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Abstract

Very few technologies illustrate the fast rate of technological innovations more than wireless sensor networks. Sensor networks offer a

virtual path capability to carry differentiated services efficiently across the wireless backbone. In this paper, we provide a new efficient

strategy for loop detection in Multi-protocol Label Switching (MPLS) for wireless networks—MPLS is a novel wireless networking topology

that can be used to provide differentiated service, traffic engineering and quality of service in wireless networks.

q 2004 Elsevier B.V. All rights reserved.
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1. Loops in wireless sensor networks and MPLS

The astronomical growth of the Internet communication

offers a serious challenge for network planners in terms of

heavy user traffic. The Internet core is continuously being

expanded to meet growing bandwidth demands. The growth

in bandwidth demand hinders core providers’ ability to add

infrastructure. Besides issues of resource constraints,

another concern is to significantly transport bytes over the

backbone to provide an efficient class of service for the

diverse requirements of the users, such as multimedia

applications. To manage the above addressed issue, there is

a need to either increase the bandwidth of existing circuits

or the capacity of the core routers apart from adding more

core routers. In general, network providers need to be

concerned about scalability issues, which can escalate the

ability to expand the network in all the dimensions. Multi-

protocol Label Switching (MPLS) based on Label switching

offers an ability to build highly scalable networks. The

greatest strength of MPLS is its coexistence with IP traffic

and its reuse of IP routing protocols. It encapsulates the

dexterity of routing with the performance of switching

providing relevance to networks with a pure IP architecture

as well as those with IP and ATM or combination of other

Layer 2 technologies.

MPLS [1,3,4,6] is rapidly emerging as an Internet

Engineering Task Force (IETF), standard intended to

enhance the speed, scalability and service providing

capabilities in the Internet. MPLS uses the technique of

packet forwarding based on labels, to enable the implemen-

tation of a simpler high-performance packet-forwarding

engine. This also de-couples packet forwarding from routing,

facilitating to provide varied routing services independent of

the packet forwarding paradigm. The evolution of this

technology in relation to other existing technologies is

tracked. In MPLS, a small fixed format label is encapsulated

within each data packet on its entry into the MPLS network.

In router networks, the label is a separate, 32-bit header. In

ATM networks, the label is placed into the Virtual Path

Identifier/Virtual Channel Identifier cell header [7–10].

In the MPLS core, Label switched Routers (LSRs) read

only the label, not the network layer packet header. Labels

have only local significance between two devices that are

involved in communication. At each hop across the

network, the routing of the data packet is based on the

value of the incoming label and eventually issued to an

outwards interface with a new label value. The path that data

traverses through a network is defined by the transition in

label values, as the label is swapped at each LSR. Since the

mapping between labels is constant at each LSR, the path is

determined by the initial label value. Such a path is called
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a Label Switched Path (LSP). At the ingress to an MPLS

network, each packet is examined to determine which LSP it

should use and hence what label to assign to it. Here, the IP

packets are classified based on the information carried in the

IP header of the packets and the local routing information

maintained by the LSR and a label is assigned to them. The

labels are then distributed to the neighboring LSRs, and

further associates and distributes till the egress LSR is

reached. Each LSR uses the label to forward the packet. At

each LSR the outgoing label replaces the incoming label and

the data packet is switched to the next LSR. The process of

switching the label is known as Label Swapping. The set of

all packets that are forwarded in the same way is known as a

Forwarding Equivalence Class (FEC). One or more FECs

may be mapped to a single LSP. Classification and filtering

of the information packet happen only once, at the ingress

edge. At the egress edge (output routers), labels are stripped

and packets are forwarded to their final destination.

Fig. 1 depicts two data flows from workstation 2 to

workstation 5. LSP is shown connecting LER1 and LER 2.

LER 1 is the ingress point into the MPLS network for data

from workstations 1–3, respectively. A packet enters the

ingress Edge LSR (LER 1) where it is processed to

determine which Layer 3 services it requires, such as QoS

and bandwidth management. Based on routing and policy

requirements, the Edge LSR selects and applies a label to

the packet header and forwards the packet. Thus, LER 1

determines the FEC for each packet, deduces the LSP to use

and adds a label to the packet. LER 1 then forwards the

packet on the appropriate interface for the LSP.

