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SUMMARY

Satellite systems have the advantage of global coverage and offer a solution for

providing broadband access to end users. Local terrestrial networks and terminals can

be connected to the rest of the world over Low Earth Orbit (LEO) satellite networks

simply by installing small satellite interfaces. With these properties, satellite systems

play a crucial role in the global Internet to support real-time and non-real-time appli-

cations. Routing in satellite networks, and the integration of satellite networks and

the terrestrial Internet are the key issues to support these services.

Furthermore, the developments in space technologies enable the realization of

deep-space missions such as Mars exploration. The Interplanetary Internet is envi-

sioned to provide communication services for scientific data delivery and navigation

services for the explorer spacecrafts and orbiters of future deep-space missions. The

unique characteristics posed by deep-space communications call for different research

approaches from those in terrestrial networks.

The objective of this research is to develop advanced architectures and efficient

routing protocols for satellite and space networks to support applications with dif-

ferent traffic types and heterogeneous quality-of-service (QoS) requirements. Specifi-

cally, a new QoS-based routing algorithm (QRA) is proposed as a connection-oriented

routing scheme to support real-time multimedia applications in satellite networks.

Next, the satellite grouping and routing protocol (SGRP) is presented as a unicast

routing protocol in a two-layer satellite IP network architecture. The border gateway

protocol - satellite version (BGP-S) is then proposed as a unified routing protocol to

accomplish the integration of the terrestrial and satellite IP networks at the network

xv



layer. Finally, a new routing framework, called the space backbone routing (SBR),

is introduced for routing through different autonomous regions in the Interplanetary

Internet. SBR provides a self-contained and scalable solution to support different

traffic types through the Interplanetary Internet.

xvi



CHAPTER I

INTRODUCTION

1.1 Satellite Networks

Satellite networks are regarded as important parts of future communications systems.

Especially for the next-generation system that promises global coverage, satellite

networks are integral parts of the global network structure because of the following

reasons [14]:

• Satellite services can be provided over a wide geographical area, including re-

mote, rural, urban, and inaccessible areas.

• Satellite communication systems have a global reach with very flexible bandwidth-

on-demand capabilities.

• Alternative channels can be provided for connections that have unpredictable

bandwidth demands and traffic characteristics to achieve maximum resource

utilization.

• New users can easily be added to the system by simply installing satellite in-

terfaces at customer premises. As a result, network expansion will be a simple

task.

• Satellite can act as a safety valve for terrestrial networks. Fiber failure or

network congestion problems can be recovered easily by routing traffic through

a satellite channel.

Compared to Geostationary Earth Orbit (GEO) and Medium Earth Orbit (MEO)

satellites, Low Earth Orbit (LEO) satellites have shorter round trip delays and lower
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transmission power requirements. Hence, local terrestrial networks and terminals can

be connected to the rest of the world over satellite networks simply by installing small

satellite interfaces. With these properties, satellite systems play a crucial role in the

global Internet to support both real-time and non-real-time applications. Routing in

satellite networks, and the integration of satellite networks and the terrestrial Internet

are the key issues to support these services.

Real-time and non-real-time applications are expected to be supported by satellite

networks using connection-oriented and connectionless routing protocols, respectively.

Real-time applications impose strict delay bounds and are sensitive to delay variations

and loss. The connection-oriented routing protocols assume ATM-like switches in the

satellites. Once the path between two satellites is determined and the switches on the

path are configured, the packets belonging to the same flow follow this pre-determined

path. A certain level of quality-of-service (QoS) is provided to the connection. Differ-

ent connections between the same source-destination pair can follow different paths.

With the explosive growth of the Internet, there is an initiative in the commercial

and also in the military world to push the IP technology also to satellite networks.

In other words, the switches on the satellite could be IP switches. These IP switches

are connected to each other as well as to ground stations. Non-real-time applications

are charaterized by relaxed delay bounds. They are also insensitive to the variations

in delay. Thus, connectionless routing schemes can be used to support this type of

traffic. In connectionless schemes, packets are routed in the network individually

without considering which flows they belong to.

The satellite routing problems, both connection-oriented and connetionless rout-

ing, become especially interesting when the changing distances between satellites in

different orbits as well as the movement of the satellites are considered, which cause

a constant change in the network topology. The existing solutions developed for fixed

networks cannot be applied to satellite networks because they cannot handle the
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frequent topological changes of the LEO satellite systems. On the other hand, the

solutions developed for terrestrial mobile ad hoc networks incur high protocol over-

head since they do not consider nodes with predictive movement patterns. New and

efficient routing protocols for satellite networks are necessary to handle the dynamic

topology and utilize wireless resources in the satellite networks to their fullest ex-

tent. These protocols should also be inter-operable with the methods used in current

terrestrial communication networks.

1.2 Interplanetary Internet

The developments in space technologies enable the realization of deep space scientific

missions such as Mars exploration. These missions produce significant amounts of

scientific data to be delivered to the Earth. In addition, these missions require au-

tonomous space data delivery at high data rates, security of operations, and seamless

inter-operability between in-space entities.

For successful transfer of scientific data and reliable navigational communica-

tions, NASA enterprises have outlined significant challenges for development of next-

generation space network architectures. The next step in the design and development

of deep space networks is expected to be the Internet of the deep space planetary

networks and defined as the Interplanetary (IPN) Internet [63].

The IPN Internet is envisioned to provide communication services for scientific

data delivery and navigation services for the explorer spacecrafts and orbiters in

future deep space missions [18]. Many of these future planetary missions, which will

be performed by the international space organizations such as NASA and European

Space Agency (ESA), have already been scheduled for the next decade [2]. An example

IPN Internet architecture is shown in Figure 1 and helps to build a general space

network architecture that combines differently challenged parts. It has the following

architecture elements [12]:
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• IPN Backbone Network: It provides a common infrastructure for communi-

cations among the Earth, outer-space planets, satellites, and intermediate relay

stations.

• Planetary Networks: The expanded view of the proposed infrastructure of

the planetary network in Figure 1 is illustrated in Figure 2, which is composed

of planetary satellite network and planetary surface network. This architecture

can be implemented at any outer-space planet, providing interconnection and

cooperation among the satellites and surface elements on a planet.

– Planetary Satellite Network: It is composed of satellites that may lie

in multiple layers [21] and provides the following services [34]: intermediary
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caching and relay service between Earth and the planet, relay service be-

tween the in-situ mission elements, and location management of planetary

surface networks.

– Planetary Surface Network: It provides the communication links be-

tween high-power surface elements, such as rovers and landers, that have

the capability to connect with satellites. Moreover, the planetary surface

network includes surface elements that cannot communicate with satel-

lites directly. These elements, e.g., sensor nodes and balloons, are often

organized in clusters and spread out in an ad hoc manner.

It is clear that the IPN Internet is expected to extend the current space com-

munications capabilities to a point where the boundaries between the terrestrial and

space communications become transparent. The experience obtained, thus far, from

the space missions and NASA’s Deep Space Network (DSN) [8] help to understand

the unique challenges posed by the deep space communication environments. How-

ever, there exist significantly challenging and unique characteristics of the deep space

networking paradigm that still need to be addressed for the objective of IPN Internet

as follows:

• Extremely long and variable propagation delays.

• Asymmetrical forward and reverse link capacities.

• High link error rates for radio-frequency (RF) communication channels.

• Intermittent link connectivity.

• Lack of fixed communication infrastructure.

• Effects of planetary distances on the signal strength and the protocol design.

• Significant power, mass, size, and cost constraints for communication hardware

and protocol design.
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• Backward compatibility requirement due to high cost involved in deployment and

launching processes.

These characteristics lead to different research challenges and hence necessitate

different approaches and protocol designs at each of the networking layers for the IPN

Internet. Although some of these challenges are also encountered in the terrestrial

wireless networking domain, most of them are unique to deep space environment

and they further amplify the effects of those other similar factors. Consequently,

the realization of the IPN Internet depends on how effectively these challenges are

addressed.

1.3 Research Objectives and Solutions

In this research, new and efficient routing protocols are proposed to address the

challenges in satellite networks and Interplanetary Internet, respectively. Specifically,

the following four areas are investigated under this research:

1. Connection-orirented routing in multimedia satellite networks: Real-

time applications have strict requirements on bandwidth and delay variations.

Satellite link handover increases delay jitter and signaling overhead as well as

the termination probability of ongoing connections. To satisfy the QoS require-

ments of multimedia applications, satellite routing protocols should consider

link handovers and minimize their effect on active connections. The QoS-based

routing algorithm (QRA) is proposed as a connection-oriented routing scheme

to support QoS requirements of multimedia services in LEO satellite networks.

It aims to reduce the number of rerouting attempts due to satellite handover,

thus reducing delay jitter while guaranteeing bandwidth requirements.

2. Connectionless routing in hierarchical satellite IP networks: Routing in

satellite IP networks is related to the creation and maintenance of routing tables.
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Since the satellite network topology is dynamic, routing tables must reflect the

most up-to-date network topology. Considering the scarcity of the wireless

resources and the power limitation of the satellites, routing table calculations

and maintenance must be performed at minimal costs. The satellite grouping

and routing protocol (SGRP) is proposed for hierarchical LEO/MEO satellite

IP networks. The main idea of SGRP is to transmit packets in minimum-

delay path and distribute the routing table calculation of the LEO satellites to

multiple MEO satellites. Recovery mechanisms are also developed to reduce

the effect of satellite failures and link congestion.

