree of freedom considered in Woo [Woo00] is to use multiple
decision trees. For example, for examples such as Figure 12.6, it may help to place all the
rules with wildcards in the source field in one tree and the remainder in a second tree. While
this can increase overall search time, it can greatly reduce storage.

A third degree of freedom exploited in both Woo [Woo00] and Gupta and McKeown
[GM99a] is to allow a small amount of linear searching after traversing the decision tree. This
is similar to the common strategy of using an insert. Consider a decision tree with 10,000 leaves
where each leaf is associated with one of four rules. While it may be possible to distinguish
these four rules by lengthening the decision tree in height, this lengthened decision tree could
add 40,000 extra nodes of storage.

Thus, in balancing storage with time, it may be better to settle for a small amount of linear
searching (e.g., among one of four possible rules) at the end of tree search. Intuitively, this
can help because the storage of a tree can increase exponentially with its height. Reducing the
height by employing some linear search can greatly reduce storage.

The hierarchical cuttings (HiCuts) scheme described in Gupta and McKeown [GM99a]
is similar in spirit to that in Woo [Woo00] but uses range checks instead of bit tests at each
node of the decision tree. Range checks are slightly more general than bit tests because a range
check such as 10 < D < 35 for a destination address D cannot be emulated by a bit test.
A range test (cut) can be viewed geometrically in two dimensions as a line in either dimension
that splits the space into half; in general, each range cut is a hyperplane.

In what follows, we describe HiCuts in more detail using an example. The HiCuts local
optimization criterion works well when tested on real core router classifiers.

Figure 12.16 shows a fragment of a HiCuts decision tree on the database of Figure 12.3.
The nodes contain range comparisons on values of any specified fields, and the edges are
labeled True or False. Thus the root node tests whether the destination port field is less than
50. The fragment follows the case only when this test is false. Notice in Figure 12.3 that this
branch eliminates R1 (i.e., Rule 1) and R4, because these rules contain port numbers 25 and
23, respectively.

The next test checks whether the source address is equal to that of the secondary name
server S in Figure 12.3. If this test evaluates to true, then R5 is eliminated (because it contains
T0,), and so is R6 (because it contains Net and because S does not belong to the internal prefix
Net). This leads to a second test on the destination port field. If the value is not 53, the only
possible rules that can match are R7 and R8.

298 C H A P T E R 1 2 Packet Classification

DestPort < 50?

Source � S?

DestPort � 53? DestPort � 53?

T F

T F

T TF F

R2
R3
R7
R8

R7
R8

R2
R6
R7
R8

R5
R6
R7
R8

F I G U R E 12.16 The HiCuts data structure is essentially a range tree that has pointers corresponding
to some ranges of some dimension variable with linear search at the end.

Thus on a packet header in which the destination port is 123 and the source is S, the
search algorithm takes the right branch at the root, the left branch at the next node, and a right
branch at the final node. At this point the packet header is compared to rules R7 and R8 using
linear search. Note that, unlike set pruning trees, the HiCuts decision tree of Figure 12.16 uses
ranges, interleaves the range checks between the destination port and source fields, and uses
linear searching.

Of course, the real trick is to find a way to build an efficient decision tree that minimizes the
worst-case height and yet has reasonable storage. Rather than consider the general optimization
problem, which is NP-complete, HiCuts [GM99a] uses a more restricted heuristic based on
the repeated application of the following greedy strategy.

• Pick a field: The HiCuts paper suggests first picking a field to cut on at each stage based on
the number of distinct field values in that field. For example, in Figure 12.16, this heuristic
would pick the destination port field.

• Pick the number of cuts: For each field, rather than just pick one range check as in
Figure 12.16, one can pick k ranges or cuts. Of course, these can be implemented as
separate range checks, as in Figure 12.16. To choose k, the algorithm suggested in Gupta
and McKeown [GM99b] is to keep doubling k and to stop when the storage caused by the
k cuts exceeds a prespecified threshold.

Several details are needed to actually implement this somewhat general framework.
Assuming the cuts or ranges are equally spaced, the storage cost of k cuts on a field is estimated
by counting the sum of the rules assigned to each of the k cuts. Clearly, cuts that cause rule
replication will have a large storage estimate. The threshold that defines acceptable storage is
a constant (called spfac, for space factor) times the number of rules at the node. The intent is
to keep the storage linear in the number of rules up to a tunable constant factor.

12.13 Conclusions 299

Finally, the process stops when all decision tree leaves have no more than binth (bin
threshold) rules. binth controls the amount of linear searching at the end of tree search.

The HiCuts paper [GM99a] mentions the use of the DAG optimization. A more novel
optimization, described in Woo [Woo00] and Gupta and McKeown [GM99a], is to eliminate a
rule, R, that completely overlaps another rule, R′, at a node but has higher cost. There are also
several further degrees of freedom (P13) left unexplored in Gupta and McKeown [GM99a]
and Woo [Woo00]: unequal-size cuts at each node, more sophisticated strategies that pick more
than field at a time, and linear searching at nodes other than the leaves.

A more recent paper [BSV03] takes the decision tree approach a step further by allowing
the use of several cuts in a single step via multidimensional array indexing. Because each
cut is now a general hypercube, the scheme is called HyperCuts. HyperCuts appears to work
significantly faster than HiCuts on many real databases [BSV03].

In conclusion, the decision tree approach described by Woo [Woo00], Gupta and McKe-
own [GM99a], and Singh et al. [BSV03] is best viewed as a framework which encompasses
a number of potential algorithms. However, experimental evidence [BSV03] shows that this
approach works well in practice except on databases that contain a large number of wildcards
in one or more fields. The performance of this scheme can be summarized as follows.

Assumption: The scheme assumes there is a sufficient number of distinct fields to make
reasonable cuts without much storage replication. This rather general observation needs
to be sharpened.

Performance: The memory required can be kept to roughly linear in the number of rules
using the HiCuts heuristics. The tree can be of relatively small height if it is reasonably
balanced. Search can easily be pipelined to allow O(1) lookup times. Finally, update can
be slow if sophisticated heuristics are used to build the decision tree.

12.13 CONCLUSIONS

This chapter describes several algorithms for packet classification at gigabit speeds. The grid
of tries provides a two-dimensional classification algorithm that is fast and scalable. All the
remaining schemes require exploiting some assumption about real rule databases to avoid
the geometric lower bound. While much progress has been made, it is important to reduce
the number of such assumptions required for classification and to validate these assumptions
extensively.

At the time of writing, decision tree approaches [Woo00, GM99a, SBV04] and the
extended grid of tries method [BSV03] appeared to be the most attractive algorithmic schemes.
While the latter depends on each packet’s matching only a small number of source–destination
prefixes, it is still difficult to characterize what assumptions or parameters influence the
performance of decision tree approaches.

Of the other general schemes, the bit vector scheme is suitable for hardware implementa-
tion for a modest number of rules (say, up to 10,000). Equivalenced cross-producting seems to
scale to roughly the same number of rules as the Lucent scheme but perhaps can be improved
to lower its memory consumption.

The author and his students have placed code for many of the algorithms described in this
chapter on a publicly available Web site [SBV04]. Packet classification has stagnated because

300 C H A P T E R 1 2 Packet Classification

of the lack of standard comparisons and freely available code. Readers are encouraged to
experiment with and contribute to this code base.

Although the schemes described in this chapter require some algorithmic thinking, they
make heavy use of the other principles we have stressed. The two-dimensional scheme makes
heavy use of precomputation; the Lucent scheme uses memory locality to turn what is essen-
tially linear search into a fast scheme for moderate rule sizes; all the other schemes rely on
some expected-case assumption about the structure of rules, such as the lack of general ranges
and the small number of classification regions. Figure 12.1 summarizes the schemes and the
principles used in them.

Because best-matching prefix is a special case of lowest-cost matching rule, it is not
surprising that rule search schemes are generalizations of prefix search schemes. Thus, the grid
of tries and set-pruning tries generalize trie schemes for prefix matching. Multidimensional
range-matching schemes generalize prefix-matching schemes based on range matching. Tuple
search generalizes binary search on hash tables. While cross-producting is not a generalization
of an existing prefix-matching scheme, it can be specialized for prefix lookups as well.

The high-level message of this chapter is as follows. Applications such as QoS routing,
firewalls, virtual private networks, and DiffServ will require a more flexible form of forwarding
based on multiple header fields. The techniques in this chapter indicate that such forwarding
flexibility can go together with high performance using algorithmic solutions without relying
on ternary CAMs.

Returning to the quote at the start of this chapter, it should be easy to see how packet
classification gets its name if the word definition is replaced with rule. Notice that classification
in the sciences also encompasses overlapping definitions: Men belong to both the mammal and
Homo sapiens categories. However, it is hard to imagine a biological analog of the concept
of a lowest-cost matching rule, or the requirement to classify species several million times a
second!

12.14 EXERCISES

1. Range to Prefix Mappings: CAMs require the use of prefix ranges, but many rules use
general ranges. Describe an algorithm that converts an arbitrary range on, say, 16-bit
port number fields to a logarithmic number of prefix ranges. Describe the prefix ranges
produced by the arbitrary but common range of greater than 1024. Given a rule R with
arbitrary range specifications on port numbers, what is the worst-case number of CAM
entries required to represent R? Solutions to this problem are discussed in Refs.
SVSW98 and SSV99.

2. Worst-Case Storage for Set-Pruning Tries: Generalize the example of Figure 12.6 to
K fields to show that storage in set-pruning-trie approaches can be as bad as O(Nk /k).

3. Improvements to the Grid of Tries: In the grid of tries, the only role played by the
destination trie is in determining the longest-matching destination prefix. Show how to
use other lookup techniques to obtain a total search time of (log W + W) for
destination–source rules instead of 2W .

4. Aggregate Bit Vector Search: Use 3-bit summaries in Figure 12.12 and determine the
improvement in the worst-case time by adding summaries, and compare it to the

12.14 Exercises 301

increase in storage for using summaries. Details of the algorithm, if needed, can be
found in Baboescu and Varghese [BV01].

5. Aggregate Bit Vector Storage: The use of summary bits appears to increase storage.
Show, however, a simple modification in which the use of aggregates can reduce storage
if the bit vectors contain large strings of zeroes. Describe the modifications to the search
process to achieve this compression. Does it slow down search?

6. On-Demand Cross-Producting: Consider the database of Figure 12.3, and imagine a
series of Web accesses from an internal site to the external network. Suppose the
external destinations accessed are D1, . . . , DM . How many cache terms will these
headers produce in the case of full header caching versus on-demand cross-producting?

7. Equivalenced Cross-Producting: Why do the fifth and eighth entries in Figure 12.14
have the same bitmaps? Check your answer two ways, first by intersecting the
corresponding bitmaps for the two fields from Figure 12.12 and then by arguing directly
that they match the same set of rules.

8. Combining Trees for RFC: The equivalenced cross-producting idea in RFC leaves
unspecified how to choose a combining tree. One technique is to compute all possible
combining trees and then to pick the tree with the smallest storage. Describe an
algorithm based on dynamic programming to find the optimal tree. Compare the running
times of the two algorithms.

9. Reducing Rule Databases Using Redundancy: If a smaller prefix has the same next
hop as a longer prefix, the longer prefix can be removed from an IP lookup table. Find
similar techniques to spot redundancies in classifiers. Compare your ideas with the
techniques described in Gupta and McKeown [GM99b]. Note that as in the case of IP
lookups, such techniques to remove redundancy are orthogonal to the classification
scheme chosen and can be implemented in a separate preprocessing step.

10. Generalizing Linear Searching in HiCuts: In HiCuts, all the linear lists are at the
leaves. However, a rule with all wildcarded entries will be replicated at all leaves. This
suggests that such rules be placed once in a linear list at the root of the HiCuts tree.
Generalizing, one could place linear lists at any node to reduce storage. Describe a
bottom-up algorithm that starts with the base HiCuts decision tree and then hoists rules
to nodes higher up in the tree to reduce storage. Try to do so with minimal impact on the
search time.

C H A P T E R 13

Switching

I’d rather fight than switch.

— Tareyton Cigarettes ad, quoted by Bartlett’s

In the early years of telephones, the telephone operator helped knit together the social fabric
of a community. If John wanted to talk to Martha, John would call the operator and ask for
Martha; the operator would then manually plug a wire into a patch panel that connected John’s
telephone to Martha’s. The switchboard, of course, allowed parallel connections between
disjoint pairs. James could talk to Mary at the same time that John and Martha conversed.
However, each new call could be delayed for a small period while the operator finished putting
through the previous call.

When transistors were invented at Bell Labs, the fact that each transistor was basically a
voltage-controlled switch was immediately exploited to manufacture all-electronic telephone
switches using an array of transistors. The telephone operator was then relegated to functions
that required human intervention, such as making collect calls. The use of electronics greatly
increased the speed and reliability of telephone switches.

A router is basically an automated post office for packets. Recall that we are using the
word router in a generic sense to refer to a general interconnection device, such as a gateway or
a SAN switch. Returning to the familiar model of a router in Figure 13.1, recall that in essence
a router is a box that switches packets from input links to output links. The lookup process
(B1 in Figure 13.1), which determines which output link a packet will be switched to, was
described in Chapter 11. The packet scheduling done at the outbound link (B3 in Figure 13.1)
is described in Chapter 14. However, the guts of a router remain its internal switching system
(B2 in Figure 13.1), which is discussed in this chapter.

This chapter is organized as follows. Section 13.1 compares router switches to telephone
switches. Section 13.2 details the simplicity and limitations of a shared memory switch.
Section 13.3 describes router evolution, from shared buses to crossbars. Section 13.4 presents
a simple matching algorithm for a crossbar scheduler that was used in DEC’s first Gigaswitch
product. Section 13.5 describes a fundamental problem with DEC’s first Gigaswitch and other
input-queued switches, called head-of-line (HOL) blocking, which occurs when packets wait-
ing for a busy output delay packets waiting for idle outputs. Section 13.6 covers the knockout
switch, which avoids HOL blocking, at the cost of some complexity, by queuing packets at
the output.

Section 13.7 presents a randomized matching scheme called PIM, which avoids HOL
blocking while retaining the simplicity of input queuing; this scheme was deployed in DEC’s

302

C H A P T E R 1 3 Switching 303

Switching

Output linkInput link i

Scheduling

ROUTER

B2

B1

B3

Address lookup

F I G U R E 13.1 Router model.

second Gigaswitch product. Section 13.8 describes iSLIP, a scheme that appears to emulate
PIM, but without the use of randomization. iSLIP is found in a number of router products,
including the Cisco GSR. Since iSLIP works well only for small switches of at most 64 ports,
Section 13.9 moves on to cover the use of more scalable switch fabrics. It first describes the
Clos fabric, used by Juniper Networks T-series routers to build a 256-port router.

Section 13.9 also introduces the Benes fabric, which can scale to even larger numbers of
ports and handles multicast well. A Benes fabric is used in the Washington University WUGS
switch. Section 13.10 shows how to scale switches to faster link speeds by using bit-slice
parallelism and by using shorter fabric links as implemented in the Avici TSR.

The literature on switching is vast, and this chapter can hardly claim to be representative.
I have chosen to focus on switch designs that have been built, analyzed in the literature, and
actually used in the networking industry. While these choices clearly reflect the biases and
experience of the author, I believe the switches described in this chapter (DEC’s Gigaswitch,
Cisco’s GSR, Juniper’s T-series, and Avici’s TSR) provide a good first introduction to both the
practical and the theoretical issues involved in switch fabrics for high-speed routers. A good
review of other, older work in switching can be found in Ahmadi and Denzel [AD89]. A more
modern review of architectural choices can be found in Turner and Yamanaka [TY98].

The switching techniques described in this chapter (and the corresponding principles
invoked) are summarized in Figure 13.2.

Q u i c k R e f e r e n c e G u i d e
Most of the switching algorithms described in this chapter have been built. However, for an imple-

mentor on a quick first reading, we suggest first reviewing the iSLIP algorithm, which is implemented in
the Cisco GSR (Section 13.8). While iSLIP works very well for moderate-size switch fabrics, Section 13.9
describes solutions that scale to large switches, including the Clos fabric used by Juniper Networks and
the Benes fabric from Washington University. The Washington University solution is distinguished by its
ability to handle multicast well.

304 C H A P T E R 1 3 Switching

P5b

P13
P5a

P11
P15
P3

P13
P14
P15

Widen memory access for bandwidth

Distribute queue control via tickets
Schedule outputs and hunt groups in parallel

Optimize for at most k < N output contention
Use tree of randomized concentrators for fairness
Relax output buffer specification

Use per-output input queues
N2 communication feasible for small N
Use randomized iterative matching

Gigaswitch

Knockout

AN-2

Number Principle Switch

P14
P3

PPEs for round-robin fairness feasible for small N
Relax specification of grant-accept dependency

iSLIP

P15
P3b

Use a three-stage Clos network to reduce costs
Randomize load distribution to reduce k from 2n to n

Juniper T640

P13

Use a (log N)-stage Benes network to reduce costs
Use fast randomized routing scheme
Use copy-twice multicast and binary tree

Growth fabricP15
P3a
P15

Lay out grid using short wires Avici TSR

Datapath

F I G U R E 13.2 Principles used in the various switches studied in this chapter.

13.1 ROUTER VERSUS TELEPHONE SWITCHES

Given our initial analogy to telephone switches, it is worthwhile outlining the major similarities
and differences between telephone and router switches. Early routers used a simple bus to
connect input and output links. A bus (Chapter 2) is a wire that allows only one input to send
to one output at a time. Today, however, almost every core router uses an internal crossbar that
allows disjoint link pairs to communicate in parallel, to increase effective throughput. Once
again, the electronics plays the role of the operator, activating transistor switches that connect
input links to output links.

In telephony, a phone connection typically lasts for seconds if not for minutes. However,
in Internet switches each connection lasts for the duration of a single packet. This is 8 nsec
for a 40-byte packet at 40 Gbps. Recall that caches cannot be relied upon to finesse lookups
because of the rarity of large trains of packets to the same destination. Similarly, it is unlikely
that two consecutive packets at a switch input port are destined to the same output port. This
makes it hard to amortize the switching overhead over multiple packets.

Thus to operate at wire speed, the switching system must decide which input and output
links should be matched in a minimum packet arrival time. This makes the control portion of
an Internet switch (which sets up connections) much harder to build than a telephone switch.
A second important difference between telephone switches and packet switches is the need

13.3 Router History: From Buses to Crossbars 305

for packet switches to support multicast connections. Multicast complicates the scheduling
problem even further because some inputs require sending to multiple outputs.

To simplify the problem, most routers internally segment variable-size packets into fixed-
size cells before sending to the switch fabric. Mathematically, the switching component of
a router reduces to solving a bipartite matching problem: The router must match as many
input links as possible (to as many output links as possible) in a fixed cell arrival time. While
optimal algorithms for bipartite matching are well known to run in milliseconds, solving
the same problem every 8 nsec at 40 Gbps requires some systems thinking. For example, the
solutions described in this chapter will trade accuracy for time (P3b), use hardware parallelism
(P5) and randomization (P3a), and exploit the fact that typical switches have 32–64 ports to
build fast priority queue operations using bitmaps (P14).

13.2 SHARED-MEMORY SWITCHES

Before describing bus- and crossbar-based switches, it is helpful to consider one of the simplest
switch implementations, based on shared memory. Packets are read into a memory from the
input links and read out of memory to the appropriate output links. Such designs have been
used as part of time slot interchange switches in telephony for years. They also work well for
networking for small switches.

The main problem is memory bandwidth. If the chip takes in eight input links and has
eight output links, the chip must read and write each packet or cell once. Thus the memory
has to run at 16 times the speed of each link. Up to a point, this can be solved by using a
wide memory access width. The idea is that the bits come in serially on an input link and are
accumulated into an input shift register. When a whole cell has been accumulated, the cell can
be loaded into the cell-wide memory. Later they can be read out into the output shift register
of the corresponding link and be shifted out onto the output link.

The Datapath switch design [Kan99, Kes97] uses a central memory of 4K cells, which
clearly does not provide adequate buffering. However, this memory can easily be implemented
on-chip and augmented using flow control and off-chip packet buffers. Unfortunately, shared-
memory designs such as this do not scale beyond cell-wide memories because minimum-size
packets can be at most one cell in size. A switch that gets several minimum-size packets to
different destinations can pack several such packets in a single word, but it cannot rely on
reading them out at the same time.

Despite this, shared-memory switches can be quite simple for small numbers of ports. A
great advantage of shared-memory switches is that they can be memory and power optimal
because data is moved in and out of memory only once. Fabric- or crossbar-based switches,
which are described in the remainder of this chapter, almost invariably require buffering
packets twice, potentially doubling memory costs and power costs. It may even be possible
to extend the shared-memory idea to larger switches via the randomized DRAM interleaving
ideas described in Section 13.10.3.

13.3 ROUTER HISTORY: FROM BUSES TO CROSSBARS

Router switches have evolved from the simplest shared-medium (bus or memory) switches,
shown in part A of Figure 13.3, to the more modern crossbar switches, shown in part D of

306 C H A P T E R 1 3 Switching

Packet

B

U

S

Line card N

Line card 2

Line card 1 CPU

Packet

B

U

S

Line card N

Line card 2

Line card 1 CPU 1

CPU M

Packet

B

U

S

Line card N

Line card 2

Line card 1
CPU 1

CPU 2

CPU N

Routing
CPU(s)

Packet

Line card N

Line card 2

Line card 1
FE 1

FE 2

FE N

Routing
CPU(s)

a) Paleozoic: Bus, Shared CPU b) Paleolithic: Bus, Shared CPUs

c) Neolithic: Bus, per-line-card CPUs d) Modern: Crossbar, per-line-card
forwarding engines

F I G U R E 13.3 Evolution of network switches, from shared-bus switches with a shared CPU to
crossbar switches with a dedicated forwarding engine per line card. (Adapted from Ref. McK97).

Figure 13.3. A line card in a router or switch contains the interface logic for a data link, such
as a fiber-optic line or an Ethernet. The earliest switches connected all the line cards internally
via a high-speed bus (analogous to an internal local area network) on which only one pair of
line cards can communicate at a time. Thus if Line Card 1 is sending a packet to Line Card 2,
no other pair of line cards can communicate.

Worse, in more ancient routers and switches, the forwarding decision was relegated to a
shared, general-purpose CPU. General-purpose CPUs allow for simpler and easily changeable
forwarding software. However, general-purpose CPUs were often slow because of extra levels
of interpretation of general-purpose instructions. They also lacked the ability to control real-
time constraints on packet processing because of nondeterminism due to mechanisms such as
caches. Note also that each packet traverses the bus twice, once to go to the CPU and once to
go from the CPU to the destination. This is because the CPU is on a separate card reachable
only via the bus.

Because the CPU was a bottleneck, a natural extension was the addition of a group of
shared CPUs for forwarding, any of which can forward a packet. For example, one CPU can
forward packets from Line Cards 1 through 3, the second from Line Cards 4 through 6, and
so on. This increases the overall throughput or reduces the performance requirement on each
individual CPU, potentially leading to a lower-cost design. However, without care it can lead
to packet misordering, which is undesirable.

Despite this, the bus remains a bottleneck. A single shared bus has speed limitations
because of the number of different sources and destinations that a single shared bus has

13.4 The Take-a-Ticket Crossbar Scheduler 307

to handle. These sources and destinations add extra electrical loading that slows down signal
rise times and ultimately the speed of sending bits on the bus. Other electrical effects include
that of multiple connectors (from each line card) and reflections on the line [McK97].

The classical way to get around this bottleneck is to use a crossbar switch, as shown in
Figure 13.3, part d. A crossbar switch essentially has a set of 2N parallel buses, one bus per
source line card and one bus per destination line card. If one thinks of the source buses as
being horizontal and the destination buses as being vertical, the matrix of buses forms what is
called a crossbar.

Potentially, this provides an N-fold speedup over a single bus, because in the best case all
N buses will be used in parallel at the same time to transfer data, instead of a single bus. Of
course, to get this speedup requires finding N disjoint source–destination pairs at each time
slot. Trying to get close to this bound is the major scheduling problem studied in this chapter.

Although they do not necessarily go together, another design change that accompanied
crossbar switches designed between 1995 and 2002 is the use of special-purpose integrated
circuits (ASICs) as forwarding engines instead of general-purpose CPUs. These forwarding
engines are typically faster (because they are designed specifically to process Internet pack-
ets) and cheaper than general-purpose CPUs. Two disadvantages of such forwarding engines
include design costs for each suchASIC and the lack of programmability (which makes changes
in the field difficult or impossible). These problems have again led to proposals for faster but
yet programmable network processors (see Chapter 2).

13.4 THE TAKE-A-TICKET CROSSBAR SCHEDULER

The simplest crossbar is an array of N input buses and N output buses, as shown in Figure 13.4.
Thus if line card R wishes to send data to line card S, input bus R must be connected to output bus
S. The simplest way to make this connection is via a “pass” transistor, as shown in Figure 13.5.
For every pair of input and output buses, such as R and S, there is a transistor that when turned
on connects the two buses. Such a connection is known as a crosspoint. Notice that a crossbar
with N inputs and N outputs has N2 crosspoints, each of which needs a control line from the
scheduler to turn it on or off.

Input 1

Input 2

Input 3

Output 3Output 2Output 1

F I G U R E 13.4 Basic crossbar switch.

308 C H A P T E R 1 3 Switching

Input R

Output S

Set to true to connect
Input R to Output S

F I G U R E 13.5 Connecting input from Line Card R to Line Card S by turning the pass transistor
connecting the two buses. Modern crossbars replace this simplistic design by multiplexer trees to reduce
capacitance.

While N2 crosspoints seems large, easy VLSI implementation via transistors makes pin
counts, card connector technologies, etc., more limiting factors in building large switches.
Thus most routers and switches built before 2002 use simple crossbar-switch backplanes to
support 16–32 ports. Notice that multicast is trivially achieved by connecting input bus R to
all the output buses that wish to receive from R. However, scheduling multicast is tricky.

In practice, only older crossbar designs use pass transistors. This is because the over-
all capacitance (Chapter 2) grows very large as the number of ports increases. This in turn
increases the delay to send a signal, which becomes an issue at higher speeds. Modern imple-
mentations often use large multiplexer trees per output or tristate buffers [All02, Tur02].
Higher-performance systems even pipeline the data flowing through the crossbar using some
memory (i.e., a gate) at the crosspoints.

Thus the design of a modern crossbar switch is actually quite tricky and requires careful
attention to physical layer considerations. However, crossbar-design issues will be ignored in
this chapter in order to concentrate on the algorithmic issues related to switch scheduling. But
what should scheduling guarantee?

For correctness, the control logic must ensure that every output bus is connected to at
most one input bus (to prevent inputs from mixing). However, for performance, the logic must
also maximize the number of line-card pairs that communicate in parallel. While the ideal
parallelism is achieved if all N output buses are busy at the same time, in practice parallelism
is limited by two factors. First, there may be no data for certain output line cards. Second, two
or more input line cards may wish to send data to the same output line card. Since only one
input can win at a time, this limits data throughput if the other “losing” input cannot send data.

Thus despite extensive parallelism, the major contention occurs at the output port. How
can contention for output ports be resolved while maximizing parallelism? A simple and
elegant scheduling scheme for this purpose was first invented and used in DEC’s Gigaswitch.
An example of the operation of the so-called “take-a-ticket” algorithm [SKO+94] used there
is given in Figure 13.6.

The basic idea is that each output line card S essentially maintains a distributed queue for
all input line cards R waiting to send to S. The queue for S is actually stored at the input line
card itself (instead of being at S) using a simple ticket number mechanism like that at some
deli counters. If line card R wants to send a packet to line card S, it first makes a request over
a separate control bus to S; S then provides a queue number back to R over the control bus.
The queue number is the number of R’s position in the output queue for S.

13.4 The Take-a-Ticket Crossbar Scheduler 309

3

3

4

2

2

3

1

1

1

A

B

C

1

2

3

4

Request

3

3

4

2

2

3

1

1

1

A

B

C

1

2

3

4

Ticket grant

T1

T2

T3

3

3

4

2

2

3

1

1

1

A

B

C

1

2

3

4

Connect

3

3

4

2

2

3

1

1

A

B

C

1

2

3

4

Request

3

3

4

2

2

3

1

1

A

B

C

1

2

3

4

Ticket grant

T1
T1

T2 3

3

4

2

2

3

1

1

A

B

C

1

2

3

4

Connect

3

3

4

2

3 1

A

B

C

1

2

3

4

Request

3

3

4

2

3 1

A

B

C

1

2

3

4

Ticket grant

T1

T1
T2

T3 3

3

4

2

3 1

A

B

C

1

2

3

4

Connect

Round 1

Round 2

Round 3

T2

F I G U R E 13.6 In the take-a-ticket scheduling mechanism, all input ports have a single input queue
that is labeled with the output port number to which each packet is destined. Thus in the top frame, inputs
A, B, and C send requests to output port 1. Output port 1 (top, middle) gives the first number to A, the
second to B, etc., and these numbers are used to serialize access to output ports.

R then monitors the control bus; whenever S finishes accepting a new packet, S sends the
current queue number it is serving on the control bus. When R notices that its number is being
“served,” R places its packet on the input data bus for R. At the same time, S ensures that the
R–S crosspoint is turned on.

To see this algorithm in action, consider Figure 13.6, where in the top frame, input line
card A has three packets destined to outputs 1, 2, and 3, respectively. B has three similar packets
destined to the same outputs, while C has packets destined to outputs 1, 3, and 4. Assume
the packets have the same size in this example (though this is not needed for the take-a-ticket
algorithm to work).

Each input port works only on the packet at the head of its queue. Thus the algorithm
begins with each input sending a request, via a control bus, to the output port to which the
packet at the head of its input queue is destined. Thus in the example each input sends a request
to output port 1 for permission to send a packet.

In general, a ticket number is a small integer that wraps around and is given out in order of
arrival, as in a deli. In this case, assume that A’s request arrived first on the serial control bus,
followed by B, followed by C, though the top left picture makes it appear that the requests are
sent concurrently. Since output port 1 can service only one packet at a time, it serializes the
requests, returning T1 to A, T2 to B, and T3 to C.

310 C H A P T E R 1 3 Switching

Thus in the middle picture of the top row, output port 1 also broadcasts the current ticket
number it is serving (T1) on another control bus. When A sees it has a matching number for
input 1, in the picture on the top right, A then connects its input bus to the output bus of 1 and
sends its packet on its input bus. Thus by the end of the topmost row of pictures, A has sent the
packet at the head of its input queue to output port 1. Unfortunately, all the other input ports,
B and C, are stuck waiting to get a matching ticket number from output port 1.

The second row in Figure 13.6 starts with A sending a request for the packet that is now
at the head of its queue to output port 2; A is returned a ticket number, T1, for port 2.1 In the
middle picture of the second row, port 1 announces that it is ready for T2, and port 2 announces
it is ready for ticket T1. This results in the rightmost picture of the second row, where A is
connected to port 2 and B is connected to port 1 and the corresponding packets are transferred.

The third row of pictures in Figure 13.6 starts similarly with A and B sending a request
for ports 3 and 2, respectively. Note that poor C is still stuck waiting for its ticket number, T3,
which it obtained two iterations ago, to be announced by output port 1. Thus C makes no more
requests until the packet at the head of its queue is served. A is returned T1 for port 3, and B
is returned T2 for port 2. Then port 1 broadcasts T3 (finally!), port 2 broadcasts T2, and port
3 broadcasts T1. This results in the final picture of the third row, where the crossbar connects
A and 3, B and 2, and C and 1.

The take-a-ticket scheme scales well in control state, requiring only two (log2 N)-bit
counters at each output port to store the current ticket number being served and the highest
ticket number dispensed. This allowed the implementation in DEC’s Gigaswitch to scale easily
to 36 ports [SKO+94], even in the early 1990s, when on-chip memory was limited. The scheme
used a distributed scheduler, with each output port’s arbitration done by a so-called GPI chip
per line card; the GPI chips communicate via a control bus.

The GPI chips have to arbitrate for the (serial) control bus in order to present a request to
an output line card and to obtain a queue number. Because the control bus is a broadcast bus,
an input port can figure out when its turn comes by observing the service of those who were
before it, and it can then instruct the crossbar to make a connection.

Besides small control state, the take-a-ticket scheme has the advantage of being able to
handle variable-size packets directly. Output ports can asynchronously broadcast the next ticket
number when they finish receiving the current packet; different output ports can broadcast their
current ticket numbers at arbitrary times. Thus, unlike all the other schemes described later,
there is no header and control overhead to break up packets into “cells” and then do later
reassembly. On the other hand, take-a-ticket has limited parallelism because of head-of-line
blocking, a phenomenon we look at in the next section.

The take-a-ticket scheme also allows a nice feature called hunt groups. Any set of line
cards (not just physically contiguous line cards) can be aggregated to form an effectively
higher-bandwidth link called a hunt group. Thus three 100-Mbps links can be aggregated to
look like a 300-Mbps link.

The hunt group idea requires only small modifications to the original scheduling algorithm
because each of the GPI chips in the group can observe each other’s messages on the control
bus and thus keep local copies of the (common) ticket number consistent. The next packet

1Although not shown in the pictures, a ticket should really be considered a pair of numbers, a ticket number and
the output port number, so the same ticket number used at different output ports should cause no confusion at input
ports.

13.5 Head-of-Line Blocking 311

3

3

4

2

2

3

1

1

1

A

B

C

1

2

3

4

A

A

A

B

B

B

C

C

C

Time (in packet times)

F I G U R E 13.7 Example of head-of-line blocking caused by schemes like take-a-ticket. For each
output port, a horizontal time scale is drawn labeled with the input port that sent a packet to that output
port during the corresponding time period or a blank mark if there is none. Note the large number of
blanks, showing potentially wasted opportunities that limit parallelism.

destined to the group is served by the first free output port in the hunt group, much as in a
delicatessen with multiple servers. While basic hunt groups can cause reordering of packets
sent to different links, a small modification allows packets from one input to be sent to only
one output port in a hunt group via a simple deterministic hash. This modification avoids
reordering, at the cost of reduced parallelism.

Since the Gigaswitch was a bridge, it had to handle LAN multicast. Because the take-a-
ticket scheduling mechanism uses distributed scheduling via separate GPI chips per output, it
is hard to coordinate all schedulers to ensure that every output port is free. Further, waiting for
all ports to have a free ticket for a multicast packet would result in blocking some ports that
were ready to service the packet early, wasting throughput. Hence multicast was handled by a
central processor in software and was thus accorded “second-class” status.

13.5 HEAD-OF-LINE BLOCKING

Forgetting about the internal mechanics of Figure 13.6, observe that there were nine potential
transmission opportunities in three iterations (three input ports and three iterations); but after
the end of the picture in the bottom right, there is one packet in B’s queue and two in C’s queue.
Thus only six of potentially nine packets have been sent, thereby taking limited advantage of
parallelism.

This focus on only input–output behavior is sketched in Figure 13.7. The figure shows the
packets sent in each packet time at each output port. Each output port has an associated time
line labeled with the input port that sent a packet during the corresponding time period, with a
blank if there is none. Note also that this picture continues the example started in Figure 13.6
for three more iterations, until all input queues are empty.

It is easy to see visually from the right of Figure 13.7 that only roughly half of the
transmission opportunities (more precisely, 9 out of 24) are used. Now, of course, no algorithm
can do better for certain scenarios. However, other algorithms, such as iSLIP (see Figure 13.11
in Section 13.8) can extract more parallel opportunities and finish the same nine packets in
four iterations instead of six.

In the first iteration of Figure 13.7, all inputs have packets waiting for output 1. Since
only one (i.e., A) can send a packet to output 1 at a time, the entire queue at B (and C) is stuck
waiting for A to complete. Since the entire queue is held hostage by the progress of the head
of the queue, or line, this is called head-of-line (HOL) blocking. iSLIP and PIM get around

312 C H A P T E R 1 3 Switching

this limitation by allowing packets behind a blocked packet to make progress (for example,
the packet destined for output port 2 in the input queue at B can be sent to output port 2 in
iteration 1 of Figure 13.7) at the cost of a more complex scheduling algorithm.

The loss of throughput caused by HOL blocking can be analytically captured using a
simple uniform-traffic model. Assume that the head of each input queue has a packet destined
for each of N outputs with probability 1/N . Thus if two or more input ports send to the same
output port, all but one input are blocked. The entire throughput of the other inputs is “lost”
due to head-of-line blocking.

More precisely, assume equal-size packets and one initial trial where a random process
draws a destination port at each input port uniformly from 1 to N . Instead of focusing on
input ports, let us focus on the probability that an output port O is idle. This is simply the
probability that none of the N input ports chooses O. Since each input port does not choose O
with probability 1 − 1/N , the probability that all N of them will not choose O is (1 − 1/N)N .
This expression rapidly converges to 1/e. Thus the probability that O is busy is 1 − 1/e, which
is 0.63. Thus the throughput of the switch is not N ∗ B, which is what it could be ideally if
all N output links are busy operating at B bits per second. Instead, it is 63% of this maximum
value, because 37% of the links are idle.

This analysis is simplistic and (incorrectly) assumes that each iteration is independent. In
reality, packets picked in one iteration that are not sent must be attempted in the next iteration
(without another random coin toss to select the destination). A classic analysis [KHM87] that
removes the independent-trials assumption shows that the actual utilization is slightly worse
and is closer to 58%.

But are uniform-traffic distributions realistic? Clearly, the analysis is very dependent on
the traffic distribution because no switch can do well if all traffic is destined to one server port.
Simple analyses show that the effect of head-of-line blocking can be reduced by using hunt
groups, by using speedup in the crossbar fabric compared to the links, and by assuming more
realistic distributions in which a number of clients send traffic to a few servers.

However, it should be clear that there do exist distributions where head-of-line blocking
can cause great damage to throughput. Imagine that every input link has B packets to port
1, followed by B packets to port 2, and so on, and finally B packets to port N . The same
distribution of input packets is present in all input ports. Thus clearly, when scheduling the
group of initial packets to port 1, essentially head-of-line blocking will limit the switch to
sending only one packet per input each time. Thus the switch reduces to 1/N of its possible
throughput if B is large enough. On the other hand, we will see that switches that use virtual
output queues (VOQs) (defined later in this chapter) can, in the same situations, achieve nearly
100% throughput. This is because in such schemes each block of B packets stays in separate
queues at each input.

13.6 AVOIDING HEAD-OF-LINE BLOCKING VIA OUTPUT QUEUING

When HOL blocking was discovered, there was a slew of papers that proposed output queuing
in place of input queuing to avoid HOL blocking. Suppose that packets can somehow be sent
to an output port without any queuing at the input. Then it is impossible for packet P destined
for a busy output port to block another packet behind it. This is because packet P is sent off to
the queue at the output port, where it can only block packets sent to the same output port.

13.6 Avoiding Head-of-Line Blocking via Output Queuing 313

The simplest way to do this would be to run the fabric N times faster than the input links.
Then even if all N inputs send to the same output in a given cell time, all N cells can be sent
through the fabric to be queued at the output. Thus pure output queuing requires an N-fold
speedup within the fabric. This can be expensive or infeasible.

A practical implementation of output queuing was provided by the knockout [YHA87]
switch design. Suppose that receiving N cells to the same destination in any cell time is rare
and that the expected number is k, which is much smaller than N . Then the expected case can
be optimized (P11) by designing the fabric links to run k times as fast as an input link, instead
of N . This is a big savings within the fabric. It can be realized with hardware parallelism (P5)
by using k parallel buses.

Unlike the take-a-ticket scheme, all the remaining schemes in this chapter, including the
knockout scheme, rely on breaking up packets into fixed-size cells. For the rest of the chapter,
cells will be used in place of packets, always understanding that there must be an initial stage
where packets are broken into cells and then reassembled at the output port.

Besides a faster switch, the knockout scheme needs an output queue that accepts cells k
times faster than the speed of the output link. A naive design that uses this simple specification
can be built using a fast FIFO but would be expensive. Also, the faster FIFO is overkill, because
clearly the buffer cannot sustain a long-term imbalance between its input and output speeds.
Thus the buffer specification can be relaxed (P3) to allow it to handle only short periods, in
which cells arrive k times as fast as they are being taken out. This can be handled by memory
interleaving and k parallel memories. Adistributor (that does run k times as fast) sprays arriving
cells into k memories in round-robin order, and departing cells are read out in the same order.

Finally, the design has to fairly handle the case where the expected case is violated and
N > k cells get sent to the same output at the same time. The easiest way to understand the
general solution is first to understand three simpler cases.

Two contenders, one winner: In the simplest case of k = 1 and N = 2, the arbiter
must choose one cell fairly from two choices. This can be done by building a primitive 2-by-2
switching element, called a concentrator, that randomly picks a winner and a loser. The winner
output is the cell that is chosen. The loser output is useful for the general case, in which several
primitive 2-by-2 concentrators are combined.

Many contenders, one winner: Now consider when k = 1 (only one cell can be accepted)
and N > 2 (there are more than two cells that the arbiter must choose fairly from). A simple
strategy uses divide-and-conquer (P15, efficient data structures) to create a knockout tree of
2-by-2 concentrators. As in the first round of a tennis tournament, the cells are paired up using
N /2 copies of the basic 2-by-2 concentrator, each representing a tennis match. This forms
the bottom level of the tree. The winners of the first round are sent to a second round of N /4
concentrators, and so on. The “tournament” ends with a final, in which the root concentrator
chooses a winner. Notice that the loser outputs of each concentrator are still ignored.

Many contenders, more than one winner: Finally, consider the general case where k cells
must be chosen from N possible cells, for arbitrary values of k and N . A simple idea is to create
k separate knockout trees to calculate the first k winners. However, to be fair, the losers of
knockout trees for earlier trees have to be sent to the knockout trees for the subsequent places.
This is why the basic 2-by-2 knockout concentrator has two outputs, one for the winner and
one for the loser, and not just one for the winner. Loser outputs are routed to the trees for later
positions.

314 C H A P T E R 1 3 Switching

Notice that if one had to choose four cells among eight choices, the simplest design would
assign the eight choices (in pairs) to four 2-by-2 knockout concentrators. This logic will pick
four winners, the desired quantity. While this logic is certainly much simpler than using four
separate knockout trees, it can be very unfair. For example, suppose two very heavy traffic
sources, S1 and S2, happen to be paired up, while another heavy source, S3, is paired up with
a light source. In this case S1 and S2 would get roughly half the traffic that S3 obtains. It is to
avoid these devious examples of unfairness that the knockout logic uses k separate trees, one
for each position.

The naive way to implement the trees is to begin running the logic for the Position j
tree strictly after all the logic for the Position j − 1 tree has completed. This ensures that all
eligible losers have been collected. A faster implementation trick is explored in the exercises.
Hopefully, this design should convince you that fairness is hard to implement correctly. This
is a theme that will be explored again in the discussion of iSLIP.

While the knockout switch is important to understand because of the techniques it intro-
duced, it is complex to implement and makes assumptions about traffic distributions. These
assumptions are untrue for real topologies in which more than k clients frequently gang up to
concurrently send to a popular server. More importantly, researchers devised relatively simple
ways to combat HOL blocking without going to output queuing.

13.7 AVOIDING HEAD-OF-LINE BLOCKING BY USING PARALLEL ITERATIVE MATCHING

The main idea behind parallel iterative matching (PIM) [AOST93] is to reconsider input queu-
ing but to retrofit it to avoid head-of-line blocking. It does so by allowing an input port to
schedule not just the head of its input queue, but also other cells, which can make progress
when the head is blocked. At first glance, this looks very hard. There could be a hundred
thousand cells in each queue; attempting to maintain even 1 bit of scheduling state for each
cell will take too much memory to store and process.

However, the first significant observation is that cells in each input port queue can be
destined for only N possible output ports. Suppose cell P1 is before cell P2 in input queue
X and that both P1 and P2 are destined for the same output queue Y . Then to preserve FIFO
behavior, P1 must be scheduled before P2 anyway. Thus there is no point in attempting to
schedule P2 before P1 is done. Thus obvious waste can be avoided (P1) by not scheduling
any cells other than the first cell sent to every distinct output port.

Thus the first step is to exploit a degree of freedom (P13) and to decompose the single input
queue of Figure 13.6 into a separate input queue per output at each input port in Figure 13.8.
These are called virtual output queues (VOQs). Notice that the top left picture of Figure 13.8
contains the same input cells as in Figure 13.7, except now they are placed in separate queues.

The second significant observation is that communicating the scheduling needs of any
input port takes a bitmap of only N bits, where N is the size of the switch. In the bitmap,
a 1 in position i implies that there is at least one cell destined to output port i. Thus if each
of N input ports communicates an N-bit vector describing its scheduling needs, the scheduler
needs to process only N2 bits. For small N ≤ 32, this is not many bits to communicate via
control buses or to store in control memories.

The communicating of requests is indicated in the top left picture of Figure 13.8 by showing
a line sent from each input port to each output port for which it has a nonempty VOQ. Notice A

13.7 Avoiding Head-of-line Blocking by Using Parallel Iterative Matching 315

1
2
3
1
3
4

1
2
3

A

B

C

1

2

3

4

Request

1

2

3

4

Grant

1

2

3

4

Accept

1

2

3

4

Request

1

2

3

4

Grant

1

2

3

4

Accept

1

2

3

4

Request

1

2

3

4

Grant

1

2

3

4

Accept

Round 1

Round 2

Round 3

1
2
3
1
3
4

1
2
3

A

B

C

1
2
3
1
3
4

1
2
3

A

B

C

–
2
3
1
3
–

1
–
3

A

B

C

–
2
3
1
3
–

1
–
3

A

B

C

–
2
3
1
3
–

1
–
3

A

B

C

–
–
3
–
3
–

1
–
–

A

B

C

–
–
3
–
3
–

1
–
–

A

B

C

–
–
3
–
3
–

1
–
–

A

B

C

a=1

a=1

a=1

F I G U R E 13.8 The parallel iterative matching (PIM) scheme works by having all inputs send requests
in parallel to all outputs they wish to reach. PIM then uses randomization to do fair matching such that
outputs that receive multiple requests pick a random input, and inputs that receive multiple grants
randomly pick an output to send to. This three-round process can then be iterated to improve the size of
the matching.

does not have a line to port 4 because it has no cell for port 4. Notice also that input port C
sends a request for the cell destined for output port 4 in input port C, while the same cell is the
last cell in input queue C in the single-input-queue scenario of Figure 13.6.

What is still required is a scheduling algorithm that matches resources to needs. Although
the scheduling algorithm is clever, in the author’s opinion the real breakthrough was observing
that, using VOQs, input queue scheduling without HOL blocking is feasible to think about.
To keep the example in Figure 13.8 corresponding to Figure 13.6, assume that every packet in
the scenario of Figure 13.6 is converted into a single cell in Figure 13.8.

To motivate the scheduling algorithm used in PIM, observe that in the top left of
Figure 13.8, output port 1 gets three requests from A, B, and C but can service only one
in the next slot. A simple way to choose between requests is to choose randomly (P3a). Thus
in the Grant phase (top middle of Figure 13.8), output port 1 chooses B randomly. Similarly,
assume that port 2 randomly chooses A (from A and B), and port 3 randomly chooses A (from
A, B, and C). Finally, port 4 chooses its only requester, C.

However, resolving output-port contention is insufficient because there is also input-
port contention. Two output ports can randomly grant to the same input port, which must
choose exactly one to send a cell to. For example, in the top middle of Figure 13.8, A has an

316 C H A P T E R 1 3 Switching

embarrassment of riches by getting grants from outputs 2 and 3. Thus a third, Accept, phase
is necessary, in which each input port chooses an output port randomly (since randomization
was used in the Grant phase, why not use it again?).

Thus in the top right picture of Figure 13.8, A randomly chooses port 2. B and C have
no choice and choose ports 1 and 4, respectively. Crossbar connections are made, and the
packets from A to port 2, B to port 1, and C to to Port 4 are transferred. While in this case, the
corresponding match found was a maximal match (i.e., cannot be improved), in some cases
the random choices may result in a match that can be improved further. For example, in the
unlikely event that ports 1, 2, and 3 all choose A, the match size will only be of size 2.

In such cases, although not shown it in the figure, it may be worthwhile for the algorithm
to mask out all matched inputs and outputs and iterate more times (for the same forthcoming
time slot). If the match on the current iteration is not maximal, a further iteration will improve
the size of the match by at least 1. Note that subsequent iterations cannot worsen the match
because existing matches are preserved across iterations. While the worst-case time to reach a
maximal match for N inputs is N iterations, a simple argument shows that the expected number
of matches is closer to log N . The DEC AN-2 implementation [AOST93] used three iterations
for a 30-port switch.

Our example in Figure 13.8, however, uses only one iteration for each match. The middle
row shows the second match for the second cell time, in which, for example, A and C both ask
for port 1 (but not B, because the B-to-1 cell was sent in the last cell time). Port 1 randomly
chooses C, and the final match is A, 3, B, 2, and C, 1. The third row shows the third match,
this time of size 2. At the end of the third match, only the cell destined to port 3 in input queue
B is not sent. Thus in four cell times (of which the fourth cell time is sparsely used and could
have been used to send more traffic) all the traffic is sent. This is clearly more efficient than
the take-a-ticket example of Figure 13.6.

13.8 AVOIDING RANDOMIZATION WITH iSLIP

Parallel iterative matching was a seminal scheme because it introduced the idea that HOL could
be avoided at reasonable hardware cost. Once that was done, just as was the case when Roger
Bannister first ran the mile in under 4 minutes, others could make further improvements. But
PIM has two potential problems. First, it uses randomization, and it may be hard to produce a
reasonable source of random numbers at very high speeds.2 Second, it requires a logarithmic
number of iterations to attain maximal matches. Given that each of a logarithmic number
of iterations takes three phases and that the entire matching decision must be made within a
minimum packet arrival time, it would be better to have a matching scheme that comes close
to maximal matches in just one or two iterations.

iSLIP is a very popular and influential scheme that essentially “derandomizes” PIM and
also achieves very close to maximal matches after just one or two iterations. The basic idea is
extremely simple. When an input port or an output port in PIM experiences multiple requests,
it chooses a “winning” request uniformly at random, for the sake of fairness. Whereas Ethernet

2One can argue that schemes like RED require randomness anyway at routers. However, a poor-quality source
of random numbers in an RED implementation will be less noticed than poor-quality random numbers within a switch
fabric.

13.8 Avoiding Randomization with iSLIP 317

provides fairness with randomness, token rings do so using a round-robin pointer implemented
by a rotating token.

Similarly, iSLIP provides fairness by choosing the next winner among multiple contenders
in round-robin fashion using a rotating pointer. While the round-robin pointers can be initially
synchronized and cause something akin to head-of-line blocking, they tend to break free and
result in maximal matches over the long run, at least as measured in simulation. Thus the
subtlety in iSLIP is not the use of round-robin pointers but the apparent lack of long-term
synchronization among N such pointers running concurrently.

More precisely, each output (respectively input) maintains a pointer g initially set to the
first input (respectively output) port. When an output has to choose between multiple input
requests, it chooses the lowest input number that is equal to or greater than g. Similarly, when
an input port has to choose between multiple output-port requests, it chooses the lowest output-
port number that is equal to or greater than a, where a is the pointer of the input port. If an
output port is matched to an input port X, then the output-port pointer is incremented to the
first port number greater than X in circular order (i.e., g becomes X + 1, unless X was the last
port, in which case g wraps around to the first port number).

This simple device of a “rotating priority” allows each resource (output port, input port)
to be shared reasonably fairly across all contenders at the cost of 2N extra log2 N pointers in
addition to the N2 scheduling state needed on every iteration.

Figures 13.9 and 13.10 show the same scenario as in Figure 13.8 (and Figure 13.6), but
using a two-iteration iSLIP. Since each row is an iteration of a match, each match is shown
using two rows. Thus the three rows of Figure 13.9 show the first 1.5 matches of the scenario.
Similarly, Figure 13.10 shows the remaining 1.5 matches.

The upper left picture of Figure 13.9 is identical to Figure 13.8, in that each input port
sends requests to each output port for which it has a cell destined. However, one difference
is that each output port has a so-called grant pointer g, which is initialized for all outputs to
be A. Similarly, each input has a so-called accept pointer called a, which is initialized for all
inputs to 1.

The determinism of iSLIP causes a divergence right away in the Grant phase. Compare
the upper middle of Figure 13.9 with the upper middle of Figure 13.8. For example, when
output 1 receives requests from all three input ports, it grants to A because A is the smallest
input greater than or equal to g1 = A. By contrast, in Figure 13.8, port 1 randomly chose input
port B. At this stage the determinism of iSLIP seems a real disadvantage because A has sent
requests to output ports 3 and 4 as well. Because 3 and 4 also have grant pointers g3 = g4 = A,
ports 3 and 4 grant to A as well, ignoring the claims of B and C. As before, since C is the lone
requester for port 4, C gets the grant from 4.

When the popular A gets three grants back from ports 1, 2, and 3, A accepts 1. This is
because port 1 is the first output equal to greater than A’s accept pointer, aA, which was equal
to 1. Similarly C chooses 4. Having done so, A increments aA to 2 and C increments aC to 1
(1 greater than 4 in circular order is 1). Only at this stage does output 1 increment its grant
pointer, g1, to B (1 greater than the last successful grant) and port 4 similarly increments to A
(1 greater than C in circular order).