LSR 1 is an intermediate LSR in the MPLS network. It

simply takes each labeled packet it receives and reads the

label on each packet, replaces it with a new one as listed in

the table, uses the pairing {incoming interface, label value}

to decide the pairing {outgoing interface, label value} with

which to forward the packet and finally forwards the packet.

This action is repeated at all LSRs, till the time it reaches

LER 2.The incoming label and corresponding outgoing

labels are stored in a table, known as the forwarding table.

The swapping of label value and forwarding of the packet

can be performed in hardware. This allows MPLS networks

to be built on existing label switching hardware such as

ATM and Frame Relay. LER 2 acts as egress LSRs from the

MPLS network. These LSRs perform the same lookup as the

intermediate LSRs, but the {outgoing interface, label value}

pair marks the packet as exiting the LSP. The egress Edge

LSR (LER 2) strips the label, reads the packet header, and

forwards it to its final destination using layer 3 routing. So,

if LER 1 identifies all packets for ws-5 and appropriately

labels them they will be successfully forwarded through the

network. In MPLS, data transmission occurs on label-

switched paths (LSPs). LSPs are a sequence of labels at each

and every node along the path from the source to the

destination. LSPs are established either prior to data

transmission (control-driven) or upon detection of a certain

flow of data (data-driven). The labels, which are underlying

protocol-specific identifiers, are distributed using label

distribution protocol or RSVP or piggybacked on routing

protocols like border gateway protocol and OSPF. Each data

packet encapsulates and carries the labels during their

journey from source to destination. High-speed switching of

data is possible because the fixed-length labels are inserted

at the very beginning of the packet or cell and can be used by

hardware to switch packets quickly between links.

The issue of transient loops for large router networks is

currently addressed with utmost importance in MPLS

environment. The asynchronous behavior of LSRs and

Link failures in the chain of routers or hubs, sometimes

causes control path to jump into an oblivious loop behavior,

which results in an establishment of a LSP along the routing

loop, until it breaks of itself. Control packet needs to be

discarded once this behavior is detected or halted to be re-

routed from an alternate path. In MPLS scenario, since the

labels are distributed and the path for the data packets is set

Fig. 1. Workstations communicating under MPLS environment.
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beforehand, the loop formation occurs at the control path.

Discussion of these issues forms a large part of the

Framework document at MPLS Work Group. Ohba [2]

addressed the problem of Loop Detection and stressed the

need to eradicate loop formation in MPLS networks.

Pertinent information about forwarding data packets needs

to be established by each node, within a network. A network

performance can remarkably degrade due to existence of an

undesirable loop. The occurrence of loop formation in

MPLS is generally a less frequent phenomenon, but needs to

be dealt with a higher order of precision to avoid abrupt data

losses. The loop avoidance mechanism should not be too

complex to devour the router’s computational power by

gulping the router’s memory. Rather, it should be simple

and effective.

Currently two loop prevention algorithms have been

proposed to the IETF [2], which is path-vector/diffusion

algorithm and colored thread algorithm. The mechanism for

the loop detection and prevention establishes running a

thread hop-by-hop before the labels are distributed inside

a MPLS cloud. With the passage of the each next hop, a

distributed procedure is executed within the thread mech-

anism. The present work in this paper is a brief overview of

the existing loop prevention mechanism, besides using the

global variables, instead of IP addresses for comparative

smaller network cloud. The existing loop prevention scheme

is briefed which ensures loop detection and loop mitigation

Furthermore, a suggestion of assigning the labels, while

rewinding the thread has been given, which could

substantially reduce the LSP set up time and add to the

efficient thread mechanism.

2. Loop formation in MPLS

The loop formation within the nodes or routers is an

unfavorable phenomenon. With the flow of data packets,

each node needs to be updated and synchronized, according

to any of the existing routing algorithm, such as shortest

path between nodes or less congested path backbone. The

inconsistency in refreshing the routing information causes

loops to get formed and data packets to move within the

loop without reaching the destination. If loop formation is

not controlled, it leads to control packet looping, where

packets used for establishing a LSP continue to be

forwarded along the routing loop until the routing loop

breaks either by itself or explicitly. Fig. 2 shows a network

with multiple paths existing from a source (S) to a

destination (D) at any given time. We use a shortest Path

algorithm, considering the distance from LSR A (source) to

LSR I (destination). In MPLS, a control path is generated

before the actual data can be transmitted. In this control

path, the task of label assignment and label distribution is

accomplished. Considering the output of this algorithm, the

path A–B–E–F–I from LSR A to LSR I is the shortest one.