3. Integration of satellite IP networks and the terrestrial Internet: The

satellite networks are envisioned as a part of the next-generation Internet. The

integration of terrestrial and satellite networks requires development of new

schemes enabling the seamless operation of terrestrial and satellite IP networks.

The protocols designed to discover and propagate paths in the terrestrial net-

works do not consider subnetworks with very long propagation delays. The

border gateway protocol - satellite version (BGP-S) is proposed as an efficient

and automated method of discovering and advertising paths that pass through

satellite networks. BGP-S is designed to work in only one terrestrial gateway

in every autonomous system and enables the forwarding of discovered paths in

the Internet using the BGP-4 protocol.

4. Routing in the Interplanetary Internet: The space backbone routing (SBR)

is proposed as a single framework for advanced routing functions that can satisfy

the needs of various applications in the IPN Internet. SBR is able to forward

messages in the IPN backbone network in spite of its time-varying and unre-

liable nature. SBR has two integral parts: SBR-external and SBR-interior.

SBR-external addresses the delivery of remote control messages and scientific
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data through the IPN Internet. The location-predicated directional broadcast

(LPDB) is proposed for the reliable delivery of remote control messages and au-

tomatic data reports. For controlled data delivery that contains large amounts

of scientific data and requires high reliability, a combination of reactive and

proactive approaches is utilized in our proposed receiver-initiated on-demand

routing (RIOR). SBR-interior is executed within an autonomous region (AR).

It exchanges inter-AR routing information among backbone nodes within an

AR and schedules inter-AR message transmissions. We give the problem de-

finition of contact allocation and traffic dispatching, which are two important

functionalities of SBR-interior. As a first attempt, the longest queues (LQ) pol-

icy for the contact allocation and the minimum waiting (MW) policy for traffic

dispatching are proposed.

1.4 Thesis Outline

The objective of this research is to develop advanced architectures and efficient routing

protocols for satellite and space networks to support applications with different traffic

types and heterogeneous QoS requirements. Chapter 2 starts with the fundamentals

of satellite networks. Classification of satellites and elements of satellite networks

are introduced in this chapter. Chapter 3 focuses on the connection-oriented routing

protocol in multimedia satellite networks. A new QoS-based routing algorithm (QRA)

is proposed to support real-time applications in multimedia satellite networks. Next,

routing in satellite IP networks is addressed in Chapter 4. The satellite grouping

and routing protocol (SGRP) is proposed in this chapter to support data traffic in

hierarchical LEO/MEO satellite networks. In Chapter 5, the integration of satellite IP

networks and the terrestrial Internet is investigated through a unified routing protocol

called border gateway protocol - satellite version (BGP-S). A novel routing framework

for the IPN Internet is introduced in Chapter 6. It is based on the hierarchical
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architecture and specifically addresses the challenges of the IPN Internet. Within this

framework, protocols are proposed for the delivery of different types of traffic through

the IPN Internet. Finally, Chapter 7 summarizes the the research contributions and

identifies several future research directions.
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CHAPTER II

SATELLITE NETWORK FUNDAMENTALS

A satellite system consists of a space segment and a ground segment. The ground

segment contains gateway stations and control centers. The control centers handle

overall network resource management, satellite operation, and orbiting control. The

gateway stations act as network interfaces between various external networks and

the satellite network. They also perform protocol conversion and address translation.

The space segment is composed of satellites in certain constellations. In this chapter,

satellite network architecture and some basic terminologies are introduced. In Sec-

tion 2.1, satellites are classified according to their orbits. Section 2.2 introduces the

elements and basic terminologies in satellite networks.

2.1 Classification of Satellites

Satellites can be classified according to the types of their orbits. Figure 3 shows the

relative positions of different satellite orbit types. Most proposed satellite commu-

nication systems use circular orbits, where the Earth is located in the center of the

circle. A circular orbit guarantees that satellites move at constant speeds and the

time interval that a satellite passes overhead remains constant. Satellites in circular

orbits can be further classified as Geosynchronous Earth Orbit (GEO), Medium Earth

Orbit (MEO), or Low Earth Orbit (LEO) satellites according to their altitudes.

Geosynchronous Earth Orbit (GEO) satellites are located 35, 786km above the

Equator. The angular velocity of a satellite in this orbit matches the angular rate

of rotation of the Earth. This makes the satellite appear stationary when observed

from the surface of the Earth. This useful feature has resulted in the orbit becoming

10



Van Allen Belts

Elliptical Orbit

GEO

LEO

MEO

EARTH

Figure 3: Satellite Orbit Types.

extremely popular. The angular separation between two adjacent GEO satellites is

at the limit of terrestrial antenna discrimination and can be as low as 1.5o [73].

GEO satellites can serve very large areas. Much of the Earth can be covered with

a minimum of three GEO satellites. Propagation delay between an Earth station and

a GEO satellite varies with the difference in position in longitude and latitude, but is

around 125ms, or around 250ms between ground stations. This leads to the widely-

quoted half-second round-trip delay for communications via GEO satellite. GEO

satellites are usually used as single-hop networks with or without on-board switching

capabilities. The VSAT network [33] is an example for communication network using

GEO satellites.

Medium Earth Orbit (MEO) satellites locate at altitudes of between 9, 000km and

11, 000km, between the inner and outer Van Allen radiation belts. MEO satellites

appear in motion when observed from the Earth, with visibility period of tens of
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minutes. The average round-trip delay for MEO satellites ranges between 110−130ms

[14]. ICO system [37] is an example of MEO satellite networks.

Low Earth Orbit (LEO) satellites lie beyond the upper atmosphere but below the

peaks of the inner Van Allen radiation belt. They have lower altitudes than the MEO

satellites, typically between 500km and 2000km. A large number of LEO satellites

are required to provide simultaneous global coverage. The actual number of satellites

used depends on the coverage required and the minimum elevation angle desired for

communication. With a large number of satellites and their resulting small footprint

areas and small spotbeam coverage areas, large amounts of frequency reuse become

possible across the Earth, providing large system capacity.

LEO satellites move rapidly relative to the surface of the Earth, with a speed at

over 25, 000km/hour. This implies that the visibility of a satellite lasts for only a

few minutes. Propagation delay between ground and a LEO satellite is often under

15ms. Because of low delay characteristics as well as low power requirements for end-

stations, LEO satellites are more attractive for real-time communications. Examples

of LEO satellite networks include Iridium [49], Teledesic [61], and Globalstar [72].

Satellites with elliptical orbits have varying distances from the Earth as well as

variable speeds. Coverage of communication services from elliptical orbits is generally

only provided when the satellite is moving very slowly relative to the ground while

at apogee. Useful elliptical orbits are inclined at 63.4o to the Equator, so that orbital

motion near apogee appears to be stationary with respect to the Earth’s surface. High

inclination and high altitude enable coverage of high latitudes. Satellite constellations

with elliptical orbits are usually used to serve over specific areas in specific periods

of time when the communications demand is high. The most famous examples of

satellite constellations with elliptical orbits are Molniya and Tundra [51].
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2.2 Elements of Satellite Networks

This thesis focuses on the routing problems in satellite networks where the satel-

lites are moving in non-GEO circular orbits. These networks usually have two basic

types of constellation geometry: “Walker star” and “Walker delta” constellations [50].

Walker star constellation consists of orbital planes inclined at a constant angle of near

90o. Any point on the Earth’s surface sees overhead satellites moving at regular in-

tervals either from north to south (descending) or from south to north (ascending).

Walker delta constellation consists of orbital planes inclined at a constant angle of

less than 90o. Ascending and descending planes of satellites and their coverage con-

tinuously overlap, rather than being separated as in the Walker star constellation.

In Figure 4, we use a satellite system in Walker star constellation to illustrate

some basic elements of a satellite network. The satellite network is composed of N

separate orbits (planes), each with M satellites. The planes are separated from each

other with the same angular distance of 360o

2×N
. They cross each other only over the

North and South Poles. The satellites in a plane are separated from each other with

an angular distance of 360o

M
. Since the planes are circular, the radii of the satellites in

the same plane are the same at all times and so are the distances from each other.

The footprint or the coverage area of a single satellite is defined as the area on

the Earth’s surface where the satellite can be seen under an elevation angle equal

to or greater than the minimum elevation angle of the system. The footprint of a

GEO satellite does not change over time whereas the footprints of non-GEO satellites

move with respect to the Earth. The maximum time a single satellite covers a fixed

point on the Earth’s surface ranges between 8 − 11 minutes for LEO satellites and

between 30 − 50 minutes for MEO satellites. The footprint of a satellite is usually

divided into cells. The cells can move in parallel to the movement of the satellites,

i.e., they can “sweep” the Earth’s surface. Alternatively, the cells can be Earth-fixed,

i.e., the cell boundaries do not change as the satellite moves. The spot beam serving
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Figure 4: An Example Satellite Network in Walker Star Constellation.

a cell, however, is switched as the satellite moves over the coverage area. Satellites in

a LEO constellation communicate with the ground stations (i.e., mobile terminals or

gateways) over user data links (UDLs).