Note that although ports 2 and 3 gave grants to A, they do not increment their grant pointers
because A spurned their grants. If they did, it would be possible to construct a scenario where
output ports keep incrementing their grant pointer beyond some input port I after unsuccessful
grants, thereby continually starving input port I . Note also that the match is only of size 2;

318 C H A P T E R 1 3 Switching

1
2
3
1
3
4

1
2
3

A

B

C

1

2

3

4

Request

1

2

3

4

Grant

1

2

3

4

Accept

1

2

3

4

Request

1

2

3

4

Grant

1

2

3

4

Accept

1

2

3

4

Request

1

2

3

4

Grant

1

2

3

4

Accept

Round 1, Iteration 1

Round 1, Iteration 2

Round 2, Iteration 1

1
2
3
1
3
4

1
2
3

A

B

C

1
2
3
1
3
4

1
2
3

A

B

C

1
2
3
1
3
4

1
2
3

A

B

C

1
2
3
1
3
4

1
2
3

A

B

C

1
2
3
1
3
4

1
2
3

A

B

1
–
3
1

–

–
2
3

A

B

C

1
–
3
1

–

–
2
3

A

B

C

1
–
3
1

–

–
2
3

A

B

C

g�A

g�A

g�A

g�A

a�1

a�1

a�1

g�B

g�A

g�A

g�A

a�1

a�1

a�2

g�C

g�B

g�A

g�A

a�1

a�1

a�2

a�3

g�B

g�A

g�A

g�A

a�1

a�1

a�2

a�1

a�1

a�2

g�B

g�A

g�A

g�A

F I G U R E 13.9 One and a half rounds of a sample iSLIP scenario.

thus, unlike Figure 13.8, this iSLIP scenario can be improved by a second iteration, shown
in the second row of Figure 13.9. Notice that at the end of the first iteration the matched
inputs and outputs are not connected by solid lines (denoting data transfer), as shown at the
top right of Figure 13.8. This data transfer will await the end of the final (in this case second)
iteration.

The second iteration (middle row of Figure 13.9) starts with only inputs unmatched on
previous iterations (i.e, B) requesting and only to hitherto unmatched outputs. Thus B requests
to 2 and 3 (and not to 1, though B has a cell destined for 1 as well). Both 2 and 3 grant B, and
B chooses 2 (the lowest one that is greater than or equal to its accept pointer of 1). One might
think that B should increment its accept pointer to 3 (1 plus the last accepted, which was 2).
However, to avoid starvation iSLIP does not increment pointers on iterations other than the
first, for reasons that will be explained.

Thus even after B is connected to 2, 2’s grant pointer remains at A and 2’s accept pointer
remains at 1. Since this is the final iteration, all matched pairs, including pairs, such as A, 1,
matched in prior iterations, are all connected and data transfer (solid lines) occurs.

The third row provides some insight into how the initial synchronization of grant and
accept pointers gets broken. Because only one output port has granted to A, that port (i.e., 1)
gets to move on and this time to provide priority to ports beyond A. Thus even if A had a
second packet destined for 1 (which it does not in this example), 1 would still grant to B.

The remaining rows in Figure 13.9 and Figure 13.10 should be examined carefully by the
reader to check for the updating rules for the grant and accept pointers and to check which

13.8 Avoiding Randomization with iSLIP 319

1
–
3
1
3
–

–
2
3

A

B

C

1

2

3

4

Request

1

2

3

4

Grant

1

2

3

4

Accept

1

2

3

4

Request

1

2

3

4

Grant

1

2

3

4

Accept

1

2

3

4

Request

1

2

3

4

Grant

1

2

3

4

Accept

Round 2, Iteration 2

Round 3, Iteration 1

Round 3, Iteration 2

1
–
3
1
3
–

–
2
3

A

B

C

1
–
3
1
3
–

–
2
3

A

B

C

A

B

C

A

B

C C

A

B

A

B

C

A

B

C

A

B

C

g�C

g�B

g�A

g�A

a�1

a�2

a�3

g�C

g�B

g�A

g�A

a�1

a�2

a�3

g�A

g�B

g�B

g�A

a�2

a�2

a�4

g�C

g�B

g�A

g�A

g�A

g�B

g�B

g�A

a�1

a�2

a�3

a�2

a�2

a�4

g�A

g�B

g�B

g�A

–
–
3
1
–
–

–
–
3

–
–
3
1
–
–

–
–
3

–
–
3
1
–
–

–
–
3
–
–
3
1
–
–

–
–
3

–
–
3
1
–
–

–
–
3

–
–
3
1
–
–

–
–
3

–
–
3
1
–
–

–
–
3
–
–
3
1
–
–

–
–
3

a�2

a�2

a�4

F I G U R E 13.10 Last one and a half rounds of the sample iSLIP scenario shown in Figure 13.9.

packets are switched at each round. The bottom line is that by the end of the third row of
Figure 13.10 the only cell that remains to be switched is the cell from B to 3. This can clearly
be done in a fourth cell time.

Figure 13.11 shows a summary of the final scheduling (abstracting away from internal
mechanics) of the iSLIP scenario and should be compared in terms of scheduling density with
Figure 13.7. While these are just isolated examples, they do suggest that iSLIP (and similarly
PIM) tends to waste fewer slots by avoiding head-of-line blocking. Note that both iSLIP and
PIM finish the same input backlog in four cell times, as opposed to six.

Note also that when we compare Figure 13.9 with Figure 13.8, iSLIP looks worse than
PIM, because it required two iterations per match for iSLIP to achieve the same match sizes

3

3

4

2

2

3

1

1

1

A

B

C

1

2

3

4

A

A

A

B

B

B

C

C

C

Time (in cell slots)

F I G U R E 13.11 How iSLIP avoids HOL blocking to increase throughput in the scenario of
Figure 13.7.

320 C H A P T E R 1 3 Switching

as PIM does using one iteration per match. However, this is more illustrative of the startup
penalty that iSLIP pays rather than a long-term penalty. In practice, as soon as the iSLIP
pointers desynchronize, iSLIP does very well with just one iteration, and some commercial
implementations use just one iteration: iSLIP is extremely popular.

One might summarize iSLIP as PIM with the randomization replaced by round-robin
scheduling of input and output pointers. However, this characterization misses two subtle
aspects of iSLIP.

• Grant pointers are incremented only in the third phase, after a grant is accepted:
Intuitively, if O grants to an input port I , there is no guarantee that I will accept. Thus if O
were to increment its grant pointer beyond O, it can cause traffic from I to O to be
persistently starved. Even worse, McKeown et al. [Mea97] show that this simplistic
round-robin scheme reduces the throughput to just 63% (for Bernoulli arrivals) because
the pointers tend to synchronize and move in lockstep.

• All pointers are incremented only after the first iteration accept is granted: Once
again, this rule prevents starvation, but the scenario is more subtle, which the Exercises
will ask you to figure out.

Thus matches on iterations other than the first in iSLIP are considered a “bonus” that
boosts throughput without being counted against a port’s quota.

13.8.1 Extending iSLIP to Multicast and Priority
iSLIP can be extended to handle priorities and multicast traffic.

PRIORITIES

Priorities are useful to send mission-critical or real-time traffic more quickly through the fabric.
For example, the Cisco GSR allows voice-over-IP traffic, to be scheduled at a higher priority
than other traffic, because it is rate limited and hence cannot starve other traffic.

The Tiny Tera implementation handles four levels of priorities; thus each input port has
128 VOQs (one for each combination of 32 outputs and four priority levels). Thus each input
port supplies to the scheduler 128 bits of control input.

The iSLIP algorithm is modified very simply to handle priorities. First, each output port
keeps a separate grant pointer gk for priority level k, and each input port keeps a separate
accept pointer ak for each priority level k. In essence, the iSLIP algorithm is performed, with
each entity (input port, output port) performing the iSLIP algorithm on the highest-priority
level among inputs it sees.3

More precisely, each output port grants for only the highest-priority requests it receives;
similarly, each input port accepts only the highest-priority grant it receives. Notice that an input
port I may make a request at priority level 1 for output 5 and a request at priority level 2 for
output 6 because these are the highest-priority requests the port had for outputs 5 and 6. If both
outputs 5 and 6 grant to I , I does not choose between them based on accept pointers because
they are at different priorities; instead I chooses the highest-priority grant. On an accept in the

3Note that attempting to share the same pointer for all priority levels can cause low-priority traffic from input I
to output J to be starved in the face of a combination of high-priority traffic from I to J together with other low-priority
traffic to J .

13.8 Avoiding Randomization with iSLIP 321

first iteration for priority k between input I and output port O, the priority-k accept pointer at
I and the priority-k grant pointer at O are incremented.

MULTICAST

Because of applications such as video conferencing and protocols such as IPmulticast, in which
routers replicate packets to more than one output port, supporting multicast in switches as a
first-class entity is becoming important. Recall that the take-a-ticket scheme described earlier
handled multicast as a second-class entity by sending all multicast traffic to a central entity (or
entities) that then sent the multicast traffic on a packet-by-packet basis to the corresponding
outputs. The take-a-ticket mechanism wastes switch resources (control bandwidth, ports) and
provides lower performance (larger latency, less throughput) for multicast.

On the other hand, Figure 13.4 shows that the data path of a simple crossbar switch easily
supports multicasting. For example, if Input 1 in Figure 13.4 sends a message on its input
bus and the crosspoints are connected so that Input 1’s bus is connected to the vertical output
buses of Outputs 2 and 3, then Outputs 2 and 3 receive a copy of the packet (cell) at the same
time. However, with variable-size packets, the take-a-ticket distributed-control mechanism
must choose between waiting for all ports to free up at the same time and sending packets one
by one.

The iSLIP extension for multicast, called ESLIP, accords multicast almost the same status
as unicast. Ignoring priorities for the moment, there is one additional multicast queue per
input. While to avoid HOL blocking one would ideally like a separate queue for each possible
subset of output ports, that would require an impractical number of queues (216 for 16 ports).
Thus multicast uses only one queue and, as such, is subject to some HOL blocking because a
multicast packet cannot begin to be processed unless the multicast packets ahead of it are sent.

Suppose input I has packets for outputs O1, O2, and O3 at the head of I’s multicast
queue. I is said to have a fanout of 3. Unlike in the unicast case, ESLIP maintains only a
shared multicast grant pointer and no multicast accept pointer at all, as opposed to separate
grant and accept pointers per port. Note that the use of a shared pointer implies a centralized
implementation, unlike the take-a-ticket scheduler. As shown later, the shared pointer allows
the entire switch to favor a particular input so that it can complete its fanout completely rather
than have several input ports send small portions of their multicast fanout at the same time.

Thus in the example I will send a multicast request to O1, O2, and O3. But output ports
like O2 may also receive unicast requests from other input ports, such as J . How should an
output port balance between multicast and unicast packets? ESLIP does so by giving multicast
and unicast traffic higher priority in alternate cell slots. For example, in odd slots O2 may
choose unicast over multicast, and vice versa in even slots.

To continue our example, assume an odd time slot and assume that O2 has unicast traffic
requests while O1 and O3 have no unicast requests. Then O2 will send a unicast grant, while
O1 and O3 will send multicast grants. O1 and O3 choose the input to grant to as the first port
greater than or equal to the current shared multicast grant pointer, G. Assume that I is chosen,
and so O2 and O3 send multicast grants to I . Unlike unicast, I can accept all its multicast
grants.

However, unlike unicast scheduling, the grant pointer for multicast is not incremented to
1 past I until I completes its fanout. Thus on the next cell slot, when the priority is given to
multicast, I will be able to transmit to O2. At that point, the fanout is completed, the multicast
grant pointer increments to I + 1, and the scheduler sends back a bit to I saying that the head

322 C H A P T E R 1 3 Switching

of its multicast queue has finished transmission so the next multicast packet can be worked on.
Notice that a single multicast is not necessarily completed in a single cell slot (which would
require all concerned outputs to be free), but by using fanout splitting across several slots.

Clearly, iSLIP can incur HOL blocking for multicast. Specifically, if the head of the
multicast queue P1 is destined for outputs O1 and O2 and both outputs are busy, but the next
packet P2 is destined for O3 and O4 and both are idle, P2 must wait for P1. It would be much
more difficult to implement fanout splitting for packets other than the head of the queue. Once
again, this is because one cannot afford to keep a separate VOQ for each possible combination
of output-port destinations.

The final ESLIP algorithm, which combines four levels of priority as well as multicasting,
is described somewhat tersely in McKeown [McK97]. It is implemented in Cisco’s GSR router.

13.8.2 iSLIP Implementation Notes
The heart of the hardware implementation of iSLIP is an arbiter that chooses between N
requests (encoded as a bitmap) to find the first one greater than or equal to a fixed pointer. This
is what in Chapter 2 is called a programmable priority encoder; that chapter also described
an efficient implementation that is nearly as fast as a priority encoder. Switch scheduling can
be done by one such grant arbiter for every output port (to arbitrate requests) and one accept
arbiter for every input port (to arbitrate between grants). Priorities and multicast are retrofitted
into the basic structure by adding a filter on the inputs before it reaches the arbiter; for example,
a priority filter zeroes out all requests except those at the highest-priority level.

Although in principle the unicast schedulers can be designed using a separate chip per
port, the state is sufficiently small to be handled by a single scheduler chip with control wires
coming in from and going to each of the ports. Also, the multicast algorithm requires a shared
multicast pointer per priority level, which also implies a centralized scheduler. Centralization,
however, implies a delay, or latency, to send requests and decisions from the port line cards to
and from the central scheduler.

To tolerate this latency, the scheduler [GM99a] works on a pipeline of m cells (8 in Tiny
Tera) from each VOQ and n cells (5 in Tiny Tera) from each multicast queue. This in turn
implies that each line card in the Tiny Tera must communicate 3 bits per unicast VOQ denoting
the size of the VOQ, up to a maximum of 8. With 32 outputs and four priority levels, each
input port has to send 384 bits of unicast information. Each line card also communicates the
fanout (32 bits per fanout) for each of five multicast packets in each of four priority levels,
leading to 640 bits. The 32 ∗ 1024 total bits of input information is stored in on-chip SRAM.
However, for speed the information about the heads of each queue (smaller state, for example,
only 1 bit per unicast VOQ) is stored in faster but less dense flip-flops.

Now consider handling multiple iterations. Note that the request phase occurs only on the
first iteration and needs to be modified only on each iteration by masking off matched inputs.
Thus K iterations appear to take at least 2K time steps, because the grant and accept steps of
each iteration take one time step. At first glance, the architecture appears to specify that the
grant phase of iteration k + 1 be started after the accept phase of iteration k. This is because
one needs to know whether an input port I has been accepted in iteration k so as to avoid doing
a grant for such an input in iteration k + 1.

What makes partial pipelining possible is a simple observation [GM99a]: If input I receives
any grant in iteration k, then I must accept exactly one and so be unavailable in iteration k +1.
Thus the implementation specification can be relaxed (P3) to allow the grant phase of iteration

13.9 Scaling to Larger Switches 323

k + 1 to start immediately after the grant phase of iteration k, thus overlapping with the accept
phase of iteration k. To do so, we simply use the OR of all the grants to input I (at the end of
iteration k) to mask out all of I’s requests (in iteration k + 1).

This reduces the overall completion time by nearly a factor of 2 time steps for k iterations
— from 2k to k + 1. For example, the Tiny Tera iSLIP implementation [GM99a] does three
iterations of iSLIP in 51 nsec (roughly OC-192 speeds) using a clock speed of 175 MHz; given
that each clock cycle is roughly 5.7 nsec, iSLIP has nine clock cycles to complete. Since each
grant and accept step takes two clock cycles, the pipelining is crucial in being able to handle
three iterations in nine cycles; the naive iteration technique would have taken at least 12 clock
cycles.

13.9 SCALING TO LARGER SWITCHES

So far this chapter has concentrated on fairly small switches that suffice to build up to a 32-port
router. Most Internet routers deployed up to the point of writing have been in this category,
sometimes for good reasons. For instance, building wiring codes tend to limit the number of
offices that can be served from a wiring closet. Thus switches for local area networks [SP94]
located in wiring closets tend to be well served with small port sizes.

However, the telephone network has generally employed a few very large switches that
can switch 1000–10,000 lines. Employing larger switches tends to eliminate switch-to-switch
links, reducing overall latency and increasing the number of switch ports available for users
(as opposed to being used to connect to other switches). Thus, while a number of researchers
(e.g., Refs. Tur97 and CFFT97) have argued for such large switches, there was little large-scale
industrial support for such large switches until recently.

There are three recent trends that favor the design of large switches.

1. DWDM: The use of dense wavelength-division multiplexing (DWDM) to effectively
bundle multiple wavelengths on optical links in the core will effectively increase the
number of logical links that must be switched by core routers.

2. Fiber to the home: There is a good chance that in the near future even homes and offices
will be wired directly with fiber that goes to a large central office–type switch.

3. Modular, multichassis routers: There is increasing interest in deploying router clusters,
which consist of a set of routers interconnected by a high-speed network. For example,
many network access points connect up routers via an FDDI link or by a Gigaswitch (see
Section 13.4). Router clusters, or multichassis routers as they are sometimes called, are
becoming increasingly interesting because they allow incremental growth, as explained
later.

The typical lifetime of a core router is estimated [Sem02] to be 18–24 months, after which
traffic increases often cause ISPs to throw away older-generation routers and wheel in new
ones. Multichassis routers can extend the lifetime of a core router to 5 years or more, by
allowing ISPs to start small and then to add routers to the cluster according to traffic needs.

Thus at the time of writing, Juniper Networks led the pack by announcing its T-series
routers, which allow up to 16 single-chassis routers (each of which has up to 16 ports) to be
assembled via a fabric into what is effectively a 256-port router. At the heart of the multichassis

324 C H A P T E R 1 3 Switching

system is a scalable 256-by-256 switching system. Cisco Networks has recently announced
its own version, the CRS-1 Router.

13.9.1 Measuring Switch Cost
Before studying switch scaling, it helps to understand the most important cost metrics of a
switch. In the early days of telephone switching, crosspoints were electromagnetic switches,
and thus the N2 crosspoints of a crossbar were a major cost. Even today this is a major cost for
very large switches of size 1000. But because crosspoints can be thought of as just transistors,
they take up very little space on a VLSI die.4

The real limits for electronic switches are pin limits on ICs. For example, given current
pin limits of around 1000, of which a large number of pins must be devoted to other factors,
such as power and ground, even a single bit slice of a 500-by-500 switch is impossible to
package in a single chip. Of course one could multiplex several crossbar inputs on a single
pin, but that would slow down the speed of each input to half the I/O speed possible on a pin.

Thus while the crossbar does indeed require N2 crosspoints (and this indeed does matter
for large enough N), for values of N up to 200, much of the crosspoint complexity is contained
within chips. Thus one places the largest crossbar one can implement within a chip and then
one interconnects these chips to form a larger switch. Thus the dominant cost of the composite
switch is the cost of the pins and the number of links between chips. Since these last two are
related (most of the pins are for input and output links), the total number of pins is a reasonable
cost measure. More refined cost measures take into account the type of pins (backplane, chip,
board, etc.) because they have different costs.

Other factors that limit the building of large monolithic crossbar switches are the capacitive
loading on the buses, scheduler complexity, and issues of rack space and power. First, if one
tries to build a 256-by-256 switch using the crossbar approach of 256 input and output buses,
the loading will probably result in not meeting the speed requirements for the buses. Second,
note that centralized algorithms, such as iSLIP, that require N2 bits of scheduling state will not
scale well to large N .

Third, many routers are limited by availability requirements to placing only a few (often
one) ports in a line card. Similarly, for power and other reasons, there are often strict require-
ments on the number of line cards that can be placed in a rack. Thus a router with a large
port count is likely to be limited by packaging requirements to use a multirack, multichassis
solution consisting of several smaller fabrics connected together to form a larger, composite
router. The following subsections describe strategies for doing just this.

13.9.2 Clos Networks for Medium-Size Routers
Despite the lack of current focus on crosspoints in VLSI technology, our survey of scalable
fabrics for routers begins by looking at the historically earliest proposal for a scalable switch
fabric. Charles Clos first proposed his idea in 1955 to reduce the expense of electromechanical
switching in telephone switches. Fortunately, the design also reduces the number of compo-
nents and links required to connect up a number of smaller switches. It is thus useful in a
present-day context. Specifically, a Clos network appears to be used in the Juniper Networks
T-series multichassis router product, introduced 47 years later, in 2002.

4However, in the wheel of time, the number of crosspoints again may begin to matter for optical switches!

13.9 Scaling to Larger Switches 325

n by k

n by k

n by k

k by n

k by n

k by n

N
n

by N
n

N
n

by N
n

N
n

by N
n

N
outputs

N
inputs

F I G U R E 13.12 Three-stage Clos network.

The basic Clos network uses a simple divide-and-conquer (P15) approach to reducing
crosspoints by switching in three stages, as shown in Figure 13.12. The first stage divides the
N total inputs into groups of n inputs each, and each group of n inputs is switched to the second
stage by a small (n-by-k) switch. Thus there are N /n “small” switches in the first stage.

The second stage consists of k switches, each of which is an N /n-by-N /n switch. Each of
the k outputs of each first-stage switch is connected in order to all the k second-stage switches.
More precisely, output j of switch i in the first stage is connected to input i of switch j in the
second stage. The third stage is a mirror reversal of the first stage, and the interconnections
between the second and third stages are also the mirror reversal of those between the first and
second stages. The view from outputs leftward to the middle stage is the same as the view
from inputs to the middle stage. More precisely, each of the N /n outputs of the first stage is
connected in order to the inputs of the third stage.

A switch is said to be nonblocking if whenever the input and output are free, a connection
can be made through the switch using free resources. Thus a crossbar is always nonblocking
by selecting the crosspoint corresponding to the input–output pair, which is never used for any
other pair. On the other hand, in Figure 13.12, every input switch has only k connections to
the middle stage, and every middle stage has only one path to any particular switch in the third
stage. Thus, for small k it is easily possible to block a new connection because there is no path
from an input I to a middle-stage switch that has a free line to an output O.

CLOS NETWORKS IN TELEPHONY

Clos’s insight was to see that if k ≥ 2n − 1, then the resulting Clos network could indeed
simulate a crossbar (i.e., is nonblocking) while still reducing the number of crosspoints to
be 5.6N

√
N instead of N2. This can be a big savings for large N . Of course, to achieve this

crosspoint reduction, the Clos network has increased latency by two extra stages of switching
delay, but that is often acceptable.

The proof of Clos’s theorem is easy to see from Figure 13.13. If a hitherto-idle input
i wishes to be connected to an idle output o, then consider the first-stage switch S that I is

326 C H A P T E R 1 3 Switching

n�1
busy inputs
new input i

n�1 busy
switches

free
switch

n�1 busy
switches

S

TM

O

F I G U R E 13.13 Proof that a Clos network with k = 2n − 1 is nonblocking.

connected to. There can be at most n−1 other inputs in S that are busy (S is an n-by-k switch).
These n − 1 busy input links of S can be connected to at most n − 1 middle-stage switches.

Similarly, focusing on output o, consider the last-stage switch T that o is connected to.
Then T can have at most n − 1 other outputs that are busy, and each of these outputs can be
connected via at most n − 1 middle-stage switches. Since both S and T are connected to k
middle-stage switches, if k ≥ 2n − 1, then it is always possible to find a middle-stage switch
M that has a free input link to connect to S and a free output link to connect to T . Since S
and T are assumed to be crossbars or otherwise nonblocking switches, it is always possible to
connect i to the corresponding input link to M and to connect the corresponding output link of
M to o.

If k = 2n − 1 and n is set to its optimal value of
√

N /2, then the number of crosspoints
(summed across all smaller switches in Figure 13.12) becomes 5.6N

√
N . For example, for

N = 512, this reduces the number of crosspoints from 4.2 million for a crossbar to 516,096
for a three-stage Clos switch. Larger telephone switches, such as the No. 1. ESS, which can
handle 65,000 inputs, use an eight-stage switch for further reductions in crosspoint size.

CLOS NETWORKS AND MULTICHASSIS ROUTERS

On the other hand, for networking using VLSI switches, what is important is the total number
of switches and the number of links interconnecting switches. Recall that the largest possible
switches are fabricated in VLSI and that their cost is a constant, regardless of their crosspoint
size. Juniper Networks, for example, uses a Clos network to form effectively a 256-by-256
multichassis router by connecting sixteen 16-x-16 T-series routers in the first stage.

Using a standard Clos network for a fully populated multichassis router would require
16 routers in the first stage, 16 in the third stage, and k = 2 ∗ 16 − 1 = 31 switches in the

13.9 Scaling to Larger Switches 327

middle stage. Clearly, Juniper can (and does) reduce the cost of this configuration by setting
k = n. Thus the Juniper multichassis router requires only 16 switches in the middle stage.

What happens to a Clos network when k reduces from 2n − 1 to n? If k = n, the
Clos network is no longer nonblocking. Instead, the Clos network becomes what is called
rearrangeably nonblocking. In other words, the new input i can be connected to o as long as
it’s possible to rearrange some of the existing connections between inputs and outputs to use
different middle-stage switches. A proof and possible switching algorithm is described in the
Appendix. It can be safely skipped by readers uninterested in the theory.

The bottom line behind all the math in Section A.3.1 in the Appendix is as follows. First,
k = n is clearly much more economical than k = 2n − 1 because it reduces the number
of middle-layer switches by a factor of 2. However, while the Clos network is rearrangably
nonblocking, deterministic edge-coloring algorithms for switch scheduling appear at this time
to be quite complex. Second, the matching proof for telephone calls assumes that all calls
appear at the inputs at the same time; when a new call arrives, existing calls have to be
potentially rearranged to fit the new routes. So what does Juniper Networks do when faced
with this potential choice between economy (k = n) and complexity (for edge coloring and
rearrangement)?

While it’s not possible to be sure about what Juniper actually does, because their documen-
tation is (probably intentionally) vague, one can hazard some reasonable guesses. First, it is
clear they finesse the whole issue of rearrangement by replacing calls with packets and packets
by fixed-size cells within the fabric. Thus in each cell time, cells appear at each input destined
to every output; each new cell time requires a fresh application of the matching algorithm,
unfettered by the past. Second, their documentation indicates that in place of doing a slow,
perfect job using edge coloring, they do a reasonable, but perhaps imperfect, job by distributing
the traffic of each input across the middle switches using some form of load balancing.

The Juniper documentation claims that “dividing packets into cells and then distributing
them across the Clos fabric achieves the same effect as moving connections in a circuit-
switched network because all the paths are used simultaneously.” While this is roughly right
in a long-term sense, simple deterministic algorithms (in which each input chooses the middle
switch to send its next cell in round-robin order; see Exercises) can lead to hot spots in terms
of congested middle switches.

Thus it may be that the actual algorithm is deterministic and has possible cases of long-term
congestion (which can then be brushed aside by marketing as being pathological). However, it
may also be that the actual algorithm is randomized. In the simplest version, each input switch
picks a random middle switch (P3a) for each cell it wishes to transmit.

In a formal probabilistic sense, the expected number of cells each middle switch will
receive will be N /n, which is exactly the number of output links each middle switch has. Thus
if there is a stream of cells going to distinct outputs,5 the switch fabric can be expected to
achieve 100% throughput in the expected case.

However, randomization is trickier to implement than it may sound. First, just as with
hash functions, there is a reasonable probability of “collisions,” where too many input switches
choose the same output switch. This can reduce throughput and may require buffering within

5If there are cells going to the same output, there is nothing anyone can do about the loss in throughput
anyway.

328 C H A P T E R 1 3 Switching

the switch (or a two-phase process in which inputs make requests to middle switches before
sending cells).

The reduced throughput can, of course, be compensated for by using a standard industry
trick: speeding up internal switch links slightly. Although not given adequate attention in this
chapter, speedup is a very important technique in real switches to allow simple designs while
retaining efficiency.

Second, one has to find a good way to implement the randomization. Fortunately, while
there are many poor implementations in existing products, there are, in fact, some excel-
lent hardware random number generators. One good choice [All02] is the Tausworth [L’E96]
random number generator. It can be implemented easily using three linear feedback shift reg-
isters (LFSRs; see Chapter 9) that are XOR’ed together. Despite its compact implementation,
Tausworth passes many sophisticated tests for randomness, such as the diehard test [Mar02].

Third, the algorithms to reassemble cells into packets may be more complex when using
randomized load balancing than with deterministic load balancing; in the latter case, the
reassembly logic knows where to expect the next packet from.

13.9.3 Benes Networks for Larger Routers
Just as the No. 1. ESS telephone switch switches 65,000 input links, Turner [Tur97, CFFT97]
has made an eloquent case that the Internet should (at least eventually) be built of a few
large routers instead of several smaller routers. Such topologies can reduce the wasted links
for router-to-router connections between smaller routers and thus reduce cost; they can also
reduce the worst-case end-to-path length, reducing latency and improving user response times.

Essentially, a Clos network has roughly N
√

N scaling, in terms of crosspoint complexity
using just three stages. This trade-off and general algorithmic experience (P15) suggest that
one should be able to get N log N crosspoint complexity while increasing the switch depth to
log N . Such switching networks are indeed possible and have been known for years in theory,
in telephony, and in the parallel computing industry. Alternatives, such as Butterfly, Delta,
Banyan, and Hypercube networks, are well-known contenders.

While the subject is vast, this chapter concentrates only on the Delta and Benes networks.
Similar networks are used in many implementations. For example, the Washington University
Gigabit switch [CFFT97] uses a Benes network, which can be thought of as two copies of
a Delta network. Section A.4 in the Appendix outlines the (often small) differences between
Delta networks and others of the same ilk.

The easiest way to understand a Delta network is recursively. Imagine that there are
N inputs on the left and that this problem is to be reduced to the problem of building two
smaller (N /2)-size Delta networks. To help in this reduction, assume a first stage of 2-by-2
switches. A simple scheme (Figure 13.14) is to inspect the output that every input wishes to
speak to. If the output is in the upper half (MSB of output is 0), then the input is routed to the
upper N /2 Delta Network; if the output is in the lower half (i.e., MSB = 1), the input is routed
to the lower N /2 Delta network.

To economize on the first stage of two-input switches, group the inputs into consecutive
pairs, each of which shares a two-input switch, as in Figure 13.14. Thus if the two input cells
in a pair are going to different output halves, they can be switched in parallel; otherwise,
one will be switched and the other is either dropped or buffered. Of course, the same process
can be repeated recursively for both of the smaller (N /2)-size Delta networks, breaking them
up into a layer of 2-by-2 switches followed by four N /4 switches, and so on. The complete

13.9 Scaling to Larger Switches 329

N/2�1

N

0

1

N/2

N�1

0
0

1

0

1

(N/2)-size
Delta network

Output MSB�1

(N/2)-size
Delta network

Output MSB�0

F I G U R E 13.14 Constructing a Delta network recursively by reducing the problem of constructing
an N-input Delta network to the problem of constructing two (N /2)-input Delta networks.

expansion of a Delta network is shown in the first half of Figure 13.15. Notice how the recursive
construction in Figure 13.14 can be seen in the connections between the first and second stages
in Figure 13.15.

Thus to reduce the problem to 2 × 2 switches takes log N stages; since each stage has N /2
crosspoints, the binary Delta network has N log N crosspoint and link complexity. Clearly, we
can also construct a Delta network by using d-by-d switches in the first stage and breaking
up the initial network into d Delta networks of size N /d each. This reduces the number of
stages to logd N and link complexity to n logd N . Given VLSI costs, it is cheaper to construct
a switching chip with as large a value of d as possible to reduce link costs.

The Delta network, as do many of its close relatives (see Section A.4) such as the Banyan
and the Butterfly, has a nice property called the self-routing property. For a binary Delta
network, one can find the unique path from a given input to a given output o = o1, o2, . . . , os

expressed in binary by following the link corresponding to the value of oi in stage i. This
should be clear from Figure 13.14, where we use the MSB at the first stage, the second bit
at the second stage, and so on. For d ≥ 2, write the output address as a radix-d number, and
follow successive digits in a similar fashion.

An interesting property that one can intuitively see in Figure 13.14 is that the Delta network
is reversible. It is possible to trace a path from an output to an input by following bits of the
input in the same way. Thus in Figure 13.14 notice that in going from outputs to inputs, the
next-to-last bit of the input selects between two consecutive first-stage switches, and the last
bit selects the input. This reversibility property is important because it allows the use of a
mirror-reversed version of the Delta (see second half of Figure 13.15) with similar properties
as the original Delta.

One problem with the Delta network is congestion. Since there is a unique path from
each input to each output, the Delta network is emphatically not a permutation network. For
example, if each successive pair of inputs wishes to send a cell to the same output half, only
half of the cells can proceed to second stage; if this repeats, only a quarter can proceed to

330 C H A P T E R 1 3 Switching

1000
1111

1001
1011

1000
1001

1011

1111

Distribute Route and copy

F I G U R E 13.15 Doing multicast copy-twice routing using a Benes network, in which the first half
distributes load and the second routes and copies. The first half is a Delta network (Figure 13.14), and
the second half is a mirror-reversed Delta network.

the third stage; and so on. Thus there are combinations of output requests for which the Delta
network throughput can reduce to that of one link, as opposed to N links.

Clearly, one way to make the Delta network less susceptible to congestion for arbitrary per-
mutations of input requests is to add more paths between an input and an output. Generalizing
the ideas in a Clos network (Figure 13.12), one can construct a Benes network (Figure 13.15),
which consists of two (log N)-depth networks: The left half is a standard Delta network, and
the right half is a mirror-reversed Delta network. Look at the right half backwards, going left
from the outputs: Notice that the connections from the last stage to the next-to-last stage are
identical to those between the first and second stages.

One can also visualize a Benes network recursively (P15) by extending Figure 13.14 by
adding a third stage of 2-by-2 switches and by connecting these third stages to the two (N /2)-
sized networks in the middle in the same way as the first-stage switches are connected to the
two middle (N /2)-sized networks (Figure 13.16). Observe that this recursion can be used to
directly create Figure 13.15 without creating two separate Delta networks.

Observe the similarity between the recursive version of the Benes network in Figure 13.16
and the Clos network of Figure 13.12. This similarity can be exploited to prove that the Benes
can route any permutation of output requests in a manner similar to our proof (see earlier box)
of the rearrangably nonblocking property of a Clos network.

In each of two iterations, start by doing a perfect matching between the first and last
stages of Figure 13.16, as before, and pick one of the two middle switches. However, rather
than stopping here as in the Clos proof, the algorithm must recursively follow the same
routing procedure in the (N /2)-sized Benes network. Alternatively, the whole process can

13.9 Scaling to Larger Switches 331

N

0

1

0

1

0

1

(N/2)-size
Benes network

(N/2)-size
Benes network

F I G U R E 13.16 Recursively constructing a Benes network.

be formulated using edge coloring. The final message is that it is possible to perfectly route
arbitrary permutations in a Benes network; however, doing so is fairly complex and is unlikely
to be accomplished cheaply in a minimum packet arrival time.

However, recall the earlier argument that a randomized strategy works well, in an expected
sense, for Clos networks instead of a more complex and deterministic edge-coloring scheme.
Analagous to picking a random middle switch in the Clos network, returning to Figure 13.15
one can pick a random destination for each cell in the first half. One can then route from the
random intermediate destination to the actual cell destination (using reverse Delta routing) in
the second half. The roots of this idea of using random intermediate destinations go back to
Valiant [Val90], who first used it to route in a (single-copy) hypercube.

As in the case of a Clos network using a random choice of middle switches, it can be shown
that (in an expected sense) no internal link gets congested as long as no input or output link is
congested. Intuitively, the load-splitting half takes all the traffic destined for any output link
from any input and spreads it evenly over all the N output links of the first half of Figure 13.15.
In the second half, because of the mirror-image structure, all the traffic of the link fans in back
to the destined output links.

For example, consider the upper link coming into the first switch in the last stage of
Figure 13.15. An important claim is that this upper link will carry half of the traffic to output
link 1. This is because this upper link carries all the traffic destined for output link 1 from the
top half of the input nodes in the route-and-copy network (mirror-reversed Delta). And by the
load-splitting property of the distribute network (the first half of the Delta network), this is
half of the traffic destined for output link 1. Similarly, it is possible to argue that the upper link
carries half the traffic going to output link 2. Thus if output links 1 and 2 are not saturated,
neither will the upper link to switch 1 in the last stage be. One can make a similar argument
for any internal link in the second half.

While some of these properties of a Benes network were known before, Turner [Tur97]
extended these ideas to include multicast. Notice that our previous example of a scalable switch
fabric, the Juniper Clos-based multichassis router, is silent about how multicast is handled.
Multicast is handled in a potentially second-class fashion using a server-based approach, as

332 C H A P T E R 1 3 Switching

in the take-a-ticket scheme. However, in the Washington University and Growth Network
switches [Tur97, CFFT97], Turner showed how to handle multicast traffic in first-class fashion.
Thus his vision is for large, scalable, multimedia switches that will need to handle multicast
traffic (for, say, video conferencing) as the rule rather than the exception.

To extend the Benes routing ideas to multicast, Turner starts by devising a simpler form
of multicast, called copy-twice multicast. In this simpler problem, each input may specify two
outputs. It is the job of the network to send two copies of the input cell to the two specified
output ports. If this can be done and output links can be recycled back to inputs, then the two
copies created in the first pass can be extended to four in the second pass and to 2i copies in i
passes through the Benes network.

In Figure 13.15 for example, the fifth input link has a cell destined to 1000 (i.e., output 8)
and to 1111 (i.e., to output 15). In the first half, the cell is randomly routed to input 7 of the
second half. In the second half, follow the bits of the real outputs, MSB first, until the first
point that the two output addresses differ. As usual, a 0 in the current bit is switched upward
and a 1 is switched downward. Thus in the first stage of the copy network, the cell is routed to
the downlink because both output addresses start with 1.

Life gets more exciting at the second stage because in the second bit from the right, the
addresses differ. Thus the second-stage switch in the copy network (more precisely the fourth
switch from the top) now replicates the cell in two directions. The two output paths have
separated at the first differing bit. From now each of the two cells (the single cell recall is now
two cells) follows the address of its corresponding output. Check that following the last two
bits of 1000 and 1111 will cause the two cells to reach outputs 8 and 15 in Figure 13.15.

Because of a very similar intuition, it can be shown that doing the copy at the first
differing bit does not cause any internal link to be overloaded if the output and input links are
not overloaded [Tur97]. In fact, the same result would hold if a copy-3 network (i.e., a network
capable of producing three copies in one pass) was used. So why stop at two?

It turns out that when a cell comes into a switch it carries a multicast output-link specifier
that has to be translated into two (or more) unicast specifiers for each pass. Similarly, each cell
must carry two (or more) addresses during its travels. Thus using a small number like 2 limits
the complexity of the port-mapping operation and the header overhead. Using larger numbers
would only decrease the number of passes to replicate a multicast cell.

One of the nice features of Turner’s multicast design is that larger multicast fanouts can
be handled by multiple iterations. This can be logically pictured as a multicast binary tree
(P15) across several Benes networks connected in series. Of course, in reality the same Benes
network is reused, reducing the cost. However, this mental picture indicates why adding a new
multicast connection is very efficient. It simply involves adding a new leaf to the tree, with a
minimum of disturbance to existing multicast tree nodes or other connections [Tur97].

Thus the Turner switch tends to use resources optimally because of recycling. The design
allows resources (crosspoints, mapping tables, etc.) to scale as N log N , can handle any
configuration of unicast and multicast traffic, and can add or remove an endpoint from a
multicast tree in constant time. Competing switch architectures fail to satisfy all these con-
ditions, sometimes spectacularly. This means that in practice, they can handle only a very
limited amount of multicast traffic. Of course, one can argue about the current importance of
multicast, which is certainly limited at the time of writing. However, with the rise of videocon-
ferencing over the Internet, one can clearly envision a future where large multimedia switches
are key.

13.10 Scaling to Faster Switches 333

Before ending this section, it is worth noting that just as with the Clos switch, the concep-
tual simplicity of a randomized load-balancing strategy for a Benes network comes with some
attendant implementation complexity. First, since randomized load balancing is not perfect,
the Turner switch needs buffers and flow control. Second, it is important to get the randomiza-
tion done right. The first prototype Washington University switch [CFFT97] used simple load
balancing based on a counter. However, when this switch was redesigned as part of a company
called Growth Networks [Tur02], the switch used a much more sophisticated randomizer to
deal with pathological input patterns. Finally, efficient resequencing of cells takes special effort
in this architecture [Tur97].

13.10 SCALING TO FASTER SWITCHES

The preceding section focused on how switches can scale in size. This section studies how
switches can scale in speed. Now, it may be that the speeds of individual fiber channels
level off at some point. Many pundits say that fundamental SRAM and optical limits will
limit individual fiber channels to OC-768 speeds. The capacity of fiber may then be used for
producing more individual channels (e.g., using multiple wavelengths) rather than higher-
speed individual channels. The use of more channels then affects switching only in terms of
increasing port count and can be handled using the techniques of the previous section.

While this is one viewpoint, the lessons of history should teach us that it is certainly pos-
sible for individual applications to increase their speed needs and for technology surprisingly
to keep pace by producing faster link speeds that increase from 40 Gbps today to 10 terabits
in, say, 5 years. Thus it is worthwhile to look for techniques to scale switches in speed. There
are three common techniques: bit slicing, the use of short links, and the use of randomized
memory sharing.

13.10.1 Using Bit Slicing for Higher-Speed Fabrics
The simplest way to cope with link speed increases is to use a faster clock rate to run the
switching electronics. Unfortunately, optical speeds increase exponentially, while ASIC clock
rates increase only at around 10% per year. However, by Moore’s law, the number of transistors
placed on a chip doubles every 18–24 months without a cost increase. Thus the simplest way
to cope with link speed increases is to use parallelism.

Suppose it were possible to build a crossbar where every link has speed S. Then to handle
links of speed kS for some constant k, a design could use k crossbar “slices.” For every group
of k bits coming from a link, one bit each is sent to each crossbar slice. Thus each slice sees a
reduced link speed of kS/k = S and thus can be feasibly implemented. Of course, this implies
that the reassembly logic can scale in speed.

If the bits are distributed to slices in deterministic fashion (i.e., bit 1 of the first cell goes to
slice 1, bit 2 to slice 2, etc.), the reassembly logic can be simplified because it knows on which
slice to expect the next bit. However, care must be taken to avoid synchronization errors. The
scheduler can make the same decision for all slices, making the scheduler easy to build.

The Juniper T-series [Sem02] uses four active switch fabric planes (i.e., slices). It also uses
a fifth plane as a hot-standby for redundancy. Since each plane uses a request-grant mechanism,
if a grant does not return within a timeout, a plane failure can be detected. At this point, only the

334 C H A P T E R 1 3 Switching

cells in transit within the failed plane are lost, the failed plane is swapped out for maintenance,
and the standby plane is swapped in.

While little discussed so far, redundancy and fault tolerance are crucial for large switch
designs because more is at stake. If a small, 8-port router fails, only a few users are affected.
But a large, 256-port-by-256-port router must work nearly always, with internal redundancy,
masking out faults. This is because external redundancy, in terms of a second such router,
is too expensive. Most ISPs require core routers to be NEBS (Network Equipment Building
System) [NEB02] compliant. Typically, large routers are expected to have at most 5 minutes
of downtime in a year.

13.10.2 Using Short Links for Higher-Speed Fabrics
One feature of interconnection networks ignored so far is the physical length of the links used
between stages. Links come in various forms, from serial links between chips, to backplane
traces, to cable connections between different line cards. Intuitively, the length matters because
long wires increase delay and decrease bit rate, unless compensated for using more expensive
signaling technology, such as optical signaling.

A look at the Delta and Clos networks shows that these networks use at least a few long
wires between stages, whose length scales as O(N). There are, however, interconnect networks
that can be packaged with uniformly short wires. These are the so-called low-dimensional mesh
networks. Such mesh networks have a checkered history in parallel computing, being used by
Cray and Intel supercomputers.

The simplest low-dimensional mesh is the 1D torus, which is basically a line of nodes in
which the last node is also connected to the first node to form a logical ring (Figure 13.17).
A 2D torus is basically a two-dimensional grid of nodes where the last node in each row or
column is also connected to the first node in the same row or column. A 3D torus is the same
idea extended to a three-dimensional grid.

Even a 1D torus, which is logically a ring, appears to have one long wire that connects
the first and last nodes (Figure 13.17). However, a clever way to amortize this long line length

A

A

B

B

CD

C D

One long wire

All short wires

F I G U R E 13.17 How a 1D torus can be packaged physically using short wires.

13.10 Scaling to Faster Switches 335

across all nodes is to use a simple degree of freedom (P13) and to lay out the first half of the
nodes on the forward path of the ring (Figure 13.17) and the second half on the reverse path.
While the length of the A-to-B wire may have doubled, there are no long wires. The same idea
can be extended for 2D and 3D toruses by repeating this idea across rows and columns.

Like a Butterfly or Delta network, the problem with a 1D torus, however, is that it suffers
from congestion, because there are only two paths between two inputs. It also suffers from
high latency because some pairs of nodes have to travel O(N /2) hops. The congestion and
latency problems are relieved by using a 3D torus. For example, in a 3D torus that is 8 by 8
by 8, an average message can choose [Dal02] between 90 paths of six hops each.

The Avici TSR Router [Dal02] is an example of a router built using a 3D torus. It can
handle up to 560 line cards, and the use of short wires allows it to be packaged very neatly. A
260-line-card configuration can be packaged without any cables by connecting only adjacent
backplanes using jumpers. The 560-line-card version uses one set of short cables between two
rows of racks [Dal02].

Besides the use of short links, the 3D mesh offers a large number of alternate paths
for fault tolerance and the ability to be incrementally upgraded with minimal extra cost. By
contrast, some interconnection networks tend to require scaling in powers of 2. The Avici TSR
router also handles the equivalent of head-of-line blocking by using separate virtual networks.
Each virtual network uses separate buffers essentially to create the illusion of several physical
switches, one of which can be used when another is blocked.

It appears that HOL blocking is handled by iSLIP, PIM, and the Avici TSR but not by the
Gigaswitch, the Turner Benes network, or the Clos network. However, switches with buffered
switch elements such as the Turner Benes network are not as susceptible to HOL blocking
when compared to switches (such as the Gigaswitch) that do not. Given that modern switches
can support thousands of cell buffers per crosspoint, HOL blocking may be a red herring for
fabrics with internal buffering.

13.10.3 Memory Scaling Using Randomization
In all the switches seen so far, packets have to be stored in buffers during periods of congestion.
The standard rule of thumb is for routers to have one RTT (Roundtrip Time) worth of buffering
to allow congestion-control algorithms to slow down without causing packet loss. While it may
be possible to get around this limit using better higher-level congestion-control algorithms,
it appears that the combination of TCP and RED today requires this amount of buffering.
Using 200 msec as a conservative estimate for round-trip delay, a 2-terabit router must have
0.4 terabit’s worth of packet buffers. Thus as link speeds increase, and assuming no congestion-
control innovations, the memory needs will also increase.

Consider an input-buffered switch and packets coming in at OC-768 speeds. Thus a
minimum-size packet arrives every 8 nsec and will require at least two accesses to memory:
the first to store the packet and the second to read it out for transmission through the fabric.
Given that the fastest DRAM available at the time of writing has a cycle time of 50 nsec, it is
clear that the only way to meet the memory bandwidth needs using DRAM would be to use a
wider memory word.

Unfortunately, one cannot use a wider memory word size than that of a minimum-size
packet because it is not possible to guarantee that the next packet will be read out at the same
time. One could use SRAMs (at 4-nsec cycle times at the time of writing, this should be just

336 C H A P T E R 1 3 Switching

adequate), but then one would have to pay a cost premium of anywhere from a factor of 4 to
a factor of 10.6

One way out of this dilemma is to use parallel banks of DRAMs. It is possible to keep
up with link speeds using 12 DRAM banks working in parallel, each with a 40-byte access
width. Intuitively, this seems plausible. For any input stream of packets, send the first packet
to DRAM 1, the second to DRAM 2, etc. Unfortunately, because of QoS and scheduling
algorithms, it is not clear in which order packets will be read out. Thus it may be that during
some period of time all the packets are read out from a few DRAMs only, causing memory
bandwidth contention and eventual packet loss.

Such memory contention problems are familiar to computer architects when using inter-
leaved memory. For example, if an array is laid out sequentially across memory banks, it is
possible that accesses that are spaced a certain stride apart (e.g., column accesses) may all
hit the same bank. One potentially clever way out of the contention problem is to steal a leaf
from the designers of the CYDRA-2 stride-insensitive memory [Rau91]. Their idea was to
pseudo-randomly interleave storage requests to memory such that with high probability any
access pattern (other than to the same word) would not cause hot spots.

In the router context, instead of sending packet 1 to DRAM 1 and so on, one would send
each packet to a randomly selected DRAM. Of course, as with all randomized interleaving
schemes (see the earlier Clos and Benes sections), reassembly gets more complicated, with
state having to be kept (in SRAM?) to resequence these packets.

An interesting variation on this theme and that of randomized routing a la Valiant [Val90]
is a technique that appears to be used by Juniper Networks in their M40 and M160 routers.
From what is possible to glean from their patents [SAFL99], when a packet enters a line card
in such a Juniper router it is (without any lookup) sent to a randomly selected other line card,
where it is looked up, stored, and finally switched to its correct destination line card.

Why in the world would a leading router company go through one level of randomized
indirection and take two passes though the fabric for every packet? One explanation may be
that this randomization reduces the amount of required DRAM at every input line card from a
“worst-case size” to a more “average size.” However, it would be nice to have some analysis
or simulations to support this thesis.

13.11 CONCLUSIONS

This chapter has surveyed techniques for building switches, from small shared-memory
switches to input-queued switches used in the Cisco GSR, to larger, more scalable switch
fabrics used in the Juniper T130 and Avici TSR Routers.

Since this is a book about algorithmics, it is important to focus on the techniques and not
get lost in the mass of product names. These are summarized in Figure 13.2. Fundamentally, the
major idea in PIM and iSLIP is to realize that by using VOQs one can feasibly (with O(N2) bits)
communicate all the desired communication patterns to avoid head-of-line blocking. These
schemes go further and show that maximal matching can be done in N log N time using
randomization (PIM) or approximately (iSLIP) using round-robin pointers per port for fairness.

While N log N is a large number, by showing that this can be done in parallel by each
of N ports, the time reduces to log N (in PIM) and to a small constant (in iSLIP). Given that

6The cost premium of DRAM versus SRAM is hard to pin down because DRAM prices sometimes fall
dramatically.

13.12 Exercises 337

log N is small, even this delay can be pipelined away to run in a minimum packet time. The
fundamental lesson is that even algorithms that appear complex, such as matching, can, with
randomization and hardware parallelism, be made to run in a minimum packet time. Further
scaling in speed can be done using bit slices.

Larger port counts are handled by algorithmic techniques based on divide-and-conquer. An
understanding of the actual costs of switching shows that even a simple three-stage Clos switch
works well for port sizes up to 256. However, for larger switch sizes, the Benes network, with
its combination of (2log N) depth Delta networks, is better suited for the job. The main issue in
both these scalable fabrics is scheduling. And in both cases, as in PIM, a complex deterministic
algorithm is finessed using simple randomization. In both the Clos and Benes networks, the
essential similarity of structure allows the use of an initial randomized load-balancing step
followed by deterministic path selection from the randomized intermediate destination.

Similar ideas are also used to reduce memory needs by either picking a random intermedi-
ate line card or a random choice of DRAM bank to send a given packet (cell) to. The knockout
switch uses trees of randomized 2-by-2 concentrators to provide k-out-of-N fairness. Thus
randomization is a surprisingly important idea in switch implementations.

It is interesting to note that almost every new switch idea described in this chapter has
led to a company. For example, Kanakia worked on shared-memory switches at Bell Labs and
then left to found Torrent. Juniper seems to have been started with Sindhu’s idea for a new
fabric based, perhaps, on the use of staging via a random intermediate line card. McKeown
founded Abrizio after the success of iSLIP. Growth Networks was started by Turner, Parulkar,
and Cox to commercialize Turner’s Benes switch idea, and was later sold to Cisco. Dally took
his ideas for deadlock-free routing on low-dimensional meshes and moved them successfully
from Cray Computers to Avici’s TSR.

Thus if you, dear reader, have an idea for a new folded Banyan or an inverted Clos, you,
too, may be the founder of the next great thing in networking. Perhaps some venture capitalist
will soon be meeting you in a coffee shop in Silicon Valley to make you an offer you cannot
refuse.

In conclusion, for a router designer it’s better to switch than to fight — with the difficulties
of designing a high-speed bus.

13.12 EXERCISES

1. Take-a-Ticket State Machine: Draw a state machine for take-a-ticket. Describe the state
machine using pseudocode, with a state machine for each sender and each receiver.
Extend the state machine to handle hunt groups.

2. Knockout Implementation: There are dependencies between the knockout trees. The
simplest implementation passes all the losers from the Position j − 1 tree to the Position j
tree. This would take k log N gate delays, because each tree takes log N gate delays. Find
a way to pipeline this process such that Tree j begins to work on each batch of losers as
they are determined by Tree j − 1, as opposed to waiting for all losers to be determined.
Draw your implementation using 2-by-2 concentrators as your building block and
estimate the worst-case delay in concentrator delays.

3. PIM unfairness: In the knockout example, using just one tree can lead to unfairness; a
collection of locally fair decisions can lead to global unfairness. Surprisingly, PIM can
lead to the some form of unfairness as well (but not to persistent starvation). Consider a

338 C H A P T E R 1 3 Switching

2-by-2 switch, where input 1 has unlimited traffic to outputs 1 and 2, and input 2 has
unlimited traffic to output 1.

• Show that, on average, input 1 will get two grants from outputs 2 and 1 for half the cell
slots and one grant (for output 2 only) for the remaining cell slots. What fraction of
output 2’s link should input 1 receive?

• Infer, based on the preceding fraction of output 1’s bandwidth, what input 1 receives on
average versus input 2. Is this fair?

4. Motivating the iSLIP Pointer Increment Rule: The following is one unfairness
scenario if pointers in iSLIP are incremented incorrectly. For example, suppose in
Figure 13.11 that input port A always has traffic to output ports 1, 2, and 3, whose grant
pointers are initialized to A. Suppose also that input ports B and C also always have traffic
to 2. Thus initially A, B, and C all grant to 1, who chooses A. In the second iteration, since
input port 2 has traffic to B, 2 and B are matched.

