

Fundamentals of UNIX
Lab 13.3.2 – Managing System Processes

 (Estimated time: 50 min.)

Objectives:

• Develop an understanding of UNIX process management
• Review system process concepts
• Review the ps command and options
• List processes in the current shell
• List all processes running on the system
• Search for a specific process by command name
• Identify a process to terminate
• Use the kill command to terminate a process.
• Find and terminate a process by user
• Terminate a process by command name

Background:
In this lab, you will work with UNIX commands to identify system processes and control them. The UNIX
network operating system manages tasks using processes. Processes can be initiated by either the
operating system or by users. The majority of tasks you perform in the UNIX environment start a process.
A process can start or spawn a child or subprocess, thus creating a process hierarchy or tree similar to
the file system structure with parent / child relationships. You will work with the ps (process status)
command to monitor system processes and the kill command to terminate unwanted process. You will
also work with the Solaris commands pgrep (process grep) and pkill (process kill).

Tools / Preparation:

a) Before starting this lab, review Chapter 13, Section 1 – UNIX Systems Processes, Section 2 –
Displaying Processes and Section 3 – Terminating Processes

b) You will need the following:
1. A login user ID (e.g. user2) and password assigned by your instructor.
2. A computer running the UNIX operating system
3. Networked computers in classroom with class file system installed

Notes:

Fundamentals of UNIX
Lab 13.3.2 – Managing System Processes

Worksheet

Use the diagram of the sample Class File System directory tree to assist with this lab.

Step 1. Log in to CDE
Login with the user name and password assigned to you by your instructor in the CDE entry box.

Step 2. Access the Command Line
Right click on the workspace backdrop and click on Tools. Select Terminal from the menu to open a
terminal window.

Step 3. Review System Process Concepts
Each program you run creates a process, which is assigned a unique process identification number
(PID). The PID is used by the system to identify and track the process until it has completed. The
operating system (OS) kernel manages the initiation and termination of all processes. Every process
requires system resources such as central processing unit (CPU) time and random access memory
(RAM) space to work in. The OS allocates these system resources to each process when it starts and de-
allocates them when the process ends. The first two processes started when a UNIX system is booted
are the sched (scheduler) and init (initialization), which manage other processes. There are several
different types of processes on a UNIX system. These are summarized below:

Daemon - Daemons are processes that are started by the UNIX kernel and exist for a specific
purpose. For instance, the lpsched daemon exists for the sole purpose of handling print jobs.

Parent - A process that spawns another process is referred to as its parent. A process called init
daemon is the first one invoked. Every process except init has a parent process.

Child - A process that is spawned by another process is referred to as a child process.

Orphan – A process whose parent process terminates before it can return its output.

Zombie - A child process that does not return to the parent process with its output. This process
becomes "lost" in the system.

Fundamentals of UNIX

Lab 13.3.2 – Managing System Processes
Worksheet – Cont.

Using the information above, fill in the blanks in the following sentences.

a. Nearly every process that starts on a UNIX system get assigned a unique by the
kernel which is used to track the process from start to finish.

b. When new processes start the kernel also assign system resources such as CPU time and

.

c. A process that never returns to the parent with its output is called a process

d. A process that is spawned by a parent process is called a process.

e. A process is one that spawns another process.

f. A UNIX system process that runs to provide services is a:

g. If a parent process ends before the child can finish, it creates an process

Step 4. Review the ps Command and Options
The ps (process status) command is used to list the processes currently running on the system. This is
normally done if a process is taking too long or appears to have stopped as indicated by a terminal
window not responding or "hanging." By listing the processes, you can see the name of the command or
program that initiated the process plus any child processes it may have spawned. By executing the ps
command more than once, you can see if a process is still running by looking at the time for the process,
which is the amount of CPU time the process is using. If the amount of time does not increase, then the
process may have stopped. You can use the ps command to check the process ID (PID) of the process
and then "kill" the process if it is taking too long or has stopped.

The output of the ps command will display the PID number and the command or program associated with
it. The PID number is normally used to terminate a process. There are three main options with the ps
command as shown in the table:

Command Format: ps [-options]

ps Command Options

ps Option Meaning Function or Purpose

ps No Options Display information for current user processes in current
shell or terminal window

ps -e Every Display information about every process on the system.

ps -f Full Generate a full listing with all available information on each
process.

ps -u
userid

User Display all processes for a particular user

Fundamentals of UNIX
Lab 13.3.2 – Managing System Processes

Worksheet – Cont.

The basic ps command displays the information about process in you current shell only. You will only
see processes that have been initiated with this terminal window.

PID TTY TIME CMD
785 pts/6 0:45 dbprog
742 pts/6 0:00 csh
689 pts/6 0:00 /bin/ksh

a. From your current terminal window, practice using the ps command with each of the options
shown.