A satellite communicates with other satellites via inter-satellite links (ISLs). Each

satellite has several neighboring satellites. The links between satellites in the same

plane are called intra-plane ISLs. The links between satellites in different planes

are called inter-plane ISLs. On intra- and inter-plane ISLs, the communication is

bidirectional. The intra-plane ISLs are maintained at all times. All satellites move

in the same circular direction within the same plane. The propagation delays on the

intra-plane ISLs are always fixed. For inter-plane ISLs, however, the propagation

delays are highly variable. For example, the propagation delays become longest over

the Equator and get smaller near the polar regions. The inter-plane ISLs are operated

only outside the polar regions. When the satellites move towards the polar regions,

the inter-plane ISLs become shorter. When two satellites in adjacent planes cross the

poles, they switch their positions. In order to allow this switching, the inter-plane
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ISLs are shut down in polar regions and re-established outside of the polar regions.

The ISLs across the seam, i.e., the boundary between the counter-rotating planes,

have to be turned off very frequently.

Satellite networks may be composed of satellites moving at different altitudes. In

these hybrid satellite networks, it is also possible that communications occur between

the satellites at different orbits over bidirectional inter-orbital links (IOLs).
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CHAPTER III

QOS-BASED ROUTING ALGORITHM IN

MULTIMEDIA SATELLITE NETWORKS

3.1 Motivation and Related Work

In recent years there has been a rapid growth of multimedia services in Internet.

As integral parts of the global communication infrastructure, satellite networks will

be faced with an increasing demand on real-time multimedia applications. Satellite

systems can provide global coverage and constantly sustain high bandwidth services.

Non-GEO satellites have propagation delays comparative to terrestrial networks. The

on-board processing capability and inter-satellite links (ISLs) introduced in many

LEO satellite systems help to build a robust communication framework. However,

satellite networks have different characteristics from terrestrial networks. The con-

stant movement of satellites causes network connectivity and satellite link delays

varying. When satellite links are switched off, handover is required to maintain the

active connections. There are two types of handover in satellite networks [15]:

• Inter-satellite handover: When the sender or receiver leaves the coverage area

of the initial satellite, the entire path should be recreated. The occurrence of

inter-satellite handover depends on the time that the ground station remains in

a satellite coverage area.

• ISL handover: Because of satellite movement, some ISLs in the network are

not always available. For example, when a satellite enters the polar regions, its

adjacent inter-plane ISLs are turned off. Similarly, inter-plane ISLs through the

seams have very short lifetime. Consequently, if a path contains such a link, it

must be rerouted when the link is turned off. The timing of link shutdowns can
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be calculated, since the link termination only depends on the movement of the

satellites. Therefore, if the connection duration is known, the occurence of ISL

handover can be predicted.

Link handover causes delay jitter and signaling overhead. Moreover, because of the

deficiency of network resources and the delay caused by rerouting, handover increases

the forced termination probability of ongoing connections, which is less desirable than

blocking a new connection request. For real-time multimedia applications that impose

strict delay bounds and are sensitive to delay variations. connection-oriented routing

protocols through a satellite network should consider link handover and minimize its

effect on each individual connection.

A dynamic routing concept is introduced for ATM-based satellite networks in

[69]. The dynamic network topology is considered a periodically repeated series of

K topology snapshots. Using a sliding window, a set of k-ordered path sequences

between satellite nodes is selected in each topology snapshot with an aim to minimize

handover delay jitter and reduce link handover rate. However, the optimization is

not done between end users and the inter-satellite handovers are not considered.

The predictive routing protocol proposed in [35] provides guaranteed QoS in satellite

networks. It exploits the deterministic nature of the LEO satellite topology to predict

traffic load on the ISLs up to a short time in the future. k-ordered paths for a

particular connection are computed for each staggered cell to maximize the minimum

residual bandwidth. The optimal path is picked from the path set to reduce the link

changes as well as to balance the user traffic. This protocol does not consider inter-

satellite handovers and the computation overhead grows dramatically as k increases.

The probabilistic routing protocol [64] utilizes the LEO satellite network dynamics

and call statistics, and tries to reduce the number of rerouting attempts resulting

from link handover. An ISL is removed from route computation if it is expected to

experience an ISL handover with a probability higher than a target probability (p)
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during the route establishment phase of a new call. The computation of the ISL

handover probability is deduced from the hexagon effective footprints of satellites.

In this chapter, a new QoS-based routing algorithm (QRA) is proposed to reduce

both the inter-satellite handover and the ISL handover probabilities. QRA was first

described in [24]. It is based on a general satellite constellation model in which

satellite footprints may be overlapped. The predictability of link handover is utilized

while computing the ISL path through the satellite constellation. Different from

the probabilistic routing protocol [64], QRA does not remove the links with a large

handover probability thus to avoid high new call blocking probability. A modified

version of the footprint handover rerouting protocol (FHRP) [65] is used for rerouting

when link handover occurs.

3.2 Application Scenario

The satellite network architecture considered in this research is shown in Figure 5. It

consists of satellites orbiting the Earth and ground stations on the Earth’s surface.

Satellites may lie within one layer or in multiple layers such as a combination of LEO

and MEO layers. Ground stations may be fixed, performing as gateways between the

satellite and terrestrial networks. Mobile ground stations are handheld terminals that

move around with users. It is assumed that the movement of mobile ground stations

can be ignored compared to the fast movement of satellites.

The satellites are connected through ISLs. As explained in Chapter 2, there are

two types of ISLs: intra-plane ISLs and inter-plane ISLs. Intra-plane ISLs connect

satellites within the same plane and are maintained permanently since their relative

positions are fixed. Inter-plane ISLs are between satellites in different planes. They

are operated only outside the polar regions and need to be switched off temporar-

ily with the change of distance and viewing angle between them. The ISLs enable

the routing of messages in satellite network without requiring terrestrial resources.
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Satellites communicate with the ground stations via UDLs. Satellite footprints can

be overlapped, thus a ground station can be connected to several satellites.

Since the satellite constellation is well-planned before deployment and does not

change during operation, typically the location of any satellite (i.e., altitude, latitude,

and longitude) at any time can be calculated according to the trajectory information.

The location information of mobile ground stations (i.e., latitude and longitude) can

be obtained using Global Positioning System (GPS) technology and reported to the

satellites. The location information of fixed and mobile ground stations is stored in

databases either centrally or in a distributed manner, and can be retrieved whenever

needed. The satellites periodically exchange their local information, which includes

the available bandwidth on outgoing links and location information of ground stations

within their footprints.

Real-time multimedia applications impose strict delay bounds and are sensitive

to delay variations. For a network to deliver QoS guarantees, it must reserve and

control resources accordingly. The changing connectivity pattern of satellites calls for

link handover to maintain active connections. However, link handover increases delay

jitter as well as signaling overhead. Excessive handovers also increase the blocking

probability of ongoing connections.
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The goal of our new QoS-based routing algorithm (QRA) is to reduce the delay

jitter while guaranteeing the bandwidth requirements. It incorporates the location

information of satellites and ground stations to predict the lifetime of satellite links,

trying to build stable paths for connection requests and reduce the probability of link

handovers during connection lifetime. The routing problem considered in this research

is as follows: The connection establishment requests arrive on-line; A connection is

established by allocating the required bandwidth along some path between the source

and the destination nodes; The allocated bandwidth is released when the connection

terminates.

It is assumed that the duration of a connection is exponentially distributed with

known mean holding time. When a ground station issues a connection request, it

should specify the following parameters:

1. Location of source s: It is known to the ground station by GPS service;

2. ID of destination ground station d: It is used to retrieve the location of d in the

location databases;

3. Expected connection duration 1/µ: It is specified through the distribution prob-

ability function;

4. Requested bandwidth bw: For constant bit rate (CBR) type applications, the

requested bandwidth is fixed through the connection duration. For variable

bit rate (VBR) type applications, the requested bandwidth can be described

by maximum bandwidth and sustained bandwidth, or calculated using a token

bucket model and the requested delay bound [35].

3.3 QRA: QoS-based Routing Algorithm

In this section, the detailed design of our new QRA is presented. It includes the

following three parts:
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• Deterministic UDL routing chooses the ingress and the egress satellites accord-

ing to the locations of the source and the destination ground stations.

• Probabilistic ISL routing selects the path within the satellite constellation be-

tween the ingress and the egress satellites.

• Handover rerouting in case of inter-satellite handover and ISL handover.

3.3.1 Deterministic UDL Routing

Most of the existing work assume that the minimum number of satellites is used to

achieve global coverage. The overlapped area of the neighbor satellites’ footprints

thus does not constitute a significant portion of the overall coverage area. In real-

ity, however, the overlapped area increases at higher latitude for polar-type satellite

constellations. Furthermore, overlapped coverage areas can be utilized to increase

the resources available to regions with dense population. Figure 6 shows an example

of overlapping satellite footprints. Ground station A is within the coverage areas of

satellite S1, S2, and S3. If the satellites move upwards, it is better for A to select S3

as the relay satellite to avoid inter-satellite handover, although A can receive stronger

signals from S1 and S2 than S3 at the time it initiates a call.