• Suppose B increments its grant pointer to 3 based on this second iteration match.
Between which port pairs can traffic be continually starved if this scenario persists?

• How does iSLIP prevent this scenario?

5. ESLIP: Answer the following questions about ESLIP.

• Describe a scenario where a multicast cell does not finish its fanout in one cycle despite
the use of a shared grant pointer and the fact that multicast has priority over unicast in
alternate time slots.

• Why is there no need for a shared multicast accept pointer?

6. Clos Proof Revisited: The Clos proof is based on a reduction that looks and is simple.
However, until you try a few twists that do not work, you may not appreciate its
simplicity. In our reduction, each iteration routed n pairs, one per input stage, using just
one middle switch. Suppose instead that any set of middle switches is used that had free
input and output links. Show, by counterexample, why the reduction does not work.

7. Benes Switch Load-Balancing Proof: In the Benes switch, the chapter argued that any
link one hop from the output cannot be overloaded, assuming perfect load balancing at
the first stage. It is helpful to work out with some simple cases to provide intuition before
turning, if needed, to the proof provided in Turner [Tur97].

• Repeat the same proof for links one hop away from the network but this time for a
two-copy network. Does the proof change for a three-copy network?

• Repeat all the proofs for links two hops away. Do you see a pattern that can now be
stated algebraically [Tur97]?

8. Avici TSR and 3D Grid Layout: It seems a good bet that layout and packaging will be
increasingly important as switches scale up in speeds. Extend the layout drawing in
Figure 13.17 for a 1D torus to a 2D and a 3D torus. Then read Dally [Dal02] to learn how
the Avici TSR packages its 3D mesh in a box.

C H A P T E R 14

Scheduling Packets

A schedule defends from chaos and whim

— Annie Dillard

From arranging vacations to making appointments, we are constantly scheduling activ-
ities. A busy router is no exception. Routers must schedule the handling of routing updates,
management queries, and, of course, data packets. Data packets must be scheduled in real time
by the forwarding processors within each line card. This chapter concentrates on the efficient
scheduling of data packets while allowing certain classes of data packets to receive different
service from other classes.

Returning to our picture of a router (Figure 14.1), recall that packets enter on input links
and are looked up using the address lookup component. Address lookup provides an output
link number, and the packet is switched to the output link by the switching system. Once
the packet arrives at the output port, the packet could be placed in a FIFO (first in, first out)
queue. If congestion occurs and the output link buffers fill up, packets arriving at the tail of the
queue are dropped. Many routers use such a default output-link scheduling mechanism, often
referred to as FIFO with tail-drop.

However, there are certainly other options. First, we could place packets in multiple queues
based on packet headers and schedule these output queues according to some scheduling policy.
There are several policies, such as priority and round-robin, that can schedule packets in a
different order from FIFO. Second, even if we had a single queue, we need not always drop
from the tail when buffers overflow; we can, surprisingly, even drop a packet when the packet
buffer is not full.

Packet scheduling can be used to provide (to a flow of packets) so-called quality of service
(QoS) guarantees on measures such as delay and bandwidth. We will see that QoS requires
packet scheduling together with some form of reservations at routers. We will only briefly
sketch some reservation schemes, such as those underlying RSVP [Boy97] and DiffServ
[SWG], and we refer the reader to the specifications for more details. This is because the
other parts of the QoS picture, such as handling reservations, can be handled out of band at a
slower rate by a control processor in the router. Since this book concentrates on implementation
bottlenecks, this chapter focuses on packet scheduling.

We will briefly examine the motivation for some popular scheduling choices. More impor-
tantly, we will use our principles to look for efficient implementations. Since packet scheduling
is done in the real-time path, as is switching and lookup, it is crucial that scheduling decisions
can be made in the minimum interpacket times as links scale to OC-768 (40-gigabit) speeds
and higher.

339

340 C H A P T E R 1 4 Scheduling Packets

Switching

Output linkInput link i

Scheduling

ROUTER

B2

B1

B3

Address lookup

F I G U R E 14.1 Router model: This chapter concentrates on the third bottleneck, B3, scheduling of
data packets.

This chapter is organized as follows. Section 14.1 presents the motivation for providing
QoS guarantees. Section 14.2 describes random early detect (RED) schemes, which are better
suited to TCP congestion control than tail-drop. Section 14.3 offers a simple scheme to limit
the bandwidth and burstiness of a flow, and Section 14.4 describes a basic priority scheme.
Section 14.5 provides a brief introduction to reservation protocols. Section 14.6 presents
simple techniques to apportion the available link bandwidth among competing flows. The
section also briefly describes how the accompanying reservations for flow bandwidths can be
made. Section 14.7 shows how one can provide good delay guarantees for a flow, at the cost of
sorting packet deadlines in real time. Section 14.8 describes several scalable schedulers that
are able to schedule a large number of flows with little or no state.

The packet-scheduling techniques described in this chapter (and the corresponding
principles involved) are summarized in Figure 14.2.

Q u i c k R e f e r e n c e G u i d e
The most important scheduling algorithms that an Internet router must implement are RED (Sec-

tion 14.2), token buckets (Section 14.3), priority queueing (Section 14.4), Deficit round-robin (DRR)
(Section 14.6.3), and DiffServ (for DiffServ, consult only the relevant portion of Section 14.8). Other
interconnect devices, such as SAN switches and gateways, are not required to implement RED; however,
implementing some form of QoS, such as DRR or token buckets, in such devices is also a good idea.

14.1 MOTIVATION FOR QUALITY OF SERVICE

We will be assigning packets flows to queues and sometimes trying to give guarantees to flows.
Though we have used the term earlier, we repeat the definition of a packet flow. A flow is a
stream of packets that traverses the same route from the source to the destination and that
requires the same grade of service at each router or gateway in the path. In addition, a flow

14.1 Motivation for Quality of Service 341

P7

P3

P3
P12
P7

P13
P15
P5
P5b

Use power of two parameters

Use policing, not shaping

Focus on bandwidth only
Maintain list of active queues
Use large enough quanta

Leap forward, not backward
Use a heap to sort tags
Use a sorting chip
Use a d-heap and wide memory

Token bucket policing

DRR

Leap forward
Virtual clock

Number Principle Scheduling
Technique

P3a Aggregate by hashing flows SFQ

P3c
P10

Shift work to edge routers
Pass class in TOS field

DiffServ

Pass drop probability in header Core statelessP10

RED

F I G U R E 14.2 Summary of packet-scheduling techniques used in this chapter and the corresponding
principles.

must be identifiable using fields in a packet header; these fields are typically drawn from the
transport, routing, and data link headers only.

The notion of a flow is general and applies to datagram networks (e.g., IP, OSI) and virtual
circuit networks (e.g., X.25, ATM). For example, in a virtual circuit network a flow could be
identified by a virtual circuit identifier, or VCI. On the other hand, in the Internet a flow could
be identified by all packets (a) with a destination address that matches subnet A, (b) with a
source address that matches subnet B, and (c) that contain mail traffic, where mail traffic is
identified by having either source or destination port numbers equal to 25. We assume that
packet classification (Chapter 12) can be used to efficiently identify flows.

Why create complexity in going beyond FIFO with tail-drop? The following needs are
arranged roughly in order of importance.

• Router Support for Congestion: With link speeds barely catching up with exponentially
increasing demand, it is often possible to have congestion in the Internet. Most traffic is
based on TCP, which has mechanisms to react to congestion. However, with router support
it is possible to improve the reaction of TCP sources to congestion, improving the overall
throughput of sources.

• Fair Sharing of Links among Competing Flows: With tail-drop routers, customers have
noticed that during a period of a backup across the network, important Telnet and e-mail
connections freeze. This is because the backup packets grab all the buffers at an output in
some router, locking out the other flows at that output link.

• Providing QoS Guarantees to Flows: A more precise form of fair sharing is to guarantee
bandwidths to a flow. For example, an ISP may wish to guarantee a customer 10 Mbps of

342 C H A P T E R 1 4 Scheduling Packets

Time

10 1
S D

W
in

do
w Threshold

Slow start

Linear Fast
retransmit

Timeout

F I G U R E 14.3 An illustration of TCP congestion control as a prelude to RED.

bandwidth as part of a virtual private network connecting customer sites. A more difficult
task is to guarantee the delay through a router for a flow such as a video flow. Live video
will not work well if the network delay is not bounded.

None of these needs should be surprising when one looks at a time-sharing operating
system (OS) such as UNIX or Windows NT. Clearly, in times of overload the OS must decide
which load to shed; the OS often time-shares among a group of competing jobs for fairness;
finally, some operating systems provide delay guarantees on the scheduling of certain real-time
jobs, such as playing a movie.

14.2 RANDOM EARLY DETECTION

Random early detection (RED) is a packet-scheduling algorithm implemented in most modern
routers, even at the highest speeds, and it has become a de facto standard. In a nutshell, a
RED router monitors the average output-queue length; when this goes beyond a threshold, it
randomly drops arriving packets with a certain probability, even though there may be space
to buffer the packet. The dropped packet acts as a signal to the source to slow down early,
preventing a large number of dropped packets later.

To understand RED we must review the Internet-congestion-control algorithm. The top
of Figure 14.3 shows a network connecting source S and destination D. Imagine the network
had links with capacity 1 Mbps and that a file transfer can occur at 1 Mbps. Now suppose the
middle link is replaced by a faster, 10-Mbps link. Surely it can’t make things worse, can it?
Well, in the old days of the Internet it did. Packets arrived at a 10-Mbps rate at the second
router, which could only forward packets at 1 Mbps; this caused a flood of dropped packets,
which led to slow retransmissions. This resulted in a very low throughput for the file transfer.

Fortunately, the dominant Internet transport protocol, TCP, added a mechanism called
TCP congestion control, which is depicted in Figure 14.3. The source maintains a window
of size W , which is the number of packets the source will send without an acknowledgment.
Controlling window size controls the source rate because the source is limited to a rate of W
packets in a trip delay to the destination. As shown in Figure 14.3, a TCP source starts W at 1.

14.2 Random Early Detection 343

10 1
S D

RED randomly
drops a packet

DECbit sets a
congestion bit

F I G U R E 14.4 RED is an early warning system that operates implicitly by packet dropping, instead
of explicitly by sending a bit as in the DECbit scheme.

Assuming no dropped packets, the source increases its window size exponentially, doubling
every round-trip delay, until W reaches a threshold. After this, the source increases W linearly.

If there is a single dropped packet (this can be inferred from a number of acknowledgments
with the same number), the “gap” is repaired by retransmitting only the dropped packet; this is
called fast retransmit. In this special case, the source detects some congestion and reduces its
window size to half the original size (Figure 14.3) and then starts trying to increase again. If
several packets are lost, the only way for the source to recover is by having a slow, 200-msec
timer expire. In this case, the source infers more drastic congestion and restarts the window
size at 1, as shown in Figure 14.3.

For example, with tail-drop routers, the example network shown at the top of Figure 14.3
will probably have the source ramp up until it drops some packets and then return to a window
size of 1 and start again. Despite this oscillation, the average throughput of the source is quite
good, because the retransmissions occur rarely as compared to the example without congestion
control. However, wouldn’t it be nicer if the source could drop to half the maximum at each
cycle (instead of 1) and avoid expensive timeouts (200 msec) completely? The use of a RED
router makes this more likely.

The main idea in a RED [FJ93] router (Figure 14.4) is to have the router detect congestion
early, before all its buffers are exhausted, and to warn the source. The simplest scheme, called
the DECbit scheme [RJ90], would have the router send a “congestion experienced” bit to the
source when its average queue size goes beyond a threshold. Since there is no room for such
a bit in current IPv4 headers, RED routers simply drop a packet with some small probability.
This makes it more likely that a flow causing congestion will drop just a single packet, which
can be recovered by the the more efficient fast retransmit instead of a drastic timeout.1

The implementation of RED is more complex than it seems. First, we need to calculate the
output-queue size using a weighted average with weight w. Assuming that each arriving packet
uses the queue size it sees as a sample, the average queue length is calculated by adding (1−w)
times the old average queue size to w times the new sample. In other words, if w is small,
even if the sample is large, it only increases the average queue size by a small amount. The
average queue size changes slowly as a result and needs a large number of samples to change

1But what of sources that do not use TCP and use UDP? Since the majority of traffic is TCP, RED is still useful;
the RED drops also motivate UDP applications to add TCP-like congestion, a subject of active research. A more
potent question is whether RED helps small packet flows, such as Web traffic, which account for a large percentage
of Internet traffic.

344 C H A P T E R 1 4 Scheduling Packets

1.0

0

Min
threshold

Max
threshold

MaxP

D
ro

p
pr

ob
ab

ili
ty

Average queue size

AverageQ � (1�W)*AverageQ � (W *SampleQsize)

F I G U R E 14.5 Calculating drop probabilities using RED thresholds.

value appreciably. This is done deliberately to detect congestion on the order of round-trip
delays (100 msec) rather than instantaneous congestion that can come and go. However, we
can avoid unnecessary generality (P7) by allowing the w to be only a reciprocal of a power of
2; a typical value is 1/512. There is a small loss in tunability as compared to allowing arbitrary
values of w. However, the implementation is more efficient because the multiplications reduce
to easy bit shifting.

However, there’s further complexity to contend with. The drop probability is calculated
using the function shown in Figure 14.5. When the average queue size is below a minimum
threshold, the drop probability is zero; it then increases linearly to a maximum drop probability
at the maximum threshold; beyond this all packets are dropped. Once again, we can remove
unnecessary generality (P7) and use appropriate values, such as MaxThreshold being twice
MinThreshold, and MaxP a power of 2. Then the interpolation can be done with two shifts and
a subtract.

But wait, there’s more. The version of RED so far is likely to drop more than one packet
in a burst of closely spaced packets for a source. To make this less likely and fast retransmit
more likely to work, the probability calculated earlier is scaled by a function that depends on
the number of packets queued (see Peterson and Davy [PD00] for a pithy explanation) since
the last drop. This makes the probability increase with the number of nondropped packets,
making closely spaced drops less likely.

But wait, there’s even more. There is also the possibility of adding different thresholds for
different types of traffic; for example, bursty traffic may need a larger Minimum Threshold.
Cisco has introduced weighted RED, where the thresholds can vary depending on the TOS
bits in the IP header. Finally, there is the thorny problem of generating a random number at a
router. This can be done by grabbing bits from some seemingly random register on the router;
a possible example is the low-order bits of a clock that runs faster than packet arrivals. The net

14.3 Token Bucket Policing 345

result is that RED, which seems easy, takes some care in practice, especially at gigabit speeds.
Nevertheless, RED is quite feasible and is almost a requirement for routers being built today.

14.3 TOKEN BUCKET POLICING

So far with RED we assumed that all packets are placed in a single output queue; the RED drop
decision is taken at the input of this queue. Can we add any form of bandwidth guarantees for
flows that are placed in a common queue without segregation? For example, many customers
require limiting the rate of traffic for a flow. More specifically, an ISP may want to limit NEWS
traffic in its network to no more than 1 Mbps. A second example is where UDP traffic is flowing
from the router to a slow remote line. Since UDP sources currently do not react to congestion,
congestion downstream can be avoided by having a manager limit the UDP traffic to be smaller
than the remote line speed. Fortunately, these examples of bandwidth limiting can easily be
accomplished by a technique called token bucket policing, which uses only a single queue and
a counter per flow.

Token bucket policing is a simple derivative of another idea, called token bucket shaping.
Token bucket shaping [Tur86] is a simple way to limit the burstiness of a flow by limiting its
average rate as well as its maximum burst size. For example, a flow could be limited to sending
at a long-term average of 100 Kbps but could be allowed to send 4KB as fast as it wants. Since
most applications are bursty, it helps to allow some burstiness. Downstream nodes are helped
by leaky bucket shaping because bursts contribute directly to short-term congestion and packet
loss. The implementation is shown conceptually in Figure 14.6.

Input OutputTest

Data
buffer

Tokens arrive at rate
R bits per second

Max burst size
B in bits

F I G U R E 14.6 Conceptual picture of token bucket shaping and policing.

346 C H A P T E R 1 4 Scheduling Packets

Demux
flows

Schedule
queue

Output
link

Input
link

Single output queue Multiple queues

F I G U R E 14.7 A single outbound queue (left) versus multiple outbound queues (right). Disciplines
based on dropping (such as RED and policing) can be implemented with a single queue, but other
possibilities, such as round-robin and priority, are possible with multiple queues.

Imagine that one has a bucket per flow that fills with “tokens” at the specified average rate
of R per second. The bucket size, however, is limited to the specified burst size of B tokens.
Thus when the bucket is full, all incoming tokens are dropped. When packets arrive for a flow,
they are allowed out only if the bucket contains a number of tokens equal to the size of packet
in bits. If not, the packet is queued until sufficient tokens arrive. Since there can be at most
B tokens, a burst is limited to at most B bits, followed by the more steady rate of R bits per
second. This can easily be implemented using a counter and a timer per flow; the timer is used
to increment the counter, and the counter is limited never to grow beyond B. When packets
are sent out, the counter is decremented.

Unfortunately, token bucket shaping would require different queues for each flow, because
some flows may have temporarily run out of tokens and have to wait, while other, later-arriving
packets may belong to flows that have accumulated tokens. If one wishes to limit oneself to
a single queue, a simpler technique is to limit oneself (P3, relax system requirements) to a
token bucket policer. The idea would be simply to drop any packet that arrives to find the token
bucket empty. In other words, a policer is a shaper without the buffer shown in Figure 14.6. A
policer needs only a counter and a timer per flow, which is simple to implement at high speeds
using the efficient timer implementations of Chapter 7.

14.4 MULTIPLE OUTBOUND QUEUES AND PRIORITY

So far we have limited ourselves to one single queue for all outbound packets, as shown on
the left of Figure 14.7. Random early detection or token bucket policing (or both) can be used
to decide whether to drop packets before they are placed on this queue. We now transition to
examine scheduling disciplines that are possible with multiple queues. This is shown on the
right of Figure 14.7.

First, note that we now need to demultiplex packets based on packet headers to identify
which outbound queue to place a packet on. This can be done using the packet-classification
techniques described in Chapter 12 or simpler techniques based on inspecting the TOS bits

14.5 A Quick Detour into Reservation Protocols 347

in the IP header. Second, note that we can still implement RED and token bucket policing by
dropping packets before they are placed on the appropriate outbound queue.

Third, note that we now have a new problem. If multiple queues have packets to send, we
have to decide which queue to service next, and when. If we limit ourselves to work-conserving
schemes2 that never idle the link, then the only decision is which queue to service next when
the current packet transmission on the output link finishes.

As the simplest example of a multiple queue-scheduling discipline, consider strict priority.
For example, imagine two outbound queues, one for premium service and one for other packets.
Imagine that packets are demultiplexed to these two queues based on a bit in the IP TOS field.
In strict priority, we will always service a queue with higher priority before one with lower
priority as long as there is a packet in the higher-priority queue. This may be an appropriate way
to implement the premium service specification defined in the emerging DiffServ architecture
[SWG].

14.5 A QUICK DETOUR INTO RESERVATION PROTOCOLS

This chapter focuses on packet-scheduling mechanisms. However, before we go deeper into
scheduling queues, it may help to see the big picture. Thus we briefly discuss reservation
protocols that actually set up the parameters that control scheduling. While we do so to make
this chapter self-contained, the reader should refer to the original sources (e.g., Ref. Boy97)
for a more detailed description.

First, note that reservations are crucial for any form of absolute performance guarantee for
flows passing through a router. Consider an ISP router with a 100-Mbs output link. If the ISP
wishes to provide some customer flows with a 10-Mbps-bandwidth guarantee, it clearly cannot
provide this guarantee to more than 10 flows. It follows that there must be some mechanism
to request the router for bandwidth guarantees for a given flow. Clearly, the router must do
admission control and be prepared to reject further requests if further requests are beyond its
capacity.

Thus if we define quality of service (QoS) as the provision of performance guarantees
for flows, it can be said that QoS requires reservation mechanisms and admission control (to
limit the set of flows we provide QoS to) together with scheduling (to enforce performance
guarantees for the selected flows). Quality of service is a sufficiently vague term, and the
implied performance guarantees can refer to bandwidth, delay, or even variation in delay.

One way to make reservations is for a manager to make reservations for each router in the
path of a flow. However, this is tedious and would require the work to be done each time the
route of the flow changes and whenever the application that requires reservations is stopped and
restarted. One standard that has been proposed is the Resource Reservation Protocol (RSVP)
[Boy97], which allows applications to make reservations.

This protocol works in the context of a multicast tree between a sender and a set of receivers
(and works for one receiver). The idea is that the sender sends a periodic PATH message along
the tree that allows routers and receivers to know in which direction the sender is. Then
each receiver that wants a reservation of some resource (say, bandwidth) sends a Resource
Reservation Protocol (RSV) message up to the next router in the path. Each router accepts the

2Token bucket shaping is a commonly used example of a scheduling discipline that is not work conserving.

348 C H A P T E R 1 4 Scheduling Packets

RSV message if the reservation is feasible, merges the RSV messages of all receivers, and then
sends it to its parent router. This continues until all reservations have been set up or failure
notifications are sent back. Reservations are timed out periodically, so RSV messages must be
sent periodically if a receiver wishes to maintain its reservation.

While RSVP appears simple from this description, it has a number of tricky issues. First,
it can allow reservations across multiple senders and can include multiple modes of sharing.
For shared reservations, it improves scalability by allowing reservations to be merged; for
example, for a set of receivers that want differing bandwidths on the same link for the same
conference, we can make a single reservation for the maximum of all requests. Finally, we
have to deal with the possibility that the requests of a subset of receivers are too large but that
the remaining subset can be accommodated. This is handled by creating blockade state in the
routers. The resulting specification is quite complex.

By contrast, the DiffServ specification suggests that reservations be done by a so-called
bandwidth broker per domain instead of by each application. The bandwidth broker architecture
was still in a preliminary state at the time of this writing, but it appears potentially simpler
than RSVP. However, incompletely specified schemes always appear simpler than completely
specified schemes.

14.6 PROVIDING BANDWIDTH GUARANTEES

Given that reservations can be set up at routers for a subset of flows, we now return to
the problem of schedulers to enforce these reservations. We will concentrate on bandwidth
reservations only in this section, and consider reservations for delay in the next section. We will
start with a metaphor in Section 14.6.1 that illustrates the problems; we move on to describe
a solution in Section 14.6.2.

14.6.1 The Parochial Parcel Service
To illustrate the issues, let us consider the story of a hypothetical parcel service called the
Parochial Parcel Service, depicted in Figure 14.8. Two customers, called Jones and Smith, use
the parcel service to send their parcels by truck to the next city.

In the beginning, all parcels were kept in a single queue at the loading dock, as seen
in Figure 14.9. Unfortunately, it so happened that the loading dock was limited in size. It
also happened that during busy periods, Jones would send all his parcels just a little before
Smith sent his. The result was that when Smith’s parcels arrived during busy periods they were
refused; Smith was asked to retry some other time.

To solve this unfairness problem, the Parochial Parcel Service decided to use two queues
before the loading dock, one for Jones and one for Smith. When times were busy, some space
was left for Smith’s queue. The queues were serviced in round-robin order. Unfortunately, even
this did not work too well because the evil Jones (see Figure 14.10) cleverly used packages
that were consistently larger than those of Smith. Since two large packages of Jones could
contain seven of Smith’s packages, the net result was that Jones could get 3.5 times the service
of Smith during busy periods. Thus Smith was happier, but he was still unhappy.

Another idea that the Parochial Parcel Service briefly toyed with was actually to cut
parcels into slices, such as unit cubes, that take a standard time to service. Then the company
could service a slice at a time for each customer. They called this slice-by-slice round-robin.

14.6 Providing Bandwidth Guarantees 349

Parochial
Parcel
Service

Jones

Smith

To next package-
handling station

F I G U R E 14.8 A hypothetical parcel service.

Jones

Jones

Jones

Jones

Smith

Loading
dock

F I G U R E 14.9 A FIFO queue for loading parcels that is, unfortunately, hogged by Jones.

When initial field trials produced bitter customer complaints, the Parochial Parcel Service
decided they couldn’t physically cut packages up into slices. However, they realized they
could calculate the time at which a package will leave in an imaginary slice-by-slice system.
They could then service packages in the order they would have left in the imaginary system.
Such a a system will indeed be fair for any combination of packet (oops, package) sizes.

Unfortunately, simulating the imaginary system is like performing a discrete event simu-
lation in real time. At the very least, this requires keeping the timestamps at which each head
package of each queue will depart and picking the earliest such timestamp to service next; thus
selection (using priority queues) takes time logarithmic in the number of queues. This must be
done whenever a package is sent.

Worse, when a new queue becomes active, potentially all the timestamps have to change.
This is shown in Figure 14.11. Jones has a package at the head of his queue that is due to depart

350 C H A P T E R 1 4 Scheduling Packets

Jones

Jones

Smith
Smith

Smith

F I G U R E 14.10 Two queues and round-robin make Smith happier . . . but not completely happy.

P1

P2

P3

12 8

Jones

Smith

Brown

Timestamp
queue

F I G U R E 14.11 Brown’s entry causes the timestamp of Jones and Smith to change. In general, when
a new flow becomes active, the overhead is linear in the number of flows.

at time 12; Smith has a package due to depart at time 8. Now imagine that Brown introduces
a packet. Since Brown’s package must be scanned once for every three slices scanned in the
imaginary slice-by-slice system, the speed of Smith and Jones has gone down from a speed of
one in every two slices, to one in every three slices. This potentially means that the arrival of
Brown can cause every timestamp to be updated, an operation whose complexity is linear in
the number of flows.

14.6.2 Deficit Round-Robin
What was all this stuff about a parcel service about? Clearly, parcels correspond to packets,
the parcel office to a router, and loading docks to outbound links. More importantly, the
seemingly facetious slice-by-slice round-robin corresponds to a seminal idea, called bit-by-
bit round-robin, introduced by Demers, Keshav, and Shenker [DKS89]. Simulated bit-by-bit
round-robin provides provably fair bandwidth distribution and some remarkably tight delay
bounds; unfortunately, it is hard to implement at gigabit speeds. A considerable improvement
to bit-by-bit round-robin is made in the paper by Staliadis and Verma [SV96], which shows
how to reduce the linear overhead of the DKS scheme to the purely logarithmic overhead of
sorting. Sorting can be done at high speeds with hardware multiway heaps; however, it is still
more complex than deficit round-robin for bandwidth guarantees.

14.6 Providing Bandwidth Guarantees 351

Now while bit-by-bit round-robin provides both bandwidth guarantees and delay bounds,
our first observation is that many applications can benefit from just bandwidth guarantees.
Thus an interesting question is whether there is a simpler algorithm that can provide merely
bandwidth guarantees. We are, of course, relaxing system requirements to pave the way for a
more efficient implementation, as suggested by P3.

If we are only interested in bandwidth guarantees and would like a constant-time algorithm,
a natural point of departure is round-robin. So we ask ourselves: Can we retain the efficiency
of round-robin and yet add a little state to correct for the unfairness of examples such as
Figure 14.10?

A banking analogy motivates the solution. Each flow is given a quantum, which is like a
periodic salary that gets credited to the flow’s bank account on every round-robin cycle. As with
most bank accounts, a flow cannot spend (i.e., send packets of the corresponding size) more
than is contained in its account; the algorithm does not allow bank accounts to be overdrawn.
However, perfectly naturally, the balance remains in the account for possible spending in the
next period. Thus any possible unfairness in a round is compensated for in subsequent rounds,
leading to long-term fairness.

More precisely, for each flow i, the algorithm keeps a quantum size Qi and a deficit counter
Di. The larger the quantum size assigned to a flow, the larger the share of the bandwidth it
receives. On each round-robin scan, the algorithm will service as many packets as possible
for flow i with size less than Qi + Di. If packets remain in flow i’s queue, the algorithm stores
the “deficit,” or remainder, in Di for the next opportunity. It is easy to prove that the algorithm
is fair in the long term for any combination of packet sizes and that it takes only a few more
instructions to implement than round-robin.

Consider the example illustrated in Figures 14.12 and 14.13. We assume that the quantum
size of all flows is 500 and that there are four flows. In Figure 14.12 the round-robin pointer
points to the queue of F1; the algorithm adds the quantum size to the deficit counter of F1,
which is now at 500. Thus F1 has sufficient funds to send the packet at the head of its queue
(of size 200) but not the second packet, of size 750. Thus the remainder (300) is left in F1’s
deficit account and the algorithm skips to F2, leaving the picture shown in Figure 14.13.

Thus in the second round, the algorithm will send the packet at the head of F2’s queue
(leaving a deficit of 0), the packet at the head of F3’s queue (leaving a deficit of 400), and the
packet at the head of F4’s queue (leaving a deficit of 320). It then returns to F1’s queue. F1’s
deficit counter now goes up to 800; this reflects a past account balance of 300 plus a fresh
deposit of 500. The algorithm then sends the packet of size 750 and the packet of size 20.
Assume that no more packets arrive to F1’s queue than are shown in Figure 14.13. Thus since
the F1 queue is empty, the algorithm skips to F2.

Curiously, when skipping to F2, the algorithm does not leave behind the deficit of 800 −
750 − 20 = 30 in F1’s queue. Instead, it zeroes out F1’s deficit counter. Thus the deficit
counter is a somewhat curious bank account that is zeroed unless the account holder can prove
a “need” in terms of a nonempty queue. Perhaps this is analogous to a welfare account.

14.6.3 Implementation and Extensions of Deficit Round-Robin
As described, DRR has one major implementation problem. The algorithm may visit a number
of queues that have no packets to send. This would be very wasteful if the number of possible
queues is much larger than the number of active queues. However, there is a simple way to
avoid idle skipping of inactive queues by adding redundant state for speed (P12).

352 C H A P T E R 1 4 Scheduling Packets

20

500

750 200

500

200 100600

50 700 180

500

0

0

0

500

Round-robin
pointer

F1

F2

F3

F4

Packet queues
Deficit

counter

Quantum size

F I G U R E 14.12 Deficit round-robin: At the start, all the deficit variables are initialized to zero. The
round-robin pointer points to the top of the active list. When the first queue is serviced, the quantum
value of 500 is added to the deficit value. The remainder after servicing the queue is left in the deficit
variable.

20

500

750 200

500

200 100600

50 700 180

300

500

0

0

500

Round-robin
pointer

F1

F2

F3

F4

Packet queues
Deficit

counter

Quantum size

F I G U R E 14.13 Deficit round-robin (2): After sending out a packet of size 200, F1’s queue had 300
bytes of its quantum left. It could not use it in the current round, since the next packet in the queue is
750 bytes. Therefore, the amount 300 will carry over to the next round, when it can send packets of size
totaling 300 (deficit from previous round) + 500 (quantum).

14.6 Providing Bandwidth Guarantees 353

More precisely, the algorithm maintains an auxiliary queue, ActiveList, which is a list
of indices of queues that contain at least one packet. In the example, F1, which was at the
head of ActiveList, is removed from ActiveList after its last packet is serviced. If F1’s packet
queue were nonempty, the algorithm would place F1 at the tail of ActiveList and keep track of
any unused deficit. Notice that this prevents a flow from getting quantum added to its account
while the flow is idle.

Note that DRR shares bandwidth among flows in proportion to quantum sizes. For exam-
ple, suppose there are three flows, F1, F2, and F3, with respective quantum sizes 2, 2, and
3, who have reservations. Then if all three are active, F2 should get a fraction 2

2 + 2 + 3 = 2/7
of the output-link bandwidth. If, for example, F3 is idle, then F2 is guaranteed the frac-
tion 2

2 + 2 = 1/2 of the output-link bandwidth. In all cases, a flow is guaranteed a minimum
bandwidth, measured over the period the flow is active, that is proportional to the ratio of its
quantum size to the sum of the quantum sizes of all other reservations.

How efficient is the algorithm? The cost to dequeue a packet is a constant number of
instructions as long as each flow’s quantum is greater than a maximum-size packet. This
ensures that a packet is sent every time a queue is visited. For example, if the quantum size of
a flow is 1, the algorithm would have to visit a queue 100 times to send a packet of size 100.
Thus if the maximum packet size is 1500 and flow F1 is to receive twice the bandwidth as
flow F2, we may arrange for the quantum of F1 to be 3000 and the quantum of F2 to be 1500.
Once again, in terms of our principles, we note that avoiding the generality (P7) of arbitrary
quantum settings allows a more efficient implementation.

EXTENSIONS OF DEFICIT ROUND-ROBIN

We now consider two extensions of DRR: hierarchical DRR and DRR with a single priority
queue.

HIERARCHICAL DEFICIT ROUND-ROBIN

An interesting model for bandwidth sharing is introduced in the so-called class-based queuing
(CBQ) scheme [FJ95]. The idea is to specify a hierarchy of users that can share an output
link. For example, a transatlantic link may be shared by two organizations in proportion to the
amount each pays for the link. Consider two organizations, A and B, who pay, respectively,
70% and 30% of the cost of a link and so wish to have assured bandwidth shares in that
ratio. However, within organization A there are two main traffic types: Web users and others.
Organization A wishes to limit Web traffic to get only 40% of A’s share of the traffic when
other traffic from A is present. Similarly, B wishes video traffic to take no more than 50% of
the total traffic when other traffic from B is present (Figure 14.14).

Suppose at a given instant organization A’s traffic is only Web traffic and organization
B has both video and other traffic. Then A’s Web traffic should get all of A’s share of the
bandwidth (say, 0.7 Mbps of a 1-Mbps link); B’s video traffic should get 50% of the remaining
share, which is 0.15 Mbps. If other traffic for A comes on the scene, then the share of A’s Web
traffic should fall to 0.7 ∗ 0.4 = 0.28 Mbps. Class-based queuing is easy to implement using
a hierarchical DRR scheduler for each node in the CBQ tree. For example, we would use a
DRR scheduler to divide traffic between A and B. When A’s queue gets visited, we run the
DRR scheduler for within A, which then visits the Web queue and the other traffic queue and
serves them in proportion to their quanta.

354 C H A P T E R 1 4 Scheduling Packets

Organization A
(70%)

Organization B
(30%)

Web traffic
(40%)

Other
(60%)

Other
(50%)

Web traffic
(50%)

F I G U R E 14.14 Example of a class-based queuing specification for bandwidth sharing.

1 1 1

2 2 2

3 3 3

1 1 1 2 3

1 2 1 3 1

Alternate priority

Strict priority or

Up to 8 queues selected by IP precedence

F I G U R E 14.15 Cisco’s modified DRR (MDRR) scheme.

DEFICIT ROUND-ROBIN PLUS PRIORITY

A simple idea implemented by Cisco systems (and called Modified DRR, or MDRR) is to
combine DRR with priority to allow minimal delay for voice over IP. The idea, depicted in
Figure 14.15, allows up to eight flow queues for a router. A packet is placed in a queue based
on bits in the IP TOS fields called the IP precedence bits. However, queue 1 is a special queue
typically reserved for voice over IP. There are two modes: In the first mode, Queue 1 is given
strict priority over the other queues. Thus in the figure, we would serve all three of queue 1’s
packets before alternating between queue 2 and queue 3. On the other hand, in alternating
priority mode, queue 1 visits alternate with visits to a DRR scan of the remaining queues. Thus
in this mode, we would first serve queue 1, then queue 2, then queue 1, then queue 3, etc.

14.7 SCHEDULERS THAT PROVIDE DELAY GUARANTEES

So far we have considered only schedulers that provide bandwidth guarantees across multiple
queues. Our only exception is MDRR, which is an ad hoc solution. We now consider providing
delay bounds. The situation is analogous to a number of chefs sharing an oven, as shown in
Figure 14.16. The frozen-food chef (analogous to, say, FTPtraffic) cares more about throughput
and less about delay; the regular chef (analogous to, say, Telnet traffic) cares about delay, but
for the fast-food chef (analogous to video or voice traffic) a small delay is critical for business.

In practice, most routers implement some form of throughput sharing using algorithms
such as DRR. However, almost no commercial router implements schedulers that guarantee
delay bounds. The result is that video currently works well sometimes, badly at other times.
This may be unacceptable for commercial use. One answer to this problem is to have heavily

14.7 Schedulers That Provide Delay Guarantees 355

Frozen-food chef

Restaurant chef

Fast-food chef Fast oven

F I G U R E 14.16 Three types of chefs sharing an oven, of whom only the fast-food chef needs bounded
delay.

Video 1

Video 2

Video 3

SHARED

15

5

8

2

Video 2

8

IDEAL

8

F I G U R E 14.17 Defining what an ideal delay bound should be.

underutilized links and to employ ad hoc schemes like MDRR. This may work if bandwidth
becomes plentiful. However, traffic does go up to compensate for increased bandwidth; witness
the spurt in traffic due to MP3 and Napster traffic.

In theory, the simulated bit-by-bit round-robin algorithm [DKS89] we have already men-
tioned guarantees isolation and delay bounds. Thus it was used as the basis for the IntServ
proposal as a scheduler that could integrate video, voice, and data. However, bit-by-bit round-
robin, or weighted fair queuing (WFQ), is currently very expensive to implement. Strict WFQ
takes O(n) time per packet, where n is the number of concurrent flows. Recent approxima-
tions, which we will describe, take O(log(n)) time. The seminal results in reducing the overhead
from O(n) to O(log n) were due to Staliadis and Verma [SV96] and Bennett and Zhang [BZ96],
based on modifications to the bit-by-bit discipline. We will, however, present a version based
on another scheme, called virtual clock, which we believe is simpler to understand.

Before we study how to implement a delay bound, let us consider what an ideal delay
bound should be (Figure 14.17). The left figure shows three video flows that traverse a common
output link; the flows have reserved 5, 8, and 2 bandwidth units, respectively, of a 15-unit
output link. The right figure shows the ideal “view” of Video 2 if it had its own dedicated
router with an output link of 8 units. Thus the ideal delay bound is the delay that a flow would
have received in isolation, assuming an output-link bandwidth equal to its own reservation.

Suppose the rate of flow F is r. What is the departure time of a packet p of F arriving at
a router dedicated to F that always transmits at r bits per second? Well, if p arrives before the

356 C H A P T E R 1 4 Scheduling Packets

Time
0

Time
100

Time
150

Packet 1
Deadline 2

Packet 2
Deadline 4

Packet 100
Deadline 200

Packet 1
Deadline 102

Packet 50
Deadline 200

Flow 1
rate�0.5

Flow 2
rate�0.5

F I G U R E 14.18 Accumulated unfairness from the past can impair the fairness of Virtual Clock.

previous packet from flow F (say, prev) is transmitted, then p has to wait for prev to depart;
otherwise p gets transmitted right away. Thus in an ideal system, packet p will depart by:
Maximum(Arrival Time(p), Departure Time(prev)) + Length(p)/r. This recursive equation
can easily be solved if we know the arrival times of all packets in flow F up to and including
packet p.

Returning to Figure 14.17, if the shared system on the left must emulate the isolated
system, it must service every packet before its departure time in the ideal system. In other
words, as every packet arrives, we can calculate its deadline in the ideal system as in the
preceding paragraph. If the shared system meets all the ideal packet deadlines, then the shared
system is as good as or better than the isolated system on the right of Figure 14.17!

We may now consider using a very famous form of real-time scheduler called earliest
deadline first. The classical idea is that if we wish to meet deadlines, we sort the deadlines of
all the packets at the head of each flow queue and send the packet with the earliest deadline
first. The corresponding packet scheduler, called virtual clock, was first introduced by Lixia
Zhang [Zha91].

It was first proved [FP95] that virtual clock does a fine job of meeting deadlines. However,
it does not quite emulate the system at the right of Figure 14.17 in terms of bandwidth fairness
on short time scales. Aflow can be locked out for a large amount of time based on past behavior.
Consider the example shown in Figure 14.18. Two flows, Flow 1 and Flow 2, are assigned
rates of half the link bandwidth each, where the link bandwidth is 1. Assume that Flow 1 has
a large supply of packets starting from time 0, while Flow 2’s queue is empty until time 100,
when it receives a large supply of packets. Thus from time 0 to time 100, since Flow 1 is the
only active queue, virtual clock will send 100 packets of size 1 each from Flow 1. The first
packet of Flow 1 will have ideal deadline 2, the second 4, and the 100th will have deadline
200. Thus by the time we reach time 100, Flow 1’s 101st packet has ideal deadline 202.

If we now bring on 100 packets of Flow 2 at time 100, Flow 2’s packets have deadlines
102, 104, 106, . . . , and the 50th packet of Flow 2 has deadline 200. Thus during the period from

14.7 Schedulers That Provide Delay Guarantees 357

100 to 150, Flow 2 has taken all the link bandwidth, despite the presence of Flow 1 packets.
This hardly looks like the model of Figure 14.17, at least from time 100 to time 150. Notice
that packets are all sent within their ideal delays and that even the bandwidth given to both
flows is equal across the period from 0 to 150. Unfortunately, we don’t want this behavior. We
don’t want Flow 1 to be penalized, because in the past, when other flows were not present, it
took more bandwidth than it needed.

There is a very simple fix for this problem, which was described concurrently in Cobb et
al. [CGE96] and Suri et al. [SVC97]. Let us start by calling a flow oversubscribed if the flow
sends at more than its reserved rates during short periods, as Flow 1 does in Figure 14.18.
One can see that an ordinary virtual clock has a throughput unfairness problem because the
deadlines of oversubscribed flows can exceed real time by an unbounded amount. For example,
Flow 1’s deadline can grow without bound if we increase the time when Flow 1 is the only
active flow in Figure 14.18.

A careful examination shows that to guarantee delay bounds for other flows, we need only
ensure that oversubscribed flow deadlines exceed real time by some threshold δ, where δ is
the time taken to send a maximum-size packet at the smallest rate of any flow. For example,
in Figure 14.18, this is 1/0.5, which is 2. Thus to guarantee delay bounds we only need ensure
that the virtual clock of an oversubscribed flow is 2 more than real time. To make the difference
go up to 100, as in Figure 14.18, is overkill.

To implement this limited “overshoot,” we can pull all oversubscribed deadlines back
when time advances. Alternately, we can use a famous problem-solving technique and do a
mental reversal. This allows us to see another relativistic degree of freedom (P13). Instead
of pulling back a potentially large set of oversubscribed flows, we can “leap forward” the
single counter representing real time. More precisely, we advance the real-time counter to be
within δ of the smallest deadline whenever the smallest deadline exceeds the real-time counter
by δ. Of course, now the “real-time” counter no longer represents “real-time,” but is only the
reference “clock” used to stamp deadlines for future packets. The single clock adjustment is
more efficient than adjusting multiple deadlines.

For example, using this new mechanism in Figure 14.18, the deadline of the 101st packet
of Flow 1 at time 100 would become only 102, and not 202 as in the unmodified scheme.
This ensures that Flow 1 and Flow 2 will share the link evenly in the period from time 100 to
time 150.

The net result is that the leap-forward version of the virtual clock behaves just as well as
ideal bit-by-bit schemes, and it takes O(log(n)) work. The logarithmic overhead is needed only
for sorting deadlines using, say, a heap [CLR90]). Leaping forward is also efficient because
we can access the element with the smallest tag directly from the top of the heap in constant
time. What is the cost of sorting using a heap?

Recall that a d-heap is a tree in which each node of the tree contains d children and each
node has a value smaller than the values contained in all its children. If the values in the
leaves of the tree are deadlines, then the root contains the earliest deadline. When the earliest
deadline flow is scheduled, its leaf deadline value is updated. This can change its parent value,
and its parent’s parent value, and so on, up to the root. In software, a value of d greater than
2 is not much help, because each of the d children of a node must be compared when any
child value changes. However, in hardware, if the d-children are stored in contiguous memory
locations, then for values of d up to, say, 32, the hardware can retrieve 32 consecutive memory
locations in a single wide memory access of around 1024 bits. Simple combinatorial logic

358 C H A P T E R 1 4 Scheduling Packets

within the chip can then calculate the minimum of these 32 values within the time for a memory
access.

Since an update can require changing all parent values in a path from the leaf to the
root, and changing each parent value takes one memory access to read and one to write, the
worst-case number of memory accesses is equal to twice the maximum height of a 32-way
heap, which is log3 2N , where N is the number of flows. Thus for N less than 323 = 32K ,
the calculation of the minimum will take only six memory accesses. Thus the log N term per
packet can be made very small in practice by using a large radix for the logarithm.

In terms of our principles, we are using an efficient data structure (P15) and are adding
hardware (P5) in the form of a special-purpose sorting chip. The chip in turn uses wide
memories and locality (P5b, exploit locality) to reduce memory access times.

A second technique to build heaps does not use wide words but uses pipelining. It is
described in the exercises for Chapter 2. Note that these two solutions to making a fast heap
represent two of the three memory subsystem design strategies (P5a, b, pipelining and wide
word parallelism) described in Chapters 3 and 2.

In the case of both DRR and virtual clock, the basic idea works fine if all reserved rates are
within small multiples of each other. However, if rates can vary by orders of magnitude (from,
say, telemetry applications to video), both schemes introduce a peculiar form of burstiness
described in Bennett and Zhang [BZ96]. This burstiness can be fixed using a technique of two
queues first introduced in Bennett and Zhang [BZ96] and also used in Suri et al. [SVC97].
However, it adds implementation complexities of its own and may not be needed in practice.

If hardware is not available and the log n cost is significant, another possible approach
[SVC97] is to trade accuracy in deadlines for reduced computation (P3b). For example, sup-
pose your deadlines were originally 100.13, 115.27, 61 and we round up the deadlines (tags)
to whole numbers 101, 116, 61. This reduces the range of numbers to be sorted, which can be
exploited by bucket-sorting techniques to reduce sorting overhead. It can also be shown that
the reduced deadline accuracy introduces only a small additive penalty to the delay bound.

A second approach to reduce computation, by relaxing specifications (P3b), is described
in Ramabhadran and Pasquale [RP03]. While there are no worst-case delay guarantees, the
scheme appears to provide good delay bounds in most cases, with computation time that is
only slightly worse than for DRR.

14.8 SCALABLE FAIR QUEUING

Using multiple queues for each flow, we have seen that: (i) a constant-time algorithm (DRR)
can provide bandwidth guarantees for QoS even using software and (ii) a logarithmic time-
overhead algorithm can provide bandwidth and delay guarantees; further, the logarithmic
overhead can be made negligible using extra hardware to implement a priority queue. Thus it
would seem that QoS is easy to implement in routers ranging from small edge routers to the
bigger backbone (core) routers.

Unfortunately, studies by Thompson et al. [TMW97] of backbone routers show there to
be around 250,000 concurrent flows. With increasing traffic, we expect this number to grow to
a million and possibly larger as Internet speed and traffic increase. Keeping state for a million
flows can be a difficult task in backbone routers. If the state is kept in SRAM, the amount of
memory required can be expensive; if the state is kept in DRAM, state lookup could be slow.

14.8 Scalable Fair Queuing 359

More cogently, advocates of Internet scaling and aggregation point out that Internet routing
currently uses only around 150,000 prefixes for over 100 million nodes. Why should QoS
require so much state when none of the other components of IP do? In particular, while the
QoS state may be manageable today, it might represent a serious threat to the scaling of the
Internet. Just as prefixes aggregate routes for multiple IP addresses, is there a way to aggregate
flow state?

Aggregation implies that backbone routers will treat groups of flows in identical fashion.
Aggregation requires that (i) it must be reasonable for the members of the aggregated group
to be treated identically and (ii) there must be an efficient mapping from packet headers to
aggregation groups. For example, in the case of IP routing, (i) a prefix aggregates a number of
addresses that share the same output link, often because they are in the same relative geographic
area, and (ii) longest matching prefix provides an efficient mapping from destination addresses
in headers to the appropriate prefix.

There are three interesting proposals to provide aggregated QoS, which we describe briefly:
random aggregation (stochastic fair queuing), aggregation at the network edge (DiffServ), and
aggregation at the network edge together with efficient policing of misbehaving flows (core
stateless fair queuing).

14.8.1 Random Aggregation
The idea behind stochastic fair queuing (SFQ) [McK91] is to employ principle P3a by trading
certainty in fairness for reduced state. In this proposal, backbone routers keep a fixed set of
flow queues that is affordable, say, 125,000, on which they do, say, DRR. When packets arrive,
some set of packet fields (say, destination, source, and the destination and source ports for
TCP and UDP traffic) are hashed to a flow queue. Thus assuming that a flow is defined by the
set of fields used for hashing, a given flow will always be hashed to the same flow queue. Thus
with 250,000 concurrent flows and 125,000 flow queues, roughly 2 flows will share the same
flow queue or hash bucket.

Stochastic fair queuing has two disadvantages. First, different backbone routers can hash
flows into different groups because routers need to be able to change their hash function if the
hash distributes unevenly. Second, SFQ does not allow some flows to be treated differently
(either locally within one router or globally across routers) from other flows, a crucial feature
for QoS. Thus, SFQ only provides some sort of scalable and uniform bandwidth fairness.

14.8.2 Edge Aggregation
The three ideas behind the DiffServ proposal [SWG] are: relaxing system requirements (P3)
by aggregating flows into classes at the cost of a reduced ability to discriminate between flows;
shifting the mapping to classes from core routers to edge routers (P3c, shifting computation
in space); and passing the aggregate class information from the edge to core routers in the IP
header (P10, passing hints in protocol headers).

Thus, edge routers aggregate flows into classes and mark the packet class by using a
standardized value in the IP TOS field. The IP type-of-service (TOS) field was meant for some
such use, but it was never standardized; vendors such as Cisco used it within their networks
to denote traffic classes such as voice over IP, but there was no standard definition of traffic
classes. The DiffServ group generalizes and standardizes such vendor behavior, reserving
values for classes that are being standardized. One class being discussed is so-called expedited

360 C H A P T E R 1 4 Scheduling Packets

Flow
F1

Flow
F2

Edge router
ER

Uncongested Congested

Core router CR

F I G U R E 14.19 If flows F1 and F2 are aggregated by the time they reach the core router CR, how
can the core router realize that F1 is oversubscribing without keeping state for each (unaggregated) flow?

service, in which a certain bandwidth is reserved for the class. Another is assured service,
which is given a lower drop probability for RED in output queues.

However, the key point is that backbone routers have a much easier job in DiffServ. First,
they map flows to classes based on a small number of field values in a single TOS field.
Second, the backbone router has to manage only a small number of queues, mostly one for
each class and sometimes one for each subclass within a class; for example, assured service
currently specifies three levels of service within the class. Edge routers, though, have to map
flows to classes based on ACL-like rules and examination of possibly the entire header. This
is, however, a good trade-off because edge routers operate at slower speeds.

14.8.3 Edge Aggregation with Policing
Using edge aggregation, two flows (say, F1 and F2) that have reserved bandwidth (say, B1 and
B2, respectively) could be aggregated into a class that has nominally reserved some bandwidth,
which is B ≥ B1 + B2 for all flows in the class. Consider Figure 14.19. Suppose F1 decides
to oversubscribe and to send at a rate greater than B. The edge router ER in Figure 14.19
may currently have sufficient bandwidth to allow all packets of flow F1 and F2 through.
Unfortunately, when this aggregated class reaches the backbone (core) router CR, suppose
the core router is limited in bandwidth and must drop packets. Ideally, CR should only drop
oversubscribed flows like F1 and let all of F2’s packets through.

How, though, can CR tell which flows are oversubscribed? It could do so by keeping state
for all flows passing through, but that would defeat scaling. A clever idea, called core-stateless
fair queuing [SSZ], makes the observation that the edge router ER has sufficient information
to distinguish the oversubscribed flows. Thus ER can, using principle P10, pass information
in packet headers to CR.

How, though, should CR handle oversubscribed flows? Dropping all such marked packets
may be too severe. If there is enough bandwidth for some oversubscribed flows, it seems
reasonable for CR to drop in proportion to the degree a flow is oversubscribed. Thus ER
should pass a value in the packet header of a flow that is proportional to the degree a flow is
oversubscribed. To implement this idea, CR can drop randomly (P3a), with a drop probability
that is proportional to the degree of oversubscription. While this has some error probability, it
is close enough. Most importantly, random dropping can be implemented without CR keeping
any state per flow. In effect, CR is implementing RED, but with the drop probability computed
based on a packet header field set by an edge router.

While core-stateless is a nice idea, we note that unlike SFQ (which can be implemented
in isolation without cooperation between routers) and DiffServ (which has mustered sufficient

14.10 Exercises 361

support for its standardized use of the TOS field), core-stateless fair queuing is, as of now,
only a research proposal [SSZ].

14.9 SUMMARY

In this chapter, we attacked another major implementation bottleneck for a router: scheduling
data packets to reduce the effects of congestion, to provide fairness, and to provide quality-
of-service guarantees to certain flows. We worked our way upward from schemes, such as
RED, that provide congestion feedback to schemes that provide QoS guarantees in terms of
bandwidth and delay. We also studied how to scale QoS state to core routers using aggregation
techniques such as DiffServ.

A real router will often have to choose various combinations of these individual schemes.
Many routers today offer RED, token bucket policing, and multiple queues and DRR. However,
the major point is that all these schemes, with the exception of the schemes that provide delay
bounds, can be implemented efficiently; even schemes that provide delay bounds can be
implemented at the cost of fairly simple added hardware. A number of combination schemes
can also be implemented efficiently using the principles we have outlined. The exercises
explore some of these combinations.

To make this chapter self-contained, we devoted a great deal of the discussion to explana-
tions of topics, such as congestion control and resource reservation, that are really peripheral to
the main business of this book. What we really care about is the use of our principles to attack
scheduling bottlenecks. Lest that be forgotten, we remind you as always, of the summary, in
Figure 14.2 of the techniques used in this chapter and the corresponding principles.

14.10 EXERCISES

1. Consider what happens if there are large variations in the reserved bandwidths of flows,
for example, F1 with a rate of 1000 and F2, . . . , Fn with a rate of 1. Assuming that all
flows have the same minimum packet size, show that flow F1 can be locked out for a long
period.