This particular structure can be extended to any generalized

case in the cluster of networks, as the weight between any

two nodes is the major factor in resolving the actual shortest

path. At this point, it should be noted that the data flow has

not yet taken place; it is just the label assignment, which

gets initiated. Theoretically, all the router nodes should get

refreshed simultaneously and in synchronization with real

time. Assuming that a link between LSR-F and LSR-I fails,

some data packets destined for LSR-I have already departed

from node A to F. Node F would have to send back the

control packets and has to reroute it from a different path,

which should be the shortest of all available paths. Now

LSR-F takes another short path: F–E–B–A–G–H–I.

However, LSR-B may still stick to the previous shortest

path, without knowing the failure between LSR-F and

LSR-I. In this case, LSR-B continues to send control packets

towards LSR-E and LSR-F. On the other hand, LSR E tends

to send the control packets towards LSR-B. Thus a loop gets

formed between LSR-B and LSR-E, resulting in a loss of the

control path. Though this loop occurrence is rare and

transient, it has to be removed for an efficient set-up of a

label path and later the data path, which results in an

efficient flow of data. Furthermore, without any loop

avoidance algorithm installed, it should be noted that as

the loop gets larger and more complex, it takes more time

for the system to trace it manually and to come out of the

loop. Fig. 3 reveals a complex loop formation for the

previous network, which has the shortest control path from

LSR-A (S) to LSR-I (D): A–B–E–F–I.

If a link between LSR-F and LSR-I fails, some of the data

packets destined for LSR-I have already departed from node

A to F. In this case, the LSR’s A, B, E and F have been

refreshed and understand the failure of link F-I.

The rerouting takes place from F–E–B–A–G–H–I.

Fig. 2. Simple loop formation.

Fig. 3. Complex loop formation.
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Furthermore, we assume that LSR G is not refreshed at this

time, and in its information database {LSR-G’s}, the most

optimal path from G–I is G–E–F–I. As soon as the

rerouting takes place, the control path follows F–E–B–A–

G and towards E–F–I, which results in the formation of a

complex loop G–E–B–A.

2.1. Colored thread algorithm

RFC 3063 [5] addressing Colored Thread algorithm is

categorized as an experimental standard and currently is

the part of research and experimental effort. In this

section, a mechanism for generating a thread is explained

and the basic thread actions are explained [5,6]. The

examples showing the launch and the end of threads have

been explained in the following subsections. The import-

ance of thread mechanism is addressed and its relevance

to the current loop prevention scheme is discussed in

detail.

2.2. Thread attributes

A thread is a sequence of messages used to set up an

LSP, in the ‘ordered downstream-on-demand’ (ingress-

initiated ordered control) style. There are three attributes

related to threads. They may be encoded into a single

thread object as.

2.3. Thread color

The sole purpose of assigning a color to respective

threads is to assign a unique entity to the path control

message. Since the color has to be unique in time and space,

thus ensuring the interface between the LSRs to be unique.

When the thread is allowed to pass through LSRs, these

unique colors will be assigned to each interface and the

results be stored and maintained by the nodes. It should be

noted that a thread be called transparent, when all the fields

in it, are zeroes and is reserved for stalling of thread.

COLOR ¼ IP ADDRESS þ UNIQUE IDENTIFIER

A 16 bit unique number is selected on the random basis,

and is allowed to be incremented by a fixed interval, thus by

enabling color to be unique and ensuring that while working

with independent nodes, the same color does not get

repeated. In this method, the initial event identifier is either

selected at random or assigned to be larger than the largest

event identifier used on the previous system incarnation.