In this research, a ground station may lie in the overlapping areas of several
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satellite footprints. Upon receiving the connection request, the source ground station

performs the UDL routing, i.e., selects the ingress and the egress satellites for the path

between the source and the destination. Generally, there are two types of metrics to

select the access satellite of a ground station:

• Maximum coverage time (Max-Time): The satellite with sufficient bandwidth

and the maximum remaining coverage time to the ground station is selected. By

doing so, the probability of inter-satellite handover is minimized. The computa-

tion of the remaining coverage time of satellites can be done with the knowledge

of location information and will be explained later in this section.

• Maximum received power (Max-Power): The satellite with sufficient bandwidth

and the strongest received power is selected. It is assumed that all satellites

have the same transmit power. Then, the selection of access satellite based the

Max-Power metric equals choosing the closest satellite to the ground station.

This can be easily done using the satellites’ location information.

To reduce the inter-satellite handover probability, we choose the Max-Time metric

for UDL routing in QRA. Once the ingress and the egress satellites have been chosen,

the required bandwidth is allocated along the corresponding UDLs.

[PARAMETERS]:

- rf : The radius of satellite S’s footprint. rf = Re · [arccos(Re

rs
· cos θmin)− θmin],

where Re is the Earth’s radius, rs is the radius of the satellite orbit, θmin is E’s

minimum elevation angle.

- (v, ε0): Satellite S’s footprint velocity and movement direction. Note that the

velocity varies with the satellite’s location and orbit parameters (e.g, altitude

and inclination angle).

- (Le, le): Ground station E’s latitude and longitude.
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- (Ls, ls): Satellite S’s latitude and longitude.

Multimedia traffic has longer connection holding times compared to the traffic in

the traditional circuit switched networks. For multimedia connections, Earth’s rota-

tion can no longer be ignored. Hence, the Earth’s rotation is considered in computing

the footprint velocity v and direction ε0.

Given the above parameters, the calculation of the remaining coverage time of

satellite S for ground station E is done by the following two steps:

Step 1: Calculating azimuth angle of S toward E

Using the law of sines and cosines for spherical triangles,

sin α = sin |le−ls|·sin Ls

sin γ
,

cos γ = cos Le cos Ls cos(ls − le) + sin Le sin Ls.
(1)

The azimuth angle (AZ) can be computed as:

AZ =





α, if S lies northeast of E,

π − α, if S lies southeast of E,

π + α, if S lies southwest of E,

2π − α, if S lies northwest of E.

(2)

Step 2: Computing the remaining coverage time of satellite S towards E

Suppose after time T , the satellite moves from S to S ′ and the ground station

E is on the edge of the satellite’s footprint as shown in Figure 7, the trace of the

sub-satellite point during time period T is represented by SS ′.

First, if S, S ′, and E lie in a line,

SS ′ =





rf − SE = rf − γRe, if ε0 = AZ,

rf + SE = rf + γRe, if |AZ − ε0| = π.
(3)

Otherwise, 6 ESS ′ = |π − |AZ − ε0||. Using the law of sines in spherical triangle

∆ESS ′,
sin(rf/Re)

sin 6 ESS ′
=

sin γ

sin δ
=

sin(SS ′/Re)

sin( 6 ESS ′ + δ)
,
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Figure 7: Illustration of the Calculation of the Remaining Coverage Time.

the remaining travel distance SS ′ can be written as:

SS ′ = Re · arcsin

[
sin(rf/Re) sin( 6 ESS ′ + δ)

sin 6 ESS ′

]
, (4)

where

δ = arcsin[
sin 6 ESS ′ · sin γ

sin(rf/Re)
].

Therefore, the remaining coverage time T = SS ′/v. The satellite with the maxi-

mum coverage time T ∗ is selected as the access satellite. The ingress and the egress

satellites are the satellites that provide the maximum coverage time (i.e., T ∗
r,u and

T ∗
r,d) to the source and the destination ground stations, respectively.

Assuming exponential connection duration Tc with mean 1/µ, then,

Prob[inter-satellite handover] = P (Tc > T ∗
r ) = e−µT ∗r , (5)

where T ∗
r = min(T ∗

r,u, T
∗
r,d).

3.3.2 Probabilistic ISL Routing

The ISL routing is done after selecting the ingress and the egress satellites. Since ISL

handover operations cause high signaling overhead and long delays, to consider the

effect of ISL handover, two coefficients are assigned to each link i: propagation delay

di and existence probability pi.
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• Propagation delay (di): The propagation delay of each satellite link at any

specified time can be easily deducted by the satellite trajectory information. di

for an inter-plane ISL is changing constantly with the satellite movement.

• Existence probability (pi): This is the probability that the ISL link will not

be shut down either before the connection ends or an inter-satellite handover

occurs.

Since the knowledge of the exact time that the inter-satellite handover would

occur is known after the deterministic UDL routing, and the connection duration

Tc conforms to exponential distribution with mean 1/µ, if we can predict the ISL

handover time (Ti,lh) of link i, then

pi = Prob[Ti,lh > min(Tc, T
∗
r )] =





1, if Ti,lh ≥ T ∗
r ,

1− e−µTi,lh , if Ti,lh < T ∗
r .

(6)

The cost of link i is computed as:

Ci =





di · (1− ln pi), if available bandwidth ≥ bw,

∞, if available bandwidth < bw.
(7)

As pi → 0, Ci →∞. Higher existence probability contributes to lower link cost. When

pi = 1, Ci is represented by the link propagation delay. The Dijkstra’s algorithm [46]

is applied to find the minimum cost path through the satellite constellation upon a

connection request. Once an ISL path is found, the required bandwidth is allocated

along the path.

3.3.3 Handover Rerouting

The handover rerouting algorithm is modified from the augmentation algorithm in

FHRP [65]. Suppose if at time t = te, one of the ground station moves out of the

footprint of its access satellite S, a new satellite S ′ with the maximum coverage

time is selected as the new access satellite. Instead of computing a new ISL path

immediately, the path augmentation algorithm is handled by S ′ as follows:
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1. The satellite S ′ checks whether it is already on the old ISL path. If so, the por-

tion of the current path from S up to S ′ is deleted and the reserved bandwidth

is released. The new ISL path starts from S ′.

2. If S ′ is not on the current ISL path, a direct link to one of the satellites on the

path is searched starting from the other end of the path, i.e., if S ′ is serving

as the ingress satellite to the source ground station, the satellites are checked

backwards starting from the egress satellite. If a direct link with sufficient

bandwidth to support the connection is found, the link is augmented to the

original path.

3. If a direct link between S ′ and the satellite nodes on the current ISL path with

required capacity is not found, the reserved bandwidth on the path is released

and a full rerouting (i.e., deterministic UDL routing followed by probabilistic

ISL routing) is performed.

4. If the ingress and the egress satellites of the last computed route have both

been updated, the probabilistic ISL routing between the new ingress and egress

satellites is called. This is to prevent frequent rerouting attempts resulting from

non-optimal routes.

During connection time, if one of the satellite links along the ISL path needs to

be switched off, full rerouting is called.

3.4 Performance Evaluation

We have extended the VINT network simulator (ns2.1b9a) [9] by including modules

of our QoS-based routing algorithm. A LEO satellite network with 288 satellites

are considered in the simulation. There are 12 orbital planes with 24 satellites in

each plane. Satellite orbits are 1, 375km in altitude with an orbit inclination angle of
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84.7o. The minimum elevation angle of ground stations is 40o. Each satellite has two

intra-plane ISLs and two inter-plane ISLs.

To evaluate the QRA, the path metrics (i.e., path delay, delay jitter, rerouting

frequency, and rerouting overhead) of a connection between a source-destination pair

are monitored. The source is located at (33.39oN,−84.26oW ) in Atlanta, United

States, and the destination is at (39.55oN, 116.25o) in Beijing, China. The sender

generates connection requests with different mean connection duration (1/µ). The

results are the averages of 100 independent simulations. Performance comparisons

are made among three different algorithms: our QRA (i.e., Max-Time deterministic

UDL routing with probabilistic ISL routing), “Max-Power + ISL” (i.e., Max-Power

deterministic UDL routing with probabilistic ISL routing), and the minimum delay

routing using Dijkstra’s algorithm [46]. The path metrics for these three algorithms

under different mean connection duration are depicted in Figure 8.

Figure 8(a) and 8(b) give the delay metrics (i.e., end-to-end delay and delay jitter)

of the above three routing algorithms. Apparently, the minimum delay routing returns

the path with shortest end-to-end delay. As the other two algorithms divide the end-

to-end routing into UDL routing and ISL routing, the resulted path is not optimal

in terms of delay. However, their extra delay difference is within 5% of the delay

of the shortest path. The delay jitter is represented by the variance of end-to-end

delays. Among the three algorithms, our QRA has the minimum delay jitter. This

is because that rerouting in QRA tries to keep the original path and reduce the link

handover probability. On the other hand, the frequent path updates generated by

the minimum delay routing gives more opportunity to delay variance among different

paths. Especially when the mean connection duration increases, path updates more

frequently, which in turn causes larger delay jitter.