2. Consider the simple idea of sending one packet for each queue with enabled quantum for
each round in DRR. In other words, we interleave the packets sent in various queues
during a DRR round rather than finishing a quantum’s worth for every flow. Describe how
to implement this efficiently.

3. Work out the details of implementing a hierarchical DRR scheme.

4. Suppose an implementation wishes to combine DRR with token bucket shaping on the
queues as well. How can the implementation ensure that it skips empty queues (a DRR
scan should not visit a queue that has no token bucket credits)?

5. Describe how to efficiently combine DRR with multiple levels of priority. In other words,
there are several levels of priority; within each level of priority, the algorithm runs DRR.

6. Suppose that the required bandwidths of flows vary by an order of magnitude in DRR.
What fairness problems can result? Suggest a simple fix that provides better short-term
fairness without requiring sorting.

C H A P T E R 15

Routers as Distributed Systems

Come now and let us reason together.

— Isaiah 1:18, The Bible

Distributed systems are clearly evil things. They are subject to a lack of synchrony, a lack of
assurance, and a lack of trust. Thus in a distributed system the time to receive messages can
vary widely; messages can be lost and servers can crash; and when a message does arrive it
could even contain a virus. In Lamport’s well-known words a distributed system is “one in
which the failure of a computer you didn’t even know existed can render your own computer
unusable.”

Of course, the main reason to use a distributed system is that people are distributed. It
would perhaps be unreasonable to pack every computer on the Internet into an efficiency
apartment in upper Manhattan. But a router? Behind the gleaming metallic cage and the
flashing lights, surely there lies an orderly world of synchrony, assurance, and trust.

On the contrary, this chapter argues that as routers (recall routers includes general inter-
connect devices such as switches and gateways as well) get faster, the delay between router
components increases in importance when compared to message transmission times. The
delay across links connecting router components can also vary significantly. Finally, avail-
ability requirements make it infeasible to deal with component failures by crashing the entire
router. With the exception of trust — trust arguably exists between router components — a
router is a distributed system. Thus within a router it makes sense to use techniques developed
to design reliable distributed systems.

To support this thesis, this chapter considers three sample phenomena that commonly
occur within most high-performance interconnect devices — flow control, striping, and asyn-
chronous data structure updates. In each case, the desire for performance leads to intuitively
plausible schemes. However, the combination of failure and asynchrony can lead to subtle
interactions.

Thus a second thesis of this chapter is that the use of distributed algorithms within routers
requires careful analysis to ensure reliable operation. While this is trite advice for protocol
designers (who ignore it anyway), it may be slightly more novel in the context of a router’s
internal microcosm.

The chapter is organized as follows. Section 15.1 motivates the need for flow control on
long chip-to-chip links and describes solutions that are simpler than, say, TCP’s window flow
control. Section 15.2 motivates the need for internal striping across links and fabrics to gain
throughput and presents solutions that restore packet ordering after striping. Section 15.3 details

362

15.1 Internal Flow Control 363

P1

P13

P3

Avoid waste caused by partitioned buffers

Exploit degrees of freedom by decoupling
logical from physical reception

Relax binary search requirements to
allow duplicate key values

Internal striping

Binary search
update

Number Principle Used In

Internal flow control

F I G U R E 15.1 Principles used in the various distributed systems techniques (for use within a router)
discussed in this chapter.

the difficulties of performing asynchronous updates on data structures that run concurrently
with search operations.

The techniques described in this chapter (and the corresponding principles invoked) are
summarized in Figure 15.1.

In all three examples in this chapter, the focus is not merely on performance, but on
the use of design and reasoning techniques from distributed algorithms to produce solutions
that gain performance without sacrificing reliability. The techniques used to gain reliability
include periodic synchronization of key invariants and centralizing asynchronous computation
to avoid race conditions. Counterexamples are also given to show how easily the desire to gain
performance can lead, without care, to obscure failure modes that are hard to debug.

The sample of internal distributed algorithms presented in this chapter is necessarily
incomplete. An important omission is the use of failure detectors to detect and swap out failed
boards, switching fabrics, and power supplies.

Q u i c k R e f e r e n c e G u i d e
It is important for an implementor to learn how to make link flow control reliable, as described in

Section 15.1.2. Implementors are increasingly turning to striping within networking devices and some
solutions for link striping are described in Section 15.2.

15.1 INTERNAL FLOW CONTROL

As said in Chapter 13, packaging technology and switch size are forcing switches to expand
beyond single racks. These multichassis systems interconnect various components with serial
links that span relatively large distances of 5–20 m. At the speed of light, a 20-m link con-
tributes a round-trip link delay of 60 nsec. On the other hand, at OC-768 speeds, a 40-byte
minimum-size packet takes 8 nsec to transmit. Thus, eight packets can be simultaneously in
transit on such a link.

Worse, link signals propagate slower than the speed of light; also, there are other delays,
such as serialization delay, that make the number of cells that can be in flight on a single link

364 C H A P T E R 1 5 Routers as Distributed Systems

even larger. This is quite similar to a stream of packets in flight on a transatlantic link. A single
router is now a miniature Internet.

TCP (Transmission Control Protocol) and other transport protocols already solve the
problem of flow control. If the receiver has finite buffers, sender flow control ensures that
any packet sent by the sender has a buffer available when it arrives at the receiver. Chip-to-
chip links also require flow control. It is considered bad form to drop packets or cells (we will
use cells in what follows) within a router for reasons other than output-link congestion.

It is possible to reuse directly the TCP flow control mechanisms between chips. But TCP
is complex to implement. Disentangling mechanisms, TCP is complex because it does error
control and flow control, both using sequence numbers. However, within a chip-to-chip link,
errors on the link are rare enough for recovery to be relegated to the original source computer.
Thus, it is possible to apply fairly recent work on flow control [OSV94, KCB94] that is not
intertwined with error control.

Figure 15.2 depicts a simple credit flow control mechanism [OSV94] for a chip-to-chip
link within a router. The sender keeps a credit register that is initialized to the number of buffers
allocated at the receiver. The sender sends cells only when the credit register is positive and
decrements the credit register after a cell is sent. At the receiving chip, whenever a cell is
removed from the buffer, the receiver sends a credit to the sender. Finally, when a credit
message arrives, the sender increments the credit register.

15.1.1 Improving Performance
In Figure 15.2, if the number of buffers allocated is greater than the product of the line speed
and the round-trip delay (called the pipe size), then transfers can run at the full link speed.

One problem in real routers is that there are often several different traffic classes that share
the link. One way to accommodate all classes is to strictly partition destination buffers among
classes. This can be wasteful because it requires allocating the pipe size (say, 10 cell buffers)
to each class. For a large number of classes, the number of cell buffers will grow alarmingly,
potentially pushing the amount of on-chip SRAM required beyond feasible limits. Recall that
field programmable gate arrays (FPGAs) especially have smaller on-chip SRAM limits.

Upstream
node U

Downstream
node D

Credit
register

�X

�1

Receive X credits

Send credits

F I G U R E 15.2 Basic credit-based flow control.

15.1 Internal Flow Control 365

But allocating the full pipe size to all classes at the same time is obvious waste (P1)
because if every class were to send cells at the same time, each by itself would get only a
fraction of the link throughput. Thus it makes sense to share buffers. The simplest approach
to buffer sharing is to divide the buffer space physically into a common pool together with a
private pool for each class.

A naive method to do so would mark data cells and credits as belonging to either the
common or the private pools to prevent interference between classes. The naive scheme also
requires additional complexity to guarantee that a class does not exceed, say, a pipe size worth
of buffers.

An elegant way to achieve the allow buffer sharing without marking cells is described in
Ozveren et al. [OSV94]. Conceptually, the entire buffer space at the receiver is partitioned so
that each class has a private pool of Min buffers; in addition there is a common pool of size
(B − N ∗ Min) buffers, where N is the number of classes and B is the total buffer space. Let
Max denote the pipe size.

The protocol runs in two modes: congested and uncongested. When congested, each class
is restricted to Min outstanding cells; when uncongested, each class is allowed the presumably
larger amount of Max outstanding cells. All cell buffers at the downstream node are anonymous;
any buffer can be assigned to the incoming cells of any class. However, by carefully restricting
transitions between the two modes, we can allow buffer sharing while preventing deadlock
and cell loss.

To enforce the separation between private pools without marking cells, the sender keeps
track of the total number of outstanding cells S, which is the number of cells sent minus the
number of credits received. Each class i also keeps track of a corresponding counter Si, which
is the number of cells outstanding for class i. When S < N · Min (i.e., the private pools are in
no danger of depletion), then the protocol is said to be uncongested and every class i can send
as long as Si ≤ Max.

However, when S ≥ N · Min, the link is said to be congested and each class is restricted
to a smaller limit by ensuring that Si ≤ Min. Intuitively, this buffer-sharing protocol performs
as follows. During light load, when there are only a few classes active, each active class gets
Max buffers and goes as fast as it possibly can. Finally, during a continuous period of heavy
loading when all classes are active, each class is still guaranteed Min buffers.

Hysteresis can be added to prevent oscillation between the two modes. It is also possible
to extend the idea of buffer sharing for credit-based flow control to rate sharing for rate-based
flow control using, say, leaky buckets (Chapter 14).

15.1.2 Rescuing Reliability
The protocol sketched in the last subsection uses limited receiver SRAM buffers very efficiently
but is not robust to failures. Before understanding how to make the more elaborate flow control
protocol robust against failures, it is wiser to start with the simpler credit protocol portrayed
in Figure 15.2.

Intuitively, the protocol in Figure 15.2 is like transferring money between two banks: The
“banks” are the sender and the receiver, and both credits and cells count as “money.” It is
easy to see that in the absence of errors the total “money” in the system is conserved. More
formally, let CR be the credit register, M the number of cells in transit from sender to receiver,

366 C H A P T E R 1 5 Routers as Distributed Systems

C the number of credits in transit in the other direction, and Q the number of cell buffers that
are occupied at the receiver.

Then it is easy to see that (assuming proper initialization and that no cells or credits are lost
on the link), the protocol maintains the following property at any instant: CR + M + Q + C =
B, where B is the total buffer space at the receiver. The relation is called an invariant because
it holds at all times when the protocol works correctly. It is the job of protocol initialization to
establish the invariant and the job of fault tolerance mechanisms to maintain the invariant.

If this invariant is maintained at all times, then the system will never drop cells, because
the number of cells in transit plus the number of stored cells is never more than the number of
buffers allocated.

There are two potential problems with a simple hop-by-hop flow control scheme. First, if
initialization is not done correctly, then the sender can have too many credits, which can lead
to cell’s being dropped. Second, credits or cells for a class can be lost due to link errors. Even
chip-to-chip links are not immune from infrequent bit errors; at high link speeds, such errors
can occur several times an hour. This second problem can lead to slowdown or deadlock.

Many implementors can be incorrectly persuaded that these problems can be fixed by
simple mechanisms. One immediate response is to argue that these cases won’t happen or will
happen rarely. Second, one can attempt to fix the second problem by using a timer to detect
possible deadlock. Unfortunately, it is difficult to distinguish deadlock from the receiver’s
removing cells very slowly. Worse, the entire link can slow down to a crawl, causing router
performance to fall; the result will be hard to debug.

The problems can probably be cured by a router reset, but this is a Draconian solution.
Instead, consider the following resynchronization scheme. For clarity, the scheme is presented
using a series of refinements depicted in Figure 15.3.

In the simplest synchronization scheme (Scheme 1, Figure 15.3), assume that the protocol
periodically sends a specially marked cell called a marker. Until the marker returns, the sender
stops sending data cells. At the receiver, the marker flows through the buffer before being sent
back to the upstream node. It is easy to see that after the marker returns, it has “flushed” the
pipe of all cells and credits. Thus at the point the marker returns, the protocol can set the credit
register (CR) to the maximum value (B). Scheme 1 is simple but requires the sender to be idled
periodically in order to do resynchronization.

So Scheme 2 (Figure 15.3) augments Scheme 1 by allowing the sender to send cells after
the marker has been sent; however, the sender keeps track of the cells sent since the marker was
launched in a register, say, CSM (for “cells sent since marker”). When the marker returns, the
sender adjusts the correction to take into account the cells sent since the marker was launched
and so sets CR = B − CSM.

The major flaw in Scheme 2 is the inability to bound the delay that it takes the marker to
go through the queue at the receiver. This causes two problems. First, it makes it hard to bound
how long the scheme takes to correct itself. Second, in order to make the marker scheme itself
reliable, the sender must periodically retransmit the marker. Without a bound on the marker
round-trip delay, the sender could retransmit too early, making it hard to match a marker
response to a marker request without additional complexity in terms of sequence numbers.

To bound the marker round-trip delay, Scheme 3 (Figure 15.3) lets the marker bypass the
receiver queue and “reflect back” immediately. However, this requires the marker to return
with the number of free cell buffers F in the receiver at the instant the marker was received.
Then when the marker returns, the sender sets the credit register CR = F − CSM.

15.1 Internal Flow Control 367

UPSTREAM NODE DOWNSTREAM NODE

Stop
sending

Set credits�B

Time

Scheme 1

Scheme 2

Scheme 3

Measure cells
sent since mark (CSM)

Set credits�B − CSM

Measure cells
sent since mark (CSM)

Set credits�F − CSM

Free space F

F

F I G U R E 15.3 Three steps to a marker algorithm.

The marker scheme is a special instance of a classical distributed systems technique called
a snapshot. Informally, a snapshot is a distributed audit that produces a consistent state of a
distributed system. Our marker-based snapshot is slightly different from the classical snapshot
described in Chandy and Lamport [CL85]. The important point, however, is that snapshots can
be used to detect incorrect states of any distributed algorithm and can be efficiently implemented
in a two-node subsystem to make any such protocol robust. In particular, the same technique
can be used [OSV94] to make the fancier flow control of Section 15.1.1 equally robust.

In particular, the marker protocol makes the credit-update protocol self-stabilizing; i.e., it
can recover from arbitrary errors, including link errors, and also hardware errors that corrupt
registers. This is an extreme form of fault tolerance that can greatly improve the reliability of
subsystems without sacrificing performance.

368 C H A P T E R 1 5 Routers as Distributed Systems

In summary, the general technique for a two-node system is to write down the protocol
invariants and then to design a periodic snapshot to verify and, if necessary, correct the
invariants. Further techniques for protocols that work on more than two nodes are describe in
Awerbuch et al. [APV91]; they are based on decomposing, when possible, multinode protocols
into two-node subsystems and repeating the snapshot idea.

An alternative technique for making a two-node credit protocol fault tolerant is the FCVC
idea of Kung et al. [KCB94], which is explored in the exercises. The main idea is to use
absolute packet numbers instead of incremental updates; with this modification the protocol
can be made robust by the technique of periodically resending control state on the two links
without the use of a snapshot.

15.2 INTERNAL STRIPING

Flow control within routers is motivated by the twin forces of increasingly large interconnect
length and increasing speeds. On the other hand, internal striping or load balancing within a
router is motivated by slow interconnect speeds. If serial lines are not fast enough, a designer
may resort to striping cells internally across multiple serial links.

Besides serial link striping, designers often resort to striping across slow DRAM banks, to
gain memory bandwidth, and across switch fabrics, to scale scheduling algorithms like iSLIP.
We saw these trends in Chapter 13. In each case, the designer distributes cells across multiple
copies of a slow resource, called a channel.

In most applications, the delay across each channel is variable; there is some large skew
between the fastest and slowest times to send a packet on each channel. Thus the goals of a
good striping algorithm are FIFO delivery in the face of arbitrary skew — routers should not
reorder packets because of internal mechanisms — and robustness in the face of link bit errors.

To understand why this combination of goals may be difficult, consider round-robin strip-
ing. The sender sends packets in round-robin order on the channels. Round-robin, however,
does not provide FIFO delivery without packet modification. The channels may have varying
skews, and so the physical arrival of packets at the receiver may differ from their logical
ordering. Without sequencing information, packets may be persistently misordered.

Round-robin schemes can be made to guarantee FIFO delivery by adding a packet sequence
number that can be used to resequence packets at the receiver. However, many implementations
would prefer not to add a sequence number because it adds to cell overhead and reduces the
effective throughput of the router.

15.2.1 Improving Performance
To gain ordering without the expense of sequence numbers, the main idea is to exploit a hidden
degree of freedom (P13) by decoupling physical reception from logical reception. Physical
reception is subject to skew-induced misordering. Logical reception eliminates misordering
by using buffering and by having the receiver remove cells using the same algorithm as the
sender.

For example, suppose the sender stripes cells in round-robin order using a round-robin
pointer that walks through the sending channels. Thus cell A is sent on Channel 1, after which
the round-robin pointer at the sender is incremented to 2. The next cell, B, is sent on Channel
2, and so on.

15.2 Internal Striping 369

R1

R1

R1

R2

R2

R1

R2

R2

R2

R0

R0

R0

R0

R1

R1

R1

R1

R1

R2

R2

R2

R2

R2

R2

R2

R2

A

B

C

D

B

C

E

E

CF

R2

H

I

G

G

H

F

H

I

R2

E

F

G

R2

I

R3

R1

R1

Scene 1, Loss

Scene 2, Waiting

Scene 3, Misordering

Scene 4, Skipping

Scene 5, Restoration

Scene 6, Finale

Lost

(marker)

Skip

F I G U R E 15.4 Misordering and Recovery: A Play in Six Scenes. The final output at the receiver is D, B, C, E,
F, G, H, I, and synchronization is achieved after the logical reception of E.

The receiver buffers received cells but does not dequeue a cell when it arrives. Instead,
the receiver also maintains a round-robin pointer that is initialized to Channel 1. The receiver
waits at Channel 1 to receive a cell; when a cell arrives, that cell is dequeued and the receiver
moves on to wait for Channel 2. Thus if skew causes cell B (that was sent on Channel 2 after
cell A was sent on Channel 1) to arrive before cell 1, the receiver will not dequeue cell B before
cell A. Instead, the receiver will wait for cell A to arrive; after dequeuing cell A, the receiver
will move on to Channel 2, where it will dequeue the waiting cell, B.

15.2.2 Rescuing Reliability
Synchronization between sender and receiver can be lost due to the loss of a single cell. In
the round-robin example shown earlier, if cell A is lost in a large stream of cells sent over
three links (Figure 15.4), the receiver will deliver the packet sequence D, B, C, G, E, F, … and
permanently reorder cells.

For switch fabrics and some links, one may be able to assume that cell loss is very rare
(say, once a year). Still, such an assumption should make the designer queasy, especially if
one loss can cause permanent damage from that point on. To prevent permanent damage after
a single cell loss, the sender must periodically resynchronize with the receiver.

To do so, define a round as a sequence of visits to consecutive channels before returning to
the starting channel. In each round, the sender sends data over all channels. Similarly, in each
round, the receiver receives data from all channels. To enable resynchronization, the sender
maintains the round number (initialized to R0) of all channels, and so does the receiver.

370 C H A P T E R 1 5 Routers as Distributed Systems

Thus in Figure 15.4, after sending A, B, and C, all the sender channel numbers are at
R1. However, only channel 1 at the receiver is at R1, while the other channels are at R0
because the second and third channels have not been visited in the first round-robin scan at the
receiver. When the round-robin pointer increments to a channel at the sender or receiver, the
corresponding round number is incremented.

Effectively, round numbers can be considered to be implicit per-channel sequence num-
bers. Thus A can be considered to have sequence number R1, the next cell, D, sent on Channel
1 can be considered to have sequence number R2, etc.

Thus in Scene 2 of Figure 15.4, the sender has marched on to send D on Channel 1 and E
on Channel 2. The receiver is still waiting for a cell on Channel 1, which it finally receives.
At this point, the play shifts to Scene 3, where the receiver outputs D and B (in that order) and
moves to Channel 3, where it eventually receives cell C.

Basically, the misordering problem in Scene 2 is caused by the receiver’s dequeuing a
cell sent in Round R2 (i.e., D) in Round R1 at the receiver. This suggests a simple strategy to
synchronize the round numbers in channels: Periodically, the sender should send its current
round number on each channel to the receiver. To reduce overhead, such a marker cell should
be sent after hundreds of data cells are sent, at the cost of having potentially hundreds of cells
misordered after a loss.

Because brevity is the soul of wit, the play in Figure 15.4 assumes a marker is sent after D
on Channel 1; the sending of markers on other channels is not shown. Thus in Scene 3, notice
that a marker is sent on channel 1 with the current round number, R2, at the sender.

In Scene 4, the receiver has output D, B, and C, in that order, and is now waiting for
Channel 1 again. At this point, the marker containing R2 arrives.

A marker is processed at the receiver only when the marker is at the head of the buffer and
the round-robin pointer is at the corresponding channel. Processing is done by the following
four rules. (1) If the round number in the marker is strictly greater than the current receiver
round number, the marker has arrived too early; the round-robin pointer is incremented. (2) If
the round numbers are equal, any subsequent cells will have higher round numbers; thus the
round-robin pointer is incremented, and the marker is also removed (but not sent to the output).

(3) If the round number in the marker is 1 less than the current channel round number,
this is the normal error-free case; the subsequent cell will have the right round number. In this
case, the marker is removed but the round-robin pointer at the receiver is not incremented.
(4) If the round number in the marker is k > 1 less than the current channel round num-
ber, a serious error (other than cell loss) has occurred and the sender and receiver should
reinitialize.

Thus in Scene 4, Rule 2 applies: The marker is destroyed and the round-robin pointer
incremented. At this point, it is easy to see that the sender and receiver are now in perfect
synchronization, because for each channel at the receiver, the round number when that channel
is reached is equal to the round number of the next cell. Thus the play ends with E’s being
(correctly) dequeued in Scene 4, then F in Scene 5, and finally G in Scene 6. Order is restored,
morality is vindicated.

Thus the augmented load-balancing algorithm recovers from errors very quickly (time
between sending the marker plus a one-way propagation delay). The general technique
underlying the method of Figure 15.4 is to detect state inconsistency on each channel by
periodically sending a marker one-way.

15.3 Asynchronous Updates 371

One-way sending of periodic state (unlike, say, Figure 15.3) suffices for load balancing
as well as for the FCVC protocol (see Exercises) because the invariants of the protocol are
one-way. A one-way invariant is an invariant that involves only variables at the two nodes
and one link. By contrast, the flow control protocol of Figure 15.2 has an invariant that uses
variables on both links.

Periodic sending of state has been advocated as a technique for building reliable Internet
protocols, together with timing out state that has not been refreshed for a specified period
[Cla88]. While this is a powerful technique, the example of Figure 15.2 shows that perhaps the
soft state approach — at least as currently expressed — works only if the protocol invariants
are one-way.

For load balancing, besides the one-way invariants on each channel that relate sender and
receiver round numbers, there is also a global invariant that ensures that, assuming no packet
loss, channel round numbers never differ by more than 1. This node invariant is enforced, after
a violation due to loss, by skipping at the receiver.

Even in the case when sequence numbers can be added to cells, logical reception can
help simplify the resequencing implementation. Some resequencers use fast parallel hardware
sorting circuits to reassemble packets. If logical reception is used, this circuitry is overkill.
Logical reception is adequate for the expected case, and a slow scan looking for a matching
sequence number is sufficient in the rare error case. Recall that on chip-to-chip links, errors
should be very rare. Notice that if sequence numbers are added, FIFO delivery is guaranteed,
unlike the protocol of Figure 15.4.

15.3 ASYNCHRONOUS UPDATES

Atomic updates that work concurrently with fast search operations are a necessary part of all
the incremental algorithms in Chapters 11 and 10. For example, assume that trie node X points
to node Z . Often inserting a prefix requires adding a new node Y so that X points to Y and
Y points to Z . Since packets are arriving concurrently at wire speed, the update process must
minimally block the search process. The simplest way to do this without locks is to first build
Y completely to point to Z and then, in a single atomic write, to swing the pointer at X to
point to Y .

In general, however, there are many delicacies in such designs, especially when faced with
complications such as pipelining. To illustrate the potential pitfalls and the power of correct
reasoning, consider the following example taken from the first bridge implementation.

In the first bridge product studied in Chapter 10, the bridge used binary search. Imagine we
had a long list of distinct keys B, C, D, E, . . . and with all the free space after the last (greatest
key). Consider the problem of adding a new entry, say, A. There are two standard ways to
handle this.

The first was is to mimic the atomic update techniques of databases and keep to two copies
of the binary search table. When A is inserted, search works on the old copy while A is inserted
into a second copy. Then in one atomic operation, update flips a pointer (which the chip uses
to identify the table to be searched) to the second copy.

However, this doubles the storage needed, especially if memory is SRAM, and is expen-
sive. Hence many designers prefer a second option: Create a hole for A by moving all elements
B and greater one position downward.

372 C H A P T E R 1 5 Routers as Distributed Systems

15.3.1 Improving Performance
To reduce memory needs, update must work on the same binary search table on which search
works. To insert element A in, say, Figure 15.5, update must move the elements B, C, and D
one element down.

If the update and search designers are different, the normal specification for the update
designer is always to ensure that the search process sees a consistent binary search table
consisting of distinct keys. It appears to be very hard to meet this specification without allowing
any search to take place until a complete update has terminated. Since an update can take a
long time for a bridge database with 32,000 elements, this is unacceptable.

Thus, one could consider relaxing the specification (P3) to allow a consistent binary search
table that contains duplicates of key values. After all, as long as the table is sorted, the presence
of two or more keys with the same value cannot affect the correctness of binary search.

Thus the creation of a hole for A in Figure 15.5 is accomplished by creating two entries
for D, then two entries for C, and then two entries for B, each with a single write to the table.
In the last step, A is written in place of the first copy of B.

To keep the binary search chip simple (see Chapter 10), a route processor was responsible
for updates while the chip worked on searches. The table was stored in a separate off-chip
memory; all three devices (memory, processor, and chip) can communicate with each other
via a common bus. Abstractly, separate search and update processes are concurrently making
accesses to memory. Using locks to mediate access to the memory is infeasible because of the
consequent slowdown of memory.

Given that the new specification allows duplicates, it is tempting to get away with the
simplest atomicity in terms of reads and writes to memory. Search reads the memory and update
reads and writes; the memory operations of search and update can arbitrarily interleave. Some
implementors may assume that because binary search can work correctly even with duplicates,
this is sufficient.

Unfortunately, this does not work, as shown in Figure 15.5.1 At the start of the scenario
(leftmost picture), only B, C, and D are in the first, second, and third table entries. The fourth
entry is free. A search for B begins with the second entry; a comparison with C indicates that
binary search should move to the top half, which consists of only entry 1.

B

C

D

-

B

C

C

D

B

C

D

D

B

B

C

D

A

B

C

D

A

B

C

D

Search for
B starts

Update Update Update Insert A Search for
B ends

F I G U R E 15.5 Concurrent search and update to a binary tree can lead to incorrect search results. A
binary search for B fails, although B is in the table. This is because B moves out of the search range
during an update that occurs in between search steps.

1This example is due to Cristi Estan.

15.4 Conclusions 373

Next, search is delayed while update begins to go through the process of inserting A by
writing duplicates from the bottom up. By the time update is finished, B has moved down to
the second entry. When search finishes up by examining the first entry, it finds A and concludes
(wrongly) that B is not in the table.

A simple attempt at reasoning correctly exposes this sort of counterexample directly. The
standard invariant for binary search is that either the element being searched for (e.g., B) is in
the current binary search range or B is not in the table. The problem is that update can destroy
this invariant by moving the element searched for outside the current range.

In the bridge application, the only consequence of this failure is that a packet arriving at
a known destination may get flooded to all ports. This will worsen performance only slightly
but is unlikely to be noticed by external users!

15.3.2 Rescuing Reliability
A panic reaction to the counterexample of Figure 15.5 might be to jettison single-copy update
and retreat to the safety of two copies. However, all the counterexample demonstrates is
that a search must complete without intervening update operations. If so, the binary search
invariants hold and correctness follows. The counterexample does not imply the converse: that
an entire update must complete without intervening search operations. The converse property
is restrictive and would considerably slow down search.

There are simple ways to ensure that a search completes without intervening updates. The
first is to change the architectural model — algorithmics, after all, is the art of changing the
problem to fit our limited ingenuity — so that all update writes are centralized through the search
chip. When update wishes to perform a write, it posts the write to search and waits for an
acknowledgment. After finishing its current search cycle, search does the required write and
sends an acknowledgment. Search can then work on the next search task.

A second way, more consonant with the bridge implementation, is to observe that the route
processor does packet forwarding. The route processor asks the chip to do search, and it waits
for a few microseconds to get the answer. Finally, the route processor does updates only when
no packets are being forwarded and hence no searches are in progress. Thus an update can be
interrupted by a search, but not vice versa.

The final solution relies on search tolerating duplicates, and it avoids locking by changing
the model to centralize updates and searches. Note that centralizing updates is insufficient by
itself (without also relaxing the specification to allow duplicates) because this would require
performing a complete update without intervening searches.

15.4 CONCLUSIONS

The routing protocol BGP (Border Gateway Protocol) controls the backbone of the Internet. In
the last few years, careful scrutiny of BGP has uncovered several subtle flaws. Incompatible
policies can lead to routing loops [VGE00], and attempts to make Internal BGPscale using route
reflectors also lead to loops [GW02]. Finally, mechanisms to thwart instability by damping
flapping routes can lead to penalizing innocent routes for up to an hour [MGVK02].

While credit must go to the BGP designers for designing a protocol that deals with
great diversity while making the Internet work most of the time, there is surely some dis-
comfort at these findings. It is often asserted that such bugs rarely manifest themselves in

374 C H A P T E R 1 5 Routers as Distributed Systems

operational networks. But there may be a Three Mile Island incident waiting for us — as in the
crash of the old ARPANET [Per92], where a single unlikely corner case capsized the network
for a few days.

Even worse, there may be a slow, insidious erosion of reliability that gets masked by
transparent recovery mechanisms. Routers restart, TCPs retransmit, and applications retry.
Thus failures in protocols and router implementations may only manifest themselves in terms
of slow response times, frozen screens, and rebooting computers.

Jeff Raskin says, “Imagine if everyThursday your shoes exploded if you tied them the usual
way. This happens to us all of the time with computers, and nobody thinks of complaining.”
Given our tolerance for pain when dealing with networks and computers, a lack of reliability
ultimately translates into a decline of user productivity.

The examples in this chapter fit this thesis. In each case, incorrect distributed algorithm
design leads to productivity erosion, not Titanic failures. Flow control deadlocks can be
masked by router reboots, and cell loss can be masked by TCP retransmits. Failure to preserve
ordering within an internal striping algorithm leads to TCP performance degradation, but not
to loss. Finally, incorrect binary search table updates lead only to increased packet flooding.
But together, the nickels and dimes of every reboot, performance loss, and unnecessary flood
can add up to significant loss.

Thus this chapter is a plea for care in the design of protocols between routers and also
within routers. In the quest for performance that has characterized the rest of the book, this
chapter is a lonely plea for rigor. While full proofs may be infeasible, even sketching key
invariants and using informal arguments can help find obscure failure modes. Perhaps if we
reason together, routers can become as comfortable and free of surprises as an ordinary pair
of shoes.

15.5 EXERCISES

1. FCVC Flow Control Protocol: The FCVC flow control protocol of Kung et al. [KCB94]
provides an important alternative to the credit protocols described in Section 15.1. In the
FCVC protocol, shown in Figure 15.6, the sender keeps a count of cells sent H while the
receiver keeps a count of cells received R and cells dequeued D. The receiver periodically
sends its current value of D, which is stored at the sender as estimate L. The sender is
allowed to send if H − L > Max. More importantly, if the sender periodically sends H to
the receiver, the receiver can deal with errors due to cell loss.

• Assume cells are lost and that the sender periodically sends H to the receiver. How can
the receiver use the values of H and R to detect how many cells have been lost?

• How can the receiver use this estimate of cell loss to fix D in order to correct the sender?

• Can this protocol be made self-stabilizing without using the full machinery of a
snapshot and reset?

• Compare the general features of this method of achieving reliability to the method used
in the load-balancing algorithm described in the chapter.

2. Load Balancing with Variable-Size Packets: Load balancing within a router is typically
at the granularity of cells. However, load balancing across routers is often at the

15.5 Exercises 375

H

L

Send if
H �L > Max R

D

F I G U R E 15.6 The FCVC protocol uses a count H of cells sent by sender and an estimate L of the
cells dequeued at receiver; flow control is achieved by limiting the difference between H and L. More
importantly, the use of absolute packet numbers instead of incremental credits allows the periodic sending
of counts to fix errors due to cell loss.

granularity of (variable-sized) packets. Thus simple round-robin striping may not balance
load equally because all the large packets may be sent on one link and the small ones on
another. Modify the load-balancing algorithm without sequence numbers (using ideas
suggested by the deficit round-robin (DRR) algorithm described in Chapter 14) to balance
load evenly even while striping variable-size packets. Extend the fault-tolerance ma-
chinery to handle this case as well.

3. Concurrent Compaction and Search: In many lookup applications, routers must use
available on-chip SRAM efficiently and may have to compact memory periodically to
avoid filling up memory with unusably small amounts of free space. Imagine a sequence
of N trie nodes of size-4 words that are laid out contiguously in SRAM memory after
which there is a hole of size-2 words. As a fundamental operation in compaction, the
update algorithm needs to move the sequence of N nodes two words to the right to fill the
hole. Unfortunately, moving a node two steps to the right can overwrite itself and its
neighbor. Find a technique for doing compaction for update with minimal disruption to a
concurrent search process. Assume that when a node X is moved, there is at most one
other node Y that points to X and that the update process has a fast technique for finding Y
given X (see Chapter 11). Use this method to find a way to compact a sequence of trie
nodes arbitrarily laid out in memory into a configuration where all the free space is at one
end of memory and there are no “holes” between nodes. Of course, the catch is that the
algorithm should work without locking out a concurrent search process for more than one
write operation every K search operations, as in the bridge binary search example.

P A R T IV

Endgame

Daring ideas are like chessmen moved forward. They may be beaten, but they may
start a winning game.

— Goethe

We didn’t lose the game; we just ran out of time.

— Vince Lombardi

The last part of the book applies network algorithmics to the emerging fields of security
and measurement. As the Internet matures, we believe that good abstractions for secu-
rity and measurement will be key to well-engineered networks. While the problems
(e.g., detecting a DoS attack at a high-speed router) seem hard, some remarkable ideas
have been proposed. The final chapter reaches closure by distilling the underlying uni-
ties behind the many different techniques surveyed in this book and by surveying the
future of network algorithmics.

C H A P T E R 16

Measuring Network Traffic

Not everything that is counted counts, and not everything that counts can be counted.

— Albert Einstein

Every graduate with a business degree knows that the task of optimizing an organization or
process begins with measurement. Once the bottlenecks in a supply chain are identified and the
major cost factors are outlined, improvements can be targeted. The situation is no different in
computer networks. For example, in service provider networks, packet counting and logging
provide powerful tools for the following.

Capacity Planning: Internet service providers (ISPs) need to determine the traffic matrix, or
the traffic between all source and destination subnets they connect. This knowledge can
be used on short time scales (say, hours) to perform traffic engineering by reconfiguring
optical switches; it can also be used on longer time scales (say, months) to upgrade link
capacity.

Accounting: Internet service providers implement complex service level agreements (SLAs)
with customers and peers. Simple accounting arrangements based on overall traffic can
easily be monitored by a single counter; however, more sophisticated agreements based
on traffic type require a counter per traffic type. Packet counters can also be used to decide
peering relationships. Suppose ISP A is currently sending packets to ISP C via ISP B and
is considering directly connecting (peering) with B; a rational way for A to decide is to
count the traffic destined to prefixes corresponding to B.

Traffic Analysis: Many network managers monitor the relative ratio of one packet type to
another. For example, a spike in peer-to-peer traffic, such as to Kazaa, may require rate
limiting. A spike in ICMP messages may indicate a Smurf attack.

Once causes — such as links that are unstable or have excessive traffic — are identified,
network operators can take action by a variety of means. Thus measurement is crucial not just
to characterize the network but to better engineer its behavior.

There are several control mechanisms that network operators currently have at their dis-
posal. For example, operators can tweak Open Shortest Path First (OSPF) link weights and
BGP policy to spread load, can set up circuit-switched paths to avoid hot spots, and can simply
buy new equipment. This chapter focuses only on network changes that address the measure-
ment problem — i.e., changes that make a network more observable. However, we recognize

379

380 C H A P T E R 1 6 Measuring Network Traffic

that making a network more controllable, for instance, by adding more tuning knobs, is an
equally important problem we do not address here.

Despite its importance, traffic measurement, at first glance, does not appear to offer any
great challenges or have much intellectual appeal. As with mopping a floor or washing dishes,
traffic measurement appears to be a necessary but mundane chore.

The goal of this chapter is to argue the contrary: that measurement at high speeds is
difficult because of resource limitations and lack of built-in support; that the problems will
only grow worse as ISPs abandon their current generation of links for even faster ones; and that
algorithmics can provide exciting alternatives to the measurement quandary by focusing on
how measurements will ultimately be used. To develop this theme, it is worth understanding
right away why the general problem of measurement is hard and why even the specific problem
of packet counting can be difficult.

This chapter is organized as follows. Section 16.1 describes the challenges involved in
measurement. Section 16.2 shows how to reduce the required width of an SRAM counter using
a DRAM backing-store. Section 16.3 details a different technique for reducing counter widths
by using randomized counting, which trades accuracy for counter width. Section 16.4 presents
a different approach to reducing the number of counters required (as opposed to the width)
by keeping track of counters only above a threshold. Section 16.5 shows how to reduce the
number of counters even further for some applications by counting only the number of distinct
flows.

Techniques in prior sections require computation on every packet. Section 16.6 takes a
different tack by describing the sampled NetFlow technique for reducing packet processing; in
NetFlow only a random subset of packets is processed to produce either a log or an aggregated
set of counters. Section 16.7 shows how to reduce the overhead of shipping NetFlow records
to managers. Section 16.8 explains how to replace the independent sampling method of Net-
Flow with a consistent sampling technique in all routers that allow packet trajectories to be
traced.

The last three sections of the chapter move to a higher-level view of measurement. In
Section 16.9 we describe a solution to the accounting problem. This problem is of great interest
to ISPs, and the solution method is in the best tradition of the systems approach advocated
throughout this book. In Section 16.10 we describe a solution to the traffic matrix problem
using the same concerted systems approach. Section 16.11 presents a very different approach
to measurement called passive measurement, that treats the network as a black box. It includes
an example of the use of passive measurement to compute the loss rate to a Web server.

The implementation techniques for the measurement primitives described in this chapter
(and the corresponding principles used) are summarized in Figure 16.1.

Q u i c k R e f e r e n c e G u i d e
Section 16.2 may be of interest to a network device implementor seeking to implement a large number

of counters at high speeds. Section 16.5 describes a useful mechanism for quickly counting the list of
distinct identifiers in a stream of received packets without keeping large hash tables. Section 16.9 presents
a solution proposed by Juniper Networks for accounting. Section 16.10 covers inferring traffic matrices
and is useful for implementors building tools for monitoring ISPs.

16.1 Why Measurement Is Hard 381

Number Principle Used In

P5c Low-order counter bits in SRAM, all bits in DRAM LCF algorithm

LR algorithmP15 Update only counters above threshold

Morris algorithmP3b Randomized counting

Multistage filtersP3a Multiple hashed counters to detect heavy flows

Multiresolution
bitmap

P3b Flow counting by hashing flows to bitmaps

P3a Packet sampling to collect representative logs Sampled NetFlow

P3a Sampling flows proportional to size Sampled charging

P4 Using TCP semantics for measurement

P3
P4

Aggregating prefixes into buckets
Routing protocol helps color prefixes Juniper’s DCU

Sting

F I G U R E 16.1 Principles used in the implementation of the measurement primitives discussed in this
chapter.

16.1 WHY MEASUREMENT IS HARD

Unlike the telephone network, where observability and controllability were built into the
design, the very simplicity of the successful Internet service model has made it difficult to
observe [DG00]. In particular, there appears to be a great semantic distance between what users
(e.g., ISPs) want to know and what the network provides. In this tussle [CWSB02] between
user needs and the data generated by the network, users respond by distorting [CWSB02]
existing network features to obtain desired data.

For example, Traceroute uses the TTL field in an admittedly clever but distorted way, and
the Path MTU discovery mechanism is similar. Tools like Sting [Sav99] use TCP in even more
baroque fashion to yield end-to-end measures. Even tools that make more conventional use
of network features to populate traffic matrices (e.g., Refs. FGea00 and ZRDG03) bridge the
semantic gap by correlating vast amounts of spatially separated data and possibly inconsistent
configuration information. All this is clever, but it may not be engineering.1 Perhaps much of
this complexity could be removed by providing measurement features directly in the network.

One of the fundamental tools of measurement is counting: counting the number of packets
or events of a given type. It is instructive to realize that even packet counting is hard as we
show next.

16.1.1 Why Counting Is Hard
Legacy routers provide only per-interface counters that can be read by the management protocol
SNMP. Such counters count only the aggregate of all counters going on an interface and make

1Recall the comment by hardened battle veterans on the heroic Charge of the Light Brigade: “It is beautiful, but
is it war?”

382 C H A P T E R 1 6 Measuring Network Traffic

it difficult to estimate traffic AS-AS matrices that are needed for traffic engineering. They
can also be used only for crude forms of accounting, as opposed to more sophisticated forms
of accounting that count by traffic type (e.g., real-time traffic may be charged higher) and
destination (some destinations may be routed through a more expensive upstream provider).

Thus vendors have introduced filter-based accounting, where customers can count traffic
that matches a rule specifying a predicate on packet header values. Similarly, Cisco provides
NetFlow-based accounting [Net], where sampled packets can be logged for later analysis, and
5-tuples can be aggregated and counted on the router. Cisco also provides Express Forwarding
commands, which allow per-prefix counters [Cis].

Per-interface counters can easily be implemented because there are only a few counters
per interface, which can be stored in chip registers. However, doing filter-based or per-prefix
counters is more challenging because of the following.

• Many counters: Given that even current routers support 500,000 prefixes and that future
routers may have a million prefixes, a router potentially needs to support millions of
real-time counters.

• Multiple counters per packet: A single packet may result in updating more than one
counter, such as a flow counter and a per-prefix counter.

• High speeds: Line rates have been increasing from OC-192 (10 Gbps) to OC-768
(40 Gbps). Thus each counter matched by a packet must be read and written in the
time taken to receive a packet at line speeds.

• Large widths: As line speeds get higher, even 32-bit counters overflow quickly. To
prevent the overhead of frequent polling, most vendors now provide 64-bit counters.

One million counters of 64 bits each requires a total of 64 Mbits of memory; while two
counters of 64 bits each every 8 nec requires 16 Gbps of memory bandwidth. The memory
bandwidth needs require the use of SRAM, but the large amount of memory needed makes
SRAM of this size too expensive. Thus maintaining counters or packet logs at wire speeds is
as challenging as other packet-processing tasks, such as classification and scheduling; it is the
focus of much of this chapter.

In summary, this section argues that: (i) packet counters and logs are important for net-
work monitoring and analysis; (ii) naive implementations of packet counting and logs require
potentially infeasible amounts of fast memory. The remainder of this chapter describes the
use of algorithmics to reduce the amount of fast memory and processing needed to implement
counters and logs.

16.2 REDUCING SRAM WIDTH USING DRAM BACKING STORE

The next few sections ignore the general measurement problem and concentrate on the specific
problem of packet counting. The simplest way to implement packet counting is shown in
Figure 16.2. One SRAM location is used for each of, say, 1 million 64-bit counters. When a
packet arrives, the corresponding flow counter (say, based on destination) is incremented.

Given that such large amounts of SRAM are expensive and infeasible, is it required? If
a packet arrives, say, every 8 nsec, some SRAM counter must be accessed — as opposed to,

16.2 Reducing SRAM Width Using DRAM Backing Store 383

M = 64 bits

Core router

Increment

N = 1 million
counters, 1
per prefixD

OC-192 or -768 speed

F I G U R E 16.2 Basic model for packet counting at high speeds using a large-width counter for each
of a large number of flows.

DRAMSRAM

Increment N

D

OC-192 or -768 speed

Dump &
reset

every b
accesses

M = 64 bitsc bits

F I G U R E 16.3 Using large DRAM counters as a backing store for small SRAM counters, reducing
overall cost. For correctness, an SRAM counter must be backed up to DRAM before it overflows.

say, 40-nsec DRAM. However, intuitively keeping a full 64-bit SRAM location is obvious
waste (P1).

Instead, the best hardware features of DRAM and SRAM can be combined (P5c). DRAM
is at least four times cheaper and often as much as 10 times cheaper, depending on market
conditions. On the other hand, DRAM is slow. This is exactly analogous to the memory
hierarchy in a computer. The analogy suggests that DRAM and SRAM can be combined to
provide a solution that is both cheap and fast.

Observe that if the router keeps a 64-bit DRAM backing location for each counter and
a much smaller width (say, 12 bits) for each SRAM counter, then the counter system will
be accurate as long as every SRAM counter is backed up to DRAM before the smaller SRAM
counter overflows. This scheme is depicted in Figure 16.3. What is missing, however, is a
good algorithm (P15) for deciding when and how to back up SRAM counters.

Assume that the chip maintaining counters is allowed to dump some SRAM counter to
DRAM every b SRAM accesses. b is chosen to be large enough that b SRAM access times
correspond to 1 DRAM access time. In terms of the smallest SRAM width required, Shah
et al. [SIPM02] show that the optimal counter-management algorithm is to dump the largest
SRAM counter. With this strategy Shah et al. [SIPM02] show that the SRAM counter width c
can be significantly smaller than M, the width of a DRAM counter.

More precisely, they show that 2c ≈ log b(N−1)
log(b/b−1) , where N is the total number of counters.

Note that this means that the SRAM counter width grows approximately as log log bN , since
b/b − 1 can be ignored for large b. For example, with three 64-bit counters every 8 nsec
(OC-768) for N equal to a million requires only 8 Mbit of 2.5 µsec SRAM with 51.2 µsec
DRAM. Note that in this case the value of b is 51.2/2.5 ≈ 21.

384 C H A P T E R 1 6 Measuring Network Traffic

The bottom line is that the naive method would have required 192 Mbit of SRAM compared
to 8 Mbit, a factor of 24 savings in expensive SRAM. Overall, this provides roughly a factor
of 4 savings in cost, assuming DRAM is four times cheaper than SRAM.

But this begs the question. How does the chip processing counters find the the largest
counter? Bhagwan and Lin [BL00] describe an implementation of a pipelined heap structure
that can determine the largest value at a fairly high expense in hardware complexity and
space. Their heap structure requires pointers of size log2 N for each counter just to identify
the counter to be evicted. Unfortunately, log2 N additional bits per counter can be large (20
for N = 1 million) and can defeat the overall goal, which was to reduce the required SRAM
bits from 64 to say 10.

The need for a pointer per heap value seems hard to avoid. This is because the counters
must be in a fixed place to be updated when packets arrive, but values in a heap must keep
moving to maintain the heap property. On the other hand, when the largest value arrives at the
top of the heap, one has to correlate it to the counter index in order to reset the appropriate
counter and to banish its contents to DRAM. Notice also that all values in the heap, including
pointers and values, must be in SRAM for speed.

The following LR algorithm [RV03] simplifies the largest count first (LCF) algorithm of
Shah et al. [SIPM02] and is easier to implement. Let j be the index of the counter with the
largest value among the counters incremented in the last cycle of b updates to SRAM. Ties
may be broken arbitrarily. If cj ≥ b, the algorithm updates counter cj to DRAM. If cj < b,
the algorithm updates any counter with value at least b to DRAM. If no such counter exists,
LR(T) updates counter Cj to DRAM.

It can be shown that LR [RV03] is also optimal and produces SRAM counter width c,
which is equal to that of LCF. The maintaining of all counters above the threshold b can be
done using a size-N bitmap in which a 1 implies that the corresponding position has a counter
no less than b.

This leaf structure can be augmented with a simple tree that maintains the position of
the first 1 (see Exercises). The tree can be easily pipelined for speed, and only roughly 2 bits
per counter are required for this additional data structure; thus c is increased from its optimal
value, say, x to x + 2, a reasonable cost.

Thus the final LR algorithm is a better algorithm (P15) and one that is easier to implement,
provides a new data structure to efficiently find the first bit set in a bitmap (P15), and adds
pipelining hardware (P5) to gain speed.

The overall approach could be considered superficially similar to the usual use of the
memory hierarchy, in which a faster memory acts as a cache for a slower memory. However,
unlike a conventional cache this design ensures worst-case performance and not expected case
performance. The goals of the two algorithms are also different: Counter management stores
an entry for all items but seeks to reduce the width of cache entries, while standard caching
stores full widths for only some frequent items.

16.3 REDUCING COUNTER WIDTH USING RANDOMIZED COUNTING

The DRAM backing-store approach trades off reduced counter widths for more processing and
complexity. A second approach is to trade accuracy and certainty (P3a, b) for reduced counter
widths. For many applications described earlier, approximate counters may suffice.

16.4 Reducing Counters Using Threshold Aggregation 385

Increment

D

OC-192 or -768 speed

Compress
out entries
< threshold

I, valI
J, valJ
K, valK

I

J

K

F I G U R E 16.4 Using threshold compression to reduce the number of counters stored.

The basic idea is as follows. If we increment a b-bit counter only with probability 1/c,
then when the counter saturates, the expected number of counted events is 2b · c. Thus a b-bit
randomized counter can count c times more events than a deterministic version. But once the
notion of approximate counting is accepted, it is possible to do better.

Notice that in the basic idea, the standard deviation (i.e., the expected value of the counter
error) is a few c’s, which is small at counter values � c. R. Morris’s idea for randomized
counting is to notice that for higher counter values, one can tolerate higher absolute values of
the error. For example, if the standard deviation is equal to the counter, the real value is likely
to be within half to twice the value determined by the counter. Allowing the error to scale with
counter values in turn allows a smaller counter width.

To achieve this, Morris’s scheme increments a counter with nonconstant probability that
depends on counter value, so expected error scales with counter size. Specifically, the algorithm
increments a counter with probability 1/2x , where x is the value of the counter. At the end, a
counter value of x represents an expected value of 2x . Thus the number of bits required for
such a counter is log log Max, where Max is the maximum value required for the counter.

While this is an interesting scheme, its high standard deviation and the need to pick
accurate small numbers, especially for high values of the counter, are clear disadvantages.
Randomized counting is an example of using P3b, trading accuracy for storage (and time).

16.4 REDUCING COUNTERS USING THRESHOLD AGGREGATION

The last two schemes reduce the width of the SRAM counter table shown in Figure 16.2. The
next two approaches reduce the height of the SRAM counter table. They rely on the quote
from Einstein (which opened the chapter) that not all the information in the final counter table
may be useful to an application, at least for some applications. Effectively, by relaxing the
specification (P3), the number of counters that need to be maintained can be reduced.

One simple way to compress the counter table is shown in Figure 16.4. The idea is to pick
a threshold, say, 0.1% of the traffic, that can possibly be sent in the measurement interval and
to keep counters only for such “large” flows. Since, by definition, there can be at most 1000
such flows, the final table reduces to 1000 flow ID, counter pairs, which can be indexed using
a CAM. Note that small CAMs are perfectly feasible at high speed.

This form of compression is reasonable for applications that only want counters above a
threshold. For example, just as most cell phone plans charge a fixed price up to a threshold
and a usage-based fee beyond the threshold, a router may only wish to keep track of the
traffic sent by large flows. All other flows are charged a fixed price. Similarly, ISPs wishing to

386 C H A P T E R 1 6 Measuring Network Traffic

Stage 1

Stage 2

Stage 3

h1(F)

h3(F)

h2(F)Packet with

flow ID F
All large?

Flow
memory

F I G U R E 16.5 In a parallel multistage filter, a packet with a flow ID F is hashed using hash function
h1 into a Stage 1 hash table, h2 into a Stage 2 hash table, etc. Each of the hash buckets contains a counter
that is incremented by the packet size. If all the hash bucket counters are above the threshold (shown
bolded), then flow F is passed to the flow memory for more careful observation.

reroute traffic hot spots or detect attacks are only interested in large, “elephant” flows and not
the “mice.”

However, this idea gives rise to a technical problem. How can a chip detect the elephants
above the threshold without keeping track of all flows? The simplest approach would be to
keep a counter for all flows, as in Figure 16.2, in order to determine which flows are above the
threshold. However, doing so does not save any memory.

A trick [EV02] to directly compute the elephants together with the traffic sent by each
elephant is shown in Figure 16.5. The building blocks are hash stages that operate in parallel.
First, consider how the filter operates if it had only one stage. A stage is a table of counters
indexed by a hash function computed on a packet flow ID; all counters in the table are initialized
to 0 at the start of a measurement interval.

When a packet comes in, a hash on its flow ID is computed and the size of the packet is
added to the corresponding counter. Since all packets belonging to the same flow hash to the
same counter, if a flow F sends more than threshold T , F’s counter will exceed the threshold.
If we add to the flow memory all packets that hash to counters of T or more, we are guaranteed
to identify all the large flows (no false negatives).

Unfortunately, since the number of counters we can afford is significantly smaller than
the number of flows, many flows will map to the same counter. This can cause false positives
in two ways: first, small flows can map to counters that hold large flows and get added to flow
memory; second, several small flows can hash to the same counter and add up to a number
larger than the threshold.

To reduce this large number of false positives, the algorithm uses multiple stages. Each
stage (Figure 16.5) uses an independent hash function. Only the packets that map to counters
of T or more at all stages get added to the flow memory. For example, in Figure 16.5, if a
packet with a flow ID F arrives that hashes to counters 3, 1, and 7, respectively, at the three
stages, F will pass the filter (counters that are over the threshold are shown darkened).