2.4. Thread TTL

A Time to Live (TTL) field is added to a thread whenever

a node creates a path control message This TTL field,

decreases with one bit of each hop. To prevent the

unnecessary looping actions in a network, the message

should not be forwarded when, TTL reaches 0. The TTL is

set by the sender to the maximum time the thread is allowed

to be in the network. If the thread is in the Internet system

longer than the TTL, then the thread must be destroyed. The

field must be decremented by one. The time is measured in

units of seconds (i.e. the value one means 1 s). Thus, the

maximum TTL is 255 s or 4.25 min (Fig. 4).

2.5. Thread hop count

Thread hop count is the field, which starts from a

minimum value (say 1), from the ingress node, and keeps on

increasing uniformly (by one), with each hop change When

the ingress node assigns a hop count of one to its

downstream link, it stores this value and jump to the next

LSR, and it happens for all the LSRs in the network. When a

loop is found, a special hop count value ¼ (0XFF) is

assigned, which should be larger than 256 (corresponding

decrementing TTL value). When the same colored thread is

received on multiple incoming links, or the same thread

Fig. 4. Hop count and time to live.
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color was assigned to the node again, it is said that the thread

forms a loop. A network manager can judge whether it

assigned the received thread color by checking the IP

address part of the received thread color.3.5. A thread is said

to form a loop when the thread of same color is received on

an incoming link of the router. A thread creator can detect it,

by checking the IP address field of the LSR. The basic

thread actions to prevent LSP loops include ‘thread

extending’, ‘thread rewinding’, ‘thread withdrawing’,

‘thread merging’, and ‘thread stalling’.

2.6. Thread extending

Extension of thread plays a pivotal role in color thread

algorithm [2] Before setting up a LSP and assigning the

respective labels to each LSR, a thread, needs to be

extended from the source node to the destination node. The

thread creation starts from the ingress node and ends at the

egress node. Each respective node from source until

destination creates a thread, assigns color and extends it

downstream. The color and the hop count of each thread,

becomes the color and hop count of the outgoing link. In

other words, for the ingress node, the hop count is set to be

one; the TTL field is set to be its maximum value, 256. The

color assigned to the thread is the concatenation of the

ingress node’s IP address and a unique identifier field. It

should be noted here with utmost importance that every time

a node receives a thread and extends it downstream, it may

or may not change color of the thread. While extending a

thread, the node will change the color of thread, if the next

node is a new node and has not been assigned with any

color. This thread extends with the changing color. Color of

thread will not be changed if the next hop has already been

assigned a color in the network for a particular LSP set up

(Fig. 5).

2.7. Thread merging

Thread merging is merging of two or more threads to a

single outgoing link When LSR ‘L’ receives a colored

thread, and the outgoing thread from LSR ‘L’ is colored,

merging occurs. In this case LSR’L’ merges the incoming

thread, thus ensuring no message is send downstream.

Merging also takes place, if a link has more number of

incoming threads.

For a thread to be merged on LSR’L’, the following

conditions should hold true: (a) LSR’L’ should not be an

egress node, (b) outgoing Link of LSR’L’ should be colored,

(c) the hop count for outgoing thread for LSR L should be at

least one greater than the hop count of the incoming thread

to LSR L, and (d) incoming thread to Link ’L’ should be

colored.

2.8. Thread stalling, rewinding and withdrawing

When a colored thread is received, if the thread forms a

loop, the received thread color and hop count are stored on

the receiving link without being extended This is the special

case of thread merging applied only for threads forming a

loop and referred to as the ‘thread stalling’, and the

incoming link storing the stalled thread is called

‘stalled incoming link’. A distinction is made between

stalled incoming links and unstalled incoming links.

When a loop-free condition is satisfied and the thread

reaches the desired node (destination), an acknowledgement

needs to be passed towards the node, where the thread was

initially generated. It follows exactly the same path extend

the thread in reverse direction and thus it is called rewinding

the extended thread. Fig. 3 shows an example of thread

rewinding (Fig. 6).

While rewinding, all the parameters are set to be null. In

other words, the color of all the threads is made transparent.

Fig. 5. Thread extending.
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Furthermore it ensures that the network is ready to be

assigned with labels to set up a loop free LSP.

It is possible for a node to tear down a path. A node tears

down the portion of the path downstream of itself by

sending teardown messages to its next hop. This process is

known as the ‘thread withdrawing’.