The average rerouting frequency and the rerouting overhead of the three routing

algorithms are shown in Figure 8(c) and 8(d), respectively. The rerouting frequency
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Figure 8: Comparison of Path Metrics under Different Connection Duration Time.

is measured by the number of handover attempts in the connection duration. For

QRA and “Max-Power + ISL” algorithms, we also plotted their values of full rerout-

ing frequency, which stands for the average number of rerouting attempts with actual

computation of a new ISL path. The number of rerouting is the sum of the full rerout-

ing and the augmentation rerouting attempts, which are explained in Section 3.3.3.

For minimum delay routing, all handover attempts call for full rerouting computa-

tion. Among the three algorithms, minimum delay routing has the highest rerouting

frequency. Moreover, the full rerouting frequency values of QRA and “Max-Power +

ISL” routing algorithms are much lower than that of the minimum delay algorithm.
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The rerouting overhead is represented by the number of updates in the routing ta-

bles of all nodes, i.e., removing the record of a connection or recording a rerouted

connection. The augmentation rerouting of QRA in Section 3.3.3 attempts to keep

part of the original path by checking if the new access satellite is on or adjacent to

the old path. Therefore, less nodes need to be updated and processing overhead is

reduced. This is also shown in the Figure 8(d) where minimum delay routing causes

much higher rerouting overhead than the other two algorithms.

In summary, the simulation results show that QRA reduces delay jitter, rerouting

frequency, and rerouting processing overhead.
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CHAPTER IV

SATELLITE GROUPING AND ROUTING

PROTOCOL FOR HIERARCHICAL SATELLITE

IP NETWORKS

4.1 Motivation and Related Work

Satellite systems have the advantage of global coverage and inherent broadcast capa-

bility, and offer a solution for providing broadband access to end-users. Compared

to GEO satellites, LEO and MEO satellite networks have shorter round trip delays

and lower transmission power requirements. In many constellations, direct ISLs pro-

vide communication paths among satellites. They can be used to carry signaling and

network management traffic as well as data packets [71].

The constant movement of satellites, however, causes LEO and MEO satellite

networks to have dynamic topologies. The ISL connectivity changes based on the

distance and azimuth angle between the two end satellites. Hence, routing in this

environment is a challenging problem. Most of the routing schemes developed for

LEO satellite networks assume a connection-oriented network structure. In [22] and

[70], the dynamic routing problem is tackled by a discrete time network model. In

each equal-length interval, the satellite network is regarded as having a fixed topology

so that optimal link assignments can be performed. Call statistics are exploited in [64]

to maintain the initial paths and reduce the re-routing frequency so as to minimize the

signaling overhead. In [48], a satellite over satellite (SoS) network architecture, which

is composed of LEO and MEO satellite layers, is proposed. Long distance-dependent

traffic is carried in the MEO layer to reduce satellite hops and resource consumption.

A LEO/MEO two-tier satellite network and the corresponding routing strategies are

described in [41]. However, it is assumed that there is no direct ISL between any two
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LEO satellites and all network routing functions involve MEO satellites.

With the rapid growth of Internet-based applications, proposed broadband satel-

lite networks are required to transport IP traffic [74]. Routing protocols for IP-based

LEO satellite networks have also been introduced. The datagram routing algorithm

(DRA) [30] aims to forward data packets on minimum propagation delay paths. The

satellite network is regarded as a mesh topology consisting of logical locations. Data

packets are routed distributively on this fixed topology. DRA causes no overhead

since the satellites do not exchange any topology information. In [40], link state

packets are flooded only as far as the routing radius for a given satellite. Shortest

path routing is used in the near vicinity of the destination, whereas data packets are

routed based on the destination satellite’s position when they are far away. The ba-

sic shortcoming of both above schemes for connectionless routing is that the metrics

used to calculate the paths do not reflect the total delay a packet may experience

in the network. The delay, which is composed of propagation, processing, queuing,

and transmission delays, can vary greatly because of the positions of the individual

satellites and the network load.

A routing protocol (MLSR) for multilayer satellite IP networks has been pro-

posed in [13]. MLSR computes the routing tables of the satellites based on the delay

measurements collected periodically. Under MLSR, LEO satellites are grouped and

managed by MEO satellites. LEO group topologies are hidden from other satellites

by representing them as meta-nodes in the topology. The routing tables are calcu-

lated by GEO satellites based on this summarized information and are further refined

by MEO managers for LEO satellites. In many cases, however, satellites are sparsely

located in the MEO layer, LEO group abstraction cannot be restored in the MEO

layer, and MLSR cannot be implemented effectively. Furthermore, MLSR relies on

periodic routing table calculations to handle ISL congestion and lacks a fast-reacting

congestion resolution mechanism.
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In this chapter, a new routing protocol called satellite grouping and routing proto-

col (SGRP) is proposed. The SGRP protocol was first introduced in [26] and refined

in [25]. SGRP operates on a two-layer satellite network consisting of LEO and MEO

satellites. Collaboration between LEO and MEO satellite layers is utilized in SGRP:

The MEO satellites compute outing tables for the LEO layer. The main idea of SGRP

is to transmit packets in minimum-delay paths and distribute the routing table cal-

culation for the LEO satellites to multiple MEO satellites. The LEO satellites are

divided into groups according to the footprint areas of the MEO satellites in each

snapshot period. Snapshot periods are determined according to the predictable MEO

trajectory and the changes in the LEO group memberships. The MEO satellite that

covers a set of LEO satellites becomes the manager of that LEO group. Group man-

agers are in charge of collecting and exchanging the link delay information of the

LEO layer, and calculating routing tables for their LEO members. The LEO satel-

lites receive routing tables from their group managers. Using SGRP, the calculation

of routing tables is shifted to the MEO satellites, which effectively distributes the

power consumption between the LEO and MEO satellites. Since the signaling traffic

is physically separated from the data traffic, link congestion does not affect the re-

sponsiveness of delay reporting and routing table calculation. Responsive mechanisms

to address link congestion and satellite failures are also included in SGRP.

4.2 Hierarchical Satellite Network Architecture

Routing complexity is a crucial issue in satellite networks. Since LEO satellites al-

ready have limited processing power, it is not desired to have all LEO satellites com-

pute their own routing tables. The terrestrial gateways are constrained by geograph-

ical distribution of continents. Meanwhile, in order to reduce system costs, satellite

coverage areas are usually not highly overlapped, which means that the terrestrial

gateways do not have line-of-sight communication with many satellites (usually less
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than 5 satellites for gateways outside the polar regions). If we choose to use the

terrestrial gateways for route computation, the majority of the LEO satellites would

be required to send their measurements to the gateways over several hops. Simi-

larly, the routing tables calculated by the terrestrial gateways would be transmitted

to the LEO satellites via several hops as well. Both directions of transmission result

in an increase of the traffic load. On the other hand, if there is a MEO satellite

constellation in operation and ISLs between the LEO and MEO satellites can be set

up, the LEO satellites can be partitioned into groups and the computation overhead

can be distributed among the MEO satellites. Each LEO group would have line-of-

sight communication with a MEO satellite in the second layer. Transfer of link delay

measurements and routing table distribution are reduced and the traffic load is not

increased in the LEO satellite network.

4.2.1 Satellite Network Components

We consider a two-layer satellite network and the terrestrial gateway stations. The

grouping of the LEO satellites is determined by the snapshot concept. In a snapshot

period, the LEO satellites are grouped according to the footprint areas of the MEO

satellites. The satellite members of a group are constant over this period. The LEO

satellites have direct links to their MEO group managers. The terrestrial gateways

are fixed on the Earth, they have direct links to the LEO satellites within sight. They

are in charge of address translation and the communication between the terrestrial

autonomous systems and the satellite network. The terrestrial gateways, together

with the LEO and MEO satellites, form an autonomous system.

The satellite network is composed of a LEO satellite layer and a MEO satellite

layers, as shown in Figure 9. We assume that both satellite layers provide global

coverage.

• MEO layer: The MEO layer is composed of all the MEO satellites in the
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Figure 9: LEO/MEO Joint Constellation.

network. It has a total number of NM×MM satellites, where NM is the number

of planes in the MEO constellation, and MM is the number of satellites in a MEO

plane. A MEO satellite is denoted by Mi,j, where i = 1, ..., NM , j = 1, ..., MM .

• LEO Layer: The LEO layer consists of all the LEO satellites in the network.

The total number of satellites in this layer is NL×ML, where NL is the number

of planes in the LEO constellation, and ML is the number of satellites in a LEO

plane. The LEO satellites are organized into a Walker-star constellation [67].

The logical location concept [30] is used for the LEO layer. In this research,

however, the position of a logical location is not fixed and the satellite that embodies

a logical location varies with time. When the satellite assigned to a logical location

changes, the successor satellite must take the necessary routing information from its

predecessor. The links adjacent to the predecessor LEO satellite are also switched to

the new LEO satellite. A logical location is referred to as (n, m), where n is the plane

number, 1 ≤ n ≤ NL, and m refers to the satellite position in the plane, 1 ≤ m ≤ ML.