16.5 Reducing Counters Using Flow Counting 387

On the other hand, a flow G that hashes to counters 7, 5, and 4 will not pass the filter because
the second-stage counter is not over the threshold. Effectively, the multiple stages attenuate
the probability of false positives exponentially in the number of stages. This is shown by the
following simple analysis.

Assume a 100-MB/sec link, with 100,000 flows. We want to identify the flows above 1%
of the link during a 1-second measurement interval. Assume each stage has 1000 buckets and
a threshold of 1 MB. Let’s see what the probability is for a flow sending 100 KB to pass the
filter. For this flow to pass one stage, the other flows need to add up to 1 MB − 100 KB =
900 KB.

There are at most 99,900/900 = 111 such buckets out of the 1000 at each stage. Therefore,
the probability of passing one stage is at most 11.1%. With four independent stages, the
probability that a small flow no larger than 100 KB passes all four stages is the product of the
individual stage probabilities, which is at most 1.52 ∗ 10−4.

Note the potential scalability of the scheme. If the number of flows increases to 1 million,
we simply add a fifth hash stage to get the same effect. Thus to handle 100,000 flows requires
roughly 4000 counters and a flow memory of approximately 100 memory locations; to handle
1 million flows requires roughly 5000 counters and the same size of flow memory. This is
logarithmic scaling.

The number of memory accesses at packet arrival time performed by the filter is exactly
one read and one write per stage. If the number of stages is small enough, this is affordable,
even at high speeds, since the memory accesses can be performed in parallel, especially in
a chip implementation. A simple optimization called conservative update (see Exercises) can
improve the performance of multistage filtering even further. Multistage filters can be seen
as an application of Principle P3a, trading certainty (allowing some false positives and false
negatives) for time and storage.

16.5 REDUCING COUNTERS USING FLOW COUNTING

A second way to reduce the number of counters even further, beyond even threshold compres-
sion, is to realize that many applications do not even require identifying flows above a threshold.
Some only need a count of the number of flows. For example, the Snort (www.snort.org)
intrusion-detection tool detects port scans by counting all the distinct destinations sent to by a
given source and alarming if this amount is over a threshold.

On the other hand, to detect a denial-of-service attack, one might want to count the number
of sources sending to a destination, because many such attacks use multiple forged addresses.
In both examples, it suffices to count flows, where a flow identifier is a destination (port scan)
or a source (denial of service).

A naive method to count source–destination pairs would be to keep a counter together
with a hash table (such as Figure 16.2 except without the counter) that stores all the distinct
64-bit source–destination address pairs seen thus far. When a packet arrives with source and
destination addresses S, D, the algorithm searches the hash table for S, D; if there is no match,
the counter is incremented and S, D is added to the hash table. Unfortunately, this solution
takes too much memory.

An algorithm called probabilistic counting [FM85] can considerably reduce the memory
needed by the naive solution, at the cost of some accuracy in counting flows. The intuition

388 C H A P T E R 1 6 Measuring Network Traffic

behind probabilistic counting is to compute a metric of how uncommon a certain pattern within
a flow ID is. It then keeps track of the degree of “uncommonness” across all packets seen. If
the algorithm sees very uncommon patterns, the algorithm concludes it saw a large number of
flows.

More precisely, for each packet seen, the algorithm computes a hash function on the flow
ID. It then counts the number of consecutive zeroes, starting from the least significant position
of the hash result; this is the measure of uncommonness used. The algorithm keeps track of X,
the largest number of consecutive zeroes seen (starting from the least significant position) in
the hashed flow ID values of all packets seen so far.

At the end of the interval, the algorithm converts X, the largest number of trailing zeroes
seen, into an estimate 2X for the number of flows. Intuitively, if the stream contains two distinct
flows, on average one flow will have the least significant bit of its hashed value equal to zero;
if the stream contains eight flows, on average one flow will have the last three bits of its hashed
value equal to zero — and so on.

Note that hashing is essential for two reasons. First, implementing the algorithm directly
on the sequence of flow IDs itself could make the algorithm susceptible to flow ID assignments
where the traffic stream contains a flow ID F with many trailing zeroes. If F is in the traffic
stream, then even if the stream has only a few flows, the algorithm without hashing will
wrongly report a large number of flows. Notice that adding multiple copies of the same flow
ID to the stream will not change the algorithm’s final result, because all copies hash to the
same value.

A second reason for hashing is that accuracy can be boosted using multiple independent
hash functions. The basic idea with one hash function can guarantee at most 50% accuracy.
By using N independent hash functions in parallel to compute N separate estimates of X,
probabilistic counting greatly reduces the error of its final estimate. It does so by keeping the
average value of X (as a floating point number, not an integer) and then computing 2X . Better
algorithms for networking purposes are described in Estan et al. [EVF02].

The bottom line is that a chip can count approximately the number of flows with small
error but with much less memory than required to track all flows. The computation of each
hash function can be done in parallel. Flow counting can be seen as an application of Principle
P3b, trading accuracy in the estimate for low storage and time.

16.6 REDUCING PROCESSING USING SAMPLED NETFLOW

So far we have restricted ourselves to packet counting. However, several applications might
require packet logs. Packet logs are useful for analysts to retrospectively analyze for patterns
and attacks.

In networking, there are general-purpose traffic measurement systems, such as Cisco’s
NetFlow [Net], that report per-flow records for very fine grained flows, where a flow is
identified by a TCP or UDP connection. Unfortunately, the large amount of memory needed
to store packet logs requires the use of DRAM to store the logs. Clearly, writing to DRAM on
every packet arrival is infeasible for high speeds, just as it was for counter management.

Basic NetFlow has two problems.

1. Processing Overhead: Updating the DRAM slows down the forwarding rate.

16.7 Reducing Reporting Using Sampled Charging 389

(Reduced processing)
Add 1 in X packets to log

D3

OC-192 or -768 speed

Periodically
read by

management
station

Can also aggregate log via hash table

(Memory)

D3 D1 D3 D1 D3 D1 D3
(Bandwidth)

F I G U R E 16.6 Using sampling to reduce packet processing while maintaining a packet log for later
analysis.

2. Collection Overhead: The amount of data generated by NetFlow can overwhelm the
collection server or its network connection. Feldman et al. [FGea00] report loss rates of
up to 90% using basic NetFlow.

Thus, for example, Cisco recommends the use of sampling (see Figure 16.6) at speeds
above OC-3: Only the sampled packets result in updates to the DRAM flow cache that keeps
the per-flow state. For example, sampling 1 in 16 packets or 1 in 1000 packets is common. The
advantage is that the DRAM must be written to at most 1 in, say, 16 packets, allowing the
DRAM access time to be (say) 16 times slower than a packet arrival time. Sampling introduces
considerable inaccuracy in the estimate; this is not a problem for measurements over long
periods (errors average out) and if applications do not need exact data.

The data-collection overhead can be alleviated by having the router aggregate the log
information into counters (e.g., by source and destination autonomous systems (AS) numbers)
as directed by a manager. However, Fang and Peterson [FP99] show that even the number of
aggregated flows is very large. For example, collecting packet headers for Code Red traffic on a
class A network [Moo01] produced 0.5 GB per hour of compressed NetFlow data. Aggregation
reduced this data only by a factor of 4.

Sampling is an example of using P3a, trading certainty for storage (and time), via a
randomized pruning algorithm.

16.7 REDUCING REPORTING USING SAMPLED CHARGING

A technique called sampled charging [DLT01] can be used to reduce the collection overhead of
NetFlow, at the cost of further errors. The idea is to start with a NetFlow log that is aggregated
by TCP or UDP connections and to reduce the overhead of sending this data to a collection
station. The goal is to reduce collection bandwidth and processing, as opposed to reducing the
size of the router log.

The idea, shown in Figure 16.7, is at first glance similar to threshold compression,
described in Section 16.4. The router reports only flows above a threshold to the collec-
tion station. The only additional twist is that the router also reports a flow with size s that is
less than the threshold with probability proportional to s.

Thus the difference between this idea and simple threshold compression is that the final
transmitted bandwidth is still small, but some attention is paid to flows below the threshold
as well. Why might this be useful? Suppose all TCP individual connections in the aggregated

390 C H A P T E R 1 6 Measuring Network Traffic

Add 1 in X packets to log

D3

OC-192 or -768 speed

Report all flows
> threshold T
and flows < T

with probability proportional to size

D3 D1 D3 D1 D3 D1 D3

(Reduced
bandwidth)

F I G U R E 16.7 Using Sampled Charging to only report all large flows over a threshold and report
flows below a threshold with probability proportional to their size.

log are small and below threshold but that 50% of the connections are from subnet A to
subnet B.

If the router reported only the connections above threshold, the router would report no
flows, because no individual TCP flow is large. Thus the collection agency would be unable to
determine this unusual pattern in the destination and source addresses of the TCP connections.
On the other hand, by reporting flows below threshold with a probability proportional to their
size, on average half the flows the router will report will be from A to B. Thus the collection
station can determine this unusual traffic pattern and take steps (e.g., increase bandwidth
between these two) accordingly.

Thus the advantage of sampled charging over simple threshold compression is that it allows
the manager to infer potentially interesting traffic patterns that are not decided in advance while
still reducing the bandwidth sent to the collection node.

For example, sampled charging could also be used to detect an unusual number of packets
sent by Napster using the same data sent to the collection station. Its disadvantage is that it still
requires a large DRAM log. The large DRAM log scales poorly in size or accuracy as speeds
increase.

On the other hand, threshold compression removes the need for the large DRAM log while
directly identifying the large traffic flows. However, unless the manager knew in advance that
he was interested in traffic between source and destination subnets, one cannot solve the
earlier problem. For example, one cannot use a log that is threshold compressed with respect
to TCP flows to infer that traffic between a pair of subnets is unusually large. Thus threshold
compression has a more compact implementation but is less flexible than sample charging.

More formally, it can be shown that the multistage memory solution in Figure 16.5 requires√
M memory, where M is the memory required by NetFlow or sampled charging for the same

relative error. On the other hand, this solution requires more packet processing. Threshold
compression is also less flexible than NetFlow and sampled charging in terms of being able to
mine traffic patterns after the fact.

Sampled charging is an example of using P3b, trading certainty for bandwidth (and time).

16.8 CORRELATING MEASUREMENTS USING TRAJECTORY SAMPLING

Afinal technique for router measurement is called trajectory sampling [DG00]. It is orthogonal
to the last two techniques and can be combined with them. Recall that in sampled NetFlow

16.8 Correlating Measurements Using Trajectory Sampling 391

div g

h

+

div+ comp

Sampling
range r

Labels

Sampling subsystem

Input buffer

Interface

To measurement
system

To switching
fabric

Incoming
packets

F I G U R E 16.8 Trajectory sampling ensures that all routers sample a packet or do not by using the
same hash function (as opposed to a random coin) to decide when to sample a packet.

and sampled charging, each router independently samples a packet. Thus the set of packets
sampled at each router is different even when a set of routers sees the same stream of packets.

The main idea in trajectory sampling is to have routers in a path make correlated
packet-sampling decisions using a common hash function. Figure 16.82 shows packets enter-
ing a router line card. The stream is “tapped” before it goes to the switch fabric. For every
packet, a hash function h is used to decide whether the packet will be sampled by comparing
the hashed value of the packet to a specified range. If the packet is sampled, a second hash
function, g, on the packet is used to store a packet label in a log.

Trajectory sampling allows managers to correlate packets on different links. In order to
ensure this, two more things are necessary. First, all routers must use the same values of g
and h. Second, since packets can change header fields from router to router (e.g., TTL is
decremented, data link header fields change), the hash functions are applied only to portions
of the network packet that are invariant. This is achieved by computing the hash on header
fields that do not change from hop to hop together with a few bytes of the packet payload.

Apacket that is sampled at one router will be sampled at all routers in the packet’s trajectory
or path. Thus a manager can use trajectory sampling to see path effects, such as packet looping,
packet drops, and multiple shortest paths, that may not be possible to discern using ordinary
sampled NetFlow.

In summary, the two differences between trajectory sampling and sampled NetFlow are:
(1) the use of a hash function instead of a random number to decide when to sample a packet;
(2) the use of a second hash function on invariant packet content to represent a packet header
more compactly.

2The picture is courtesy of Duffield and Grossglauser [DG00].

392 C H A P T E R 1 6 Measuring Network Traffic

16.9 A CONCERTED APPROACH TO ACCOUNTING

In moving from efficient counter schemes to trajectory sampling, we moved from schemes that
required only local support at each router to a scheme (i.e., trajectory sampling) that enlists the
cooperation of multiple routers to extract more useful information. We now take this theme
a step further by showing the power of concerted schemes that can involve all aspects of
the network system (e.g., protocols, routers) at various time scales (e.g., route computation,
forwarding). We provide two examples: an accounting example based on a scheme proposed
by Juniper networks (described in this section) and the problem of traffic matrices (described
in the next section).

The specific problem being addressed in this section is that of an ISP wishing to collect
traffic statistics on traffic sent by a customer in order to charge the customer differently depend-
ing on the type of traffic and the destination of the traffic. Refer to Figure 16.9, which depicts
a small ISP, Z , for the discussion that follows.

In the figure, assume that ISP Z wishes to bill Customer A at one rate for all traffic that
exits via ISP X and at a different rate for all traffic that exits via ISP Y . One way to do this
would be for router R1 to keep a separate counter for each prefix that represents traffic sent to
that prefix. In the figure, R1 would have to keep at least 30,000 prefix counters. Not only does
this make implementation more complex, but it is also unaligned with the user’s need, which
will eventually aggregate the 30,000 prefixes into two tariff classes. Further, if routes change
rapidly, the prefixes advertised by each ISP may change rapidly, requiring constant update of
this mapping by the tool.

Instead, the Juniper DCU solution [Sem02] has two components.

1. Class Counters: Each forwarding table entry has a 16-bit class ID. Each bit in the class
ID represents one of 16 classes. Thus if a packet matches prefix P with associated class
ID C and C has bits set in bits 3, 6, and 9, then the counters corresponding to all three set
bits are incremented. Thus there are only 16 classes supported, but a single packet can
cause multiple class counters to be incremented. The solution aligns with hardware
design realities because 16 counters per link is not much harder than one counter, and

ISP X

ISP Y

R2

R1

Customer A

Customer B

Customer C

R4

R5
R3

16
13

1412

11

15

E3
E1

E2

20,000 prefixes

ISP Z boundary

10,000 prefixes

E4

E5

F I G U R E 16.9 Example of an ISP with customer and peer links to other ISPs, X and Y .

16.10 Computing Traffic Matrices 393

incrementing in parallel is easily feasible if the 16 counters are maintained on-chip in a
forwarding ASIC. The solution also aligns with real user needs because it cheaply
supports the use of up to 16 destination-sensitive3 counters.

2. Routing Support: To attack the problem of changing prefix routes (which would result in
the tool’s having to constantly map each prefix into a different class), the DCU solution
enlists the help of the routing protocol. The idea is that all prefixes advertised by ISP X
are given a color (which can be controlled using a simple route policy filter), and prefixes
advertised by ISP Y are given a different color. Thus when a router such as R1 gets a route
advertisement for prefix P with color c, it automatically assigns prefix P to class c. This
small change in the routing protocol greatly reduces the work of the tool.

Juniper also has other schemes [Sem02], including counters based on packet classifiers
and counters based on MPLS tunnels. These are slightly more flexible than DCU accounting
because they can take into account the source address of a packet in determining its class. But
these other schemes do not have the administrative scalability of DCU accounting because
they lack routing support.

The DCU accounting scheme is an example of P4, leveraging off existing system com-
ponents, and P3, relaxing system requirements (e.g., only a small number of aggregate
classes).

16.10 COMPUTING TRAFFIC MATRICES

While the DCU solution is useful only for accounting, a generalization of some of the essential
ideas can help in solving the traffic matrix problem. This is a problem of great interest to
many ISPs.

To define the traffic matrix problem, consider a network (e.g, Z in Figure 16.9) such
as those used by ISPs Sprint and AT&T. The network can be modeled as a graph with links
connecting router nodes. Some of the links from a router in ISP Z go to routers belonging to
other ISPs (E2, E3) or customers (E1, E4, E5). Let us call such links external links. Although
we have lumped them together in Figure 16.9, external links directed toward the ISP router are
called input links, and external links directed away from an ISP router are called output links.

The traffic matrix of a network enumerates the amount of traffic that was sent (in some
arbitrary period, say, a day) between every pair of input and output links of the network. For
example, the traffic matrix could tell managers of ISP Z in Figure 16.9 that 60 Mbits of traffic
entered during the day from Customer A, of which 20 Mbits exited on the peering link E2 to
ISP X , and 40 Mbps left on link E5 to Customer B.

Network operators find traffic matrices (over various time scales ranging from hours to
months) indispensable. They can be used to make more optimal routing decisions (working
around suboptimal routing by changing OSPF weights or setting up MPLS tunnels), for
knowing when to set up circuit-switched paths (avoiding hot spots), for network diagnosis
(understanding causes of congestion), and for provisioning (knowing which links to upgrade
on a longer time scale of months).

Unfortunately, existing legacy routers provide only a single aggregate counter (the SNMP
link byte counter) of all traffic traversing a link, which aggregates traffic sent between all

3It can also be made sensitive to the type of service by also using the DiffServ byte to determine the class.

394 C H A P T E R 1 6 Measuring Network Traffic

pairs of input and output links that traverse the link. Inferring the traffic matrix from such
data is problematic because there are O(V2) possible traffic pairs in the matrix (where V is
the number of external links), and many sparse networks may have only, say, O(V) links (and
hence O(V) counters). Even after knowing how traffic is routed, one has O(V) equations for
O(V2) variables, which makes deterministic inference (of all traffic pairs) impossible. This
dilemma has led to two very different solution approaches. We now describe these two existing
solutions and a proposed new approach.

16.10.1 Approach 1: Internet Tomography
This approach (see Refs. MTea02 and ZRDG03 for good reviews of past work) recognizes the
impossibility of deterministic inference from SNMPcounters cited earlier, and instead attempts
statistical inference, with some probability of error. At the heart of the inference technique
is some model of the underlying traffic distribution (e.g., Gaussian, gravity model) and some
statistical (e.g., maximum likelihood) or optimization technique (e.g., quadratic programming
[ZRDG03]4).

Early approaches based on Gaussian distributions did very poorly [MTea02], but a new
approach based on gravity models does much better, at least on the AT&T backbone. The great
advantage of tomography is that it works without retrofitting existing routers, and it is also
clearly cheap to implement in routers. A possible disadvantage of this method is the potential
errors in the method (off by as large as 20% in Zhang et al. [ZRDG03]), its sensitivity to
routing errors (a single link failure can throw an estimate off by 50%), and its sensitivity to
topology.

16.10.2 Approach 2: Per-Prefix Counters
Designers of modern routers have considered other systems solutions to the traffic matrix
problem based on changes to router implementations and (sometimes) changes to routing
protocols (see DCU scheme described earlier). For example, one solution being designed into
some routers built at Cisco [Cis] and some start-ups is to use per-prefix counters. Recall that
prefixes are used to aggregate route entries for many millions of Internet addresses into, say,
100,000–150,000 prefixes at the present time.

A router has a forwarding engine for each input line card that contains a copy of the
forwarding prefix table. Suppose each prefix P has an associated counter that is incremented
(by the number of bytes) for each packet entering the line card that matches P. Then by pooling
the per-prefix counters kept at the routers corresponding to each input link, a tool can reconstruct
the traffic matrix. To do so, the tool must associate prefix routes with the corresponding output
links using its knowledge of routes computed by a protocol such as OSPF. In Figure 16.9, if
R1 keeps per-prefix counters on traffic entering from link E1, it can sum the 10,000 counters
corresponding to prefixes advertised by ISP X to find the traffic between Customer A and ISP X.

One advantage of this scheme is that it provides perfect traffic matrices. Asecond advantage
is that it can be used for differential traffic charging based on destination address, as in the DCU
proposal. The two disadvantages are the implementation complexity of maintaining per-prefix
counters (and the lack thereof in legacy routers) and the large amount of data that needs to be
collected and synthesized from each router to form traffic matrices.

4Some authors limit the term tomography to the use of statistical models; thus Zhang et al. [ZRDG03] refer to
their work as tomogravity. But this is splitting hairs.

16.11 Sting as an Example of Passive Measurement 395

16.10.3 Approach 3: Class Counters
Our idea is that each prefix is mapped to a small class ID of 8–14 bits (256–16,384 classes)
using the forwarding table. When an input packet is matched to a prefix P, the forwarding
entry for P maps the packet to a class counter that is incremented. For up to 10,000 counters,
the class counters can easily be stored in on-chip SRAM on the forwarding ASIC, allowing
the increment to occur internally in parallel with other functions.

For accounting, the DCU proposal (Section 16.9) already suggests that routers use policy
filters to color routes by tariff classes and to pass the colors using the routing protocol. These
colors can then be used to automatically set class IDs at each router. For the traffic matrix,
a similar idea can be used to colorize routes based on the matrix equivalence class (e.g., all
prefixes arising from same external link or network in one class).

How can class counters be used? For example, many ISPs have points of presence (or
PoPs) in major cities, and just calculating the the aggregate PoP-to-PoP traffic matrix is very
valuable [BDJT01]. Today this is done by aggregating the complete router-to-router matrix to
find this. This can be done directly by classes by setting each PoP into a separate class. For
example, in Figure 16.9, R4 and R5 may be part of the same PoP, and thus E4 and E5 would be
mapped to the same class. Measurement data from 2003 [SMW02] indicates a great reduction
in the number of classes, with 150 counters sufficing to handle the largest ISP.

The class counter scheme is an example of Principle P4, leveraging off existing system
components. It is also an example of Principle P3, relaxing system requirements (e.g., using
only a small number of aggregate classes).

16.11 STING AS AN EXAMPLE OF PASSIVE MEASUREMENT

So far this chapter has dealt exclusively with router measurement problems that involve
changes to router implementations and to other subsystems, such as routing protocols. While
such changes can be achieved with the cooperation of a few dominant router vendors, they do
face the difficulty of incremental deployment. By contrast to the schemes already described,
passive measurement focuses on the ability to trick a network into providing useful measure-
ment data without changing network internals. The basic idea is to get around the lack of
measurement support provided by the Internet protocol suite.

Imagine you are no longer an ISP but a network manager at the Acme Widget Company.
An upstart ISP is claiming to provide better service than your existing ISP. You would like to
conduct a test to see whether this true. To do so, you want to determine end-to-end performance
measurements from your site to various Web servers across the country using both ISPs in turn.

The standard solution is to use tools, such as Ping and Traceroute, that are based on sending
ICMP messages. The difficulty with these tools is that ISPs regularly filter or rate-limit such
messages because of their use by hackers.

An idea that gets around this limitation was introduced by the Sting [Sav99] tool, invented
by Stefan Savage. The main idea is to send measurement packets in the clothing of TCP
packets; ISPs and Web servers cannot drop or rate-limit such packets without penalizing good
clients. Then every protocol mechanism of TCP becomes a degree of freedom (P13) for the
measurement tool.

Consider the problem of determining the loss probability between a source and a distant
Web server. This may be useful to know if most of the traffic is sent in only one direction, as

396 C H A P T E R 1 6 Measuring Network Traffic

in a video broadcast. Even if Ping were not rate-limited, Ping only provides the combined loss
probability in both directions.

The Sting idea to find the loss probability from the source to the server is as follows. The
algorithm starts by making a normal TCP connection to the server and sending N data packets
to the server in sequence. Acknowledgments are ignored; after all, it’s measurements we are
after, not data transfer.

After the data-seeding stage, the algorithm moves into a second stage, called hole filling.
Hole filling starts with sending a single data packet with sequence number 1 greater than the
last packet sent in the first phase. If an acknowledgment is received, all is well; no data packets
were lost.

If not, after sufficient retransmission, the receiver will respond with the highest number,
X , received in sequence. The sender tool now sends only the segment corresponding to X + 1.
Eventually, an updated acknowledgment arrives with the next highest received in sequence.
The receiver fills in this next hole and marches along until all “holes” are filled. At the end of
the second phase, the sender knows exactly which data packets were lost in the first phase and
can compute the loss rate.

It is more of a challenge to compute the reverse loss rate, because the receiver TCP may
batch acknowledgments. However, once it is grasped that the tool is not limited to behaving
like a normal TCP connection, all the stops can be loosed. By sending packets out of order in
the first phase and a series of bizarre ploys, the receiver is conned into providing the required
information.

At this point, the theoretician may shake his head sadly and say, “It’s a bunch of tricks.
I always knew these network researchers were not quite the thing.” Indeed, Sting employs a
collection of tricks to compute its particular metrics. But the idea of using TCP’s venerable
protocol mechanisms as a palette for measurement is perhaps an eye-opener. It influenced later
measurement tools, such as TBIT [PF01], which used the same general idea to measure the
extent to which new TCP features were deployed.

Of course, the idea is not limited to TCP but applies to any protocol. Any protocol,
including BGP, can be subverted for the purposes of measurement. Philosophically, this is,
however, dangerous ground, because the tools used by the measurement maven (presumably
on the side of the angels) are now the same as used by the hacker (presumably on the dark side).
For example, denial-of-service attacks exploit the same inability of a server to discriminate
between standard usages of a protocol and adaptations thereof.

While Sting is less of an exercise in efficient implementation than it is an exercise in
adding features, it can be regarded as an example of P4, leveraging off features of existing
TCP implementations.

16.12 CONCLUSION

This chapter was written to convince the reader that measurement is an exciting field of
endeavor. Many years ago, the advice to an ambitious youngster was, “Go West, young man”
because the East was (supposedly) played out.

Similarly, it may be that protocol design is played out while protocol measurement is not.
After all, TCP and IP have been cast in stone these many years; despite some confusion as to its

16.13 Exercises 397

parentage, one can only invent the Internet once. Reinventing the Internet is even harder, if one
follows the fate of the next-generation Internet proposal. But there will always be new ways
to understand and measure the Internet, especially using techniques that depend on minimal
cooperation.

The first part of the chapter focused on the problems of the most basic measurement issue
at high speeds: packet counting. This is a real problem faced by every high-speed-router vendor
as they deal, on the one hand, with increasing ISP demands for for observability, and, on the
other hand, with hardware limitations. Algorithmics can help by clever uses of memories (P5c),
by changing the specification to focus only on large counters or flow counts (P3), by unusual
uses of sampling (P3a), and finally by determining real user needs to reduce the space of
counters required by aggregation for accounting or traffic matrices (P7). Figure 16.1 presents
a summary of the techniques used in this chapter together with the major principles involved.

The chapter concluded with a small excursion into the field of passive measurement.
Unlike all the other schemes described in this chapter, passive measurement schemes do not
require implementation or protocol changes and hence are likely to continue to be a useful
source of measurement data. Thus it seems fitting to end this chapter with Savage’s summary
of the main idea behind Sting: “Stop thinking of a protocol as a protocol. Think of it as … an
opportunity.”

16.13 EXERCISES

1. Using DRAM-Backed Up Counters: This chapter only described the implementation of
packet counting, not byte counting. Suggest extensions to byte counting.

2. Finding the First Set Bit: Using the techniques and assumptions stated in Chapter 2, find
a fast parallel implementation of the find-first-bit-set operation for a large (say, of length
1 million) bit vector in the context of the counter-management algorithm described in
the text.

3. Conservative Update of Multistage Hash Counting: In the multistage filter, there is
obvious waste (P1) in the way counters are incremented. Supposes a flow F, of size 2,
hashes into three buckets whose counters are 15, 16, and 40. The naive method increases
the counters to 17, 18, and 42. However, to avoid false negatives it suffices to increase
only the smallest counter to 17 and to ensure that all other counters are at least as large.
Thus, with this more conservative update strategy [EV02], the counters become 17, 17,
and 40. Argue why this optimization does not cause false negatives and can only improve
the false-positive rate.

4. Trajectory Sampling: Extend trajectory sampling to the case where different routers
wish to have the flexibility to store a different number of packet labels because of
different storage capabilities. Describe a mechanism that accommodates this and how this
affects the potential uses for trajectory sampling.

5. Passive Measurement and Denial of Service: In SYN flooding attacks, an attack sends
TCP SYN packets to a destination D it wishes to attack using a series of fictitious source
addresses. When D replies to the (often) fictitious host, these packets are not replied to.
Thus D accumulates a backlog of connections that are “half-open” and eventually refuses

398 C H A P T E R 1 6 Measuring Network Traffic

to accept new connections. Assume you are working at a university and you have an
unused Class A address space. How might you use this address space to infer
denial-of-service attacks going on to various destinations on the Internet? Assume that
attackers pick fake source addresses randomly from the 32-bit address space. More
details for the curious reader can be found in [MVS01].

C H A P T E R 17

Network Security

Hacking is an exciting and sometimes scary phenomenon, depending on which side
of the battlements you happen to be standing.

— Marcus J. Ranum

From denial-of-service to Smurf attacks, hackers that perpetrate exploits have captured both
the imagination of the public and the ire of victims. There is some reason for indignation and
ire. A survey by the Computer Security Institute placed the cost of computer intrusions at an
average of $970,000 per company in 2000.

Thus there is a growing market for intrusion detection, a field that consists of detecting and
reacting to attacks. According to IDC, the intrusion-detection market grew from $20 million to
$100 million between 1997 and 1999 and is expected to reach $518 million by 2005 [Ger99].

Yet the capabilities of current intrusion detection systems are widely accepted as inade-
quate, particularly in the context of growing threats and capabilities. Two key problems with
current systems are that they are slow and that they have a high false-positive rate. As a result of
these deficiencies, intrusion detection serves primarily a monitoring and audit function rather
than as a real-time component of a protection architecture on par with firewalls and encryption.

However, many vendors are working to introduce real-time intrusion detection systems. If
intrusion detection systems can work in real time with only a small fraction of false positives,
they can actually be used to respond to attacks by either deflecting the attack or tracing the
perpetrators.

Intrusion detection systems (IDSs) have been studied in many forms since Denning’s clas-
sic statistical analysis of host intrusions [Den87]. Today, IDS techniques are usually classified
as either signature detection or anomaly detection. Signature detection is based on matching
events to the signatures of known attacks.

In contrast, anomaly detection, based on statistical or learning theory techniques, identifies
aberrant events, whether known to be malicious or not. As a result, anomaly detection can
potentially detect new types of attacks that signature-based systems will miss. Unfortunately,
anomaly detection systems are prone to falsely identifying events as malicious. Thus this
chapter does not address anomaly-based methods.

Meanwhile signature-based systems are highly popular due to their relatively simple
implementation and their ability to detect commonly used attack tools. The lightweight detec-
tion system Snort [Roe99] is one of the more popular examples because of its free availability
and efficiency.

399

400 C H A P T E R 1 7 Network Security

Given the growing importance of real-time intrusion detection, intrusion detection fur-
nishes a rich source of packet patterns that can benefit from network algorithmics. Thus this
chapter samples three important subtasks that arise in the context of intrusion detection. The
first is an analysis subtask, string matching, which is a key bottleneck in popular signature-
based systems such as Snort. The second is a response subtask, traceback, which is of growing
importance given the ability of intruders to use forged source addresses. The third is an analysis
subtask to detect the onset of a new worm (e.g., Code Red) without prior knowledge.

These three subtasks only scratch the surface of a vast area that needs to be explored. They
were chosen to provide an indication of the richness of the problem space and to outline some
potentially powerful tools, such as Bloom filters and Aho–Corasick trees, that may be useful in
more general contexts. Worm detection was also chosen to showcase how mechanisms studied
earlier in the book can be combined in powerful ways.

This chapter is organized as follows. The first few sections explore solutions to the impor-
tant problem of searching for suspicious strings in packet payloads. Current implementations
of intrusion detection systems such as Snort (www.snort.org) do multiple passes through
the packet to search for each string. Section 17.1.1 describes the Aho–Corasick algorithm
for searching for multiple strings in one pass using a trie with backpointers. Section 17.1.2
describes a generalization of the classical Boyer–Moore algorithm, which can sometimes act
faster by skipping more bits in a packet.

Section 17.2 shows how to approach an even harder problem — searching for approximate
string matches. The section introduces two powerful ideas: min-wise hashing and random
projections. This section suggests that even complex tasks such as approximate string matching
can plausibly be implemented at wire speeds.

Section 17.3 marks a transition to the problem of responding to an attack, by introducing
the IP traceback problem. It also presents a seminal solution using probabilistic packet marking.
Section 17.4 offers a second solution, which uses packet logs and no packet modifications;
the logs are implemented efficiently using an important technique called a Bloom filter. While
these traceback solutions are unlikely to become deployed when compared to more recent
standards, they introduce a significant problem and invoke important techniques that could be
useful in other contexts.

Section 17.5 explains how algorithmic techniques can be used to extract automatically the
strings used by intrusion detection systems such as Snort. In other words, instead of having
these strings be installed manually by security analysts, could a system automatically extract
the suspicious strings? We ground the discussion in the context of detecting worm attack
payloads.

The implementation techniques for security primitives described in this chapter (and the
corresponding principles) are summarized in Figure 17.1.

Q u i c k R e f e r e n c e G u i d e
Sections 17.1.1 and 17.1.2 show how to speed up searching for multiple strings in packet payloads,

a fundamental operation for a signature-based IDS. The Aho–Corasick algorithm of Section 17.1.1 can
easily be implemented in hardware. While the traceback ideas in Section 17.4 are unlikely to be useful in
the near future, the section introduces an important data structure, called a Bloom filter, for representing

17.1 Searching for Multiple Strings in Packet Payloads 401

P15

P3a, 5a

P3a

P3a

P3a

Number Principle

Integrated string matching using Aho–Corasick

Approximate string match using min-wise hashing

Path reconstruction using probabilistic marking

Efficient packet logging via Bloom filters

Worm detection by detecting frequent content

Snort

Altavista

Edge sampling

SPIE

EarlyBird

Used In

F I G U R E 17.1 Principles used in the implementation of the various security primitives discussed in
this chapter.

sets and also describes a hardware implementation. Bloom filters have found a variety of uses and
should be part of the implementor’s bag of tricks. Section 17.5 explains how signatures for attacks
can be automatically computed, reducing the delay and difficulty required to have humans generate
signatures.

17.1 SEARCHING FOR MULTIPLE STRINGS IN PACKET PAYLOADS

The first few sections tackle a problem of detecting an attack by searching for suspicious
strings in payloads. A large number of attacks can be detected by their use of such strings.
For example, packets that attempt to execute the Perl interpreter have perl.exe in their pay-
load. For example, the arachNIDS database [Vis] of vulnerabilities contains the following
description.

An attempt was made to execute perl.exe. If the Perl interpreter is available to Web
clients, it can be used to execute arbitrary commands on the Web server. This can be
used to break into the server, obtain sensitive information, and potentially compromise
the availability of the Web server and the machine it runs on. Many Web server
administrators inadvertently place copies of the Perl interpreter into their Web server
script directories. If perl is executable from the cgi directory, then an attacker can
execute arbitrary commands on the Web server.

This observation has led to a commonly used technique to detect attacks in so-called
signature-based intrusion detection systems such as Snort. The idea is that a router or monitor
has a set of rules, much like the classifiers in Chapter 12. However, the Snort rules go beyond
classifiers by allowing a 5-tuple rule specifying the type of packet (e.g., port number equal to
Web traffic) plus an arbitrary string that can appear anywhere in the packet payload.

Thus the Snort rule for the attempt to execute perl.exe will specify the protocol (TCP)
and destination port (80 for Web) as well as the string “perl.exe” occurring anywhere in the
payload. If a packet matches this rule, an alert is generated. Snort has 300 such augmented
rules, with 300 possible strings to search for.

402 C H A P T E R 1 7 Network Security

b a b a b a r (Packet payload). . .

babar

r

a

b
r

n

e

y

barney

a

b

not b from most nodes

b from most other nodes

b

F I G U R E 17.2 The Aho–Corasick algorithm builds an alphabetical trie on the set of strings to be
searched for. A search for the string “barney” can be found by following the “b” pointer at the root,
the “a” pointer at the next node, etc. More interestingly, the trie is augmented with failure pointers that
prevent restarting at the top of the trie when failure occurs and a new attempt is made to match, shifted
one position to the right.

Early versions of Snort do string search by matching each packet against each Snort rule
in turn. For each rule that matches in the classifier part, Snort runs a Boyer–Moore search on
the corresponding string, potentially doing several string searches per packet. Since each scan
through a packet is expensive, a natural question is: Can one search for all possible strings in
one pass through packet?

There are two algorithms that can be used for this purpose: the Aho–Corasick algorithm
[AC75] and a modified algorithm due to Commentz-Walter [CW79], which we describe next.

17.1.1 Integrated String Matching Using Aho–Corasick
Chapter 11 used a trie to search for matching prefixes. Clearly, a trie can also be used to search
for a string that starts at a known position in a packet. Thus Figure 17.2 contains a trie built
on the set of two strings “babar” and “barney”; both are well-known characters in children’s
literature. Unlike in Chapter 11, the trie is built on characters and not on arbitrary groups of
bits. The characters in the text to be searched are used to follow pointers through the trie until
a leaf string is found or until failure occurs.

The hard part, however, is looking for strings that can start anywhere in a packet payload.
The naivest approach would be to assume the string starts at byte 1 of the payload and then
traverse the trie. Then if a failure occurs, one could start again at the top of trie with the
character that starts at byte 2.

However, if packet bytes form several “near misses” with target strings, then for each
possible starting position, the search can traverse close to the height of the trie. Thus if the
payload has L bytes and the trie has maximum height h, the algorithm can take L · h memory
references.

17.1 Searching for Multiple Strings in Packet Payloads 403

For example, when searching for “babar” in the packet payload shown in Figure 17.2, the
algorithm jogs merrily down the trie until it reaches the node corresponding to the second “a”
in “babar.” At that point the next packet byte is a “b” and not the “r” required to make progress
in the trie. The naive approach would be to back up to the start of the trie and start the trie
search again from the second byte “a” in the packet.

However, it is not hard to see that backing up to the top is obvious waste (P1) because the
packet bytes examined so far in the search for “babab” have “bab” as a suffix, which is a prefix
of “babar.” Thus, rather than back up to the top, one can precompute (much as in a grid of
tries; see Chapter 12) a failure pointer corresponding to the failing “b” that allows the search
to go directly to the node corresponding to path “bab” in the trie, as shown by the leftmost
dotted arc in Figure 17.2.

Thus rather than have the fifth byte (a “b”) lead to a null pointer, as it would in a normal
trie, it contains a failure pointer that points back up the trie. Search now proceeds directly from
this node using the sixth byte “a” (as opposed to the second byte) and leads after seven bytes
to “babar.”

Search is easy to do in hardware after the trie is precomputed. This is not hard to believe
because the trie with failure pointers essentially forms a state machine. The Aho–Corasick
algorithm has some complexity that ensues when one of the search strings, R, is a suffix of
another search string, S. However, in the security context this can be avoided by relaxing the
specification (P3). One can remove string S from the trie and later check whether the packet
matched R or S.

Another concern is the potentially large number of pointers (256) in the Aho–Corasick
trie. This can make it difficult to fit a trie for a large set of strings in cache (in software) or
in SRAM (in hardware). One alternative is to use, say, Lulea-style encoding (Chapter 11) to
compress the trie nodes.

17.1.2 Integrated String Matching Using Boyer–Moore
The exercises at the end of Chapter 3 suggest that the famous Boyer–Moore [BM77] algorithm
for single-string matching can be derived by realizing that there is an interesting degree of
freedom that can be exploited (P13) in string matching: One can equally well start comparing
the text and the target string from the last character as from the first.

Thus in Figure 17.3 the search starts with the fifth character of the packet, a “b,” and
matches it to the fifth character of, say, “babar” (shown below the packet), an “r.” When this
fails, one of the heuristics in the Boyer–Moore algorithm is to shift the search template of
“babar” two characters to the right to match the rightmost occurrence of “b” in the template.1

Boyer–Moore’s claim to fame is that in practice it skips over a large number of characters,
unlike, say, the Aho–Corasick algorithm.

To generalize Boyer–Moore to multiple strings, imagine that the algorithm concurrently
compares the fifth character in the packet to the fifth character, “e,” in the other string, “barney”
(shown above the packet). If one were only doing Boyer–Moore with “barney,” the “barney”
search template would be shifted right by four characters to match the only “b” in barney.

1There is a second heuristic in Boyer–Moore [CLR90], but studies have shown that this simple Horspool
variation works best in practice.

404 C H A P T E R 1 7 Network Security

b a r n e

b a r n e

b a b a r

b a b a r

b a b a b a r (Packet payload). . .

Shift right by 4

Shift right by 2

F I G U R E 17.3 Integrated Boyer–Moore by shifting a character.

When doing a search for both “barney” and “babar” concurrently, the obvious idea is to
shift the search template by the smallest shift proposed by any string being compared for. Thus
in this example, we shift the template by two characters and do a comparison next with the
seventh character in the packet.

Doing a concurrent comparison with the last character in all the search strings may seem
inefficient. This can be taken care of as follows. First, chop off all characters in all search strings
beyond L, the shortest search string. Thus in Figure 17.3, L is 5 and “barney” is chopped down
to “barne” to align in length with “babar.”

Having aligned all search string fragments to the same length, now build a trie starting
backwards from the last character in the chopped strings. Thus, in the example of Figure 17.3
the root node of the trie would have an “e” pointer pointing toward “barne” and an “r” pointer
pointing towards “babar.” Thus comparing concurrently requires using only the current packet
character to index into the trie node.

On success, the backwards trie keeps being traversed. On failure, the amount to be shifted
is precomputed in the failure pointer. Finally, even if a backward search through the trie
navigates successfully to a leaf, the fact that the ends may have been chopped off requires
an epilogue, in terms of checking that the chopped-off characters also match. For reasonably
small sets of strings, this method does better than Aho–Corasick.

The generalized Boyer–Moore was proposed by Commentz-Walter [CW79]. The appli-
cation to intrusion detection was proposed concurrently by Coit, Staniford, and McAlerney
[CSM01] and Fisk and Varghese [FV01]. The Fisk implementation [FV01] has been ported to
Snort.

Unfortunately, the performance improvement of using either Aho–Corasick or the inte-
grated Boyer–Moore is minimal, because many real traces [CSM01, FV01] have only a few
packets that match a large number of strings, enabling the naive method to do well. In fact,
the new algorithms add somewhat more overhead due to slightly increased code complexity,
which can exhibit cache effects, as shown in Chapter 3.

While the code as it currently stands needs further improvement, it is clear that at least the
Aho–Corasick version does produce a large improvement for worst-case traces, which may be
crucial for a hardware implementation. The use of Aho–Corasick and integrated Boyer–Moore
can be considered straightforward applications of efficient data structures (P15).

17.2 Approximate String Matching 405

b a b a r

b a b a b a d (Packet payload). . .

F I G U R E 17.4 Checking for matching with a random projection of the target string “babar” allows
the detecting of similar strings with substitution errors in the payload.

17.2 APPROXIMATE STRING MATCHING

This section briefly considers an even harder problem, that of approximately detecting strings
in payloads. Thus instead of settling for an exact match or a prefix match, the specification now
allows a few errors in the match. For example, with one insertion “p-erl.exe” should match
“perl.exe” where the intruder may have added a character.

While the security implications of using the mechanisms described next need much more
thought, the mechanisms themselves are powerful and should be part of the arsenal of designers
of detection mechanisms.

The first simple idea can handle substitution errors. A substitution error is a replacement
of one or more characters with others. For example, “parl.exe” can be obtained from “perl.exe”
by substituting “a” for “e.” One way to handle this is to search not for the complete string but
for one or more random projections of the original string.

For example, in Figure 17.4, instead of searching for “babar” one could search for the
first, third, and fourth characters in “babar.” Thus the misspelled string “babad” will still be
found. Of course, this particular projection will not find a misspelled string such as “rabad.”
To make it hard for an adversary, the scheme in general can use a small set of such random
projections. This simple idea is generalized greatly in a set of papers on locality-preserving
hashing (e.g., Ref. IM97).

Interestingly, the use of random projections may make it hard to efficiently shift one
character to the right. One alternative is to replace the random projections by deterministic
projections. For example, if one replaces every string by its two halves and places each half in
an Aho–Corasick trie, then any one substitution error will be caught without slowing down the
Aho–Corasick processing. However, the final efficiency will depend on the number of false
alarms.

The simplest random projection idea, described earlier, does not work with insertions or
deletions that can displace every character one or more steps to the left or right. One simple and
powerful way of detecting whether two or more sets of characters, say, “abcef” and “abfecd,”
are similar is by computing their resemblance [Bro98].

The resemblance of two sets of characters is the ratio of the size of their intersection to the
size of their union. Intuitively, the higher the resemblance, the higher the similarity. By this
definition, the resemblance of “abcef” and “abfecd” is 5/6 because they have five characters
in common.

Unfortunately, resemblance per se does not take into account order, so “abcef” completely
resembles “fecab.” One way to fix this is to rewrite the sets with order numbers attached so that
“abcef” becomes “1a2b3c4e5f” while “fecab” now becomes “1f2e3c4a5b.” The resemblance,

406 C H A P T E R 1 7 Network Security

using pairs of characters as set elements instead of characters, is now nil. Another method that
captures order in a more relaxed manner is to use shingles [Bro98] by forming the two sets to
be compared using as elements all possible substrings of size k of the two sets.

Resemblance is a nice idea, but it also needs a fast implementation. Anaive implementation
requires sorting both sets, which is expensive and takes large storage. Broder’s idea [Bro98]
is to quickly compare the two sets by computing a random (P3a, trade certainty for time)
permutation on two sets. For example, the most practical permutation function on integers of
size at most m − 1 is to compute P(X) = ax + b mod m, for random values of a and b and
prime values of the modulus m.

For example, consider the two sets of integers {1, 3, 5} and {1, 7, 3}. Using the random
permutation {3 x + 5 mod 11}, the two sets become permuted to {8, 3, 9} and {8, 4, 3}.
Notice that the minimum values of the two randomly permuted sets (i.e., 3) are the same.

Intuitively, it is easy to see that the higher the resemblance of the two sets, the higher the
chance that a random permutation of the two sets will have the same minimum. Formally, this
is because the two permuted sets will have the same minimum if and only if they contain the
same element that gets mapped to the minimum in the permuted set. Since an ideal random
permutation makes it equally likely for any element to be the minimum after permutation, the
more elements the two sets have in common, the higher the probability that the two minimums
match.

More precisely, the probability that two minimums match is equal to the resemblance.
Thus one way to compute the resemblance of two sets is to use some number of random
permutations (say, 16) and compute all 16 random permutations of the two sets. The frac-
tion of these 16 permutations in which the two minimums match is a good estimate of the
resemblance.

This idea was used by Broder [Bro98] to detect the similarity of Web documents. How-
ever, it is also quite feasible to implement at high link speeds. The chip must maintain, say,
16 registers to keep the current minimum using each of the 16 random hash functions. When a
new character is read, the logic permutes the new character according to each of the 16 func-
tions in parallel. Each of the 16 hash results is compared in parallel with the corresponding
register, and the register value is replaced if the new value is smaller.

At the end, the 16 computed minima are compared in parallel against the 16 minima for
the target set to compute a bitmap, where a bit is set for positions in which there is equality.
Finally, the number of set bits is counted and divided by the size of the bitmap by shifting left
by 4 bits. If the resemblance is over some specified threshold, some further processing is done.

Once again, the moral of this section is not that computing the resemblance is the solution
to all problems (or in fact to any specific problem at this moment) but that fairly complex
functions can be computed in hardware using multiple hash functions, randomization, and
parallelism. Such solutions interplay principle P5 (use parallel memories) and principle P3a
(use randomization).

17.3 IP TRACEBACK VIA PROBABILISTIC MARKING

This section transitions from the problem of detecting an attack to responding to an attack.
Response could involve a variety of tasks, from determining the source of the attack to stopping
the attack by adding some checks at incoming routers.

17.3 IP Traceback via Probabilistic Marking 407

The next two sections concentrate on traceback, an important aspect of response, given the
ability of attackers to use forged IP source addresses. To understand the traceback problem it
helps first to understand a canonical denial-of-service (DOS) attack that motivates the problem.

In one version of a DOS attack, called SYN flooding, wily Harry Hacker wakes up one
morning looking for fun and games and decides to attack CNN. To do so he makes his computer
fire off a large number of TCP connection requests to the CNN server, each with a different
forged source address. The CNN server sends back a response to each request R and places R
in a pending connection queue.

Assuming the source addresses do not exist or are not online, there is no response. This
effect can be ensured by using random source addresses and by periodically resending connec-
tion requests. Eventually the server’s pending-connection queue fills up. This denies service to
innocent users like you who wish to read CNN news because the server can no longer accept
connection requests.

Assume that each such denial-of-service attack has a traffic signature (e.g., too many TCP
connection requests) that can be used to detect the onset of an attack. Given that it is difficult
to shut off a public server, one way to respond to this attack is to trace such a denial-of service
back to the originating source point despite the use of fake source addresses. This is the IP
traceback problem.

The first and simplest systems approach (P3, relax system requirements) is to finesse the
problem completely using help from routers. Observe that when Harry Hacker sitting in an IP
subnetwork with prefix S sends a packet with fake source address H, the first router on the
path can detect this fact if H does not match S. This would imply that Harry’s packet cannot
disguise its subnetworks, and offending packets can be traced at least to the right subnetwork.

There are two difficulties with this approach. First, it requires that edge routers do more
processing with the source address. Second, it requires trusting edge routers to do this pro-
cessing, which may be difficult to ensure if Harry Hacker has already compromised his ISP.
There is little incentive for a local ISP to slow down performance with extra checks to prevent
DOS attacks to a remote ISP.

A second and cruder systems approach is to have managers that detect an attack call their
ISP, say, A. ISP A monitors traffic for a while and realizes these packets are coming from
prior-hop ISP B, who is then called. B then traces the packets back to the prior-hop provider
and so on until the path is traced. This is the solution used currently.

A better solution than manual tracing would be automatic tracing of the packet back to the
source. Assume one can modify routers for now. Then packet tracing can be trivially achieved
by having each router in the path of a packet P write its router IP address in sequence into P’s
header. However, given common route lengths of 10, this would be a large overhead (40 bytes
for 10 router IDs), especially for minimum-size acknowledgments. Besides the overhead, there
is the problem of modifying IP headers to add fields for path tracing. It may be easier to steal
a small number of unused message bits.

This leads to the following problem. Assuming router modifications are possible, find a
way to trace the path of an attack by marking as few bits as possible in a packet’s header.

For a single-packet attack, this is very difficult in an information theoretic sense. Clearly,
it is impossible to construct a path of 10 32-bit router IDs from, say, a 2-byte mark in a packet.
One can’t make a silk purse from a sow’s ear.

However, in the systems context one can optimize the expected case (P11), since most
interesting attacks consist of hundreds of packets at least. Assuming they are all coming from

408 C H A P T E R 1 7 Network Security

R1 R2 R3 Victim

Overwrite R1 to
R3 with probability p

R1

R1, 1 sample
R2, 2 samples
R3, 6 samples

Sampled nodes
sorted by sample frequency

F I G U R E 17.5 Reconstructing an attack path by having each router stamp its ID independently, with
probability p, into a single node ID field. The receiver reconstructs order by sorting, assuming that closer
routers will produce more samples.

the same physical source, the victim can shift the path computation over time (P2) by making
each mark contribute a piece of the path information.

Let’s start by assuming a single 32-bit field in a packet that can hold a single router ID.
How are the routers on the path to synchronize access to the field so that each router ID gets a
chance, over a stream of packets, to place its ID in the field?

A naive solution is shown in Figure 17.5. The basic idea is that each router independently
writes its ID into a single node ID field in the packet with probability p, possibly overwriting a
previous router’s ID. Thus in Figure 17.5, the packet already has R1 in it and can be overwritten
by R3 to R1 with probability p.

The hope, however, is that over a large sequence of packets from the attacker to the victim,
every router ID in the path will get a chance to place its ID without being overwritten. Finally,
the victim can sort the received IDs by the number of samples. Intuitively, the nodes closer to
the victim should have more samples, but one has to allow for random variation.

The two problems with this naive approach is that too many samples (i.e., attack packets)
are needed to deal with random variation in inferring order. Also, the attacker, knowing
this scheme, can place malicious marks in the packet to fool the reconstruction scheme into
believing that fictitious nodes are close to the victim because they receive extra marks.

To foil this threat, p must be large, say, 0.51. But in this case, the number of packets
required to receive the router IDs far away from the victim becomes very large. For example,
with p = 0.5 and a path of length L = 15, the number of packets required is the reciprocal
of the probability that the router furthest from the victim sends a mark that survives. This is
p(1 − p)L−1 = 2−15, because it requires the furthest router to put a mark and the remaining
L − 1 routers not to. Thus the average number of packets for this to happen is 1

2−15 = 32, 000.
Attacks have a number of packets, but not necessarily this many.

The straightforward lesson from the naive solution is that randomization is good for
synchronization (to allow routers to independently synchronize access to the single node ID
field) but not to reconstruct order. The simplest solution to this problem is to use a hop count
(the attacker can initialize each packet with a different TTL, making the TTL hard to use) as
well as a node ID. But a hop count by itself can be confusing if there are multiple attacks going
on. Clearly a mark of node X with hop count 2 may correspond to a different attack path from
a mark of node Y with hop count 1.

The solution provided in the seminal paper [SWKA00] avoids the aliasing due to hop
counts by conceptually starting with a pair of consecutive node IDs and a hop count to form a
triple (R, S, h), as shown in Figure 17.6.

17.4 IP Traceback via Logging 409

R1 R2 R3 Victim

Overwrite R3, –, 0
with probability p

R1, R2, 1

R1, R2, 2
R2, R3, 1

R3, Victim, 0

Sampled path edges
sorted by edge distance

F I G U R E 17.6 Edge sampling improves on node sampling by sampling edges and not nodes. This
allows trivial order reconstruction based on edge distance and not sample frequency.