2.9. Loop free condition

The loop-free condition in an MPLS network is: (a) a

colored thread is received by the egress node, OR (b) all of

the following conditions hold: A colored thread is received

by the destination node, Destination node’s outgoing link is

transparent, AND Destination node’s outgoing link hop

count is at least one greater than the hop count of the newly

received thread.

When a node rewinds a thread, which was received on a

particular link, it changes the color of that link to

transparent. If there is a link from node M to node N, and

M has extended a colored thread to N over that link, and M

determines (by receiving a message from N) that N has

rewound that thread, and then M sets the color of its

outgoing link to transparent. M then continues rewinding

the thread, and in addition, rewinds any other incoming

thread, which had been merged with the thread being

rewound, including stalled threads. Each node can start label

switching after the thread colors in all incoming and

outgoing links becomes transparent. Note that transparent

threads are threads which have already been rewound;

hence, there is no such thing as rewinding a transparent

thread.

3. Label space

Uniqueness of label is a fuzzy issue A single VPN label

may be carried across an entire network, whereas the local

label works as a physical next-hop marker. If a standard IP

based router can decide internally, where a packet needs to

be sent in order to reach a destination, then that router only

has to have one address for every router to reach it.

Per interface, labels are unique per interface, which means

each interface of an LSR has its own label space. Thus,

different interfaces of an LSR can use exactly the same

label for different bindings. Labels in the interface label

space are unique per interface; the same labels can exist in

another interface label space while platform labels are

unique over the entire router. Platform label space is also

referred to as ’global allocation pool’. Most implemen-

tations use interface label space because label assignment is

a local thing and it does not matter if the same labels exist in

different interface label spaces. Platform labels become

important in fast reroute link protection where the labels

need to be unique on the entire platform (because the label

pushed over the back up link needs to be different from the

label pushed on the primary link). Labels are always

between 1 and 1048575.

4. Applicability of algorithm

The Extended Colored threads Algorithm is applicable

for smaller networks such as Intranet subsystems for a huge

organization. Instead of IP addresses we used in the colored

thread algorithm, we can use global unique variables. RFC

3036 [6] suggests, that when there is no loop detected in a

network, the threads are rewound to the point of creation

and as they are rewound, the labels are assigned. This

proposal goes along with using less memory space within

router. By using the unique label, we are just using 220 bits

for generating color, instead of 232 bits for IP address. With

this all, the known routers within the Intranet have already

been assigned a global variable, and since labels are already

assigned after loop detection, there is no need to assign it

after the algorithm. This clearly means that if the number ðnÞ

of routers is in use for setting up the LSP, then we are

reducing the total memory usage of the LSR’s by the factor

of ‘n’ thus substantially improving the efficiency of Intranet

structure. The algorithm has the following logical steps: (1)

per Platform Labels are assigned within the network to each

router; (2) each router knows, about each and every router

within the network; (3) a shortest path or the desired label

Fig. 6. Thread rewinding.
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path is generated; (4) threads are extended; (5) colors are

assigned (color of thread will be unique within a particular

cloud); (6) loop free condition is achieved; (7) when thread

reaches the destination, it is rewound and While rewinding,

Label flag is made ‘high’ (Label flag ‘high’ indicates that

Label has been assigned, while the thread is rewound); and

(8) LSP is set up.

The proposed algorithm performs an efficient way to

reduce the memory usage of an individual router by

handling fewer bits. Furthermore, the time taken to assign

labels for setting up the LSP is saved by assigning labels,

while rewinding threads. This work can be extended in

several directions. First, this algorithm selects a single

shortest path for the router to initiate the thread. Extensions

to this algorithm may take into account extensive node

failures, multiple links or multiple node failure, or the

computation of several backup paths to improve the

pliability of the routing path. Second, Implementation of

this algorithm on an FPGA chip, can be accomplished and

then have a sequence selected for the algorithm to use on

requirement basis, e.g. colored thread algorithm or extended

color thread algorithm. In addition, it needs to be

determined, if the techniques developed for this algorithm

for MPLS network gets its place in the Internet besides

Intranet with as less memory usage as possible finally, the

main extension to this work includes an implementation in

commercial routers and deployment in large-scale networks

for MPLS routing and traffic engineering.
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