The LEO satellite representing the logical location (n,m) at time t is referred to as

Ln,m.
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The MEO satellite topology is captured by a series of snapshots. In every snapshot

period, the logical locations covered by a MEO satellite are considered to be fixed

although the LEO satellites that embody the logical locations may change. The

snapshot period is determined according to the predictable MEO trajectories and the

positions of the logical locations. The snapshot concept hides the mobility of the

MEO satellites and is independent of the properties of the MEO constellation. The

algorithm to determine the snapshot periods will be detailed later in Section 4.3.

As explained in Chapter 2.2, there are three types of duplex links in the network:

• ISLs: The communication within the same satellite layer occurs through ISLs.

ISLs→d or ISLd→s denotes an ISL that connects two satellites s and d in the

same layer.

• IOLs: The communication between MEO and LEO satellites occurs over IOLs.

If a LEO satellite s lies in the coverage area of a MEO satellite d, they are

connected by an IOL, which is referred to as IOLs→d or IOLd→s.

• UDLs: LEO satellites communicate with the terrestrial gateways via UDLs.

The UDL between a LEO satellite s and a terrestrial gateway G is denoted by

UDLs→G or UDLG→s.

In order to partition the LEO satellite network into administrative domains, the

LEO satellites are grouped according to the footprint areas of the MEO satellites in

each snapshot period. A LEO group is defined as a set of logical locations that reside

in the coverage area of the same MEO satellite. The members of a LEO group change

as the MEO satellite moves and the LEO logical locations change. Hence, the groups

must be redefined in each snapshot period. In a snapshot period, the MEO satellite

that covers a set of logical locations becomes the group manager. Group managers

are responsible for collecting and exchanging link delay information received from

LEO layer, and calculating the routing tables for the LEO group members. A LEO
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group Li,j is the collection of all LEO satellites that lie in the coverage area of the

MEO satellite Mi,j, Li,j = {Li,j(k) | k = 1, ..., Ki,j}, where Ki,j is the number of LEO

members in group Li,j. The members of a LEO group are connected to the manager

MEO satellite via IOLs. For example, in Figure 9, the LEO group of MEO satellite

Mi,j is Li,j, which has six members Li,j(1) through Li,j(6).

4.2.2 Gateway Address Translation

The terrestrial gateways are in charge of address translation and communication

between the terrestrial autonomous systems and the satellite network. When a packet

needs to be routed from gateway G1 to gateway G2 through satellite network, G1 first

looks for the nearest LEO logical location for itself and G2. Since the LEO logical

locations are fixed with respect to the Earth, only the geographical location of the

gateway is needed to determine the closest logical location. Assume that the logical

location (n1,m1) is the nearest logical location to G1, and (n2,m2) is the nearest to

G2, G1 then sends the packets to Ln1,m1 , the LEO satellite that currently represents

the logical location (n1,m1), through UDLG1→Ln1,m1
. The destination field of the

packet is set as logical location (n2,m2), and is used for routing decision inside the

LEO network. After Ln2,m2 receives the packet, it extracts the original destination

G2 from the data, then forwards the packet to gateway G2 though UDLLn2,m2→G2 .

4.3 Mobility Modeling

In order to create the snapshots of the satellite network, the exact positions of the

LEO and MEO satellites must be known. Using the location information, the LEO

groups and their group managers can be determined. In this section, we build a

mobility model for LEO/MEO joint constellation. It gives the positions of the LEO

and MEO satellites at any time t, and the method to determine LEO groups and

snapshot periods.
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4.3.1 LEO Layer Modeling

The latitude φ(n,m) and longitude θ(n,m) of a LEO logical location (n, m) vary with

time t and are calculated as follows:

φ(n,m) =





φ0(n)− (m− 1)∆φ + OFS, if m < dML/2e,
−180o − φ0(n) + (m− 1)∆φ + OFS, if m ≥ dML/2e.

(8)

where OFS = (wL × t) MOD ∆φ is the offset within the latitude interval ∆φ (=

360o/ML), wL is the angular velocity of LEO satellites; φ0(n) gives the latitude of the

first satellite on the nth plane, and is defined as

φ0(n) =





φ1, n odd

φ2, n even
, where φ1 ∈ (90o, 90o −∆φ/2), |φ2 − φ1| ≤ ∆φ/2.

The first satellites in even-numbered planes have the same latitude φ1, whereas the

first satellites in odd planes are with latitude φ2. Therefore, the satellites with same

number m in all planes form a zigzag pattern, as shown in Figure 10 if φ1 6= φ2.

Plane
    2N

L

Plane Plane
   1 N

L

PlanePlane
    2

Plane
   1

0o
180o 180o

N
L
−1

Plane
N

L
−1

Plane

360o )(
90o

M
L

−2

M
L

/2

−90o

M
L

−1

M
L

/2+1

M
L

2

3

1

Satellite

Eastern HemisphereWestern Hemisphere

Satellite

Figure 10: Logical Locations in the LEO Layer.

The longitude θ(n,m) of the logical location (n,m) is given by:

θ(n,m) = θ0 + (n− 1)∆θ, (9)

where θ0 is the longitude of the first plane, and ∆θ = 180o/NL.
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As satellites move, different satellites embody the same logical location at different

time t.

4.3.2 MEO Layer Modeling

In this section, we illustrate the method to determine the satellite positions in a MEO

Walker delta constellation consisting of two planes. This model can also be modified

to be used with other MEO constellations.

In a MEO satellite constellation like ICO [37], there are two crossing points for

MEO planes 1 and 2 and are located on the equatorial plane, i.e, at latitude 0o. It

is assumed that at time t = 0, MEO satellites M1,1 and M2,1 both move to northeast

and are located at the first and second crossing points with longitude of 0o and 180o,

respectively. The latitude Φ and longitude Θ of MEO satellite M1,j at any time t can

be computed by:

Φ = arcsin(cos α · sin r), Φ ∈ [−90o, 90o],

Θ =





360k1 + arccos(cos γ/ cos Φ)− wEt, if Φ ≥ 0,

360k2 − arccos(cos γ/ cos Φ)− wEt, if Φ < 0.

(10)

where α is the inclination angle for MEO plane; γ = wM t+(j−1)∆Θ, with wM being

the MEO satellite angular velocity, and ∆Θ = 360/MM ; k1 and k2 are independent
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Figure 11: Initial Positions of the MEO Satellites.
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integers to satisfy Θ ∈ [0o, 360o]; wE is the angular velocity of the Earth.

The latitude and longitude of the MEO satellites on plane 2 can be determined

by:

latitude(M2,j) = latitude(M1,j),

longitude(M2,j) = (longitude(M1,j + 180o))MOD 360o.
(11)

4.3.3 Satellite Groups and Snapshot Periods

Based on the exact positions of the LEO and MEO satellites, and the footprint of

every MEO satellite, we create the LEO satellite groups and determine the length of

the snapshot period at any time t.

First, the MEO footprints on the LEO layer need to be calculated to determine

group membership of the LEO satellites. The half-sided center angle of the MEO

footprint on the LEO layer ψ is calculated as:

ψ = 90− εmin − arcsin(
RE + hL

RE + hM

· cos εmin), (12)

where RE is the radius of the Earth, hL and hM are the plane altitudes of the LEO

and MEO layer, respectively, and εmin is the minimum elevation angle of the MEO

satellites from the LEO layer.

Suppose that a LEO satellite Ln,m is at (φ, θ), where φ and θ represent the latitude

and the longitude of Ln,m, and a MEO satellite Mi,j is at (Φ, Θ). For Ln,m to lie in

the footprint of Mi,j, the following condition must be satisfied:

6 A’OB = 2 arcsin
|A’B|

2(RE + hL)
≤ ψ. (13)

where as shown in Figure 12, A and B represent the positions of Mi,j and Ln,m,

respectively, A’ is the sub-satellite point of Mi,j on the LEO orbit sphere.

We assume that the satellite network topology is periodic with T , where T is

the least common multiple of the revolution periods of the Earth and the MEO

satellites, and the time needed for any two satellites to be exactly on a given logical
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location. T is referred to as system cycle. The satellite topology can be considered

as a periodically repeating series of P topology snapshots in the system cycle T .

Over the interval [ti, ti+1], i = 0, 1, ..., P − 1, the LEO satellites’ group membership is

constant. Snapshot periods may have different lengths.

The snapshots and the LEO satellite groups are created according to the following

criteria:

1. A LEO group is created according to the footprints of the MEO satellites on

the LEO layer. Generally, the LEO satellites that lie in the same footprint

of a MEO satellite form a group, and this MEO satellite becomes the group

manager.

2. According to the above definition, LEO satellite groups can be overlapped. If

a LEO satellite lies in an overlapping area covered by several MEO satellites,

it has more than one MEO group managers. To balance the management load,

a primary manager is chosen among them. The primary manager takes care of

the routing table calculation of a LEO satellite in a snapshot period. Since the

trajectory of the MEO satellites is predictable, a LEO satellite chooses the MEO

40



satellite with the longest remaining coverage time as its primary manager1. The

members of a LEO group change as the MEO satellites move, hence, the groups

must be redefined for each snapshot period.