When a router R receives a packet with triple (X, Y , h), R generates a random number
between 0 and 1. If the number is less than the sampling probability p, router R writes its own
ID into the mark triple, rewriting it as (R, −, 0), where the − character indicates that the next
router in the path has still to be determined. If the random number is greater than p, then R
must maintain the integrity of the previously written mark. If h = 0, R writes R to the second
field because R is the next router after the writer of the mark. Finally, if the random number is
greater than p, R increments h.

It should be clear that by assuming that every edge gets sampled once, the victim can
reconstruct the path. Note also that the attacker can only add fictitious nodes to the start of the
path. But how many packets are required to find all edges? Given that ordering is explicit, one
can use arbitrary values of p.

In particular, if p is approximately 1/L, where L is the path length to the furthest router,
the probability we computed before of the furthest router sending an edge mark that survives
becomes p(1 − p)L−1 ≈ p/(1 − p)e, where e is the base of natural logarithms. For example,
for p = 1/25, this is roughly 1/70, which is fairly large compared to the earlier attempt.

What is even nicer is that if we choose p = 1/50 based on the largest path lengths
encountered in practice on the Internet (say, 50), the probability does not grow much smaller
even for much smaller path lengths. This makes it easy to reconstruct the path with hundreds
of packets as opposed to thousands.

Finally, one can get rid of obvious waste (P1) and avoid the need for two node IDs by
storing only the Exclusive-OR of the two fields in a single field. Working backwards from the
last router ID known to the victim, one can Exclusive-OR with the previous edge mark to get
the next router in the path, and so on. Finally, by viewing each node as consisting of a sequence
of a number of “pseudonodes,” each with a small fragment (say, 8 bits) of the node’s ID, one
can reduce the mark length to around 16 bits total.

17.4 IP TRACEBACK VIA LOGGING

A problem with the edge-sampling approach of the previous section is that it requires changes
to the IP header to update marks and does not work for single-packet attacks like the Teardrop
attack. The following approach, traceback via logging [SPea01], avoids both problems by
adding more storage at routers to maintain a compressed packet log.

As motivations, neither of the difficulties the logging approach gets around are very
compelling. This is because the logging approach still requires modifying router forwarding,
even though it requires no header modification. This is due to the difficulty of convincing

410 C H A P T E R 1 7 Network Security

S2

R2S1

R4 R5

R6

R8 R9

S3 A

R1

S4

R3

S5

R7

V

F I G U R E 17.7 Using a packet log to trace an attack packet P backwards from the victim V to the
attacker A by having the currently traced node ask all its neighbors (the dotted lines) if they have seen P
(solid line).

vendors (who have already committed forwarding paths to silicon) and ISPs (who wish to
preserve equipment for, say, 5 years) to make changes. Similarly, single-packet attacks are not
very common and can often be filtered directly by routers.

However, the idea of maintaining compressed searchable packet logs may be useful as a
general building block. It could be used, more generally, for, say, a network monitor that wishes
to maintain such logs for forensics after attacks. But even more importantly it introduces an
important technique called Bloom filters.

Given an efficient packet log at each router, the high-level idea for traceback is shown in
Figure 17.7. The victim V first detects an attack packet P; it then queries all its neighboring
routers, say, R8 and R9, to see whether any of them have P in their log of recently sent packets.
When R9 replies in the affirmative, the search moves on to R9, who asks its sole neighbor, R7.
Then R7 asks its neighbors R5 and R4, and the search moves backward to A.

The simplest way to implement a log is to reuse one of the techniques in trajectory sampling
(Chapter 16). Instead of logging a packet we log a 32-bit hash of invariant content (i.e., exclude
fields that change from hop to hop, such as the TTL) of the packet. However, 32 bits per packet
for all the packets sent in the last 10 minutes is still huge at 10 Gbps. Bloom filters, described
next, allow a large reduction to around 5 bits per packet.

17.4.1 Bloom Filters
Start by observing that querying either a packet log or a table of allowed users is a set member-
ship query, which is easily implemented by a hash table. For example, in a different security

17.4 IP Traceback via Logging 411

Allowed
users

Is Jonas an allowed user?

1 bit

1

1

1

H1 (John)

H1 (Jonas)

H2 (Jonas) H1 (Cathy)

H2 (John)

F I G U R E 17.8 ABloom filter represents a set element by setting k bits in a bitmap using k independent
hash functions applied to the element. Thus the element John sets the second (using H1) and next-to-last
(using H2) bits. When searching for Jonas, Jonas is considered a member of the set only if all bit positions
hashed to by Jonas have set bits.

context, if John and Cathy are allowed users and we wish to check if Jonas is an allowed user,
we can use a hash table that stores John and Cathy’s IDs but not Jonas.

Checking for Jonas requires hashing Jonas’s ID into the hash table and following any lists
at that entry. To handle collisions, each hash table entry must contain a list of IDs of all users
that hash into that bucket. This requires at least W bits per allowed user, where W is the length
of each user ID. In general, to implement a hash table for a set of identifiers requires at least
W bits per identifier, where W is the length of the smallest identifier.

Bloom filters, shown in Figure 17.8, allow one to reduce the amount of memory for set
membership to a few bits per set element. The idea is to keep a bitmap of size, say, 5N , where
N is the number of set elements. Before elements are inserted, all bits in the bitmap are cleared.

For each element in the set, its ID is hashed using k independent hash functions (two in
Figure 17.8, H1 and H2) to determine bit positions in the bitmap to set. Thus in the case of a
set of valid users in Figure 17.8, ID John hashes into the second and next-to-last bit positions.
ID Cathy hashes into one position in the middle and also into one of John’s positions. If two
IDs hash to the same position, the bit remains set.

Finally, when searching to see if a specified element (say, Jonas) is in the set, Jonas is
hashed using all the k hash functions. Jonas is assumed to be in the set if all the bits hashed
into by Jonas are set. Of course, there is some chance that Jonas may hash into the position
already set by, say, Cathy and one by John (see Figure 17.8). Thus there is a chance of what
is called a false positive: answering the membership query positively when the member is not
in the set.

Notice that the trick that makes Bloom filters possible is relaxing the specification (P3). A
normal hash table, which requires W bits per ID, does not make errors! Reducing to 5 bits per
ID requires allowing errors; however, the percentage of errors is small. In particular, if there
is an attack tree and set elements are hashed packet values, as in Figure 17.7, false positives
mean only occasionally barking up the wrong tree branch(es).

412 C H A P T E R 1 7 Network Security

Ring buffer DRAM
t

Readout
by

control
processor

Readout
every

R msec

S32

S32

S32

S32

S32

Line cards SPIE card
(or box)

FIFO
RAM
MUX

Time

= t

Sk

+

2K-bit RAM

Signature taps Signature aggregation History memory

F I G U R E 17.9 Hardware implementation of packet logging using Bloom filters. Note the use of
two-level memory: SRAM for random read-modify-writes and DRAM for large row writes.

More precisely, the false-positive rate for an m-size bitmap to store n members using
k hash functions is

(1 − (1 − 1/m)kn)
k ≈ (1 − ekn/m)k

The equation is not as complicated as it may appear: (1 − 1/m)kn is the probability that any bit
is not set, given n elements that each hashes k times to any of m bit positions. Finally, to get a
false positive, all of the k bit positions hashed onto by the ID that causes a false positive must
be set.

Using this equation, it is easy to see that for k = 3 (three independent hash functions) and
5 bits per member (m/n = 5), the false-positive rate is roughly 1%. The false-positive rate can
be improved up to a point by using more hash functions and by increasing the bitmap size.

17.4.2 Bloom Filter Implementation of Packet Logging
The Bloom filter implementation of packet logging in the SPIE system is shown in Figure 17.9
(the picture is courtesy of Sanchez et al. [SMea01]). Each line card calculates a 32-bit hash
digest of the packet and places it in a FIFO queue. To save costs, several line cards share, via
a RAM multiplexor, a fast SRAM containing the Bloom filter bitmap.

As in the case of counters in Chapter 16, one can combine the best features of SRAM
and DRAM to reduce expense. One needs to use SRAM for fast front-end random access to

17.5 Detecting Worms 413

the bitmap. Unfortunately, the expense of SRAM would allow storing only a small number of
packets. To allow a larger amount, the Bloom filter bitmaps in SRAM are periodically read out
to a large DRAM ring buffer. Because these are no longer random writes to bits, the write to
DRAM can be written in DRAM pages or rows, which provide sufficient memory bandwidth.

17.5 DETECTING WORMS

It would be remiss to end this chapter without paying some attention to the problem of detecting
worms. Aworm (such as Code Red, Nimda, Slammer) begins with an exploit sent by an attacker
to take over a machine. The exploit is typically a buffer overflow attack, which is caused by
sending a packet (or packets) containing a field that has more data than can be handled by
the buffer allocated by the receiver for the field. If the receiver implementation is careless, the
extra data beyond the allocated buffer size can overwrite key machine parameters, such as the
return address on the stack.

Thus with some effort, a buffer overflow can allow the attacking machine to run code
on the attacked machine. The new code then picks several random IP addresses2 and sends
similar packets to these new victims. Even if only a small fraction of IP addresses respond to
these attacks, the worm spreads rapidly.

Current worm detection technology is both retroactive (i.e., only after a new worm is
first detected and analyzed by a human, a process that can take days, can the containment
process be initiated) and manual (i.e., requires human intervention to identify the signature
of a new worm). Such technology is exemplified by Code Red and Slammer, which took days
of human effort to identify, following which containment strategies were applied in the form of
turning off ports, applying patches, and doing signature-based filtering in routers and intrusion
detection systems.

There are difficulties with these current technologies.

1. Slow Response: There is a proverb that talks about locking the stable door after the horse
has escaped. Current technologies fit this paradigm because by the time the worm
containment strategies are initiated, the worm has already infected much of the network.

2. Constant Effort: Every new worm requires a major amount of human work to identify,
post advisories, and finally take action to contain the worm. Unfortunately, all evidence
seems to indicate that there is no shortage of new exploits. And worse, simple binary
rewriting and other modifications of existing attacks can get around simple signature-
based blocking (as in Snort).

Thus there is a pressing need for a new worm detection and containment strategy that is real
time (and hence can contain the worm before it can infect a significant fraction of the network)
and is able to deal with new worms with a minimum of human intervention (some human
intervention is probably unavoidable to at least catalog detected worms, do forensics, and fine-
tune automatic mechanisms). In particular, the detection system should be content agnostic.
The detection system should not rely on external, manually supplied input of worm signatures.

2By contrast, a virus requires user intervention, such as opening an attachment, to take over the user machine.
Viruses also typically spread by using known addresses, such as those in the mail address book, rather than random
probing.

414 C H A P T E R 1 7 Network Security

Instead, the system should automatically extract worm signatures, even for new worms that
may arise in the future.

Can network algorithmics speak to this problem? We believe it can. First, we observe that
the only way to detect new worms and old worms with the same mechanism is to abstract the
basic properties of worms.

As a first approximation, define a worm to have the following abstract features, which are
indeed discernible in all the worms we know, even ones with such varying features as Code
Red (massive payload, uses TCP, and attacks on the well-known HTTP port) and MS SQL
Slammer (minimal payload, uses UDP, and attacks on the lesser-known MS SQL port).

1. Large Volume of Identical Traffic: These worms have the property that at least at an
intermediate stage (after an initial priming period but before full infection), the volume of
traffic (aggregated across all sources and destinations) carrying the worm is a significant
fraction of the network bandwidth.

2. Rising Infection Levels: The number of infected sources participating in the attack
steadily increases.

3. Random Probing: An infected source spreads infection by attempting to communicate to
random IP addresses at a fixed port to probe for vulnerable services.

Note that detecting all three of these features may be crucial to avoid false positives. For
example, a popular mailing list or a flash crowd could have the first feature but not the third.

An algorithmics approach for worm detection would naturally lead to the following detec-
tion strategy, which automatically detects each of these abstract features with low memory and
small amounts of processing, works with asymmetric flows, and does not use active probing.
The high-level mechanisms3 are:

1. Identify Large Flows in Real Time with Small Amounts of Memory: In Section 16.4 we
showed how to describe mechanisms to identify flows with large traffic volumes for any
definition of a flow (e.g., sources, destinations). A simple twist on this definition is to
realize that the content of a packet (or, more efficiently, a hash of the content) can be a
valid flow identifier, which by prior work can identify in real time (and with low memory)
a high volume of repeated content. An even more specific idea (which distinguishes
worms from valid traffic such as peer-to-peer) is to compute a hash based on the content
as well as the destination port (which remains invariant for a worm).

2. Count the Number of Sources: In Section 16.5 we described mechanisms using simple
bitmaps of small size to estimate the number of sources on a link using small amounts of
memory and processing. These mechanisms can easily be used to count sources
corresponding to high traffic volumes identified by the previous mechanism.

3. Determine Random Probing by Counting the Number of Connection Attempts to Unused
Portions of the IP Address: One could keep a simple compact representation of portions
of the IP address space known to be unused. One example is the so-called Bogon list,
which lists unused 8-bit prefixes (can be stored as a bitmap of size 256). A second

3Each of these mechanisms needs to be modulated to handle some special cases, but we prefer to present the
main idea untarnished with extraneous details.

17.7 Exercises 415

example is a secret space of IP addresses (can be stored as single prefix) known to an ISP
to be unused. A third is a set of unused 32-bit addresses (can be stored as a Bloom filter).

Of course, worm authors could defeat this detection scheme by violating any of these
assumptions. For example, a worm author could defeat Assumption 1 by using a very slow
infection rate and by mutating content frequently. Assumption 3 could be defeated using
addresses known to be used. For each such attack there are possible countermeasures. More
importantly, the scheme described seems certain to detect at least all existing worms we know
of, though they differ greatly in their semantics. In initial experiments at UCSD as part of
what we call the EarlyBird system, we also found very few false positives where the detection
mechanisms complained about innocuous traffic.

17.6 CONCLUSION

Returning to Marcus Ranum’s quote at the start of this chapter, hacking must be exciting
for hackers and scary for network administrators, who are clearly on different sides of the
battlements. However, hacking is also an exciting phenomenon for practitioners of network
algorithmics — there is just so much to do. Compared to more limited areas, such as accounting
and packet lookups, where the basic tasks have been frozen for several years, the creativity
and persistence of hackers promise to produce interesting problems for years to come.

In terms of technology currently used, the set string–matching algorithms seem useful
and may be ignored by current products. However, other varieties of string matching, such
as regular expression matches, are in use. While the approximate matching techniques are
somewhat speculative in terms of current applications, past history indicates they may be
useful in the future.

Second, the traceback solutions only represent imaginative approaches to the problem.
Their requirements for drastic changes to router forwarding make them unlikely to be used
for current deployment as compared to techniques that work in the control plane. Despite this
pessimistic assessment, the underlying techniques seem much more generally useful.

For example, sampling with a probability inversely proportional to a rough upper bound
on the distance is useful for efficiently collecting input from each of a number of participants
without explicit coordination. Similarly, Bloom filters are useful to reduce the size of hash
tables to 5 bits per entry, at the cost of a small probability of false positives. Given their beauty
and potential for high-speed implementation, such techniques should undoubtedly be part of
the designer’s bag of tricks.

Finally, we described our approach to content-agnostic worm detection using algorithmic
techniques. The solution combines existing mechanisms described earlier in this book. While
the experimental results on our new method are still preliminary, we hope this example gives
the reader some glimpse into the possible applications of algorithmics to the scary and exciting
field of network security. Figure 17.1 presents a summary of the techniques used in this chapter,
together with the major principles involved.

17.7 EXERCISES

1. Traceback by Edge Sampling: Extend the IP traceback edge-sampling idea to reduce the
space required. As described in the text, try to do this by chopping the node ID required in

416 C H A P T E R 1 7 Network Security

the base scheme into smaller (say, 8-bit) fragments. It may help to consider each of the
fragment IDs to be the IDs of four virtual nodes that are housed in a single physical node,
thus effectively extending the path and the number of samples needed for reconstruction.

2. Bloom Filters and Trajectory Sampling: Can you use Bloom filters to improve the label
storage required by trajectory sampling in Chapter 16? Explain.

3. Sampling and Packet Logging: Can you use packet sampling to reduce the amount of
memory required by the logging traceback solution? What are the disadvantages and
advantages?

4. Traceback by Packet Logging: Why does the implementation in Figure 17.9 go through
the indirection of a hash to 32 bits (as in trajectory sampling) and then to a Bloom filter?

5. Aho–Corasick as a State Machine: In many applications, one may wish to ignore
certain padding characters that can be inserted by an intruder to make strings hard to
detect. How might you extend Aho–Corasick to ignore these padding characters while
searching for suspicious strings?

6. Resemblance and Min-wise Hashing: Generalize the Broder methods to approximately
search for multiple strings and return the string with highest resemblance.

7. Approximate Matching and Worm Detection: Could the methods for approximate
search generalize to detecting worms that mutate?

C H A P T E R 18

Conclusions

The end of a matter is better than its beginning.

— Ecclesiastes, The Bible

We began the book by setting up the rules of the network algorithmics game. The second part
of the book dealt with server implementations and the third part with router implementations.
The fourth and last part of the book dealt with current and future issues in measurement and
security.

The book covers a large number of specific techniques and a variety of settings — there
are techniques for fast server design versus techniques for fast routers, techniques specific to
operating systems versus techniques specific to hardware. While all these topics are part of
the spectrum of network algorithmics, there is a risk that the material can appear to degenerate
into a patchwork of assorted topics that are not linked together in any coherent way.

Thus as we draw to a close, it is appropriate to try and reach closure by answering the
following questions in the next four sections.

• What has the book been about? What were the main problems, and how did they arise?
What are the main techniques? While endnode and router techniques appear to be different
when considered superficially, are there some underlying characteristics that unite these
two topics? Can these unities be exploited to suggest some cross-fertilization between
these areas? (Section 18.1)

• What is network algorithmics about? What is the underlying philosophy behind network
algorithmics, and how does it differ from algorithms by themselves? (Section 18.2)

• Is network algorithmics used in real systems? Are the techniques in this book exercises in
speculation, or are there real systems that use some of these techniques? (Section 18.3)

• What is the future of network algorithmics? Are all the interesting problems already
solved? Are the techniques studied in this book useful only to understand existing work or
to guide new implementations of existing tasks? Or are there always likely to be new
problems that will require fresh applications of the principles and techniques described in
this book? (Section 18.4)

417

418 C H A P T E R 1 8 Conclusions

18.1 WHAT THIS BOOK HAS BEEN ABOUT

The main problem considered in this book is bridging the performance gap between good
network abstractions and fast network hardware. Abstractions — such as modular server code
and prefix-based forwarding — make networks more usable, but they also exact a performance
penalty when compared to the capacity of raw transmission links, such as optical fiber. The
central question tackled in this book is whether we can have our cake and eat it too: retain the
usability of the abstractions and yet achieve wire speed performance for the fastest-transmission
links.

To make this general assertion more concrete, we review the main contents of this book
in two sub-sections: Section 18.1.1 on endnode algorithmics and Section 18.1.2 on router
algorithmics. This initial summary is similar to that found in Chapter 1. However, we go
beyond the description in Chapter 1 in Section 18.1.3, where we present the common themes
in endnode and router algorithmics and suggest how these unities can potentially be exploited.

18.1.1 Endnode Algorithmics
Chapters 5–9 of this book concentrate on endnode algorithmics, especially for servers. Many
of the problems tackled under endnode algorithmics involve getting around complexities due
to software and structure — in other words, complexities of our own making as opposed
to necessarily fundamental complexities. These complexities arise because of the following
characteristics of endnodes.

• Computation versus Communication: Endnodes are about general-purpose computing and
must handle possible unknown and varied computational demands, from database queries
to weather prediction. By contrast, routers are devoted to communication.

• Vertical versus Horizontal Integration: Endnodes are typically horizontally integrated,
with one institution building boards, another writing kernel software, and another writing
applications. In particular, kernels have to be designed to tolerate unknown and potentially
buggy applications to run on top of them. Today, routers are typically vertically integrated,
where the hardware and all software is assembled by a single company.

• Complexity of Computation: Endnode protocol functions are more complex (application,
transport) as compared to the corresponding functions in routers (routing, data link).

As a consequence, endnode software has three important artifacts that seem hard to avoid,
each of which contributes to inefficiencies that must be worked around or minimized.

1. Structure: Because of the complexity and vastness of endnode software, code is
structured and modular to ease software development. In particular, unknown
applications are allowed using a standard application programming interface (API)
between the core operating system and the unknown application.

2. Protection: Because of the need to accommodate unknown applications, there is a need to
protect applications from each other and to protect the operating system from applications.

3. Generality: Core routines such as buffer allocators and the scheduler are written with the
most general use (and the widest variety of applications) in mind and thus are unlikely to
be as efficient as special-purpose routines.

18.1 What This Book Has Been About 419

Generalized tries (Pathfinder)Demuxing Scaling with number of classifiers8

Bottleneck Cause Sample SolutionChapter

User-level protocols, event-
driven Web servers

Context
switching Complex scheduling6

Kernel keeps state across callsSlow select Scaling with number of clients6

Timing wheelsTimers Scaling with number of timers7

Linear buffersBuffer allocation Generality9

Header predictionProtocol code Generality9

Copying Protection, structure Passing by reference
optimized by caching (IO-Lite)5

Application device channelsSystem calls Protection, structure6

Multibit computationChecksums/
CRCs 9 Generality

Scaling with link speeds

F I G U R E 18.1 Endnode bottlenecks covered in this book. Associated with each bottleneck is the
chapter in which the material is reviewed, the underlying cause, and one or more sample solutions.

In addition, since most endnodes were initially designed in an environment where the
endnode communicated with only a few nodes at a time, there is little surprise that when these
nodes were retrofitted as servers, a fourth artifact was discovered.

4. Scalability: By scalability, we often mean in terms of the number of concurrent
connections. A number of operating systems use simple data structures that work
well for a few concurrent connections but become major bottlenecks in a server
environment, where there is a large number of connections.

With this list of four endnode artifacts in mind, Figure 18.1 reviews the main endnode
bottlenecks covered in this book, together with causes and workarounds. This picture is a more
detailed version of the corresponding figure in Chapter 1.

18.1.2 Router Algorithmics
In router algorithmics, by contrast, the bottlenecks are caused not by structuring artifacts (as
in some problems in endnode algorithmics) but by the scaling problems caused by the need
for global Internets, together with the fast technological scaling of optical link speeds. Thus
the global Internet puts pressure on router algorithmics because of both population scaling and
speed scaling.

For example, simple caches worked fine for route lookups until address diversity and the
need for CIDR (both caused by population scaling) forced the use of fast longest-matching
prefix. Also, simple DRAM-based schemes sufficed for prefix lookup (e.g., using expanded
tries) until increasing link speeds forced the use of limited SRAM and compressed tries.
Unlike endnodes, routers do not have protection issues, because they largely execute one code
base. The only variability comes from different packet headers. Hence protection is less of
an issue.

420 C H A P T E R 1 8 Conclusions

Chapter Cause Sample SolutionBottleneck

Switching 13

Prefix
lookups

11

12Packet
classification

Fair
queuing

14

Electrical scaling of buses
Scaling in bandwidth
Head-of-line blocking
Scalability in number of
ports

CIDR, link speed scaling,
Prefix database size scaling

Service differentiation
Link speed and size scaling

Service differentiation
in resource scheduling

Link speed scaling

Memory scaling

Crossbar switches

VOQs, fast approximate matches

Hierarchical fabrics, randomized
resource-contention algorithms

Expanded multibit tries
Compressed multibit tries

Decision trees and heuristics
Hardware parallelism (CAMs)

Weighted fair queuing

DRR, fast heaps

SFQ, DiffServ, Core stateless

Low-order bits in SRAM + DRAM
Juniper’s DCU

Measurement 16 Link speed scaling,
number of counters

Traceback with Bloom filters
Frequent content-based
worm detection

Security 17 Scaling in number and
intensity of attacks

F I G U R E 18.2 Router bottlenecks covered in this book. Associated with each bottleneck is the chapter
in which the material is reviewed, the underlying cause, and one or more sample solutions.

With the two main drivers of router algorithmics in mind, Figure 18.2 reviews the main
router bottlenecks covered in this book together with causes and workarounds. This picture is
a more detailed version of the corresponding figure in Chapter 1.

While we have talked about routers as the canonical switching device, many of the tech-
niques discussed in this book apply equally well to any switching device, such as a bridge
(Chapter 10 is devoted to lookups in bridges) or a gateway. It also applies to intrusion detec-
tion systems, firewalls, and network monitors who do not switch packets but must still work
efficiently with packet streams at high speeds.

18.1.3 Toward a Synthesis
In his book The Character of Physical Law, Richard Feynman argues that we have a need to
understand the world in “various hierarchies, or levels.” Later, he goes on to say that “all the
sciences, and not just the sciences but all the efforts of intellectual kinds, are an endeavor to
see the connections of the hierarchies . . . and in that way we are gradually understanding this
tremendous world of interconnecting hierarchies.”

We have divided network algorithmics into two hierarchies: endnode algorithmics and
router algorithmics. What are the connections between these two hierarchies? Clearly, we
have used the same set of 15 principles to understand and derive techniques in both areas. But
are there other unities that can provide insight and suggest new directions?

There are differences between endnode and router algorithmics. Endnodes have large,
structured, and general-purpose operating systems that require work arounds to obtain high
performance; routers, by contrast, have fairly primitive operating systems (e.g., Cisco IOS)

18.1 What This Book Has Been About 421

that bear some resemblance to a real-time operating system. Most endnodes’protocol functions
are implemented (today) in software, while the critical performance functions in a router are
implemented in hardware. Endnodes compute, routers communicate. Thus routers have no file
system and no complex process scheduling.

But there are similarities as well between endnode and router algorithmics.

• Copying in endnodes is analogous to the data movement orchestrated by switching in
routers.

• Demultiplexing in endnodes is analogous to classification in routers.

• Scheduling in endnodes is analogous to fair queuing in routers.

Other than packet classification, where the analogy is more exact, it may seem that the
other correspondences are a little stretched. However, these analogies suggest the following
potentially fruitful directions.

1. Switch-based endnode architectures: The analogy between copying and switching, and
the clean separation between I/O and computation in a router, suggests that this may also be a
good idea for endnodes. More precisely, most routers have a crossbar switch that allows parallel
data transfers using dedicated ASICs or processors; packets meant for internal computation
are routed to a separate set of processors. While we considered this briefly in Chapter 2, we
did not consider very deeply the implications for endnode operating systems.

By dedicating memory bandwidth and processing to I/O streams, the main computational
processors can compute without interruptions, system calls, or kernel thread, because I/O is
essentially serviced and placed in clean form by a set of I/O processors (using separate memory
bandwidth that does not interfere with the main processors) for use by the computational
processors when they switch computational tasks. With switch-based bus replacements such
as Infiniband, and the increasing use of protocol offload engines such as TCP chips, this vision
may be realizable in the near future. However, while the hardware elements are present, there
is need for a fundamental restructuring of operating systems to make this possible.

2. Generalized endnode packet classification: Although there seems to be a direct corre-
spondence between packet classification in endnodes (Chapter 8) and packet classification in
routers (Chapter 12), the endnode problem is simpler because it works only for a constrained
set of classifiers, where all the wildcards are at the end. Router classifiers, on the other hand,
allow arbitrary classifiers, requiring more complicated algorithmic machinery or CAMs.

It seems clear that if early demultiplexing is a good idea, then there are several possible
definitions of a path (flow in router terminology), other than a TCP connection. For example,
one might want to devote resources to all traffic coming from certain subnets or to certain
protocol types. Such flexibility is not allowed by current classifiers, such as BPF and DPF
(Chapter 8). It may be interesting to study the extra benefits provided by more general classifiers
in return for the added computational burden.

3. Fair queuing in endnodes: Fair queuing in routers was originally invented to provide
more discriminating treatment to flows in times of overload and (later) to provide quality of
service to flows in terms of, say, latency. Both these issues resonate in the endnode environment.
For example, the problem of receiver livelock (Chapter 6) requires discriminating between
flows during times of overload. The use of early demultiplexing and separate IP queues per flow
in lazy receiver processing seems like a first crude step toward fair queuing. Similarly, many

422 C H A P T E R 1 8 Conclusions

endnodes do real-time processing, such as running MPEG players, just as routers have to deal
with the real-time constraints of, say, voice-over-IP packets.

Thus, a reasonable question is whether the work on fair schedulers in the networking com-
munity can be useful in an operating system environment. When a sending TCP is scheduling
between multiple concurrent connections, could it use a scheduling algorithm such as DRR for
better fairness? At a higher level, could a Web server use worst-case weighted fair queuing to
provide better delay bounds for certain clients? Some work following this agenda has begun
to appear in the operating system community, but it is unclear whether the question has been
fully explored.

So far, we have suggested that endnodes could learn from router design in overall I/O
architecture and operating system design. Routers can potentially learn the following from
endnodes.

1. Fundamental Algorithms: Fundamental algorithms for endnodes, such as selection,
buffer allocation, CRCs, and timers, are likely to be useful for routers, because the router
processor is still an endnode, with very similar issues.

2. More Structured Router Operating Systems: While the internals of router operating
systems, such as Cisco’s IOS and Juniper’s JunOS, are hidden from public scrutiny, there is
at least anecdotal evidence that there are major software engineering challenges associated
with such systems as time progresses (leading to the need to be compatible with multiple past
versions) and as customers ask for special builds. Perhaps routers can benefit from some of
the design ideas behind existing operating systems that have stood the test of time.

While protection may be fundamentally unnecessary (no third-party applications running
on a router), how should a router operating system be structured for modularity? One approach
to building a modular but efficient router operating system can be found in the router plugins
system [DDPP98] and the Click operating system [KMea00].

3. Vertically Integrated Routers: The components of an endnode (applications, operating
system, boxes, chips) are often built by separate companies, thus encouraging innovation.
The interface between these components is standardized (e.g., the API between applications
and operating system), allowing multiple companies to supply new solutions. Why should a
similar vision not hold for routers some years from now when the industry matures? Currently,
this is more of a business than a technical issue because existing vendors do not want to open
up the market to competitors. However, this was true in the past for computers and is no longer
true; thus there is hope.

We are already seeing router chips being manufactured by semiconductor companies.
However, a great aid to progress would be a standardized router operating system that is
serious and general enough for production use by several, if not all, router companies.1 Such
a router operating system would have to work across a range of router architectures, just as
operating systems span a variety of multiprocessor and disk architectures.

Once this is the case, perhaps there is even a possibility of “applications” that run on
routers. This is not as far-fetched as it sounds, because there could be a variety of security and
measurement programs that operate on a subset of the packets received by the router. With
the appropriate API (and especially if the programs are operating on a logged copy of the

1Click is somewhat biased toward endnode bus-based routers as opposed to switch-based routers with ASIC
support.

18.2 What Network Algorithmics Is About 423

router packet stream), such applications could even be farmed out to third-party application
developers. It is probably easy to build an environment where a third-party application (working
on logged packets) cannot harm the main router functions, such as forwarding and routing.

18.2 WHAT NETWORK ALGORITHMICS IS ABOUT

Chapter 1 introduced network algorithmics with the following definition.
Definition: Network algorithmics is the use of an interdisciplinary systems approach,

seasoned with algorithmic thinking, to design fast implementations of network processing
tasks.
The definition stresses the fact that network algorithmics is interdisciplinary, requires systems
thinking, and can sometimes benefit from algorithmic thinking. We review each of these three
aspects (interdisciplinary thinking, systems thinking, algorithmic thinking) in turn.

18.2.1 Interdisciplinary Thinking
Network algorithmics represents the intersection of several disciplines within computer sci-
ence that are often taught separately. Endnode algorithmics is a combination of networking,
operating systems, computer architecture, and algorithms. Router algorithmics is a combina-
tion of networking, hardware design, and algorithms. Figure 18.3 provides examples of uses
of these disciplines that are studied in the book.

For example, in Figure 18.3 techniques such as header prediction (Chapter 9) require a
deep networking knowledge of TCP to optimize the expected case, while internal link striping
(Chapter 15) requires knowing how to correctly design a striping protocol. On the other hand,
application device channels (Chapter 6) require a careful understanding of the protection issues
in operating systems.

Similarly, locality-driven receiver processing requires understanding the architectural
function and limitations of the instruction cache. Finally, in router algorithmics it is crucial to
understand hardware design. Arbiters like iSLIP and PIM were designed to allow scheduling
decisions in a minimum packet arrival time.

Later in this chapter we argue that other disciplines, such as statistics and learning theory,
will also be useful for network algorithmics.

Discipline

Application device channels
(Chapter 6)

Operating
systems

Algorithms

Networking Header prediction
(Chapter 6)

Locality-driven receiver
processing (Chapter 5)

Timing wheels
(Chapter 7)

Computer
architecture

Example

Endnode algorithmics

Discipline

Switch arbiters
(Chapters 2 and 13)

Hardware
design

Networking Link striping
(Chapter 15)

Example

Router algorithmics

Algorithms Fast IP lookup
(Chapter 11)

F I G U R E 18.3 Examples of disciplines used in this book along with sample applications.

424 C H A P T E R 1 8 Conclusions

18.2.2 Systems Thinking
Systems thinking is embodied by Principles P1 though P10. Principles P1 through P5 were
described earlier as systems principles. Systems unfold in space and time: in space, through
various components (e.g., kernel, application), and in time, through certain key time points
(e.g., application initialization time, packet arrival time). Principles P1 through P5 ask that a
designer expand his or her vision to see the entire system and then to consider moving functions
in space and time to gain efficiency.

For example, Principle P1, avoiding obvious waste, is a cliché by itself. However, our
understanding of systems, in terms of separable and modular hierarchies, often precludes the
synoptic eye required to see waste across system hierarchies. For example, the number of
wasted copies is apparent only when one broadens one’s view to that of a Web server (see
I/O-Lite in Chapter 5). Similarly, the opportunities for dynamic code generation in going from
Pathfinder to DPF (see Chapter 8) are apparent only when one considers the code required to
implement a generic classifier.

Similarly, Principle P4 asks the designer to be aware of existing system components that
can be leveraged. Fbufs (Chapter 5) leverage off the virtual memory subsystem, while timing
wheels (Chapter 7) leverage off the existing time-of-day computation to amortize the overhead
of stepping through empty buckets. Principle P4 also asks the designer to be especially aware
of the underlying hardware, whether to exploit local access costs (e.g., DRAM pages, cache
lines), to trade memory for speed (either by compression, if the underlying memory is SRAM,
or by expansion, if memory is DRAM), or to exploit other hardware features (e.g., replacing
multiplies by shifts in RED calculations in Chapter 14).

Principle P5 asks the designer to be even bolder and to consider adding new hardware
to the system; this is especially useful in a router context. While this is somewhat vague,
Principles 5a (parallelism via memory interleaving), P5b (parallelism via wide words), and
P5c (combining DRAM and SRAM to improve overall speed and cost) appear to underlie
many clever hardware designs to implement router functions. Thus memory interleaving and
pipelining can be used to speed up IP lookups (Chapter 11), wide words are used to improve
the speed of the Lucent classification scheme (Chapter 12), and DRAM and SRAM can be
combined to construct an efficient counter scheme (Chapter 16).

Once the designer sees the system and identifies wasted sequences of operations together
with possible components to leverage, the next step is to consider moving functions in time (P2)
and space (P3c). Figure 18.4 shows examples of endnode algorithmic techniques that move
functions between components. Figure 18.5 shows similar examples for router algorithmics.

Besides moving functions in space, moving functions in time is a key enabler for efficient
algorithms. Besides the more conventional approaches of precomputation (P2a), lazy evalu-
ation (P2b), and batch processing (P2c), there are subtler examples of moving functions to
different times at which the system is instantiated. For example, in fbufs (Chapter 5), common
VM mappings between the application and kernel are calculated when the application first
starts up. Application device channels (Chapter 6) have the kernel authorize buffers (on behalf
of an application) to the adaptor when the application starts up. Dynamic packet filter (DPF)
(Chapter 8) specializes code when a classifier is updated. Tag switching (Chapter 11) moves
the work of computing labels from packet-forwarding time to route-computation time.

Finally, Principles P6 through P10 concern the use of alternative system structuring tech-
niques to remove inefficiences. P6 suggests considering specialized routines or alternative
interfaces; for example, Chapter 6 suggests that event-driven APIs may be more efficient than

18.2 What Network Algorithmics Is About 425

(receive buffer specification)

RDMA

(protection)

ADCs

(copying)

fbufs

(scheduling)

Event-driven servers

Application Incoming packetAdaptorVM systemKernel

F I G U R E 18.4 Endnode algorithmics: examples of moving functions in space.

(precomputing lookup table)

IP Lookups

(handling bits, rates)

DiffServ, Core Stateless

(labels)

Tag Switching, MPLS

(computing packet size)

Path MTU approach to fragmentation

Forwarding
engine

SourceEdge
router

Previous
router

Route
processor

F I G U R E 18.5 Router algorithmics: examples of moving functions in space.

the state-based interface of the select() call. P7 suggests designing interfaces to avoid unnec-
essary generality; for example, in Chapter 5, fbufs map the fbuf pages into the same locations
in all processes, avoiding the need for a further mapping when moving between processes.
P8 suggests avoiding being unduly influenced by reference implementations; for example, in
Chapter 9, naive reference implementations of checksums have poor performance.

Principles P9 and P10 suggest keeping existing interfaces but adding extra information to
interfaces (P9) or packet headers (P10). For example, efficiently reimplementing the select()
call (Chapter 6) requires passing information between the protocol module and the select
module. Passing information in packet headers, on the other hand, has a huge array of examples,
including RDMA (Chapter 5), MPLS (Chapter 11), DiffServ, and core stateless fair queuing
(Chapter 14).

18.2.3 Algorithmic Thinking
Algorithmic thinking refers to thinking about networking bottlenecks the way algorithm design-
ers approach problems. Overall, algorithmic approaches are less important than other systems
approaches, as embodied by Principles P1 through P10. Also, it is dangerous to blindly reuse
existing algorithms.

426 C H A P T E R 1 8 Conclusions

The first problem that must be confronted in using algorithmic thinking is how to frame
the problem that must be solved. By changing the problem, one can often find more effective
solutions. Consider the following problem, which we avoided in Chapter 11.

◆ Example: Pipelining and Memory Allocation. A lookup engine is using a trie. The lookup
engine must be pipelined for speed. The simplest solution is to pipeline the trie by level. The
root is at the first stage, the children of the root are assigned to the second stage, the nodes at
height 2 to the third stage, etc. Unfortunately, the memory needs for each stage can vary as
prefixes are inserted and deleted. There are the following spectrum of approaches.

• Centralized memory: All the processing stages share a single memory. Memory allocation
is easy, but the centralized memory becomes a bottleneck.

• One memory per stage: Each processing stage has its own memory, minimizing memory
contention. However, since the memory is statically allocated at fabrication time, any
memory unused by a stage cannot be used by another stage.

• Dynamically allocate small 1-port memories to stages: As suggested in Chapter 11,
on-chip memory is divided into M SRAMs, which are connected to stage processors via a
crossbar. As a processor requires more or less memory, crossbar connections can be
changed to allocate more or fewer memories to each stage. This scheme requires large M
to avoid wasting memory, but large M can lead to high capacitive loads.

• Dynamically allocate medium-size 2-port memories to stages: The setting is identical to
the last approach, except that each memory is now a 2-port memory that can be allocated
to two processors. Using this it is is possible to show that N memories are sufficient for
N processors, with almost no memory wastage.

• Dynamically change the starting point in the pipeline: In a conventional linear pipeline, all
lookups start at the first stage and leave at the last. Florin Baboescu has suggested an
alternative: Using a lookup table indexed on the first few bits, assign each address to a
different first processor in the pipeline. Thus different addresses have different start and
end processors. However, this gives considerably more flexibility in allocating memory to
processors by changing the assignment of addresses to processors.

• Pipeline by depth: Instead of pipelining a tree by height, consider pipelining by depth. All
leaves are assigned to the last stage, K , all parents of the leaves to stage K − 1, etc.

These approaches represent the interplay between principles P13 (optimizing degrees of
freedom) and P5 (add hardware). However, each approach results in a different algorithmic
problem! Thus a far more important skill than solving a hard problem is the skill required to
frame the right problems that balance overall system needs.

Principles P11 and P13 help choose the right problem to solve. The pipelining example
shows that choosing the degrees of freedom (P13) can change the algorithmic problem solved.

Similarly, Principle P11, optimizing the expected case, can sometimes help decide what
the right measure is to optimize. This in turn influences the choice of algorithm. For example,
simple TCP header prediction (Chapter 9) optimizes the expected case when the next packet is
from the same connection and is the next data packet or ack. If this is indeed the expected case,
there is no need for fancy connection lookup structures (a simple one-element cache) or fancy
structures to deal with sequence number bookkeeping. However, if there are several concurrent
connections, as in a server, a hash table may be better for connection lookup. Similarly, if

18.3 Network Algorithmics and Real Products 427

packets routinely arrive out of order, then more fancy sequence number bookkeeping schemes
[TVHS92] may be needed.

Principle P12, adding state for speed, is a simple technique used often in standard algo-
rithmic design. However, it is quite common for just this principle by itself (without fancy
additional algorithmic machinery) to help remove systems bottlenecks. For example, the major
bottleneck in the select() call implementation is the need to repeatedly check for data in network
connections known not to be ready. By simply keeping state across calls, this key bottleneck
can be removed. By contrast, the bottlenecks caused by the bitmap interface can be removed
by algorithmic means, but these are less important.

Having framed the appropriate problem using P11, P12, and P13, principles P14 and P15
can be used to guide the search for solutions.

Principle P14 asks whether there are any important special cases, such as the use of
finite universes, that can be leveraged to derive a more efficient algorithm. For example, the
McKenney buffer-stealing algorithm of Chapter 9 provides a fast heap with O(1) operations
for the special case when elements to the heap change by at most 1 on each call.

Finally, principle P15 asks whether there are algorithmic methods that can be adapted
to the system. It is dangerous to blindly adapt existing algorithms because of the following
possibilities that can mislead the designer.

• Wrong Measures: The measure for most systems implementations is the number of
memory accesses and not the number of operations. For example, the fast ufalloc()
operation uses a selection tree on bitmaps instead of a standard heap, leveraging off the
fact that a single read can access W bits, where W is the size of a word. Again, the
important measure in many IP lookup algorithms is search speed and not update speed.

• Asymptotic Complexity: Asymptotic complexity hides constants that are crucial in systems.
When every microsecond counts, surely constant factors are important. Thus the switch
matching algorithms in Chapter 13 have much smaller constants than the best bipartite
matching algorithms in the literature and hence can be implemented.

• Incorrect Cost Penalties: In timing wheels (Chapter 7), a priority heap is implemented
using a bucket-sorting data structure. However, the cost of strolling through empty
buckets, a severe cost in bucket sort, is unimportant because on every timer tick, the
system clock must be incremented anyway. As a second example, the dynamic program-
ming algorithm to compute optimal lookup strides for multibit tries (Chapter 11) is
O(N ∗ W2), where N is the number of prefixes and W is the address width. While this
appears to be quadratic, it is linear in the important term N (100,000 or more) and
quadratic in the address width (32 bits, and the term is smaller in practice).

In spite of all these warnings, algorithmic methods are useful in networking, ranging from
the use of Pathfinder-like tries in Chapter 8 to the use of tries and binary search (suitably
modified) in Chapter 11.

18.3 NETWORK ALGORITHMICS AND REAL PRODUCTS

Many of the algorithms used in this book are found in real products. The following is a quick
survey.

428 C H A P T E R 1 8 Conclusions

Endnode Algorithmics: Zero-copy implementations of network stacks are quite common,
as are implementations of memory-mapped files; however, more drastic changes, such as IO-
Lite, are only used more rarely, such as by the iMimic server software. The RDMAspecification
is well developed. Event-driven Web servers are quite common, and many operating systems
other than UNIX (such as Windows NT) have fast implementations of select() equivalents.
The VIA standard avoids system calls using ideas similar to ADCs.

Most commercial systems for early demultiplexing still rely on BPF, but that is because
few systems require so many classifiers that they need the scalability of a Pathfinder or a
DPF. Some operating systems use timing wheels, notably Linux and FreeBSD. Linux uses fast
buffer-manipulation operations on linear buffers. Fast IP checksum algorithms are common,
and so are multibit CRC algorithms in hardware.

Router Algorithmics: Binary search lookup algorithms for bridges were common in prod-
ucts, as were hashing schemes (e.g., Gigaswitch). Multibit trie algorithms for IP lookups are
very common; recently, compressed versions, such as the tree bitmap algorithm, have become
popular in Cisco’s latest CRS-1 router. Classification is still generally done by CAMs, and
thus much of Chapter 12 is probably more useful for software classification.

In some chapters, such as the chapter on switching (Chapter 13), we provided a real
product example for every switching scheme described (see Figure 13.2, for example). In fair
queuing, DRR, RED, and token buckets are commonly implemented. General weighted fair
queuing, virtual clock, and core stateless fair queuing are hardly ever used. Finally, much of
the measurement and security chapters is devoted to ideas that are not part of any product
today.

It is useful to see many of these ideas come together in a complete system. While it is
hard to find details of such systems (because of commercial secrecy), the following two large
systems pull together ideas in endnode and router algorithmics.

SYSTEM EXAMPLE 1: FLASH WEB SERVER

The Flash [PDZ99a] Web server was designed at Rice University and undoubtedly served as
the inspiration (and initial code base) for a company called iMimic. A version of Flash called
Flash-lite uses the following ideas from endnode algorithmics.

• Fast copies: Flash-lite uses IO-Lite to avoid redundant copies.

• Process scheduling: Flash uses an event-driven server with helper processes to minimize
scheduling and maximize concurrency.

• Fast select: Flash uses an optimized implementation of the select() call.

• Other optimizations: Flash caches response headers and file mappings.

SYSTEM EXAMPLE 2: CISCO 12000 GSR ROUTER

The Cisco GSR [Sys] is a popular gigabit router and uses the following ideas from router
algorithmics.

• Fast IP lookups: The GSR uses a multibit tree to do IP lookups.

• Fast switching: The GSR uses the iSLIP algorithm for fast bipartite matching of VOQs.

• Fair queuing: The GSR implements a modified form of DRR called MDRR, where one
queue is given priority (e.g., for voice-over-IP). It also implements a sophisticated form of

18.4 Network Algorithmics: Back to the Future 429

RED called weighted RED and token buckets. All these algorithms are implemented in
hardware.

18.4 NETWORK ALGORITHMICS: BACK TO THE FUTURE

The preceding three sections of this chapter talked of the past and the present. But are all the
ideas played out? Has network algorithmics already been milked to the point where nothing new
is left to do? We believe this is not the case. This is because we believe network algorithmics
will be enriched in the near future in three ways: new abstractions that require new solutions
will become popular; new connecting disciplines will provide new approaches to existing
problems; and new requirements will require rethinking existing solutions. We expand on
each of these possibilities in turn.

18.4.1 New Abstractions
This book dealt with the fast implementation of the standard networking abstractions: TCP
sockets at endnodes and IP routing at routers. However, new abstractions are constantly being
invented to increase user productivity. While these abstractions make life easier for users,
unoptimized implementations of these abstractions can exact a severe performance penalty.
But this only creates new opportunities for network algorithmics. Here follow some examples
of such abstractions.

• TCP offload engines: While the book has concentrated on software TCP implementations,
movements such as iSCSI have made hardware TCP offload engines more interesting.
Doing TCP in hardware and handling worst-case performance at 10 Gbps and even 40 Gbps
is very challenging. For example, to do complete offload, the chip must even handle
out-of-order packets and packet fragments (see Chapter 9) without appreciable slowdown.

• HTML and Web server processing: There have been a number of papers trying to improve
Web server performance that can be considered an application of endnode algorithmics.
For example, persistent HTTP [Mog95] can be considered an application of P1 to the
problem of connection overhead. A more speculative approach to reduce DNS lookup
times in Web accesses by passing hints (P10) is described in Chandranmenon and
Varghese [CV01].

• Web services: The notion of Web services, by which a Web page is used to provide a
service, is getting increasingly popular. There are a number of protocols that underly Web
services, and standard implementations of these services can be slow.

• CORBA: The common object request broker architecture is popular but quite slow.
Gokhale and Schmidt [GS98] apply to the problem four of the principles described in this
book (eliminating waste, P1, optimizing the expected case, P11, passing information
between layers, P9, and exploiting locality for good cache behavior, P4a). They show that
such techniques from endnode algorithmics can improve the performance of the SunSoft
Inter-Orb protocol by a factor of 2–4.5, depending on the data type. Similar optimizations
should be possible in hardware.

• SSL and other encryption standards: Many Web servers use the secure socket layer (SSL)
for secure transactions. Software implementations of SSL are quite slow. There is an
increasing interest in hardware implementations of SSL.

430 C H A P T E R 1 8 Conclusions

• XML processing: XML is rapidly becoming the lingua franca of the Web. Parsing and
converting from XML to HTML can be a bottleneck.

• Measurement and security abstractions: Currently, SNMP and NetFlow allow very
primitive measurement abstractions. The abstraction level can be raised only by a tool that
integrates all the raw measurement data. Perhaps in the future routers will have to
implement more sophisticated abstractions to help in measurement and security analysis.

• Sensor networks: A sensor network may wish to calculate new abstractions to solve such
specific problems as finding high concentrations of pollutants and ascertaining the
direction of a forest fire.

If history is any guide, every time an existing bottleneck becomes well studied, a new
abstraction appears with a new bottleneck. Thus after lookups became well understood, packet
classification emerged. After classification, came TCP offload; and now SSL and XML are
clearly important. Many pundits believe that wire speed security solutions (as implemented
in a router or an intrusion detection system) will be required by the year 2006. Thus it seems
clear that future abstractions will keep presenting new challenges to network algorithmics.

18.4.2 New Connecting Disciplines
Earlier we said that a key aspect of network algorithmics is its interdisciplinary nature. Solu-
tions require a knowledge of operating systems, computer architecture, hardware design,
networking, and algorithms. We believe the following disciplines will also impinge on network
algorithmics very soon.

• Optics: Optics has been abstracted away as a link layer technology in this book. Currently,
optics provides a way to add extra channels to existing fiber using dense wavelength-
division multiplexing. However, optical research has made amazing strides. There are
undoubtedly exciting possibilities to rethink router design using some combination of
electronics and optics.2

• Network processor architecture: While this field is still in its infancy as compared to
computer architecture, there are surely more imaginative approaches than current
approaches that assign packets to one of several processors. One such approach, described
in Sherwood et al. [SVC03], uses a wide word state machine as a fundamental building
block.

• Learning theory: The fields of security and measurement are crying out for techniques to
pick out interesting patterns from massive traffic data sets. Learning theory and data
mining have been used for these purposes in other fields. Rather than simply reusing, say,
standard clustering algorithms or standard techniques such as hidden Markov models, the
real breakthroughs may belong to those who can find variations of these techniques that
can be implemented at high speeds with some loss of accuracy. Similarly, online analytical
processing (OLAP) tools may be useful for networking, with twists to fit the networking
milieu. An example of a tool that has an OLAP flavor in a uniquely network setting can be
found in Estan et al. [ESV03].

2Electronics still appears to be required today because of the lack of optical buffers and the difficulty of optical
header processing.

18.5 The Inner Life of a Networking Device 431

• Databases: The field of databases has a great deal to teach networking in terms of
systematic techniques for querying for information. Recently, an even more relevant
trend has been the subarea of continuous queries. Techniques developed in databases
can be of great utility to algorithmics.

• Statistics: The field of statistics will be of even more importance in dealing with large data
sets. Already, NetFlow and other tools have to resort to sampling. What inferences can
safely be made from sampled data? As we have seen in Chapter 16, statistical methods are
already used by ISPs to solve the traffic matrix problem from limited SNMP data.

18.4.3 New Requirements
Much of this book has focused on processing time as the main metric to be optimized while
minimizing dollar cost. Storage was also an important consideration because of limited on-chip
storage and the expense of SRAM. However, even minimizing storage was related to speed,
in order to maximize the possibility of storing the entire data structure in high-speed storage.

The future may bring new requirements. Two important such requirements are (mechani-
cal) space and power. Space is particularly important in PoPs and hosting centers, because rack
space is limited. Thus routers with small form factors are crucial. It may be that optimizing
space is mostly a matter of mechanical design together with the use of higher and higher levels
of integration. However, engineering routers (and individual sensors in sensor networks) for
power may require attention to algorithmics

Today power per rack is limited to a few kilowatts, and routers that need more power do so
by spreading out across multiple racks. Power is a major problem in modern router design. It
may be possible to rethink lookup, switching, and fair queuing algorithms in order to minimize
power. Such power-conscious designs have already appeared in the computer architecture and
operating systems community. It is logical to expect this trend to spread to router design.

18.5 THE INNER LIFE OF A NETWORKING DEVICE

We have tried to summarize in this chapter the major themes of this book in terms of the tech-
niques described and the principles used. We have also tried to argue that network algorithmics
is used in real products and is likely to find further application in the future because of new
abstractions, new connecting disciplines, and new requirements. While the specific techniques
and problems may change, we hope the principles involved remain useful.

Besides the fact that network algorithmics is useful in building better and faster network
devices, we hope this book makes the case that network algorithmics is also intellectually
stimulating. While it may lack the depth of hard problems in theoretical computer science or
physics, perhaps what can be most stimulating is the breadth, in terms of the disciplines it
encompasses.

An endnode, for instance, may appear as a simple processing state machine at the highest
level of abstraction. A more detailed inspection would see a Web request packet arriving at
a server interface, the interrupt firing, and the protocol code being scheduled via a software
interrupt. Even within the protocol code, each line of code has to be fetched, hopefully from
the i-cache, and each data item has to go through the VM system (via the TLB hopefully)
and the data cache. Finally, the application must get involved via a returned system call and a
process-scheduling operation. The request may trigger file system activity and disk activity.