The ps –ef command displays all information about every process running on the system.

UID PID PPID C STIME TTY TIME CMD
root 0 0 80 16:46:41 ? 0:01 sched

The following table defines the Column Headings for the ps –ef Command

ps –ef Column Headings

Value Description
UID

The user ID of the user that initiated the process.

PID The process identification number of the process. The PID
is used to kill a process.

PPID The parent process identification number of the process
C

The priority of the process

STIME

Start time for the process

TTY

Terminal type - the controlling terminal for the process

TIME

The amount of CPU time used by the process

CMD

The command name or daemon (name of the program
executed)

Step 5. List Processes in the Current Shell

a. In your current terminal window issue the ps command with no options. What information is
displayed?

b. How many processes were displayed?

c. What was the process ID (PID) ?

d. What was the command (CMD) that started the process ?

Fundamentals of UNIX
Lab 13.3.2 – Managing System Processes

Worksheet – Cont.

Step 6. List All Processes Running on the System
The ps –ef command will list all processes and can produce a fairly long listing.

a. In your current terminal window issue the ps –ef command. What headings are displayed?
(Tip: You may want to pipe the ps –ef command to the more command to view the headings.)

b. How many processes were displayed?

c. Count the number of processes by running the ps –ef command again and then pipe the output

to the wc (word count) command). The first number is the number of lines displayed, which is also
the number of processes. What command did you use? How many processes were
running?

d. Display the output a page at a time by piping it through the more command. What command did

you use?

e. What is the command that has process ID number 1?

Step 7. Search for a specific Process by Command Name
In order to stop a process you must find the Process ID. On most systems there are hundreds of
processes running and the ps -ef listing can be quite long. If you know the name of the executable
program that started the process, you can find the PID faster. By piping the output of the ps command
through grep, you can search for the specific process you want to terminate and determine the correct
PID. As you will recall, the grep command can search for any type of character string in the output of
another command. Specific to Solaris, is the pgrep (process grep) command used to search for a
specific process. The -l (long output) option will display the names of the processes associated with the
PID found. The -e option displays the PID and the name of the initiating command, which allows grep to
search on this information.

a. In your current terminal window issue the ps –e | grep lp command to look for all processes
that are related to the line printer scheduler daemon.

b. How many processes were displayed?

c. What is the lowest process ID number of the processes displayed?

d. In your current terminal window issue the pgrep -l lp command to look for all processes

that are related to the line printer scheduler daemon. What is the difference in output between ps
and pgrep?

Step 8. Identify a Process to Terminate.
The ps -ef command displays a full listing of every process, including the Process ID (PID) and its
Parent Process ID (PPID). When trying to terminate a program or release a hung terminal window, it
may not be enough to kill the process ID that is associated with the unresponsive application. It may be
necessary to kill the Parent of that process and on rare occasions even the Parent of the Parent. It is
important to be able to look at a PID and PPID to be able to trace from the child up the hierarchy to the
parent processes that spawned them.

Fundamentals of UNIX
Lab 13.3.2 – Managing System Processes

Worksheet – Cont.

To do this, you must first identify the PID of the lowest level unresponsive process. Normally you would
try to kill that processes PID. If this does not stop the process, you may need to kill its parent. Killing a
parent process will kill all child processes spawned by it. It is also much quicker to kill a parent process
rather than killing perhaps several child processes.

a. From the current terminal window in CDE, enter the ps command.

b. How many processes were running? One. Why are there so few processes?

c. What is the name of the process running and what does it represent?

d. What is the Process ID (PID) of this process?

e. Enter the command csh to open a C Shell session under the Korn Shell. What does you prompt
look like now?

f. Enter the command to display full information on processes running in the shell. What command

did you use? What processes are running now

g. Is the Process ID of the Korn Shell (/bin/ksh) the Parent Process ID (PPID) of the C Shell (csh)?

h. Enter the command sleep 1000 & to create a process that suspends execution for 1000

seconds (Appx 15 min.). The ampersand (&) runs the command in the background and returns
the shell prompt so you can continue working.

i. Enter the ps –f command again. Is the Process ID of the C Shell (csh) the Parent Process ID

(PPID) of the sleep command? . Which process ID is the child of the C Shell?

j. Exit the C shell and type the ps –f command again. What process ID (PID) is the parent of the

sleep command? What type of process is sleep now?

Step 9. Use the kill Command to Terminate a Process.
Signals are used to terminate, suspend, and continue processes. Using Ctrl-c can sometimes terminate
a process that is not responding. This sends an interrupt (INT) signal to the process, terminating it and
any child processes it might have spawned.