3. The snapshot period is further determined according to the changes in the LEO

group membership. Assuming that at time t = ti, at least one of the LEO

satellites is no longer covered by its primary manager in the current snapshot

i, in such case, a new snapshot of the system must be created. Every LEO

satellite chooses the group manager with the maximum predicted service time

as its primary manager for snapshot i + 1. According to this criteria, new

snapshots are created at time t1, t2, ..., tP = T . The snapshots and the LEO

groups repeat with a period of T .

Group information database can be uploaded to all satellites. The database in-

formation includes the start time of each snapshot period, LEO satellites’ group

membership and their MEO group managers in every snapshot.

4.4 Definitions

Definition 1 (Group Manager and Primary Manager) Let H(x) refer to the

MEO manager set of LEO satellite x, then H(x) = {Mi,j | x ∈ Li,j} includes all

MEO satellites whose footprints cover x. The primary manager of x is written as

PH(x). It is selected from H(x), and has the longest remaining coverage time for x,

i.e., within all MEO satellites that currently cover x, PH(x) still covers x after all

others exclude x in their footprints.

PH(x) = argmax
Mi,j

{remaining coverage time of Mi,j,w.r.t x | Mi,j ∈ H(x)}. (14)

1A mathematical method is explained in Chapter 3.3.1 to compute the remaining coverage time
of a satellite over a ground station. The same method can be used to determine the remaining
coverage time of a MEO satellite to a LEO satellite.
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Definition 2 (Care-of Member List) Every MEO satellite has a “care-of mem-

ber” list in each snapshot period. The care-of member list CM(Mi,j) of a MEO

satellite Mi,j is defined as

CM(Mi,j) = {x | PH(x) = Mi,j}. (15)

Hence, Mi,j is the primary manager of every LEO satellite in CM(Mi,j).

Definition 3 (Delay Function) Let lx→y be a direct ISL from node x to node y in

LEO layer. The delay function D(lx→y) is defined as follows:

D(lx→y) =





Delay from x to y, ∃ lx→y,

∞ , otherwise.
(16)

Definition 4 (Delay Report) Delay report DR(x) of LEO satellite x is a set of

tuples {y,D(lx→y)}, where y is a LEO satellite such that ISLx→y exists between x and

y.

Delay report DR(Mi,j) of MEO satellite Mi,j is a collection of the delay reports

of Mi,j’s care-of members,

DR(Mi,j) = {DR(x) | x ∈ CM(Mi,j)}. (17)

Delay report DR(Mi) of MEO plane i is a collection of the delay reports of Mi,j

in plane i,

DR(Mi) = {DR(Mi,j), j = 1, ...,MM}. (18)

Definition 5 (Plane Crossing Point) Crossing points of plane i and plane l are

referred to as CP(i, l), indicating where the two planes cross each other. There are

two crossing points for each pair of i and l.

After collecting the delay information in the LEO network, each MEO satellite

has the same picture of the LEO network topology. MEO satellite Mi,j computes the
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minimum delay paths from CM(Mi,j) to all destinations. These paths are then used

to create the routing tables. Before sending out routing tables to the LEO satellites,

Mi,j tries to aggregate faraway LEO destinations into groups to reduce the size of the

routing tables. To do this, the remote groups of a source satellite x are defined.

Definition 6 (Remote Group) A remote group of LEO satellite x is a LEO group

that is not covered by any satellite in H(x). The set of x’s remote group is written as

RM(x) = {Li,j | Mi,j 6∈ H(x)}. (19)

Definition 7 (Path) Px→y is defined as the minimum delay path associated with

source x and destination y. It is a sequential list of the satellites on the path.

In our satellite network architecture, the routing tables are created by the MEO

satellites using the delay measurements in the LEO layer. MEO group managers

prepare different routing tables for each of their care-of members. In SGRP, two

types of routing tables are needed: original routing table and simplified routing table.

Definition 8 (Original Routing Table) Original routing table ORT Mi,j
is kept

in MEO satellite Mi,j. It provides an entry for each of its care-of members, and

registers paths from CM(Mi,j) to all destinations. The path from satellite x to a

destination satellite y is defined as:

ORT Mi,j
(x, y) = Px→y, where x ∈ CM(Mi,j). (20)

Definition 9 (Simplified Routing Table) Simplified routing table SRT x of LEO

satellite x is created by and sent from its MEO manager Mi,j. The construction of

SRT x is based on original routing table ORT Mi,j
and the group membership of desti-

nation satellites. Each entry of this routing table has a destination field and a next-hop

field, where next-hop is the second node on Px→Dest, and written as SRT x(Dest).

Here Dest can be any LEO satellite or a remote group. If the paths to all satellites
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in a remote group Li,j have the same next-hop, the entries to all those LEO satel-

lite destinations are replaced by a single entry in the simplified routing table. The

destination field of this entry is set as Li,j.

Definition 10 (Congestion Area) The congestion area of a congested link lx1→x2

is defined as:

CA(lx1→x2) =
⋃{ly1→y2 | where Pxk→yi

≤ r, k = 1 or 2}, (21)

where r is the radius in the number of hops of the congestion area.

x1 x2

Figure 13: Congestion Area of Congested Link lx1→x2 When r = 1.

4.5 SGRP: Satellite Grouping and Routing Pro-

tocol

The goal of our new satellite grouping and routing protocol (SGRP) is to forward the

packets on minimum delay paths in spite of the satellite mobility, and to distribute

the routing table calculation for the LEO satellites to multiple MEO satellites. The

delay metric used in the route computation is the sum of the processing, queuing, and

transmission delays in the satellites and the propagation delays on the ISLs. Routing

tables are calculated by the MEO satellite group managers, transmitted to and stored

in the LEO satellites.

In this section, the detailed design of SGRP is presented. It includes three phases:
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• Delay report from LEO satellite to MEO layer,

• Delay exchange in MEO layer,

• Routing table calculation.

SGRP also has mechanisms to resolve congestion and satellite failures to avoid drop-

ping packets.

4.5.1 Delay Report

Delay information of LEO links needs to be reported to MEO satellites every Tc

period, it is done as follows:

Initialization: At the beginning of a new snapshot period, MEO satellite Mi,j’s care-of

member list CM(Mi,j) is initialized as empty.

Step 1: Delay Report - At the end of every measurement interval of length Tc, a LEO

satellite x monitors the delay on its outgoing links. A delay report DR(x) is created

from the measured delay value and sent to x’s primary manager Mi,j = PH(x) via

IOLx→Mi,j
.

Step 2: Delay Reception - After receiving a delay report DR(x), Mi,j adds x into

its own delay report CM(Mi,j). CM(Mi,j) is formed after all the delay reports from

Mi,j’s care-of members have been received.

4.5.2 Delay Exchange

After collecting link delay measurements from their group members, MEO group

managers exchange the measurements inside the MEO layer to obtain a common

picture of the LEO network topology. Our proposed exchange method includes two

steps: intra-plane exchange and inter-plane exchange.

Step 1: Intra-plane Exchange

In MEO layer, the delay reports are first circulated in the same MEO plane.
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Figure 14: Intra-Plane Exchange.

1. MEO satellite Mi,j sends its delay report DR(Mi,j) to its two adjacent neigh-

bors, Mi,p, in the same plane through ISLMi,j→Mi,p
, where p = j − 1, j + 1.

2. After receiving a delay reportDR(Mi,j), Mi,p checks to see if it has been received

before. If so, it is discarded.

3. Mi,p forwards the new report DR(Mi,j) on the other intra-plane ISL, which is

different from the incoming one, i.e. ISLMi,p→Mi,p+1
or ISLMi,p→Mi,p−1

.

Figure 14 shows the circulation of delay reports in MEO plane 1. M1,2 sends out

DR(M1,2) to its neighbors M1,1 and M1,3. The report then follows the dashed lines

in the direction of the arrows. In the end, M1,4 and M1,5 each receives a duplicate

report, upon which the circulation of DR(M1,2) is terminated.

Step 2: Inter-plane Exchange

After the LEO delay information is exchanged within plane i, a copy of the same

information must be sent out to plane l, l = 1, ..., NM , l 6= i, and circulated there as

well. The steps of the inter-plane delay report exchanging are as follows:

1. The two satellites on plane i nearest to plane crossing points CP(i, l) are chosen

to be plane i’s starting points. The two satellites nearest to CP(i, l) on plane l

are selected as their reception satellites respectively. DR(Mi) is sent from plane

i to plane l via the inter-plane ISLs.
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2. The two reception satellites on plane l forward DR(Mi) clockwise via their

intra-plane ISLs to the neighboring MEO satellites.

3. After receiving DR(Mi), Ml,m first checks to see whether it has been received

before. If so, the delay report is discarded, otherwise, it is forwarded clockwise

to the next neighboring MEO satellite.

Figure 15 shows the transfer of DR(M1) from plane 1 to plane 2. CP(1, 2) =

{A,B}. M1,1 and M1,3 are chosen as the starting points, their reception satellite are

M2,5 and M2,2, respectively. Starting from M2,5 and M2,2, the report is circulated

clockwise over the dashed lines. Note that the circulation of different plane’s delay

reports is processed in a parallel way, i.e., the delay report of one plane can be sent

to different planes simultaneously.