432 C H A P T E R 1 8 Conclusions

A router similarly has an interesting inner life. Reflecting the macrocosmos of the Internet
outside the router is a microcosmos within the router consisting of major subsystems, such as
line cards and the switch fabric, together with striping and flow control across chip-to-chip
links.

Network algorithmics seeks to understand these hidden subsystems of the Internet to
make the Internet faster. This book is a first attempt to begin understanding — in Feynman’s
phrase — this “tremendous world of interconnected hierarchies” within routers and endnodes.
In furthering this process of understanding and streamlining these hierarchies, there are still
home runs to be hit and touchdowns to be scored as the game against networking bottlenecks
continues to be played.

A P P E N D I X

Detailed Models

This appendix contains further models and information that can be useful for some readers of
this book. For example, the protocols section may be useful for hardware designers who wish
to work in networking but need a quick self-contained overview of protocols such as TCP and
IP to orient themselves. On the other hand, the hardware section provides insights that may
be useful for software designers without requiring a great deal of reading. The switch section
provides some more details about switching theory.

A.1 TCP AND IP

To be self-contained, Section A.1.1 provides a very brief sketch of how TCP operates, and
Section A.1.2 briefly describes how IP routing operates.

A.1.1 Transport Protocols
When you point your Web browser to www.cs.ucsd.edu, your browser first converts the
destination host name (i.e., cs.ucsd.edu) into a 32-bit Internet address, such as 132.239.51.18,
by making a request to a local DNS name server [Per92]; this is akin to dialing directory
assistance to find a telephone number. A 32-bit IP address is written in dotted decimal form
for convenience; each of the four numbers between dots (e.g., 132) represents the decimal
value of a byte. Domain names such as cs.ucsd.edu appear only in user interfaces; the Internet
transport and routing protocols deal only with 32-bit Internet addresses.

Networks lose and reorder messages. If a network application cares that all its messages
are received in sequence, the application can subcontract the job of reliable delivery to a
transport protocol such as transmission control protocol (TCP). It is the job of TCP to provide
the sending and receiving applications with the illusion of two shared data queues in each
direction — despite the fact that the sender and receiver machines are separated by a lossy
network. Thus whatever the sender application writes to its local TCP send queue should
magically appear in the same order at the local TCP receive queue at the receiver, and vice
versa.

Since Web browsers care about reliability, the Web browser at sender S (Figure A.1) first
contacts its local TCP with a request to set up a connection to the destination application. The
destination application is identified by a well-known port number (such as 80 for Web traffic)
at the destination IP address. If IP addresses are thought of as telephone numbers, port numbers
can be thought of as extension numbers. A connection is the shared state information — such

433

434 A P P E N D I X Detailed Models

Sender S Receiver DInternet

Application TCP

Connect to D

Send GET
(20 bytes)

TCP Application

SYN-ACK X, Y

Ack 20 bytes

ACK (of FIN)

FIN

Send 500 bytes

ACK (of FIN)

SYN (start connection) X

Send 20 bytes

Send 1500 bytes

Resend 500 bytes

Ack 1500 bytes

Ack 2000 bytes

FIN (finish connection)

Send RESPONSE
(2000 bytes)

F I G U R E A.1 Time–space figure of a possible scenario for a conversation between Web client S and
Web server D as mediated by the reliable transport protocol TCP. Assume that the ack to the SYN-ACK
is piggybacked on the 20-byte GET message.

as sequence numbers and timers — at the sender and receiver TCP programs that facilitate
reliable delivery.

Figure A.1 is an example of a time–space figure, with time flowing downward and space
represented horizontally. A line from S to D that slopes downward represents the sending of a
message from S to D, which arrives at a later time.

To set up a connection, the sending TCP (Figure A.1) sends out a request to start the
connection, called a SYN message, with a number X the sender has not used recently. If all
goes well, the destination will send back a SYN-ACK to signify acceptance, along with a
number Y that the destination has not used before. Only after the SYN-ACK is the first data
message sent.

The messages sent between TCPs are called TCP segments. Thus to be precise, the fol-
lowing models will refer to TCP segments and to IP packets (often called datagrams in IP
terminology).

In Figure A.1, the sender is a Web client, whose first message is a small (say) 20-byte
HTTP GET message for the Web page (e.g., index.html) at the destination. To ensure message
delivery, TCP will retransmit all segments until it gets an acknowledgment. To ensure that data

A.1 TCP and IP 435

is delivered in order and to correlate acks with data, each byte of data in a segment carries a
sequence number. In TCP only the sequence number of the first byte in a segment is carried
explicitly; the sequence numbers of the other bytes are implicit, based on their offset.

When the 20-byte GET message arrives at the receiver, the receiving TCP delivers it
to the receiving Web application. The Web server at D may respond with a Web page of
(say) 1900 bytes that it writes to the receiver TCP input queue along with an HTTP header
of 100 bytes, making a total of 2000 bytes. TCP can choose to break up the 2000-byte
data arbitrarily into segments; the example of Figure A.1 uses two segments of 1500 and
500 bytes.

Assume for variety that the second segment of 500 bytes is lost in the network; this is
shown in a time–space picture by a message arrow that does not reach the other end. Since the
receiver does not receive an ACK, the receiver retransmits the second segment after a timer
expires. Note that ACKs are cumulative: A single ACK acknowledges the byte specified and
all previous bytes. Finally, if the sender is done, the sender begins closing the connection with
a FIN message that is also acked (if all goes well), and the receiver does the same.

Once the connection is closed with FIN messages, the receiver TCP keeps no sequence
number information about the sender application that terminated. But networks can also cause
duplicates (because of retransmissions, say) of SYN and DATA segments that appear later and
confuse the receiver. This is why the receiver in Figure A.1 does not believe any data that is in
a SYN message until it is validated by receiving a third message containing the unused number
Y the receiver picked. If Y is echoed back in a third message, then the initial message is not
a delayed duplicate, since Y was not used recently. Note that if the SYN is a retransmission
of a previously closed connection, the sender will not echo back Y , because the connection is
closed.

This preliminary dance featuring a SYN and a SYN-ACK is called TCP’s three-way
handshake. It allows TCPto forget about past communication, at the cost of increased latency to
send new data. In practice, the validation numbers X and Y do double duty as the initial sequence
numbers of the data segments in each direction. This works because sequence numbers need
not start at 0 or 1 as long as both sender and receiver use the same initial value.

The TCP sequence numbers are carried in a TCP header contained in each segment. The
TCP header contains 16 bits for the destination port (recall that a port is like a telephone
extension that helps identify the receiving application), 16 bits for the sending port (analogous
to a sending application extension), a 32-bit sequence number for any data contained in the
segment, and a 32-bit number acknowledging any data that arrived in the reverse direction.
There are also flags that identify segments as being SYN, FIN, etc. A segment also carries a
routing header1 and a link header that changes on every link in the path.

If the application is (say) a videoconferencing application that does not want reliability
guarantees, it can choose to use a protocol called UDP (user datagram protocol) instead of
TCP. Unlike TCP, UDP does not need acks or retransmissions, because it does not guarantee
reliability. Thus the only sensible fields in the UDP header corresponding to the TCP header
are the destination and source port numbers. Like ordinary mail versus certified mail, UDP is
cheaper in bandwidth and processing but offers no reliability guarantees. For more information
about TCP and UDP, Stevens [Ste94] is highly recommended.

1The routing header is often called the Internet protocol, or IP, header.

436 A P P E N D I X Detailed Models

R1 R2 R4 R5

R3

Source
S

Destination
D

Sender domain Internet service provider Receiver domain

F I G U R E A.2 A sample network topology corresponding to the Internet of Figure A.1.

A.1.2 Routing Protocols
Figure A.2 shows a more detailed view of a plausible network topology between Web client
S and Web server D of Figure A.1. The source is attached to a local area network such as an
Ethernet, to which is also connected a router, R1. Routers are the automated post offices of the
Internet, which consult the destination address in an Internet message (often called a packet)
to decide on which output link to forward the message.

In the figure, the source S belongs to an administrative unit (say, a small company) called
a domain. In this simple example, the domain of S consists only of an Ethernet and a router,
R1, that connects to an Internet service provider (ISP) through router R2. Our Internet service
provider is also a small outfit, and it consists only of three routers, R2, R3, and R4, connected
by fiber-optic communication links. Finally, R4 is connected to router R5 in D’s domain, which
leads to the destination, D.

Internet routing is broken into two conceptual parts, called forwarding and routing. First
consider forwarding, which explains how packets move from S to D through intermediate
routers.

When S sends a TCP packet to D, it first places the IP address of D in the routing header
of the packet and sends it to neighboring router, R1. Forwarding at endnodes such as S and D
is kept simple and consists of sending the packet to an adjoining router. R1 realizes it has no
information about D and so passes it to ISP router R2. When it gets to R2, R2 must choose to
send the packet to either R3 or R4. R2 makes its choice based on a forwarding table at R2 that
specifies (say) that packets to D should be sent to R4. Similarly, R4 will have a forwarding
entry for traffic to D that points to R5. A description of how forwarding entries are compressed
using prefixes can be found in Section 2.3.2. In summary, an Internet packet is forwarded to
a destination by following forwarding information about the destination at each router. Each
router need not know the complete path to D, but only the next hop to get to D.

While forwarding must be done at extremely high speeds, the forwarding tables at each
router must be built by a routing protocol. For example, if the link from R2 to R4 fails, the
routing protocol within the ISP domain should change the forwarding table at R2 to forward
packets to D to R3. Typically, each domain uses its own routing protocol to calculate shortest-
path routes within the domain. Two main approaches to routing within a domain are distance
vector and link state.

In the distance vector approach, exemplified by the protocol RIP [Per92], the neighbors
of each router periodically exchange distance estimates for each destination network. Thus
in Figure A.2, R2 may get a distance estimate of 2 to D’s network from R3 and a distance

A.2 Hardware Models 437

estimate of 1 from R4. Thus R2 picks the shorter-distance neighbor, R4, to reach D. If the link
from R2 to R4 fails, R2 will time-out this link, set its estimate of distance to D through R4
to infinity, and then choose the route through R3. Unfortunately, distance vector takes a long
time to converge when destinations become unreachable [Per92].

Link state routing [Per92] avoids the convergence problems of distance vector by having
each router construct a link state packet listing its neighbors. In Figure A.2, for instance, R3’s
link state packet (LSP) will list its links to R2 and R4. Each router then broadcasts its LSP to
all other routers in the domain using a primitive flooding mechanism; LSP sequence numbers
are used to prevent LSPs from circulating forever. When all routers have each other’s LSP,
every router has a map of the network and can use Dijkstra’s algorithm [Per92] to calculate
shortest-path routes to all destinations. The most common routing protocol used within ISP
domains is a link state routing protocol called open shortest path first (OSPF) [Per92].

While shortest-path routing works well within domains, the situation is more complex for
routing between domains. Imagine that Figure A.2 is modified so that the ISP in the middle,
say, ISP A, does not have a direct route to D’s domain but instead is connected to ISPs C and
E, each of which has a path to D’s domain. Should ISP A send a packet addressed to D to ISP C
or E? Shortest-path routing no longer makes sense because ISPs want to route based on other
metrics (e.g., dollar cost) or on policy (e.g., always send data through a major competitor, as
in so-called “hot potato” routing).

Thus interdomain routing is a more messy kettle of fish than routing within a domain.
The most commonly used interdomain protocol today is called the border gateway protocol
(BGP) [Ste99], which uses a gossip mechanism akin to distance vector, except that each route
is augmented with the path of domains instead of just the distance. The path ostensibly makes
convergence faster than distance vector and provides information for policy decisions.

To go beyond this brief sketch of routing protocols, the reader is directed to Intercon-
nections by Radia Perlman [Per92] for insight into routing in general and to BGP-4 by John
Stewart [Ste99] as the best published textbook on the arcana of BGP.

A.2 HARDWARE MODELS

For completeness, this section contains some details of hardware models that were skipped in
Chapter 2 for the sake of brevity. These detailed models are included in this section to provide
somewhat deeper understanding for software designers.

A.2.1 From Transistors to Logic Gates
The fundamental building block of the most complex network processor is a transistor
(Figure A.3). A transistor is a voltage-controlled switch. More precisely, a transistor is a
device with three external attachments (Figure A.3): a gate, a source, and a drain. When an
input voltage I is applied to the gate, the source–drain path conducts electricity; when the input
voltage is turned off, the source–drain path does not conduct. The output O voltage occurs at
the drain. Transistors are physically synthesized on a chip by having a polysilicon path (gate)
cross a diffusion path (source–drain) at points governed by a mask.

The simplest logic gate is an inverter (also known as a NOT gate). This gate is formed
(Figure A.3) by connecting the drain to a power supply and the source to ground (0 volts). The
circuit functions as an inverter because when I is a high voltage (i.e., I = 1), the transistor

438 A P P E N D I X Detailed Models

Power
supply

Ground

Drain

GateInput
I

Output
O

Source

F I G U R E A.3 A transistor is a voltage-controlled switch allowing the source-to-drain path to conduct
current when the gate voltage is high. An inverter is a transistor whose source is connected to ground
and whose drain is connected to a power supply.

Power
supply

Ground

Input
I1

Output
O

Input
I2

F I G U R E A.4 Using two transistors in series to create a NAND gate.

turns on, “pulling down” the output to ground (i.e., O = 0). On the other hand, when I = 0,
the transistor turns off, “pulling up” the output to the power supply (i.e., O = 1). Thus an
inverter output flips the input bit, implementing the NOT operation. Although omitted in our
pictures, real gates also add a resistance in the path to avoid “shorting” the power supply when
I = 1, by connecting it directly to ground.

The inverter generalizes to a NAND gate (Figure A.4) of two inputs I1 and I2 using two
transistors whose source–drain paths are connected in series. The output O is pulled down to
ground if and only if both transistors are on, which happens if and only if both I1 and I2 are 1.
Similarly, a NOR gate is formed by placing two transistors in parallel.

A.2 Hardware Models 439

A.2.2 Timing Delays
Figure A.3 assumes that the output changed instantaneously when the input changed. In prac-
tice, when I is turned from 0 to 1, it takes time for the gate to accumulate enough charge to
allow the source–drain path to conduct. This is modeled by thinking of the gate input as charg-
ing a gate capacitor (C) in series with a resistor (R). If you don’t remember what capacitance
and resistance are, think of charge as water, voltage as water pressure, capacitance as the size
of a container that must be filled with water, and resistance as a form of friction impeding
water flow. The larger the container capacity and the larger the friction, the longer the time to
fill the container. Formally, the voltage at time t after the input I is set to V is V (1 − e−t/RC).
The product RC is the charging time constant; within one time constant the output reaches
1 − 1/e = 66% of its final value.

In Figure A.3, notice also that if I is turned off, output O pulls up to the power supply
voltage. But to do so the output must charge one or more gates to which it is connected, each
of which is a resistance and a capacitance (the sum of which is called the output load). For
instance, in a typical 0.18-micron process,2 the delay through a single inverter driving an
output load of four identical inverters is 60 picoseconds.

Charging one input can cause further outputs to charge further inputs, and so on. Thus
for a combinatorial function, the delay is the sum of the charging and discharging delays over
the worst-case path of transistors. Such path delays must fit within a minimum packet arrival
time. Logic designs are simulated to see if they meet timing using approximate analysis as
well as accurate circuit models, such as Spice. Good designers have intuition that allows them
to create designs that meet timing. A formalization of such intuition is the method of logical
effort [SSH99], which allows a designer to make quick timing estimates. Besides the time to
charge capacitors, another source of delay is wire delay.

A.2.3 Hardware Design Building Blocks
This section describes some standard terminology for higher-level building blocks used by
hardware designers that can be useful to know.

PROGRAMMABLE LOGIC ARRAYS AND PROGRAMMABLE ARRAY LOGICS

A programmable logic array (PLA) has the generality of a software lookup table but is more
compact. Any binary function can be written as the OR of a set of product terms, each of
which is the AND of a subset of (possibly complemented) inputs. The PLA thus has all the
inputs pass through an AND plane, where the desired product terms are produced by making
the appropriate connections. The products are then routed to an OR plane. A designer produces
specific functions by making connections within the PLA. A more restrictive but simpler form
of PLA is a PAL (programmable array logic).

STANDARD CELLS

Just as software designers reuse code, so also do hardware designers reuse a repertoire of
commonly occurring functions, such as multiplexors and adders.

The functional approach to design is generally embodied in standard cell libraries and
gate array technologies, in which a designer must map his or her specific problem to a set

2Semiconductor processes are graded by the smallest gate lengths they can produce. Shrinking process width
decreases capacitances and resistances and so increases speed.

440 A P P E N D I X Detailed Models

Write
enable

Refresh
enable

Stored
bit

Write
input

F I G U R E A.5 To store the output of an inverter indefinitely in the absence of writes, the output is fed
back to the input after a second inversion. Two further transistors are used to allow writes and to block
the feedback refresh.

of building blocks offered by the technology. At even higher abstraction levels, designers use
synthesis tools to write higher-level language code in Verilog or VHDL for the function they
wish to implement. The VHDL code is then synthesized into hardware by commercial tools.
The trade-off is reduced design time, at some cost in performance. Since a large fraction of
the design is not on the critical path, synthesis can greatly reduce time to market. This section
ends with a networking example of the use of reduction for a critical path function.

A.2.4 Memories: The Inside Scoop
This section briefly describes implementation models for registers, SRAMs, and DRAMs.

REGISTERS

How can a bit be stored such that in the absence of writes and power failures, the bit stays
indefinitely? Storing a bit as the output of the inverter shown in Figure A.3 will not work,
because, left to itself, the output will discharge from a high to a low voltage via “parasitic”
capacitances. A simple solution is to use feedback: In the absence of a write, the inverter output
can be fed back to the input and “refresh” the output. Of course, an inverter flips the input
bit, and so the output must be inverted a second time in the feedback path to get the polarity
right, as shown in Figure A.5. Rather than show the complete inverter (Figure A.3), a standard
triangular icon is used to represent an inverter.

Input to the first transistor must be supplied by the write input when a write is enabled
and by the feedback output when a write is disabled. This is accomplished by two more “pass”
transistors. The pass transistor whose gate is labeled “Refresh Enable” is set to high when a
write is disabled, while the pass transistor whose gate is labeled “Write Enable” is set to high
when a write is enabled. In practice, refreshes and writes are done only at the periodic pulses
of a systemwide signal called a clock. Figure A.5 is called a flip-flop.

A register is an ordered collection of flip-flops. For example, most modern processors
(e.g., the Pentium series) have a collection of 32- or 64-bit on-chip registers. A 32-bit register
contains 32 flip-flops, each storing a bit. Access from logic to a register on the same chip is
extremely fast, say, 0.5–1 nsec. Access to a register off-chip is slightly slower because of the
delay to drive larger off-chip loads.

A.2 Hardware Models 441

Read/write
enable

Large
capacitance

Stored
bit

Read/write
input

F I G U R E A.6 A DRAM cell stores a bit using charge on a capacitor that leaks away slowly and must
be refreshed periodically.

STATIC RAM

A static random access memory (SRAM) contains N registers addressed by log N address
bits A. SRAM is so named because the underlying flip-flops refresh themselves and so are
“static.” Besides flip-flops, an SRAM needs a decoder that decodes A into a unary value used
to select the right register. Accessing an SRAM on-chip is only slightly slower than accessing
a register because of the added decode delay. At the time of writing, it was possible to obtain
on-chip SRAMs with 0.5-nsec access times. Access times of of 1–2 nsec for on-chip SRAM
and 5–10 nsec for off-chip SRAM are common. On-chip SRAM is limited to around 64 Mbits
today.

DYNAMIC RAM

The SRAM bit cell of Figure A.5 requires at least five transistors. Thus SRAM is always
less dense or more expensive than memory technology based on dynamic RAM (DRAM). In
Figure A.6, a DRAM cell uses only a single transistor connected to an output capacitance. The
transistor is only used to connect the write input to the output when the write enable signal on
the gate is high. The output voltage is stored on the output capacitance, which is significantly
larger than the gate capacitance; thus the charge leaks, but slowly. Loss due to leakage is fixed
by refreshing the DRAM cell externally within a few milliseconds.

To obtain high densities, DRAMs use “pseudo-three-dimensional trench or stacked capac-
itors” [FPCe97]; together with the factor of 5–6 reduction in the number of transistors, a DRAM
cell is roughly 16 times smaller than an SRAM cell [FPCe97].

The compact design of a DRAM cell has another important side effect: A DRAM cell
requires higher latency to read or write than the SRAM cell of Figure A.5. Intuitively, if the
SRAM cell of Figure A.5 is selected, the power supply quickly drives the output bit line to the
appropriate threshold. On the other hand, the capacitor in Figure A.6 has to drive an output
line of higher capacitance. The resulting small voltage swing of a DRAM bit line takes longer
to sense reliably. In addition, DRAMs need extra delay for two-stage decoding and for refresh.
DRAM refreshes are done automatically by the DRAM controller’s periodically enabling RAS
for each row R, thereby refreshing all the bits in R.

A.2.5 Chip Design
Finally, it may be useful for networking readers to understand how chips for networking
functions are designed.

442 A P P E N D I X Detailed Models

After partitioning functions between chips, the box architect creates a design team for each
chip and works with the team to create chip specification. For each block within a chip, logic
designers write software register transfer level (RTL) descriptions using a hardware design
language such as Verilog or VHDL. Block sizes are estimated and a crude floor plan of the
chip is done in preparation for circuit design.

At this stage, there is a fork in the road. In synthesized design, the designer applies synthesis
tools to the RTL code to generate hardware circuits. Synthesis speeds the design process but
generally produces slower circuits than custom-designed circuits. If the synthesized circuit
does not meet timing (e.g., 8 nsec for OC-768 routers), the designer redoes the synthesis after
adding constraints and tweaking parameters. In custom design, on the other hand, the designer
can design individual gates or drag-and-drop cells from a standard library. If the chip does not
meet timing, the designer must change the design [SSH99]. Finally, the chip “tapes out,” and
is manufactured, and the first yield is inspected.

Even at the highest level, it helps to understand the chip design process. For example,
systemwide problems can be solved by repartitioning functions between chips. This is easy
when the chip is being specified, is an irritant after RTL is written, and causes blood feuds after
the chip has taped out. A second “spin” of a chip is something that any engineering manager
would rather work around.

INTERCONNECTS, POWER, AND PACKAGING

Chips are connected using either point-to-high connections known as high-speed serial links,
shared links known as buses, or parallel arrays of buses known as crossbar switches. Instead
of using N2 point-to-point links to connect N chips, it is cheaper to use a shared bus. A bus is
similar to any shared media network, such as an Ethernet, and requires an arbitration protocol
often implemented (unlike an Ethernet) using a centralized arbiter. Once a sender has been
selected in a time slot, other potential senders must not send any signals. Electrically, this is
done by having transmitters use a tristate output device that can output a 0 or a 1 or be in a
high-impedance state. In high-impedance state, there is no path through the device to either the
power supply or ground. Thus the selected transmitter sends 0’s or 1’s, while the nonselected
transmitters stay in high-impedance state.

Buses are limited today to around 20 Gb/sec. Thus many routers today use parallel buses
in the form of crossbar switches (Chapter 13). A router can be built with a small number
of chips, such as a link interface chip, a packet-forwarding chip, memory chips to store
lookup state, a crossbar switch, and a queuing chip with associated DRAM memory for packet
buffers.

A.3 SWITCHING THEORY

This section provides some more details about matching algorithms for Clos networks and the
dazzling variety of interconnection networks.

A.3.1 Matching Algorithms for Clos Networks with k = n
A Clos network can be proved to be rearrangably nonblocking for k = n. The proof uses Hall’s
theorem and the notion of perfect matchings. A bipartite graph is a special graph with two sets
of nodes I and O; edges are only between a node in I and a node in O. A perfect matching is a

A.4 The Interconnection Network Zoo 443

subset E of edges in this graph such that every node in I is the endpoint of exactly one edge in
E, and every node in O is also the endpoint of exactly one edge in E. A perfect match marries
every man in I to every woman in O while respecting monogamy. Hall’s theorem states that a
necessary and sufficient condition for a perfect matching is that every subset X of I of size d
has at least d edges going to d distinct nodes in O.

To apply Hall’s theorem to prove the Clos network is nonblocking, we show that any
arrangement of N inputs that wish to go to N different outputs can be connected via the Clos
network. Use the following iterative algorithm. In each iteration, match input switches (set I)
to output switches (set O) after ignoring the middle switches. Draw an edge between an input
switch i and an output switch o if there is at least one input of i that wishes to send to an output
directly reachable through o.

Using this definition of an edge, here is Claim 1: Every subset X of d input switches in
I has edges to at least d output switches in O. Suppose Claim 1 were false. Then the total
number of outputs desired by all inputs in X would be strictly less than nd (because each edge
to an output switch can correspond to at most n outputs). But this cannot be so, because d input
switches with n inputs each must require exactly nd outputs.

Claim 1 and Hall’s theorem can be used to conclude that there is a perfect matching
between input switches and output switches. Perform this matching, after placing back exactly
one middle switch M. This is possible because every middle switch has a link to every input
switch and a link to every output switch. This allows routing one input link in every input
switch to one output link in every switch. It also makes unavailable all the n links from each
input switch to the middle switch M and all output links from M.

Thus the problem has been reduced from having to route n inputs on each input switch
using n middle switches to having to route n − 1 inputs per input switch using n − 1 middle
switches. Thus n iterations are sufficient to route all inputs to all outputs without causing
resource conflicts that lead to blocking.

Thus a simple version of this algorithm would take n perfect matches; the best existing
algorithm for perfect matching [HK73] takes O(N /n1.5) time. A faster approach is via edge
coloring; each middle switch is assigned a color, and we color the edges of the demand
multigraph between input switches and output switches so that no two edges coming out of a
node have the same color.3 However, edge coloring can be done directly (without n iterations
as before) in around O(N log N) time [CH82].

A.4 THE INTERCONNECTION NETWORK ZOO

There is a dazzling variety of (log N)-depth interconnection networks, all based on the same
idea of using bits in the output address to steer to the appropriate portion, starting with the
most significant bit. For example, one can construct the famous Butterfly network in a very
similar way to the recursive construction of the Delta network of Figure 13.14. In the Delta
network, all the inputs to the top (N /2)-size Delta network come from the 0 outputs of the first
stage in order. Thus the 0 output of the first first-stage switch is the first input, the 0 output of
the second switch is the second input, etc.

3Intuitively, each set of edges colored with a single color corresponds to one matching and one middle switch,
as in our first algorithm.

444 A P P E N D I X Detailed Models

By contrast, in a Butterfly, the second input of the upper N /2 switch is the 0 output of the
middle switch of the first stage (rather than the second switch of the first stage). The 0 output of
the second switch is then the third input, while the 0 output of the switch following the middle
switch gets the fourth input, etc. Thus the two halves are interleaved in the Butterfly but not
in the Delta, forming a classic bowtie or butterfly pattern. However, even with this change it
is still easy to see that the same principle is operative: outputs with MSB 0 go to the top half,
while outputs with MSB 1 go to to the bottom.

Because the Butterfly can be created from the Delta by renumbering inputs and outputs,
the two networks are said to be isomorphic. Butterflies were extremely popular in parallel
computing [CSG99], gaining fame in the BBN Butterfly, though they seem to have lost ground
to low-dimensional meshes (see Section 13.10) in recent machines.

There is also a small variant of the Butterfly, called the Banyan, that involves pairing the
inputs even in the first stage in a more shuffled fashion (the first input pairs with the middle
input, etc.) before following Butterfly connections to the second stage. Banyans enjoyed a
brief resurgence in the network community when it was noticed that if the outputs for each
input are in sorted order, then the Banyan can route without internal blocking. An important
such switch was the Sunshine switch [Gea91]. Since sorting can be achieved using Batcher
sorting networks [CLR90], these were called Batcher–Banyan networks. Perhaps because
much the same effect can be obtained by randomization in a Benes or Clos network without
the complexity of sorting, this approach has not found a niche commercially.

Finally, there is another popular network called the hypercube. The networks described
so far use d-by-d building block switches, where d is a constant such as 2, independent of
the size of N . By contrast, hypercubes use switches with log N links per switch. Each switch
is assigned a binary address from 1 to N and is connected to all other switches that differ
from it in exactly one bit. Thus, in a very similar fashion to traversing a Delta or a Butterfly,
one can travel from input switch to an output switch by successively correcting the bits that
are different between output and input addresses, in any order. Unfortunately, the log N link
requirement is onerous for large N and can lead to an “impractical number of links per line
card” [Sem02].

B I B L I O G R A P H Y

AC75 A. Aho and M. Corasick. Efficient string matching: An aid to bibliographic search. Communications
of the ACM, 18(6):333–343, 1975.

AD89 H. Ahmadi and W. Denzel. A survey of modern high-performance switching techniques. IEEE Journal
on Selected Areas in Communication, 7(9):1091–1103, 1989.

AD99 M. Aron and P. Druschel. Soft timers: Efficient microsecond timer support for network processing.
In Proceedings of the 17th Symposium on Operating System Principles (SOSP), 1999.

Adi98 H. Adisheshu. Services for next-generation routers. Ph.D. dissertation, Washington University
Computer Science Department, 1998.

All02 B. Alleyne. Personal communication. 2002.

AMO93 R. Ahuja, T. Magnanti, and J. Orlin. Network Flows. Upper Saddle River, NJ: Prentice-Hall, 1993.

AOST93 T. Anderson, S. Owicki, J. Saxe, and C. Thacker. High-speed switch scheduling for local area
networks. ACM Transactions on Computer Systems, 11(4):319–352, 1993.

APV91 B. Awerbuch, B. Patt-Shamir, and G. Varghese. Self-stabilization by local checking and correction. In
Proceedings of the 32nd IEEE Symposium on Foundations of Computer Science, Oct. 1991.

AR90 G. Albertengo and S. Riccardo. Parallel CRC generation. IEEE Micro, Oct. 1990.

AS00 Infiniband Architecture Specification. Infiniband Specification, Oct. 2000.

Assa Infiniband Trade Assocation. Infiniband architecture. At http://www.infinibandta.org/home.

Assb Web Polygraph Association. Web polygraph. At http://www.web-polygraph.org/.

Bar04 I. Barile. I/O multiplexing and scalable socket servers. Dr. Dobbs Journal, Feb. 2004.

BDJT01 S. Bhattacharyya, C. Diot, J. Jetcheva, and N. Taft. Pop-level and access-link traffic dynamics in a
Tier-1 pop. In SIGCOMM Internet Measurement Workshop, 2001.

Be82 A. Birell et al. Grapevine: An exercise in distributed computing. Comm. of the ACM, 25(4):202–208,
1982.

Bel86 E. T. Bell. Men of Mathematics: reissue ed. New York: Touchstone Books, 1986.

Ben82 J. L. Bentley. Writing efficient programs. Upper Saddle River, NY: Prentice Hall, 1982.

Ben95 A. Benner. Fiber Channel: Gigabit Communications and I/O for Computer Networks. New York:
McGraw-Hill, 1995.

BG85 W. Bux and D. Grillo. Flow control in local-area networks of interconnected token rings. IEEE
Transactions on Communications, COM-33(10):1058–1066, Oct. 1985.

445

446 Bibliography

BGC02 P. Buonadonna, A. Geweke, and D. Culler. An implementation and analysis of the Virtual Interface
Architecture. In SC98: High-Performance Networking and Computing Conference, San Jose, CA,
2002.

BGP+94 M. Bailey, B. Gopal, M. Pagels, L. Peterson, and P. Sarkar. PATHFINDER: A pattern-based packet
classifier. In Proceedings of the First Symposium on Operating Systems Design and Implementation
(OSDI), pages 115–123, 1994.

BL00 R. Bhagwan and W. Lin. Fast and scalable priority queue architecture for high-speed network switches.
In IEEE INFOCOM, pages 538–547, 2000.

Bla96 T. Blackwell. Speeding up protocols for small messages. In Proceedings of ACM SIGCOMM, 1996.

BM77 R. S. Boyer and J. S. Moore. A fast string searching algorithm. Communications of the ACM,
20(10):762–772, Oct. 1977.

BM98 G. Banga and J. Mogul. Scalable kernel performance for Internet servers under realistic loads. In
USENIX Annual Technical Conference, New Orleans, 1998.

BMD99 G. Banga, J. Mogul, and P. Druschel. A scalable and explicit event delivery mechanism for UNIX.
In USENIX Annual Technical Conference, pages 253–265, June 1999.

BMK88 D. R. Boggs, J. C. Mogul, and C. A. Kent. Measured capacity of an Ethernet: Myths and reality. In
Proceedings ACM SIGCOMM, vol. 18, pages 222–234, 1988.

BMP94 L. Brakmo, S. O. Malley, and L. Peterson. TCP Vegas: New techniques for congestion detection and
avoidance. In Proceedings ACM SIGCOMM, 1994.

Boy97 J. Boyle. Internet draft: RSVP extensions for CIDR aggregated data flows. In Internic, 1997.

BP93 D. Banks and M. Prudence. A high-performance network architecture for a PA-RISC workstation. In
IEEE Journal on Selected Areas in Communications, February 1993.

Bra98 H. W. Braun. Characterizing traffic workload. At www.caida.org, 1998.

Bro98 A. Broder. On the resemblance and containment of documents. In Sequences ’91, 1998.

Bru99 J. Brustoloni. Interoperation of copy avoidance in network and file I/O. In Proceedings IEEE Infocom,
New York, March 1999.

BS96 J. Brustoloni and P. Steenkiste. Effects of buffering semantics on I/O performance. In Proceedings of
the 2nd USENIX Symposium on Operating Systems Design and Implementation, October 1996.

BSV95 S. Boecking, V. Seidel, and P. Vindeby. Channels — a run-time system for multimedia protocols. In
ICCCN, 1995.

BSV03 F. Baboescu, S. Singh, and G. Varghese. Packet classification for core routers: Is there an alternative
to CAMs? In Proceedings IEEE INFOCOM, 2003.

BV01 F. Baboescu and G. Varghese. Scalable packet classification. In Proceedings ACM SIGCOMM, 2001.

BZ96 J. Bennett and H. Zhang. Hierarchical packet fair queuing algorithms. In Proceedings SIGCOMM,
1996.

Car96 A. Carlton. An explanation of the SPEC Web96 Benchmark. Standard Performance Evaluation
Corporation white paper, 1996. At http://www.specbench.org/, November 1996.

CB95 W. Cheswick and S. Bellovin. Firewalls and Internet Security. Reading, MA: Addison-Wesley,
1995.

CC95 M. Crovella and R. Carter. Dynamic server selection in the internet. In Proceedings of HPCS ’95,
August 1995.

CDea96 A. Chankhunthod, P. Danzig, et al. A hierarchical Internet object cache. In USENIX Annual Technical
Conference, pages 153–164, 1996.

Bibliography 447

CFFT97 T. Chaney, A. Fingerhut, M. Flucke, and J. Turner. Design of a gigabit ATM switch. In Proceedings
IEEE INFOCOM, pages 2–11, 1997.

CGE96 J. Cobb, M. Gouda, and A. El Nahas, Time-shift scheduling: Fair scheduling of flows in high-speed
networks. In Proceedings of ICNP, 1996.

CH82 R. Cole and J. Hopcroft. On edge-coloring bipartite graphs. SIAM Journal of Computation, 11:540–546,
1982.

CH98 A. Choudhury and E. Hahne. Dynamic queue length thresholds for shared-memory packet switches.
IEEE/ACM Transactions on Networking, 6(2):130–140y, 1998.

Cha90a B. Chazelle. Lower bounds for orthogonal range searching. I: The reporting case. In Journal of the
ACM, 37, 1990.

Cha90b B. Chazelle. Lower bounds for orthogonal range searching. II: The arithmetic model. In Journal of the
ACM, 37, 1990.

Cha97 IETFMPLS Charter. Multiprotocol Label Switching. At http://www.ietf.org/html-charters/mpls-
charter.html, 1997.

Che89 G. Chesson. XTP/PE design considerations. In IFIP Workshop on Protocols for High-Speed Networks,
1989.

Che01 B. Chelf. Dynamic memory management. In Linux Magazine. At http://www.linux-mag.com/2001-
06/compile_03.html, June 2001.

CIC97 Compaq, Intel, and Microsoft Corporations. Virtual Interface Architecture Specification. At
http://www.viaarch.org, 1997.

Cis Cisco express forwarding commands. At http://www.cisco.com.

CJRS89 D. D. Clark, V. Jacobson, J. Romkey, and H. Salwen. An analysis of TCP processing overhead. IEEE
Communications, 27(6):23–29, 1989.

CL85 K. M. Chandy and L. Lamport. Distributed snapshots: Determining global states of distributed systems.
ACM Transactions on Computer Systems, 3(1):63–75, Febuary 1985.

Cla85 D. D. Clark. Structuring of systems using upcalls. In Proceedings of the 10th ACM Symposium on
Operating Systems Principles (SOSP), pages 171–180, December 1985.

Cla88 D. D. Clark. The design philosophy of the DARPAInternet protocols. In Proceedings ACM SIGCOMM,
pages 106–114, August 1988.

CLR90 T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. Cambridge, MA: MIT
Press/McGraw-Hill, 1990.

Cona RDMA Consortium. Architectural specifications for RDMA over TCP/IP. At http://www.
rdmaconsortium.org/home.

Conb SPEC Consortium. Specweb99 benchmark. At http://www.specbench.org/osg/web99/.

Cox96 A. Cox. Kernel Korner: Network buffers and memory management. In Linux journal. At
www.linuxjournal.com, Oct. 1996.

CP98 T. Chiueh and P. Pradhan. High-performance IP routing table lookup using CPU caching. In IEEE
INFOCOM, 1998.

CP99 T. Chiueh and P. Pradhan. High-performance IProuting table lookup using CPU caching. In Proceedings
IEEE INFOCOM, pages 1421–1428, 1999.

CSG99 D. Culler, J. Singh, and A. Gupta. Parallel Computer Architecture: A Hardware/Software Approach.
San Francisco: Morgan Kaufmann, 1999.

448 Bibliography

CSM01 C. Coit, S. Staniford, and J. McAlerney. Towards faster pattern matching for intrusion detection
or exceeding the speed of snort. In Proceedings of the 2nd DARPA Information Survivability
Conference and Exposition (DISCEX II), June 2001.

CT90 D. Clark and D. Tennenhouse. Architectural considerations for a new generation of protocols. In
Proceedings of ACM SIGCOMM, 1990.

CV96 G. Chandranmenon and G. Varghese. Trading packet headers for packet processing, In ACM/IEEE
Transactions Networking, 17(1), April 1996.

CV98a G. Chandranmenon and G. Varghese. Reconsidering fragmentation and reassembly. In Symposium on
Principles of Distributed Computing, pages 21–29, 1998.

CV98b A. Costello and G. Varghese: Redesigning the BSD callout and timeout facilities. In Software Practice
and Experience, July 1998.

CV01 G. Chandranmenon and G. Varghese. Reducing Web latencies using precomputed hints. In Proceedings
IEEE INFOCOM, 2001.

CW79 B. Commentz-Walter. A string matching algorithm fast on the average. In Proceedings of the 6th
International Colloquium on Automata, Languages and Programming, vol. 71. New York: Springer,
July 1979.

CWSB02 D. Clark, J. Wroclawski, K. Sollins, and R. Braden. Tussle in cyberspace: Defining tomorrow’s Internet.
In Proceedings ACM SIGCOMM, 2002.

Dal02 W. Dally. Scalable switching fabrics for Internet routers. In Avici Networks White Paper. At
http://www.avici.com/technology/whitepapers, 2002.

Dav89 G. Davison. Calendar p’s and q’s. In Communications of the ACM, 32(10):1241–1242, Oct. 1989.

DB96 P. Druschel and G. Banga. Lazy receiver processing: A network subsystem architecture for server
systems. In Proceedings of the UNIX 2nd OSDI Conference, 1996.

DBCP97 M. Degermark, A. Brodnik, S. Carlsson, and S. Pink. Small forwarding tables for fast routing lookups.
In Proceedings ACM SIGCOMM, pages 3–14, 1997.

DCea87 W. Dally, L. Chao, et al. Architecture of a message-driven processor. In Proceedings of the International
Symposium on Computer Architecture (ISCA), June 1987.

DDP94 P. Druschel, B. Davie, and L. Peterson. Experiences with a high-speed network adapter: A software
perspective. In Proceedings ACM SIGCOMM, Sept. 1994.

DDPP98 D. Decasper, Z. Dittia, G. Parulkar, and B. Plattner. Router plugins: A software architecture for
next-generation routers. In Proceedings ACM SIGCOMM, Sept. 1998.

Den87 D. Denning. An intrusion-detection model. IEEE Transactions on Software Engineering, 13(2):222–
232, Feb. 1987.

DG00 N. Duffield and M. Grossglauser. Trajectory sampling for direct traffic observation. In Proceedings
ACM SIGCOMM, pages 271–282, Aug. 2000.

DKea88 M. Dietzfelbinger, A. Karlin, et al. Dynamic perfect hashing: Upper and lower bounds. In 29th IEEE
Symposium on the Foundations of Computer Science (FOCS), 1988.

DKS89 A. Demers, S. Keshav, and S. Shenker. Analysis and simulation of a fair queueing algorithm. Proceed-
ings of the Sigcomm ’89 Symposium on Communications Architectures and Protocols, 19(4): 1–12,
Sept. 1989. Part of ACM Sigcomm Computer Communication Review.

DKVZ99 R. Draves, C. King, S. Venkatachary, and B. Zill. Constructing optimal IP routing tables. In Proceedings
IEEE INFOCOM, 1999.

DLT01 N. Duffield, C. Lund, and M. Thorup. Charging from sampled network usage. In SIGCOMM Internet
Measurement Workshop, November 2001.

Bibliography 449

DP93 P. Druschel and L. Peterson. Fbufs: A high-bandwidth cross-domain transfer facility. In Proceedings of
the Fourteenth ACM Symposium on Operating System Principles, pages 189–202, December 1993.

DPJ97 Z. D. Dittia, G. M. Parulkar, and J. R. Cox, Jr. The APIC approach to high-performance network
interface design: Protected DMA and other techniques. In Proceedings of IEEE INFOCOM, 1997.

Eat W. Eatherton. Hardware-based Internet protocol prefix lookups. University of Washington Electrical
Engineering Department, MS thesis, 1995.

EDV W. Eatherton, Z. Dittia, and G. Varghese. Tree bitmap: Hardware software IP lookups with incremental
updates. At http://www-cse.ucsd.edu/users/varghese/PAPERS/willpaper.pdf.

EK96 D. Engler and M. F. Kaashoek. DPF: Fast, flexible message demultiplexing using dynamic code
generation. In Proceedings ACM SIGCOMM, pages 53–59, 1996.

EKO95 D. Engler, F. Kaashoek, and J. O’Toole. Exokernel: An operating system architecture for application-
level resource management. In Symposium on Operating Systems Principles, pages 251–266, 1995.

Eng96 D. Engler. VCODE: A retargetable, extensible, very fast dynamic code generation system. In SIGPLAN
Conference on Programming Language Design and Implementation, pages 160–170, 1996.

ESV03 C. Estan, S. Savage, and G. Varghese. Automatically inferring patterns of resource consumption in
network traffic. Proceedings ACM SIGCOMM, 2003.

EV02 C. Estan, G. Varghese. New directions in traffic measurement and accounting. In Proceedings of ACM
SIGCOMM, August 2002.

EVF02 C. Estan, G. Varghese and M. Fisk. Counting the Number of Active Flows on a High-speed Link.
Technical Report 0705, CSE Department, UCSD, May 2002.

FGea00 A. Feldmann, A. Greenberg, et al. Deriving traffic demands for operational IP networks: Methodology
and experience. In Proceedings ACM SIGCOMM, pages 257–270, Aug. 2000.

FJ93 S. Floyd and V. Jacobson. Random early detection gateways for congestion avoidance. In ACM/IEEE
Transactions Networking, 1993.

FJ95 S. Floyd and V. Jacobson. Link-sharing and resource management models for packet networks. In
ACM/IEEE Transactions Networking, 1995.

FJM+95 S. Floyd, V. Jacobson, S. McCanne, C. Liu, and L. Zhang. A reliable multicast framework for light-
weight sessions and application-level framing. In Proceedings ACM SIGCOMM, 1995.

FM85 P. Flajolet and G. Martin. Probabilistic counting algorithms for database applications. Journal of
Computer and System Sciences, 31(2):182–209, Oct. 1985.

FMM+99 S. Floyd, J. Mahdavi, M. Mathis, M. Podolsky, and A. Romanow. An extension to the selective
acknowledgment (SACK) option for TCP, 1999.

FP93 K. Fall and J. Pasquale. Exploiting in-kernel data paths to improve I/O throughput and CPU availability.
In USENIX Winter, pages 327–334, 1993.

FP95 N. Figueira and J. Pasquale. Leave-in-time: A new service discipline for real-time communications in
a packet-switching network. In Proceedings ACM SIGCOMM, Sept. 1995.

FP99 W. Fang and L. Peterson. Inter-AS traffic patterns and their implications. In Proceedings of IEEE
GLOBECOM, Dec. 1999.

FPCe97 R. Fromm, S. Perissakis, N. Cardwell, et al. The energy efficiency of IRAM architectures. In
International Symposium on Computer Architecture (ISCA ’97), June 1997.

FV01 M. Fisk and G. Varghese. Fast Content-Based Packet Handling for Intrusion Detection. UCSD
Technical Report CS2001-0670, April 2001.

Gea91 J. Giacopelli et al. Sunshine: A high-performance self-routing packet switch architecture. IEEE Journal
on Selected Areas in Communication, 9(8), Oct. 1991.

450 Bibliography

Ger99 A. Germanow. Plugging the Holes in Ecommerce: The market for Intrusion Detection and Vulnerability
Assessment Software, 1999–2003.Technical Report B19538, International Data Corporation, 1999.

GLM98 P. Gupta, S. Lin, and N. McKeown. Routing lookups in hardware at memory access speeds. In IEEE
INFOCOM, April 1998.

GM99a P. Gupta and N. McKeown. Designing and implementing a fast crossbar scheduler. In IEEE Micro,
Feb. 1999.

GM99b P. Gupta and N. McKeown. Packet classification on multiple fields. In Proceedings ACM SIGCOMM,
pages 147–160, 1999.

GM01 P. Gupta and N. McKeown. Algorithms for packet classification. In IEEE Network, 15:2, 2001.

GS98 A. Gokhale and D. Schmidt. Principles for optimizing CORBA Internet inter-ORB protocol
performance. In Hawaiian International Conference on System Sciences, 1998.

GW02 T. Griffin and G. Wilfong. On the correctness of IBGP configuration. In Proceedings ACM SIGCOMM,
pages 17–30, 2002.

HK73 J. Hopcroft and R. Karp. An n5/2 algorithm for maximum matchings in bipartite graphs. SIAM Journal
on Computation, 2:225–231, 1973.

HP91 N. C. Hutchinson and L. L. Peterson. The x-kernel: An architecture for implementing network protocols.
IEEE Transactions on Software Engineering, 17(1):64–76, 1991.

HP96 J. Hennessey and D. Patterson. Computer Architecture: A Quantitative Approach, 2nd ed.
San Francisco, CA: Morgan Kaufmann, 1996.

HS78 E. Horowitz and S. Sahni. Fundamentals of Computer Algorithms. Rockville, MD: Computer Science
Press, 1978.

IEE97 IEEE. Media access control (MAC) bridging of Ethernet v2.0 in local area networks. At
http://standards.ieee.org/reading/ieee/std/lanman/802.1H-1997.pdf, 1997.

IM97 P. Indyk, R. Motwani, et al. Locality-preserving hashing in multidimensional spaces. In Proceedings
of the 29th ACM Symposium on Theory of Computing, pages 618–625, 1997.

Jac88 V. Jacobson. Congestion avoidance and control. In Proceedings ACM SIGCOMM, 1988.

Jac93 V. Jacobson. TCP in 30 instructions. In Message sent to comp.protocols.tcp newsgroup, Sept. 1993.

Kan99 H. Kanakia. Datapath switch. ATT Bell Labs Internal Memorandum, 1999.

KCB94 H. T. Kung, A. Chapman, and T. Blackwell. The FCVC credit-based flow control protocol. In
Proceedings ACM SIGCOMM, Sept. 1994.

Kes91 S. Keshav. On the efficient implementation of fair queueing. In Internetworking: Research and
Experience, vol. 2, pp. 157–173, Sept. 1991.

Kes97 S. Keshav. Computer Networks: An Engineering Approach. Reading, MA: Addison-Wesley, 1997.

KHM87 M. Karol, M. Hluchyj, and S. Morgan. Input versus output queuing on a space division switch. IEEE
Transactions on Communications, pages 1347–1356, Dec. 1987.

KLS86 N. Kronenberg, H. Levy, and W. Strecker. Vaxclusters: A closely coupled distributed system. In ACM
Transactions on Computer Systems, 4(2), 1986.

KM87 C. A. Kent and J. C. Mogul. Fragmentation considered harmful. Proceedings ACM SIGCOMM,
Aug. 1987.

KMea00 E. Kohler, R. Morris, et al. The Click modular router. ACM Transactions on Computer Systems,
Aug. 2000.

Knu73 D. Knuth. Fundamental Algorithms. Vol 3: Sorting and searching. Reading, MA: Addison-Wesley,
1973.

Bibliography 451

KP93 J. Kay and J. Pasquale. The importance of non-data touching processing overheads in TCP/IP. In
Proceedings ACM SIGCOMM, Sept. 1993.

Kur R. Kurzweil. What’s creativity and who’s creative? At http://www.closertotruth.com/topics/
creativitythinking/103/103transcript.html.

Lam89 B. Lampson. Hints for computer system design. In Proceedings of the 9thACM Symposium on Operating
Systems Principles (SOSP) 1989, 1989.

LB96 K. Lai and M. Baker. A performance comparison of UNIX operating systems on the Pentium. In
Proceedings of the 1996 USENIX Conference, San Diego, CA, Jan. 1996.

L’E96 P. L’Ecuyer. Maximally equidistributed combined Tausworth generators. Mathematics of Computation,
65:203–213, 1996.

LMJ97 C. Labovitz, G. Malan, and F. Jahanian. Internet routing instability. In Proceedings ACM SIGCOMM,
Oct. 1997.

LS98 T. V. Lakshman and D. Stidialis. High-speed policy-based packet forwarding using efficient
multidimensional range matching. In Proceedings ACM SIGCOMM, Sept. 1998.

LSV98 B. Lampson, V. Srinivasan, and G. Varghese. IP lookups using multiway and multicolumn search. In
Proceedings of IEEE INFOCOM, April 1998.

Mar02 G. Marsaglia. Diehard Web page. At http://stat.fsu.edu/ geo/diehard.html, 2002.

MB93 C. Maeda and B. Bershad. Protocol service decomposition for high-performance networking. In
Proceedings of the 14th ACM Symposium on Operating Systems Principles (SOSP), 1993.

MC80 C. Mead and L. Conway. Introduction to VLSI Systems. Reading, MA: Addison-Wesley, 1980.

McC92 S. McCanne. A distributed whiteboard for network conferencing. In UC Berkeley CS 268 Computer
Networks Term Project, 1992.

McK91 P. McKenney. Stochastic fairness queueing. In Internetworking: Research and Experience, vol. 2,
pp. 113–131, Jan. 1991.

MD92 P. McKenney and K. Dove. Efficient demultiplexing of incoming TCP packets. In Proceedings ACM
SIGCOMM, 1992.

McK97 N. McKeown. A fast switched backplane for a gigabit switched router. Business Communications
Review, 27(12), Dec. 1997.

McQ97 J. McQuillan. Layer 4 switching. In Data Communications, Oct. 1997.

Mea97 N. McKeown et al. The tiny tera: A packet switch core. In IEEE Micro, Jan. 1997.

Mer Merit. Routing table snapshot at the Mae-East NAP. At ftp://ftp.merit.edu/statistics/ipma.

MGVK02 Z. Mao, R. Govindan, G. Varghese, and R. Katz. Route flap damping can exacerbate BGP convergence.
In Proceedings ACM SIGCOMM, pages 221–234, 2002.

MJ93 S. McCanne and V. Jacobson. The BSD packet filter: A new architecture for user-level packet capture.
In USENIX Winter Conference, pages 259–270, 1993.

MJ98 G. Malan and F. Jahanian. An extensible probe architecture for network protocol measurement. In
Proceedings ACM SIGCOMM, Sept. 1998.

MM02 P. Molinero-Fernandez and N. McKeown. TCP switching: Exposing circuits to IP. IEEE Micro
Magazine, 22(1):82–89, Jan./Feb. 2002.

Mog95 J. Mogul. The case for persistent-connection http. Proceedings ACM SIGCOMM, 1995.

Moo01 D. Moore. Personal conversation. Also see CAIDA Analysis of Code Red, 2001. At
http://www.caida.org/analysis/security/code-red/.

452 Bibliography

MP96 D. Mosberger and L. Peterson. Making paths explicit in the Scout operating system. In Proceedings of
the USENIX Symposium on Operating Systems Design and Implementation, pages 153–167, 1996.

MPBM96 D. Mosberger, L. Peterson, P. Bridges, and S. O’Malley. Analysis of techniques to improve protocol
latency. In Proceedings of ACM SIGCOMM, 1996.

MR97 J. Mogul and K. K. Ramakrishnan. Eliminating receive livelock in an interrupt-driven kernel. In ACM
Transactions on Computer Systems, pages 303–313, Aug. 1997.

MRA87 J. Mogul, R. Rashid, and M. Accetta. The packet filter: An efficient mechanism for user-level network
code. In Proceedings of the 11th ACM Symposium on Operating Systems Principles (SOSP), vol. 21,
pages 39–51, 1987.

MRG97 C. Maltzahn, K. Richardson, and D. Grunwald. Performance issues of enterprise-level Web proxies. In
Measurement and Modeling of Computer Systems, pages 13–23, 1997.