Fundamentals of UNIX
Lab 13.3.2 – Managing System Processes

Worksheet – Cont.

The kill command provides a direct way to terminate unwanted command processes. It is useful when
you want to stop a command that takes a long time to run, or when you need to terminate a process that
you cannot quit in the normal way. Specifying their process id normally kills processes.

Command Format: kill [-signal] process-id

To terminate a process with the kill command, you would first type ps to find out the PID(s) for the
process(es) and then type kill followed by the PID(s). If you use the kill command without specifying
a signal, signal 15 (SIGTERM) is sent to the process with the specified PID number. This is referred to as
a soft kill and usually causes the process to terminate. It is best to soft kill a process, if possible, since it
closes files properly and terminates the process(es) gracefully.

If you need to forcibly terminate a process, you can use the -9 option to the kill command. This option
is referred to as a sure kill and is necessary for killing shells that will not respond to any other signal to
terminate.

Command Format: kill -9 Process-id

Note - For processes other than shells, use the kill -9 (SIGKILL) command as a last resort because it
is an abrupt method and does not allow for proper process termination.

a. Enter the command to display full information on processes running in the shell. What command

did you use? What processes are running now?

b. Since the sleep process is now an orphan and has been adopted by the init process (PID #1),
Enter the command to perform a soft kill on the PID for sleep. If sleep has ended (more than 15
minutes) repeat steps 7h through 7j again and then soft kill the sleep program. Enter the ps –f
command again. What processes are running now?

c. Enter the command to display full information on processes running in the shell. What command

did you use? . What processes are running now?

d. Enter the command csh to open another C Shell session under the Korn Shell.

e. Enter the command to display full information on processes running in the shell. What processes
are running now?

f. Is the Process ID (PID) of the Korn Shell (/bin/ksh) the Parent Process ID (PPID) of the C Shell

(csh)?

g. Enter the command sleep 1000 & again.

h. Enter the ps –f command again. Is the Process ID of the C Shell (csh) the Parent Process ID
(PPID) of the sleep command? .

i. Use the soft kill command to kill the C shell process ID (PID). Use ps –f again to find out if you

killed the shell. Did it die? Why or why not?

j. Use the sure kill command to kill the C Shell PID. What was the response from the kill
command?

Fundamentals of UNIX
Lab 13.3.2 – Managing System Processes

Worksheet – Cont.

Step 10. Find and Terminate a Process by User
The ps command can be used with the -u (user) option to find processes for a specific user. You may find
processes for users by their login name or UID number. A user can only terminate their processes, but
the superuser can terminate any process running on the system

Command Format: ps -u login-ID or UID

a. Open another C Shell and run the sleep 500 & command again.

b. Use the id command to determine your numeric user ID (UID) is. What is your numeric UID?

c. Use ps command with the –u option to find all processes running for your login ID (e.g.: userX) or
your numeric UID (e.g. 1004). What is the process ID for the sleep command?

d. Use a soft kill to terminate the sleep process. Use the ps –f command again. Is it Dead?

 Exit the C Shell.

Step 11. Terminate a Process by Command Name
The pkill command is specific to Solaris and works exactly like the pgrep command, except that it
terminates the process by matching process or processes command name (CMD) and sending a kill
signal.

Command Format: pkill CMD name

a. Open another C Shell and run the sleep 500 & command again.

b. Use the pkill command to terminate the sleep process by its command name. Use the ps –f

command again. Is it Dead?

c. Exit the C Shell.

Step 11 – Remove Files and Directories Created in this Lab
Remove all files and directories created in you home directory during this lab.

Step 12. Close the Terminal Window and Logout
Double click on the dash button in the upper left corner of the screen, then click the EXIT icon on the front
panel.

	Lab 13.3.2 – Managing System Processes
	Objectives:

	Lab 13.3.2 – Managing System Processes
	Worksheet
	Use the diagram of the sample Class File System directory tree to assist with this lab.
	Step 1. Log in to CDE
	Step 2. Access the Command Line
	
	Lab 13.3.2 – Managing System Processes

	Worksheet – Cont.

	ps Option
	ps -f
	
	Lab 13.3.2 – Managing System Processes

	Worksheet – Cont.
	
	
	The following table defines the Column Headings for the ps –ef Command

	Value
	
	Lab 13.3.2 – Managing System Processes

	Worksheet – Cont.
	Lab 13.3.2 – Managing System Processes

	Worksheet – Cont.
	Lab 13.3.2 – Managing System Processes

	Worksheet – Cont.
	Lab 13.3.2 – Managing System Processes

	Worksheet – Cont.
	
	
	
	
	
	Command Format:	ps -u login-ID or UID

	Step 11. Terminate a Process by Command Name
	Step 12. Close the Terminal Window and Logout