MTea02 A. Medina, N. Taft, et al. Traffic matrix estimation: Existing techniques and new directions. In
Proceedings ACM SIGCOMM, 2002.

MVS01 D. Moore, G. Voelker, and S. Savage. Inferring denial-of-service activity. In Proceedings of the 2001
USENIX Security Symposium.

Myh B. Myhrhaug. Sequencing set efficiency. In Pub. A9, Norwegian Computing Center.

NEB02 NEBS. Network Equipment Building System (NEBS) requirements. At http://www.telecordia.com,
2002.

Net Cisco netflow. At http://www.cisco.com/warp/public/732/Tech/netflow.

NK98 S. Nilsson and G. Karlsson. Fast address lookup for Internet routers. In Proceedings of IEEE Broadband
Communications ’98, April 1998.

NMH97 P. Newman, G. Minshall, and L. Huston. IP switching and gigabit routers. In IEEE Communications
Magazine, Jan. 1997.

OSV94 C. Ozveren, R. Simcoe, and G. Varghese. Reliable and efficient hop-by-hop flow control. In Proceedings
ACM SIGCOMM, Sept. 1994.

Par93 C. Partridge. Gigabit Networking. Reading, MA: Addison-Wesley, 1993.

Par96 C. Partridge. Locality and route caches. In NSF Workshop on Internet Statistics Measurement,
San Diego, Feb. 1996.

PBW04 C. Partridge, S. Blumenthal, and D. Walden. Data networking at BBN. In IEEE Annals of Computing,
to appear.

PD00 L. Peterson and B. Davy. Computer Networking: A Systems Approach, 2 ed. San Francisco: Morgan-
Kaufmann, 2000.

PDZ99a V. Pai, P. Druschel, and W. Zwaenepoel. Flash: An efficient and portable Web server. In USENIX 1999
Annual Technical Conference, 1999.

PDZ99b V. Pai, P. Druschel, and W. Zwaenepoel. I/O-Lite: A unified I/O buffering and caching system. In
Proceedings of the 3rd USENIX Symposium on Operating Systems Design and Implementation,
Feb. 1999.

Pe95 H. Patterson et al. Informed prefetching and caching. In Proceedings of the 15th ACM Symposium of
Operating Systems Principles (SOSP), Dec. 1995.

Per92 R. Perlman. Interconnections: Bridges and Routers. Reading, MA: Addison-Wesley, 1992.

PF01 J. Padhye and S. Floyd. On inferring TCP behavior. In Proceedings ACM SIGCOMM, pages 271–282,
Aug. 2001.

PKC97 S. Pakin, V. Karamcheti, and A. A. Chien. Fast messages: Efficient, portable communication for
workstation clusters and MPPs. In IEEE Concurrency, April 1997.

Bibliography 453

Pol57 G. Polya. How to Solve it, 2nd ed. Princeton, NJ: Princeton University Press, 1957.

PP93 C. Partridge and S. Pink. A faster UDP. IEEE/ACM Transactions on Networking, 1(4), Aug. 1993.

PS85 F. Preparata and M. Shamos. Computational Geometry: An Introduction. New York: Springer-Verlag,
1985.

PTS95 G. Parulkar, J. Turner, and D. Schmidt. IP over ATM: A new strategy for integrating IP and ATM.
In Proceedings ACM SIGCOMM, Aug. 1995.

QVS01 L. Qiu, G. Varghese, and S. Suri. Fast firewall implementations for software- and hardware-based
routers. In Proceedings of the 9th International Conference on Network Protocols (ICNP), Nov. 2001.

Rau91 B. Rau. Pseudo-randomly interleaved memory. In Proceedings of the International Symposium on
Computer Architecture (ISCA), 1991.

Rea96 Y. Rekhter et al. Tag switching architecture overview Internet draft. At http://www-kr.cisco.com/
warp/public/732/tag/switarc_draft.html, 1996.

Ric01 F. Riccardi. Posted note. In Linux Kernel Archive, April 2001.

Rij94 A. Rijsinghani. Computation of the Internet checksum via incremental update. In RFC 1624,
www.ietf.org/rfc/rfc1624.txt, May 1994.

RJ90 K. K. Ramakrishnan and R. Jain. A binary feedback scheme for congestion avoidance in computer
networks. In ACM Transactions on Computer Systems, 1990.

RL96 Y. Rekhter and T. Li. An architecture for IP address allocation with CIDR. In RFC 1518, 1996.

Rob74 J. M. Robson. Bounds for some functions concerning dynamic storage allocation. In Journal of the
Association for Computing Machinery, July 1974.

Roe99 M. Roesch. Snort — Lightweight intrusion detection for networks. In Proceedings of the 13th Systems
Administration Conference. USENIX, 1999.

RP03 S. Ramabhadran and J. Pasquale. A low-complexity packet scheduler with bandwidth fairness and
delay bounds. In Proceedings ACM SIGCOMM, Aug. 2003.

RV03 S. Ramabhadran and G. Varghese. Efficient implementation of a statistics counter architecture. In
Proceedings ACM SIGMETRICS, 2003.

SAFL99 P. Sindhu, R.Anand, D. Ferguson, and B. Liencres. High-Speed Switching Device, U.S. Patent 5905725,
1999.

Sar88 D. Sarwate. Computation of cyclic redundancy checks by table lookup. Communications of the ACM,
31(8), 1988.

Sav99 S. Savage. Sting: A TCP-based network measurment tool. In USENIX Symposium on Intenet
Technologies and Systems, 1999.

SBV04 S. Singh, F. Baboescu, and G. Varghese. Packet classification using multidimensional cutting. In
Proceedings ACM SIGCCOMM, 2004.

Sem02 C. Semeria. T-series routing platforms: System and forwarding architecture. In Juniper Networks White
Paper, Part Number 200027-001, 2002.

SG01 D. Shah and P. Gupta. Fast updates on ternary CAMs for packet lookups and classification. In IEEE
Micro, 21(1), Jan. 2001.

SIPM02 D. Shah, S. Iyer, B. Prabhakar, and N. McKeown. Maintaining statistics counters in router line cards.
In IEEE Micro, Jan. 2002.

SKO+94 R. Souza, P. Krishnakumar, C. Ozveren, R. Simcoe, B. Spinney, R. Thomas, and R. Walsh. GIGAswitch:
A high-performance packet switching platform. In Digital Technical Journal, 6(1):9–22, Winter
1994.

454 Bibliography

SKP00 T. Spalink, S. Karlin, and L. Peterson. Evaluating Network Processors in IP Forwarding. Computer
Science Technical Report TR-626-00, Princeton University, Nov. 2000.

SMC01 C. Shannon, D. Moore, and K. Claffy. Characteristics of fragmented IP traffic on Internet links.
In ACM SIGCOMM Internet Measurement Workshop, Nov. 2001.

SMea01 L. Sanchez, W. Milliken, et al. Hardware support for hash-based IP traceback. In Proceedings of the
2nd DARPA Information Survivability Conference and Exposition. DISCEX, 2001.

SMW02 N. Spring, R. Mahajan, and D. Wetherall. Measuring ISP topologies using RocketFuel. In Proceedings
ACM SIGCOMM, 2002.

SN89 K. Sabnani and A. Netravali. A high-speed transport protocol for datagram/virtual circuit networks.
In Proceedings ACM SIGCOMM, Sept. 1989.

Sno Snort. The Open Source Network Intrusion Detection System. At http://www.snort.org/.

SP94 R. Simcoe and T. Pei. Perspectives on ATM switch architecture and the influence of traffic pattern
assumptions on switch design. In ACM Computer Communication Review, 1994.

SP00 J. Stone and C. Partridge. When the CRC and TCP checksum disagree. In Proceedings ACM
SIGCOMM, pages 309–319, 2000.

SPea01 A. Snoeren, C. Partridge, et al. Hash-based IP traceback. In Proceedings ACM SIGCOMM, pages
295–306, 2001.

SSH99 I. Sutherland, R. Sproull, and D. Harris. Logical Effort, Designing Fast CMOS Circuits. San Diego:
Morgan Kaufmann, 1999.

SSMe01 J. Satran, D. Smith, K. Meth, et al. iSCSI. At Internet Draft draft-ietf-ips-iSCSI-07.txt, July 2001.

SSV99 V. Srinivasan, S. Suri, and G. Varghese. Packet classification using tuple space search. In Proceedings
ACM SIGCOMM, pages 135–146, 1999.

SSZ I. Stoica, S. Shenker, and H. Zhang. Core-stateless fair queuing: Achieving approximately fair
bandwidth allocations in high-speed networks. In Proceedings ACM SIGCOMM, 1998.

ST J. Smith and B. Traw. Operating systems support for end-to-end Gbps networking. Technical report,
Distributed Systems Laboratory, University of Pennsylvania.

Ste94 W. R. Stevens. TCP/IP Illustrated, Vol. 1. Reading, MA: Addison-Wesley, 1994.

Ste98 W. R. Stevens. UNIX Network Programming. Upper Saddle River, NJ: Prentice Hall, 1998.

Ste99 J. W. Stewart. BGP-4: Interdomain Routing in the Internet. Reading, MA: Addison-Wesley, 1999.

SV96 D. Staliadis and A. Varma. Frame-based fair queueing: A new traffic scheduling algorithm for packet-
switched networks. In Proceedings ACM SIGMETRICS, 1996.

SV99 V. Srinivasan and G. Varghese. Faster IP lookups using controlled prefix expansion. In ACM
Transactions on Computer Systems, Feb. 1999.

SV00 S. Sikka and G. Varghese. Memory-efficient state lookups. In Proceedings ACM SIGCOMM, Aug.
2000.

SVC97 S. Suri, G. Varghese, and G. Chandranmenon. Leap forward virtual clock: A new fair queuing scheme
with guaranteed delays and throughput fairness. In Proceedings of Infocom ’97, 1997.

SVC03 T. Sherwood, G. Varghese, and B. Calder. A pipelined memory architecture for high-throughput
network processors. International Symposium on Computer Architecture, 2003.

SVSW98 V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel. Fast scalable level-four switching. In
Proceedings of SIGCOMM ’98, Sept. 1998.

SWG Differentiated Services Working Group. Differentiated Services (diffserv) Charter. At
http://www.ietf.org/html.charters/diffserv-charter.html.

Bibliography 455

SWKA00 S. Savage, D. Wetherall, A. Karlin, and T. Anderson. Practical network support for IP traceback. In
Proceedings ACM SIGCOMM, pages 295–306, 2000.

Sys Cisco Systems. Cisco 12000 Series Internet Routers. At http://www.cisco.com/warp/public/cc/pd/rt/
12000/tech/index.shtml.

Tan81 A. S. Tanenbaum. Computer Networks. Englewood Cliffs, NJ: Prentice Hall, 1981.

Tan92 A. Tanenbaum. Modern Operating Systems. Upper Saddle River, NJ: Prentice Hall, 1992.

TC72 A. Toynbee and J. Caplan. A Study of History, abridged version. New York: Oxford University Press,
1972.

TK95 M. N. Thadani and Y. A. Khalidi. An Efficient Zero-Copy I/O Framework for UNIX. Technical Report
SMLI TR-95-39, Sun Microsystems Laboratories, May 1995.

TMW97 K. Thompson, G. Miller, and R. Wilder. Wide-area traffic patterns and characterizations. In IEEE
Network, Dec. 1997.

TNML93 C. Thekkath, T. Nguyen, E. Moy, and E. Lazowska. Implementing network protocols at user level.
In Proceedings ACM SIGCOMM, 1993.

TP96 J. Touch and B. Parham. Implementing the Internet checksum in hardware. In RFC 1936,
www.ietf.org/rfc/rfc1936.txt, April 1996.

Tsu P. Tsuchiya. A search algorithm for table entries with noncontiguous wildcarding. In Unpublished
report, Bellcore.

Tur86 J. S. Turner. New directions in communications (or Which way to the information age?). In IEEE
Communications, 1986.

Tur97 J. Turner. Design of a gigabit ATM switch. In Proceedings IEEE INFOCOM, Oct. 1997.

Tur02 J. Turner. Personal communication. 2002.

TVHS92 R. Thomas, G. Varghese, G. Harvey, and R. Souza. Method for keeping track of sequence numbers in
a large space. U.S. Patent 5,086,428, Sept. 1992.

TY98 J. Turner and N. Yamanaka. Architectural choices in large scale ATM switches. In IEICE Transactions,
1998.

UNH01 UNH Interoperability Lab. FDDI tutorials. At http://www.iol.unh.edu/training/fddi.html, 2001.

Val90 L. Valiant. A bridging model for parallel computation. Communications of the ACM, 33(8), 1990.

vCGS92 T. von Eicken, D. Culler, S. Goldstein, and K. Schauser. Active messages: A mechanism for integrated
communication and computation. In Proceedings of the 19th International Symposium on Computer
Architecture (ISCA), pages 256–266, 1992.

VD75 J. G. Vaucher and P. Duval. A comparison of simulation event list algorithms. In CACM 18, 1975.

vEBea95 T. von Eicken, A. Basu, et al. U-Net: A user-level network interface for parallel and distributed
computing. In Proceedings of the 15th ACM Symposium on Operating Systems Principles (SOSP),
1995.

vECea92 T. von Eicken, D. Culler, et al. Active messages: A mechanism for integrated communication
and computation. In 19th International Symposium on Computer Architecture, pages 256–266,
1992.

VGE00 K. Varadhan, R. Govindan, and D. Estrin. Persistent route oscillations in interdomain routing. Computer
Networks, 32(1):1–16, 2000.

Vis Max Vision. Advanced reference archive of current heuristics for network intrusion detection systems
(arachNIDS). At http://www.whitehats.com/ids/.

456 Bibliography

VL87 G. Varghese and A. Lauck. Hashed and hierarchical timing wheels: Data structures for the efficient
implementation of a timer facility. In Proceedings of the 11th ACM Symposium on Operating Systems
Principles (SOSP), 1987.

WCB01 M. Welsh, D. E. Culler, and E. A. Brewer. SEDA: An architecture for well-conditioned, scalable
Internet services. In Proceedings of the 22nd Symposium on Operating Systems Principles (SOSP),
pages 230–243, 2001.

WH00 J. Wang and C. Huang. A high-speed single-phase-clocked CMOS priority encoder. In IEEE
International Symposium on Circuits and Systems, May 2000.

Wil92 P. Wilson. Uniprocessor garbage collection techniques. In Springer-Verlag Lecture Notes in Computer
Science, number 637, Sept. 1992.

WJea95 P. Wilson, M. Johnstone, et al. Dynamic storage allocation: Asurvey and critical review. In Proceedings
of the International Workshop on Memory Management, Kinross, Scotland, 1995.

Woo00 T. Woo. A modular approach to packet classification: Algorithms and results. In Proceedings IEEE
INFOCOM, 2000.

WS95 G .R. Wright and W. R. Stevens. TCP/IP Illustrated, vol. 2. Reading, MA: Addison-Wesley, 1995.

WSV01a P. Warkhede, S. Suri, and G. Varghese. Fast packet classification for two-dimensional conflict-free
filters. In Proceedings IEEE INFOCOM, pages 1434–1443, 2001.

WSV01b P. Warkhede, S. Suri, and G. Varghese. Multiway range trees: Scalable IP lookups with fast updates.
In IEEE Globecom 2001 Internet Symposium, Nov. 2001.

WVTP01 M. Waldvogel, G. Varghese, J. Turner, and B. Plattner. Scalable high-speed IP routing lookups. In
ACM Transactions on Computer Systems, Nov. 2001.

XSD00 J. Xu, M. Singhal, and J. Degroat. A novel cache architecture to support layer-four packet classification
at memory access speeds. In Proceedings IEEE INFOCOM, pages 1445–1454, 2000.

YHA87 Y. Yeh, M. Hluchyj, and A. Acampora. The Knockout Switch: A simple modular architecture
for high-performance packet switching. IEEE Journal on Selected Areas in Communication,
pages 1426–1435, Oct. 1987.

Zha91 L. Zhang. Virtual clock: A new traffic control algorithm for packet-switched networks. In ACM
Transactions on Computer Systems, 1991.

ZRDG03 Y. Zhang, M. Roughan, N. Duffield, and A. Greenberg. Fast, accurate computation of large-scale
IP matrices from link loads. In Proceedings ACM SIGMETRICS, 2003.

I N D E X

Acknowledgments (ack), withholding, 96–98
Active messages, 162
Adaptor memory, 111–113
Addresses, Internet, 235–236
Address lookup, 236
Address Resolution Protocol (ARP), 37
Afterburner approach, 112–113
Aggregation

edge, 359–361
random, 359
threshold, 385–387

Aho-Corasick algorithm, 402–403
Algorithms versus algorithmics, 54–55
American National Standards Institute

(ANSI), 123
Anomaly intrusion detection, 399
Apache Web server, 149
API

speeding up select() by changing, 158–159
speeding up select() without changing,

157–158
Appletalk, 37, 223
Application code, 140
Application device channels (ADCs), 161–162

buffer validation of, 74–76
Architecture

endnode, 32–34
router, 34–38
virtual interface, 162–163

Asynchronous transfer mode (ATM)
flow control, 76–77
video conferencing via, 102–104

Backtracking, 14, 281
Baker, Fred, 227
Bandwidth, 28

guarantees, 348–354
reducing collection, 389–390
scaling, 5

Banks, 28
Banyan, 444
Barrel shifters, 23
Batch allocator, 200–201
Batching, 58, 164
Benes networks, 328–333
Berkeley packet filter (BPF), 145, 186–188
BGP (Border Gateway Protocol), 36, 373–374
Binary search

of long identifiers, 100–102
pipelining, 230–231
prefix lengths, 259–261
on ranges, 257–258

Binary trees, balanced, 29
Binomial bucketing, 93
Bit-by-bit round-robin, 350–354
Bitmaps, tree, 255–257
Bit slicing, 333–334
Bit vector linear search, 289–292
Bloom filters, 410–413
Bottlenecks, 3

endnode, 4–5
router, 5–7

Boyer-Moore algorithm, 403–405
BPF (Berkeley packet filter), 145, 186–188
Bridges/bridging, 80–81

defined, 221
Ethernets, 222–224
scaling lookups to higher speeds, 228–231
wire speed forwarding, 224–228

BSD UNIX, 40–41, 164
callouts and timers, 178–179

457

458 Index

Bucket sorting, 92–93
Buddy system, 200
Buffer(s)

aggregates, 126
allocation, 5, 199–201
dynamic buffer limiting, 203
fast, 115–119
management, 198–203
overflow, 8
sharing, 201–203
stealing, 201–202
validation of application device channels

(ADCs), 74–76
Buses, 28, 33, 305–307
Butterfly network, 444
Byte swapping and order, 207, 208

Caches (caching), 32–33, 63–64, 131–135, 242
packet classification and, 276

Callouts, 178–179
Cell, 190–191
CERN Web proxy, 153
Checksums, 5, 36, 203

header, 208–209
Internet, 207–209

Cheeson, Greg, 210
Cheetah Web Server, 128
Chips

design, 441–442
scaling and speeds, 31

Chi-square, 15
Circuit switches, 38
Cisco, 240, 320, 354, 382

GSR, 428–429
NetFlow, 388–389

Clark, Dave, 143–144
Class-based queuing (CBQ), 353–354
Classification, See Packet Classification
Classless Internet Domain Routing (CIDR),

235–236
Client

structuring processes per client, 147–148
structuring threads per client, 148–150

Clos, Charles, 324
Clos networks, 324–328, 442–443
Clusters

copying in, 122–123
VAX, 122–123

CMU Stanford packet filter (CSPF), 145,
185–186, 194–195

Code
application, 140
arrangement, 132–133
networking, 143–146

Column address strobe (CAS), 27
Compaction, frame-based, 262–263
Compaq Computer Inc., virtual interface

architecture, 162–163
Concurrency, 147, 150–151
Connection lists, getting rid of TCP open, 93–96
Content-addressable memory (CAM), 50–54,

230, 242, 278
Control overhead, 5, 226

context-switching, 146–152
fast select, 153–159
interrupts, 163–165
in networking code, 143–146
reasons for, 141–143
system calls, 159–163

Copying, 4–5
adaptor memory, 111–113
Afterburner approach, 112–113
in a cluster, 122–123
loop, 129–130
methods of, 109–111
page remapping, 115–119
reducing, 111–121
remote DMA to avoid, 121–125
semantics, transparent emulation, 119–121

Copy-on-write (COW), 57, 113–114
transient (TCOW), 119–121

Counting (counters), 381–382
pre-prefix, 394
probabilistic, 387–388
reducing counter height using flow, 387–388
reducing counter height using threshold

aggregation, 385–387
reducing counter width using randomized,

384–385
Crossbar switches/scheduler, 6, 307–311
Crosspoints, 307–308
Cross-producting

equivalenced, 293–296
on demand, 292–293

CSPF (CMU Stanford packet filter), 145,
185–186, 194–195

Cyclic redundancy checks (CRCs), 203–207

Data, copying. See Copying data
Databases, incremental reading of large, 98–100

Index 459

Data cache, 32
Data link layer, 223
Data manipulations, 18
DEC (Digital Equipment Corp.), 122, 223,

227, 228
Decision trees, 296–299
DECNET, 37, 223
Decoders, 23
Deficit round-robin, 350–354
Degrees of freedom, 52–53, 64
Delay guarantees, 354–358
Delta network, 328–330, 443–444
Demand paging, 42
Demultiplexing (demultiplexers), 5, 19, 23, 145

Berkeley packet filter (BPF), 145, 186–188
challenges of early, 184–185
CMU Stanford packet filter (CSPF), 145,

185–186, 194–195
defined, 182
delayered, 182
dynamic packet filter (DPF), 192–195
early, 117, 182–195
layered, 182
packet classification and, 277
PathFinder, 145, 189–192
in x-kernel, 81–83

Dense wavelength-division multiplexing
(DWDM), 323

Descriptors, 160–161, 163
Design, implementation principles versus,

65–66
Device driver, 43
DiffServ, 272, 277, 348, 359–361
Dijkstra’s algorithm, 77–80
Directed acyclic graph (DAG), 191
Direct memory access (DMA), 33, 226

remote, 121–125
versus programmed I/O, 135

Display-get-data, 144
Distributed systems, routers as

asynchronous updates, 371–373
internal flow control, 363–368
internal striping, 368–371

Divide-and-conquer, 288–296
dlmalloc(), 200
Doorbells, 163
Download times, reducing, 66–67
Dynamic buffer limiting, 203
Dynamic packet filter (DPF), 192–195

Dynamic random access memory (DRAM),
26–29, 32, 33, 226, 441

reducing SRAM width using, backing store,
382–384

Earliest deadline first, 356
Encoders

architecture, 34
design of priority, 22–23
programmable priority, 24–25, 322
quality of service and priority, 22

Endnodes, 4–5, 418–419
architecture, 32–34

ESLIP, 321, 322
Ethernets

description of, 222–224
forwarding packets, 80–81

Event-driven scheduler, 150
Event-driven server, 150–151
Evil packet example, 8
Exact-match lookups, 6, 28, 221–232
ExpiryProcessing, 171, 172
Expression tree model, 185–186
Extended grid of tries (EGT), 288

False negative, 10
Fast retransmit, 343
Fast select. See select()
Fbufs (fast buffers), 115–119
FDDI, 228
Fiber Channel, 20–21, 122, 123
File systems

IO-Lite, 126–128
I/O splicing, 128–129
shared memory, 116, 125–126

Fine-granularity timers, 179–180
Firewalls, 272
First in, first out (FIFO), 339
Fisk, Mike, 8
Fixed-stride tries, 246–247
Flash Web server, 151, 428
Flip-flops, 25
Flow control, internal, 363–368
Flow counting, reducing counter height

using, 387–388
Flow ID lookups, 28–30
Flow switching, 240–241
Forwarding, 17
Forwarding information base (FIB), 35
Fractional cascading, 285

460 Index

Fragmentation, 37
of link state protocols, 87–89

Frame-based compaction, 262–263

Geometric view, of packet classification, 284–286
Gigaswitch, 228–230
Green, Larry, 210
Grid of tries, 281–284

extended, 288

Hardware
component-level design, 30–31
design tools, 23–25
logic gates, 21–22
memory, 25–30
models, 437–442
parallelism, 230–231
parameters, 31–32
transmission speed, 22–23

Hart, John, 227
Harvest Web server. See Squid Web server
Hashed wheels, 175–176
Hashing, 28, 75, 228–230

locality-preserving, 405
Header checksum, 208–209
Header fields, 273
Header prediction, 210–212
Header validation, 36
Head-of-line blocking, 6, 311–316
Hewlett-Packard, OpenView, 20
Hierarchical deficit round-robin, 353
Hierarchical wheels, 176–178
Hints, use of, 62–63
Hole filling, 396
Hunt groups, 310–311
Hypercube, 444

IBM, 223
I-caches, 132–133
Identifiers, binary search of long, 100–102
Implementation principles

caution when using, 68–70
modularity with efficiency principles, 56,

61–63
routines, principles for speeding up, 56, 63–65
systems principles, 56–61
versus design, 65–66

Infiniband, 123–124
Instruction cache, 32
Integrated layer processing (ILP), 130

Intel
virtual interface architecture, 162–163
VTune, 20

Internal flow control, 363–368
Internal striping, 368–371
Internet Control Message Protocol (ICMP), 37
Interrupt(s)

handlers, 40, 145
reducing, 163–165
software, 40, 144, 164

Intrusion detection systems (IDSs)
Aho-Corasick algorithm, 402–403
anomaly, 399
Boyer-Moore algorithm, 403–405
logging, 409–413
probabilistic marking, 406–409
searching for multiple strings in packet

payloads, 401–405
signature, 399
speeding up, 67–68
string matching, approximate, 405–406
subtasks, 400
worms, detecting, 413–415

IO-Lite, 126–128
I/O splicing, 128–129
IP Lookups, See Prefix-match Lookups
iSCSI, 20–21, 124–125
iSLIP, 316–323

Jupiter Networks, 324, 326, 392–393

Kempf, Mark, 223–224, 225, 227
Kernels, 43, 162
Kingsley, Chris, 199

Labels, passing, 277
Latency, 19
Lauck, Tony, 227
Layer 4 switching. See Packet classification
Layer processing, locality-driven, 133–134
Lazy evaluation, 14, 57–58, 208
Lazy receiver processing (LRP), 165
Lea, Doug, 200
Leaf pushing, 252
Least-cost matching rule, 270, 273–275
Level-compressed tries, 250–251
Linear feedback shift register (LFSR), 206
Linear search, 276

bit vector, 289–292
Link state packet (LSP), 18, 77, 87–89

Index 461

Link state protocols, avoiding fragmentation
of, 87–89

Linux allocator, 200
Logging, 409–413
Logic gates, 21–22, 437–438
Lookups

chip model, 263–264
exact-match, 6, 28, 221–232
flow ID, 28–30
prefix-match, 6, 35, 233–266

Lulea-compressed tries, 252–255

malloc(), 199
Markers, 366
Masking, 207, 235
Matchmaking, 148
mbufs, 118, 199
McQuillan, John, 272
Measuring network traffic

difficulty of, 381–382
Jupiter network example, 392–393
reducing collection bandwidth, 389–390
reducing counter height using flow counting,

387–388
reducing counter height using threshold

aggregation, 385–387
reducing counter width using randomized

counting, 384–385
reducing processing using NetFlow,

388–389
reducing SRAM width using DRAM backing

store, 382–384
Sting, 395–396
traffic matrices, 393–395
trajectory sampling to correlate, 390–391

Memory, 25–30
adaptor, 111–113
allocation in compressed schemes, 261–263
backtracking, 281
content-addressable memory (CAM), 50–54,

230, 242, 278
direct memory access (DMA), 33
dynamic random access memory (DRAM),

26–29, 32, 33, 226, 441
main, 32
mapped, 33
registered, 163
scaling, 335–336
shared, 116, 125–126, 305

static random access memory (SRAM), 26,
32, 228, 382–384, 441

virtual, 41–43, 113–114
Memory management unit (MMU), 42
Microsoft Inc., virtual interface architecture,

162–163
Modified deficit round-robin, 354
Modularity with efficiency principles, 56

generality, avoiding, 62
hints, use of, 62–63
over referencing, avoiding, 62
replace inefficient routines, 61–62

Multibit tries, 245–250
Multicast, 321–322
Multichassis routers, 323, 326–328
Multiplexers, 23
Multi-protocol-label switching (MPLS), 37,

240, 241, 277
Multithreading, 38

Net-dispatch, 144
NetFlow, 388–389
Network address translation (NAT), 236
Network algorithmics

algorithms versus, 54–55
characteristics of, 13–15
defined, 14, 423–427
future, 429–431
real products and, 427–429
techniques, 7–15

Networking code, avoiding scheduling overhead
in, 143–146

Network processors, 36, 37–38
Node compression, tries and, 83–85

1D torus, 334–335
Operating systems

system calls and simple, 43–44
uninterrupted computation, 39–41
virtual memory, 41–43

OSPF, 18, 36, 77
Output queuing, 312–314
Output scheduling, 36

Packet classification, 6, 36, 85, 185
caching, 276
content-addressable memory, 278
cross-producting, 292–293
cross-producting, equivalenced, 293–296
decision trees, 296–299

462 Index

Packet classification (continued)
demultiplexing, 277
divide-and-conquer, 288–296
extended grid of tries, 288
geometric view, 284–286
grid of tries, 281–284
linear search, 276
linear search, bit vector, 289–292
passing labels, 277
reasons for, 271–273
requirements and metrics, 275–276
role of, 270
routers, 270
tuples, 273–275
two dimensional, 278–284, 287–288

Packet filters
Berkeley (BPF), 145, 186–188
CMU Stanford (CSPF), 145, 185–186
dynamic, 192–195

Packets, 17
filtering in routers, 85–87
flow, 340
header validation and checksums, 36
logs, 388
repeaters, 223–224
scheduling, 339–361

Page mode, 27, 226
Page remapping, 115–119
Pages, 42
Parallelism, hardware, 230–231
Parallel iterative matching (PIM), 314–316
Pareto optimality, 201
PathFinder, 145, 189–192, 277
Path MTU, 213–214
Patricia trie, 14, 245
pbufs, 199
Perfect hashing, 229
Performance, improving, 364–365, 368–369,

372–373
Performance measures, 19–20

select() and server performance problem,
153–154

for timers, 171
Perlman, Radia, 227
PerTickBookkeeping, 171, 172
Piggybacking, 98
Ping, 395
Pipelining, 28–29, 230–231
Polling, 164
Population scaling, 5

Prefix-match lookups, 6, 35
binary search, prefix lengths, 259–261
binary search, on ranges, 257–258
flow switching, 240–241
memory allocation, 261–263
model, 236–238
model, lookup-chip, 263–264
multi-protocol label switching, 37, 240, 241
nonalgorithmic techniques for, 242
notation, 234–235
threaded indices and tag switching, 14,

238–240, 241
tree bitmaps, 255–257
tries, level-compressed, 250–251
tries, Lulea-compressed, 252–255
tries, multibit, 245–250
tries, unibit, 243–245
variable-length, reasons for, 235–236

Pre-prefix counters, 394
Priorities, 320–321, 347
Probabilistic counting, 387–388
Probabilistic marking, 406–409
Programmable logic arrays (PLAs), 439
Programmable priority encoders, 24–25, 322
Protocol control block (PCB), 210–212
Protocol Engines, Inc., 210
Protocol processing

buffer management, 198–203
checksums and cyclic redundancy checks,

203–209
generic, 209–213
reassembly, 213–216

Protocols, 17–19, 36–37
reservation, 347–348

Pushout, 202–203

Quality of service (QOS), 22
reasons for, 340–342

Queuing, 36
class-based, 353–354
multiple outbound, 346–347
output, 312–314
scalable fair, 358–361

Random early detection (RED), 342–345
Randomization

avoiding, 316–323
memory scaling using, 335–336

Rational, Quantify, 20
Reading large databases, incremental, 98–100

Index 463

Rearrangeably nonblocking, 327
Reassembly, 19, 213–216
Receiver livelock, 40–41

avoiding, 164–165
Recursive flow classification (RFC), 293–296
Redirects, 37
Reentrant, 148
Registered memory, 163
Registers, 25, 440
Reliability, 365–368, 369–371, 373
Remote direct memory access (RDMA), 121–125
Repeaters

filtering, 224
packet, 223–224

Resemblance, 405–406
Reservation protocols, 347–348
Resource Reservation Protocol (RSVP), 347–348
Resources, identifying, 92–93
RIP, 36
Round-robin

deficit (bit-by-bit), 350–354
slice-by-slice, 348–350

Routers, 5–7, 419–420
See also Distributed systems, routers as
architecture, 34–38
fragmentation, redirects and ARPs, 37–38
history of, 305–307
lookup, 35–36
multichassis, 323, 326–328
packet classification, 270
packet filtering in, 85–87
pin-count for buffers, 30–31
processing, 36–37
queuing, 36
switching, 36
telephone switches versus, 304–305

Routines, principles for speeding up, 56, 63–65
Routing, 17

computation using Dijkstra’s algorithm,
77–80

Row address strobe (RAS), 27

Sampled charging, 389–390
Savage, Stefan, 395
Scalable fair queuing, 358–361
Scale

bandwidth, 5
endnode, 4
population, 5
router, 5

Scaling
chip, 31
to faster switches, 333–336
to larger switches, 323–333
memory, 31, 335–336
via hashing, 228–230

Schedule clients, 19
Scheduling

crossbar, 24–25, 307–311
event-driven, 150
output, 36
packets, 339–361

SCSI (small computer system interface),
20–21, 123

Security issues. See Intrusion detection systems
(IDSs)

Security forensics problem, 54–55
select()

analysis of, 155–157
server performance problem, 153–154
speeding up by changing API, 158–159
speeding up without changing API, 157–158
use and implementation of, 154–155

Server, event-driven, 150–151
Service differentiation, 6, 270
Set-pruning tries, 278–281
Shared memory, 116, 125–126, 305
Shelley, Bob, 227
Short links, 334–335
Signature intrusion detection, 399
Simcoe, Bob, 228
Simple Network Management Protocol (SNMP),

37, 381
SNA, 37, 223
Snapshot, 367
SNORT, 399–402
SNS, 223
Socket queue, 41
Software interrupt, 40, 144, 164
Spanning tree algorithm, 227
SPECweb, 128
Spinney, Barry, 228–229, 230
Squid Web server, 150, 153
StartTimer, 171, 172
State machine implementation, 30–31
Static random access memory (SRAM), 26, 32,

228, 441
reducing, using DRAM backing store,

382–384
Sting, 395–396

464 Index

StopTimer, 171, 172
Storage area networks (SANs), 20–21, 123
String matching, approximate, 405–406
Strings in packet payloads, searching for,

401–405
Structure, 4
Substitution error, 405
Switching (switches), 36

Benes networks, 328–333
bit slicing, 333–334
Clos networks, 324–328
costs, 324
crossbar scheduler, 307–311
flow, 240–241
head-of-line blocking, 311–316
iSLIP, 316–323
memory scaling, 335–336
multi-protocol-label, 37, 240, 241
optical, 38
output queuing, 312–314
parallel iterative matching (PIM), 314–316
router, 305–307
router versus telephone, 304–305
scaling, 323–336
shared-memory, 305
short links, 334–335
theory, 442–443
threaded indices and tag, 14, 238–240, 241

Switch pointers, 282–283
System calls, 43–44

avoiding, 159–163
Systems principles

leverage off system components, 59–60
performance improved by hardware, 60–61
relaxing requirements, 58–59
time and space computation, 57–58
waste, avoiding, 56–57

Tag switching, 14, 238–240, 241
Take-a-ticket scheme, 307–311
Task-based structuring, 151–152
tcpdump, 20
TCP/IP (Transmission Control Protocol/Internet

Protocol), 17–19, 21
congestion control, 342
header prediction, 210–212
open connection lists, getting rid of, 93–96
transport and routing, 433–437

Teardrop attack, 409
Telephone switches

Clos networks, 325–326
router versus, 304–305

Thomas, Bob, 228
Threads, 40

indices and tag switching, 238–240, 241
per client, 148–150

Threshold aggregation, 385–387
Throughput, 19

memory, 28
Timers, 5, 19

BSD UNIX implementation, 178–179
delays, 439
fine granularity, 179–180
hashed wheels, 175–176
hierarchical wheels, 176–178
reasons for, 169–171
routines and performance of, 171
simple, 172–173
wheels, 173–174

Timing Wheels, See Timers, wheels
Token bucket shaping and policing, 345–346
Tomography, 394
Traceback

logging, 409–413
probabilistic marking, 406–409

Traceroute, 395
Trading memory for processing, 14
Traffic matrices, 393–395
Traffic patterns, monitoring, 90–92

See also Measuring network traffic
Trajectory sampling, 390–391
Transistors, 437–438
Translation look-aside buffer (TLB), 42, 115
Transmission speed, 22–23
Transport-arm-to-send, 144
Transport-get-port, 144
Tree bitmaps, 255–257
Tries, 402

defined, 190
extended grid of, 288
fixed-stride, 246–247
grid of, 281–284
level-compressed, 250–251
Lulea-compressed, 252–255
multibit, 245–250
node compression and, 83–85
Patricia, 14, 245
set-pruning, 278–281
variable-stride, 247–250
unibit, 243–245

Index 465

UDP (User Datagram Protocol), 17,
212–213

ufalloc(), 153–154
Unibit tries, 243–245
UNIX mbufs, 118, 199

See also BSD UNIX
Upcalls, 143–145
Updates, asynchronous, 371–373
User-level implementation, 144–146
User processes, 40

Variable-stride tries, 247–250
VAX cluster, 122–123
Video conferencing, asynchronous transfer

mode and, 102–104
Virtual circuits (VCs), 76–77, 102–104
Virtual clock, 355–356
Virtual interface architecture (VIA), 162–163
Virtual memory, 41–43, 113–114
Virtual output queues (VOQs), 314–315, 322

WAN (wide area network), 153
Waters, Greg, 231
Web servers

context-switching control overhead,
146–152

event-driven scheduler, 150
event-driven server, 150–151
process per client, 147–148
task-based structuring, 151–152
thread per client, 148–150

Wheels. See Timers
Wire speed forwarding, 9, 224–228
Worms, detecting, 413–415

Xerox, 223
x-kernel, demultiplexing in, 81–83
XTP protocol, 210

Zeus Web server, 150

P1

P2
 P2a
 P2b
 P2c

P3
 P3a
 P3b
 P3c

P4
 P4a
 P4b
 P4c

P5
 P5a
 P5b
 P5c

Avoid obvious waste

Shift computation in time
 Precompute
 Evaluate lazily
 Share expenses, batch

Relax system requirements
 Trade certainty for time
 Trade accuracy for time
 Shift computation in space

Leverage off system components
 Exploit locality
 Trade memory for speed
 Exploit existing hardware

Add hardware
 Use memory interleaving and pipelining
 Use wide word parallelism
 Combine DRAM and SRAM effectively

Zero-copy interfaces

Application device channels
Copy-on-write
Integrated layer processing

Stochastic fair queueing
Switch load balancing
IPv6 fragmentation

Locality-driven receiver
Processing; Lulea IP lookups
Fast TCP checksum

Pipelined IP lookups
Shared memory switches
Maintaining counters

Number Principle

15 Principles Used to Overcome Network Bottlenecks

Used In/Networking Example

P6

P7

P8

P9

P10

Avoid unnecessary generality

UDP checksums

Fbufs

Upcalls

Packet filters

Tag switching

Create efficient specialized
routines

Don't be tied to reference
implementation

Pass hints in layer interfaces

Pass hints in protocol headers

P11
 P11a

P12
 P12a

P13

P14

P15 Create efficient data
structures

Optimize the expected case
 Use caches

Add state for speed
 Compute incrementally

Optimize degrees of freedom

Use bucket sorting, bitmaps

Level-4 switching

Header prediction
 Fbufs

Active VC list
 Recomputing CRCs

IP trie lookups

Timing wheels

	Network Algorithmics: An Interdisciplinary Approach to Designing Fast Networked Devices
	Cover

	CONTENTS
	P R E F A C E x i
	PART I The Rules of the Game
	C H A P T E R 1 Introducing Network Algorithmics
	1.1 The Problem: Network Bottlenecks
	1.1.1 Endnode Bottlenecks
	1.1.2 Router Bottlenecks

	1.2 The Techniques: Network Algorithmics
	1.2.1 Warm-up Example: Scenting an Evil Packet
	1.2.2 Strawman Solution
	1.2.3 Thinking Algorithmically
	1.2.4 Refining the Algorithm: Exploiting Hardware
	1.2.5 Cleaning Up
	1.2.6 Characteristics of Network Algorithmics

	1.3 Exercise

	C H A P T E R 2 Network Implementation Models
	2.1 Protocols
	2.1.1 Transport and Routing Protocols
	2.1.2 Abstract Protocol Model
	2.1.3 Performance Environment and Measures

	2.2 Hardware
	2.2.1 Combinatorial Logic
	2.2.2 Timing and Power
	2.2.3 Raising the Abstraction Level of Hardware Design
	2.2.4 Memories
	2.2.5 Memory Subsystem Design Techniques
	2.2.6 Component-Level Design
	2.2.7 Final Hardware Lessons

	2.3 Network Device Architectures
	2.3.1 Endnode Architecture
	2.3.2 Router Architecture

	2.4 Operating Systems
	2.4.1 Uninterrupted Computation via Processes
	2.4.2 Infinite Memory via Virtual Memory
	2.4.3 Simple I/O via System Calls

	2.5 Summary
	2.6 Exercises

	C H A P T E R 3 Fifteen Implementation Principles
	3.1 Motivating the Use of Principles - Updating Ternary Content-Addressable Memories
	3.2 Algorithms versus Algorithmics
	3.3 Fifteen Implementation Principles - Categorization and Description
	3.3.1 Systems Principles
	3.3.2 Principles for Modularity with Efficiency
	3.3.3 Principles for Speeding Up Routines

	3.4 Design versus Implementation Principles
	3.5 Caveats
	3.5.1 Eight Cautionary Questions

	3.6 Summary
	3.7 Exercises

	C H A P T E R 4 Principles in Action
	4.1 Buffer Validation of Application Device Channels
	4.2 Scheduler for Asynchronous Transfer Mode Flow Control
	4.3 Route Computation Using Dijkstra's Algorithm
	4.4 Ethernet Monitor Using Bridge Hardware
	4.5 Demultiplexing in the X-Kernel
	4.6 Tries with Node Compression
	4.7 Packet Filtering in Routers
	4.8 Avoiding Fragmentation of Link State Packets
	4.9 Policing Traffic Patterns
	4.10 Identifying a Resource Hog
	4.11 Getting Rid of the TCP Open Connection List
	4.12 Acknowledgment Withholding
	4.13 Incrementally Reading a Large Database
	4.14 Binary Search of Long Identifiers
	4.15 Video Conferencing via Asynchronous Transfer Mode

	PART II Playing with Endnodes
	C H A P T E R 5 Copying Data
	5.1 Why Data Copies
	5.2 Reducing Copying via Local Restructuring
	5.2.1 Exploiting Adaptor Memory
	5.2.2 Using Copy-on-Write
	5.2.3 Fbufs: Optimizing Page Remapping
	5.2.4 Transparently Emulating Copy Semantics

	5.3 Avoiding Copying Using Remote DMA
	5.3.1 Avoiding Copying in a Cluster
	5.3.2 Modern-Day Incarnations of RDMA

	5.4 Broadening to File Systems
	5.4.1 Shared Memory
	5.4.2 IO-Lite: A Unified View of Buffering
	5.4.3 Avoiding File System Copies via I/O Splicing

	5.5 Broadening beyond Copies
	5.6 Broadening beyond Data Manipulations
	5.6.1 Using Caches Effectively
	5.6.2 Direct Memory Access versus Programmed I/O

	5.7 Conclusions
	5.8 Exercises

	C H A P T E R 6 Transferring Control
	6.1 Why Control Overhead?
	6.2 Avoiding Scheduling Overhead in Networking Code
	6.2.1 Making User-Level Protocol Implementations Real

	6.3 Avoiding Context-Switching Overhead in Applications
	6.3.1 Process per Client
	6.3.2 Thread per Client
	6.3.3 Event-Driven Scheduler
	6.3.4 Event-Driven Server with Helper Processes
	6.3.5 Task-Based Structuring

	6.4 Fast Select
	6.4.1 A Server Mystery
	6.4.2 Existing Use and Implementation of Select()
	6.4.3 Analysis of Select()
	6.4.4 Speeding Up Select() without Changing the API
	6.4.5 Speeding Up Select() by Changing the API

	6.5 Avoiding System Calls
	6.5.1 The Virtual Interface Architecture (VIA) Proposal

	6.6 Reducing Interrupts
	6.6.1 Avoiding Receiver Livelock

	6.7 Conclusions
	6.8 Exercises

	C H A P T E R 7 Maintaining Timers
	7.1 Why Timers?
	7.2 Model and Performance Measures
	7.3 Simplest Timer Schemes
	7.4 Timing Wheels
	7.5 Hashed Wheels
	7.6 Hierarchical Wheels
	7.7 BSD Implementation
	7.8 Obtaining Fine-Granularity Timers
	7.9 Conclusions
	7.10 Exercises

	C H A P T E R 8 Demultiplexing
	8.1 Opportunities and Challenges of Early Demultiplexing
	8.2 Goals
	8.3 CMU/Stanford Packet Filter: Pioneering Packet Filters
	8.4 Berkeley Packet Filter: Enabling High-Performance Monitoring
	8.5 Pathfinder: Factoring Out Common Checks
	8.6 Dynamic Packet Filter: Compilers to the Rescue
	8.7 Conclusions
	8.8 Exercises

	C H A P T E R 9 Protocol Processing
	9.1 Buffer Management
	9.1.1 Buffer Allocation
	9.1.2 Sharing Buffers

	9.2 Cyclic Redundancy Checks and Checksums
	9.2.1 Cyclic Redundancy Checks
	9.2.2 Internet Checksums
	9.2.3 Finessing Checksums

	9.3 Generic Protocol Processing
	9.3.1 UDP Processing

	9.4 Reassembly
	9.4.1 Efficient Reassembly

	9.5 Conclusions
	9.6 Exercises

	PART III Playing with Routers
	C H A P T E R 1 0 Exact-Match Lookups
	10.1 Challenge 1: Ethernet under Fire
	10.2 Challenge 2: Wire Speed Forwarding
	10.3 Challenge 3: Scaling Lookups to Higher Speeds
	10.3.1 Scaling via Hashing
	10.3.2 Using Hardware Parallelism

	10.4 Summary
	10.5 Exercise

	C H A P T E R 1 1 Prefix-Match Lookups
	11.1 Introduction to Prefix Lookups
	11.1.1 Prefix Notation
	11.1.2 Why Variable-Length Prefixes?
	11.1.3 Lookup Model

	11.2 Finessing Lookups
	11.2.1 Threaded Indices and Tag Switching
	11.2.2 Flow Switching
	11.2.3 Status of Tag Switching, Flow Switching, and Multiprotocol Label Switching

	11.3 Nonalgorithmic Techniques for Prefix Matching
	11.3.1 Caching
	11.3.2 Ternary Content-Addressable Memories

	11.4 Unibit Tries
	11.5 Multibit Tries
	11.5.1 Fixed-Stride Tries
	11.5.2 Variable-Stride Tries
	11.5.3 Incremental Update

	11.6 Level-Compressed (LC) Tries
	11.7 Lulea-Compressed Tries
	11.8 Tree Bitmap
	11.8.1 Tree Bitmap Ideas
	11.8.2 Tree Bitmap Search Algorithm

	11.9 Binary Search on Ranges
	11.10 Binary Search on Prefix Lengths
	11.11 Memory Allocation in Compressed Schemes
	11.11.1 Frame-Based Compaction

	11.12 Lookup-Chip Model
	11.13 Conclusions
	11.14 Exercises

	C H A P T E R 1 2 Packet Classification
	12.1 Why Packet Classification?
	12.2 Packet-Classification Problem
	12.3 Requirements and Metrics
	12.4 Simple Solutions
	12.4.1 Linear Search
	12.4.2 Caching
	12.4.3 Demultiplexing Algorithms
	12.4.4 Passing Labels
	12.4.5 Content-Addressable Memories

	12.5 Two-Dimensional Schemes
	12.5.1 Fast Searching Using Set-Pruning Trees
	12.5.2 Reducing Memory Using Backtracking
	12.5.3 The Best of BothWorlds: Grid of Tries

	12.6 Approaches to General Rule Sets
	12.6.1 Geometric View of Classification
	12.6.2 Beyond Two Dimensions: The Bad News
	12.6.3 Beyond Two Dimensions: The Good News

	12.7 Extending Two-Dimensional Schemes
	12.8 Using Divide-and-Conquer
	12.9 Bit Vector Linear Search
	12.10 Cross-Producting
	12.11 Equivalenced Cross-Producting
	12.12 Decision Tree Approaches
	12.13 Conclusions
	12.14 Exercises

	C H A P T E R 1 3 Switching
	13.1 Router versus Telephone Switches
	13.2 Shared-Memory Switches
	13.3 Router History: From Buses to Crossbars
	13.4 The Take-a-Ticket Crossbar Scheduler
	13.5 Head-of-Line Blocking
	13.6 Avoiding Head-of-Line Blocking via Output Queuing
	13.7 Avoiding Head-of-Line Blocking by Using Parallel Iterative Matching
	13.8 Avoiding Randomization with iSLIP
	13.8.1 Extending iSLIP to Multicast and Priority
	13.8.2 iSLIP Implementation Notes

	13.9 Scaling to Larger Switches
	13.9.1 Measuring Switch Cost
	13.9.2 Clos Networks for Medium-Size Routers
	13.9.3 Benes Networks for Larger Routers

	13.10 Scaling to Faster Switches
	13.10.1 Using Bit Slicing for Higher-Speed Fabrics
	13.10.2 Using Short Links for Higher-Speed Fabrics
	13.10.3 Memory Scaling Using Randomization

	13.11 Conclusions
	13.12 Exercises

	C H A P T E R 1 4 Scheduling Packets
	14.1 Motivation for Quality of Service
	14.2 Random Early Detection
	14.3 Token Bucket Policing
	14.4 Multiple Outbound Queues and Priority
	14.5 A Quick Detour into Reservation Protocols
	14.6 Providing Bandwidth Guarantees
	14.6.1 The Parochial Parcel Service
	14.6.2 Deficit Round-Robin
	14.6.3 Implementation and Extensions of Deficit Round-Robin

	14.7 Schedulers That Provide Delay Guarantees
	14.8 Scalable Fair Queuing
	14.8.1 Random Aggregation
	14.8.2 Edge Aggregation
	14.8.3 Edge Aggregation with Policing

	14.9 Summary
	14.10 Exercises

	C H A P T E R 1 5 Routers as Distributed Systems
	15.1 Internal Flow Control
	15.1.1 Improving Performance
	15.1.2 Rescuing Reliability

	15.2 Internal Striping
	15.2.1 Improving Performance
	15.2.2 Rescuing Reliability

	15.3 Asynchronous Updates
	15.3.1 Improving Performance
	15.3.2 Rescuing Reliability

	15.4 Conclusions
	15.5 Exercises

	PART IV Endgame
	C H A P T E R 1 6 Measuring Network Traffic
	16.1 Why Measurement Is Hard
	16.1.1 Why Counting Is Hard

	16.2 Reducing SRAM Width Using DRAM Backing Store
	16.3 Reducing Counter Width Using Randomized Counting
	16.4 Reducing Counters Using Threshold Aggregation
	16.5 Reducing Counters Using Flow Counting
	16.6 Reducing Processing Using Sampled NetFlow
	16.7 Reducing Reporting Using Sampled Charging
	16.8 Correlating Measurements Using Trajectory Sampling
	16.9 A Concerted Approach to Accounting
	16.10 Computing Traffic Matrices
	16.10.1 Approach 1: Internet Tomography
	16.10.2 Approach 2: Per-Prefix Counters
	16.10.3 Approach 3: Class Counters

	16.11 Sting as an Example of Passive Measurement
	16.12 Conclusion
	16.13 Exercises

	C H A P T E R 1 7 Network Security
	17.1 Searching for Multiple Strings in Packet Payloads
	17.1.1 Integrated String Matching Using Aho–Corasick
	17.1.2 Integrated String Matching Using Boyer–Moore

	17.2 Approximate String Matching
	17.3 IP Traceback via Probabilistic Marking
	17.4 IP Traceback via Logging
	17.4.1 Bloom Filters
	17.4.2 Bloom Filter Implementation of Packet Logging

	17.5 Detecting Worms
	17.6 Conclusion
	17.7 Exercises

	C H A P T E R 1 8 Conclusions
	18.1 What This Book Has Been About
	18.1.1 Endnode Algorithmics
	18.1.2 Router Algorithmics
	18.1.3 Toward a Synthesis

	18.2 What Network Algorithmics Is About
	18.2.1 Interdisciplinary Thinking
	18.2.2 Systems Thinking
	18.2.3 Algorithmic Thinking

	18.3 Network Algorithmics and Real Products
	18.4 Network Algorithmics: Back to the Future
	18.4.1 New Abstractions
	18.4.2 New Connecting Disciplines
	18.4.3 New Requirements

	18.5 The Inner Life of a Networking Device

	A P P E N D I X Detailed Models
	A.1 TCP and IP
	A.1.1 Transport Protocols
	A.1.2 Routing Protocols

	A.2 Hardware Models
	A.2.1 From Transistors to Logic Gates
	A.2.2 Timing Delays
	A.2.3 Hardware Design Building Blocks
	A.2.4 Memories: The Inside Scoop
	A.2.5 Chip Design

	A.3 Switching Theory
	A.3.1 Matching Algorithms for Clos Networks with k = n

	A.4 The Interconnection Network Zoo

	Bibliography
	Index