4.5.3 Routing Table Calculation

Routing tables are prepared by the MEO satellites for their care-of members and

updated every Tc period. There are two kinds of routing tables: The original routing

tables register the detailed path and are kept in MEO satellites, whereas the simplified

routing tables are sent to the LEO satellites.
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Step 1: Original Routing Table Calculation

The MEO satellites perform routing table calculation after they received all the

delay reports. The MEO satellite Mi,j computes the minimum delay paths from the

LEO satellites in CM(Mi,j) to all LEO destinations, and adds them into original

routing table ORT Mi,j
.

Step 2: Simplified Routing Table Calculation

Based on ORT Mi,j
, MEO group managers arrange the paths into destination and

next-hop pairs for each of its care-of members. Before sending routing tables to the

LEO layer, Mi,j tries to aggregate the destinations in remote groups to reduce the

size of routing tables. The path aggregation is done as follows:

Algorithm 1 Path Aggregation

Let S = all satellites in LEO layer
for Li,j ∈ RM(x), do

if the second node on Px→y = t, ∀y ∈ Li,j, then
SRT x(Li,j) = t
S = S\Li,j

end if
end for
for each y ∈ S, do
SRT x(y) = the second node on Px→y

end for

When SRT x is ready, it is sent from PH(x) to x via IOLPH(x)→x.

4.5.4 Congestion Avoidance

In our SGRP, data packets are routed according to the delay information gathered

every Tc period. If traffic load changes fast, the routing decision cannot reflect the

fluctuation of the real-time delay and congestion may occur. The congestion avoidance

phase is introduced to deal with the congestion reactively and has three steps:

Step 1: Congestion Detection

To avoid congestion in the LEO network, every LEO satellite continuously mon-

itors the queue lengths of the output buffers of their adjacent links. If the queue
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length associated with lx1→x2 is more than ξ packets, then “congestion” is said to

have occurred on link lx1→x2 . x1 then promptly reports D(lx1→x2) = ∞ to all its

MEO managers in H(x1).

Step 2: Information Propagation

Upon receiving a congestion warning of link lx1→x2 , Mi,j sets D(lx1→x2) = ∞.

Then, it propagates D(lx1→x2) = ∞ in MEO layer using the same intra- and inter-

plane exchange methods explained previously in Section 4.5.2.

Step 3: Path Recalculation

To reduce the computation overhead, MEO group managers only recalculate those

paths affected by the congestion. Meanwhile, they try to lead long routes away from

entering the congestion area.

A MEO satellite M checks all paths in ORT M , and searches those affected by the

congested link. If a path is either originated or destined within the congestion area

CA(lx1→x2), it will be kept. If a path goes through CA(lx1→x2), then M “cuts” the

congestion area when re-computating this path, i.e, set all delays associated with links

in CA(lx1→x2) to infinity, thus leads these paths away from entering the congestion

area. The path recalculation in MEO satellite M for x ∈ CM(M) is summarized

below.

Algorithm 2 Path Recalculation in MEO Satellite M

Let S = all satellites in LEO layer
for each y ∈ S, do

if lx1→x2 is on ORT M(x, y) = Px→y, then
if l ∈ CA(lx1→x2), ∀l ∈ Px→y, then

Keep Px→y, search next y
end if
if l 6∈ CA(lx1→x2), where l is the first or last hop on path Px→y, then

Set D(ly1→y2) = ∞, ∀ly1→y2 in CA(lx1→x2)
end if
M recalculates Px→y

ORT M(x, y) = Px→y

end if
end for
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After the calculation, M updates affected entries in ORT M , aggregates the new

paths, and sends packets to update the affected entries in simplified routing table

SRT x of its member x accordingly.

4.5.5 Satellite Failure Reaction

A satellite may fail or be shut down temporarily for reasons such as maintenance and

testing, or when crossing oceans or polar regions to save energy. When a satellite fails,

all minimum delay paths passing through this satellite must be rerouted, so that the

packets that normally pass through the failed satellite would not be dropped. In our

SGRP, the rerouting is done in the following way: When a satellite fails, its direct

neighbors are the first to sense this occurrence. They immediately send reports to

MEO group managers. Upon receiving failure notification of a LEO satellite s, Mi,j

sets all link delays associated with s to infinity, then propagates the update delay

report in the MEO layer.

To reduce the computation overhead, MEO group managers only recalculate those

paths affected by the failure. A MEO satellite M checks the paths in ORT M , finds

those affected by the failed satellite s. If the failed satellite lies on a path, M recal-

culates the path, updates the corresponding entry in ORT M , and performs group

aggregation before arranging into (Dest, next-hop) pairs for its care-of members.

If a packet arrives at the LEO satellite x and finds that the failed satellite is the

next hop on its path, i.e., its routing table has not yet been updated, some special

routing decision must be made to avoid dropping useful packets. Here we utilize

the rerouting method in case of satellite failures in [30]. The packets destined to

the failed satellite are deflected into orthogonal directions. The detailed rerouting

algorithm can be found in the original paper.
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Table 1: Parameters for MEO and LEO Satellite Constellations.

MEO LEO
Altitude hM = 10, 390km hL = 700km
Number of planes NM=2 NL=12
Number of satellites per plane MM=5 ML=24
Angular velocity wM=1o/min wL=3.6o/min
Minimum elevation angle at LEO layer εmin = 10o -
Orbit inclination angle 45o 90o

Number of intra-plane ISLs 2 2
Number of inter-plane ISLs 0 or 1 0 or 2
Longitude of logical location (n, 1) - θ0 = 7.5o

Latitude of logical location (n, 1) - φ1 = 86.75o, φ2 = 82.5o

4.6 Performance Evaluation

Our simulation consists of three major parts: First, find the snapshot periods and

group membership information in each snapshot period according to the parameters

of LEO and MEO satellite constellations. Second, using SGRP, keep track of the end-

to-end delay between some terrestrial source-destination pairs, with the background

traffic changing dynamically. Last, analytically show that the hierarchy in SGRP

can reduce communication overhead compared to the centralized and distributed

approaches in a single-layer satellite network.

4.6.1 Snapshot Periods Identification

In our two-layer satellite network model, the ICO network [37] is chosen as the MEO

satellite constellation, the LEO satellite constellation is a slightly modified version of

the Teledesic network [61], where the orbital inclination is 90o instead of 98.2o. The

system parameters are given in Table 1. The system cycle for these parameters is

T = 1440 minutes, or one day.

Using our computation method in Section 4.3, there are a total of 93 snapshot

periods in a system cycle. As expected, the snapshots repeat after time T . The mean

duration time for all 93 snapshots is 15.5 minutes. The length distribution of the
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Figure 16: Distribution of Snapshot Duration.

snapshot duration is given in Figure 16, where the durations are in minutes. It can

be seen that the lengths of snapshot periods are not fixed.

4.6.2 Traffic Modeling

We divide the Earth into 15o × 15o geographical zones, and map each zone with a

LEO logical location. Because of the asymmetry of IP traffic, the user behavior and

host behavior are different for each zone. For example, the source of http pages are

more likely to be located in North America than in Central Africa. Hence, we build

two databases for the user density level and host density level for each zone, where

the user density level represents the amount of source requests in each zone and the

host density level implies the host distributions over the geographic zones. The global

background traffic can be generated using a traffic matrix model.

• User Density Level: The forecasted voice traffic over LEO satellite systems

for the year 2005 in [66] (as shown in Figure 17) is referred to determine the

user density levels. Here we assume that the potential requirement for satellite

network IP traffic from each geographical zone is proportional to the expected

volume of voice traffic. As users show different activities during different time
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of the day, to make the traffic model more accurate, we take the daily evolution

of user density into consideration. Assuming that the daily evolution of traffic

activity per user is the same for all users worldwide, and the local time of each

traffic zone is equal to the solar time of the respective zone’s center longitude.

The daily user activity profile introduced in [55] is used. The user traffic distri-

bution of each hour in percentage of the total traffic within a day is shown in

Figure 18.
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Table 2: Internet Hosts Distribution by Continent in January 2001 [7].
Continent k Nh(k): number of hosts (×103) p(k): (%)

North America 71871.5 71.27
Europe 17698 17.55
Asia 7686.4 7.62
Oceania 1873.65 1.86
South America 1474.8 1.46
Africa 241.9 0.24

• Host Density Level: The statistics of January 2001 in [7] is used to get the

host density level for different terrestrial zones. The host density level gives

the distribution of the Internet hosts in different continents, which is shown in

Table 2. According to the data, we adjust the user density level to get the host

density level of each zone by the following equation:

hj =
uj∑
i u(i)

·Nh(k), (22)

where hj is the host density level of zone j, of which the user density level is

uj;
∑

i u(i) is the sum of user density level of zones in continent k; Nh(k) is the

number of hosts in continent k. It can be seen that continent k’s percentage

share of host density on the Earth is equal to p(k) in Table 2.

The inter-satellite traffic requirement between satellites i and j, i.e, T ij, depends

on the user density level ui, the host density level hj, and the distance d(i, j) between

the satellites.

T ij =
(ui · hj)

α

(d(i, j))β
. (23)

Here i corresponds to the LEO logical location (n,m), where n = di/MLe, m = i

MOD ML, ML is the number of satellites in a LEO plane. Setting α = 0.5, β = 1.5,

we can get the traffic flow shares among the continents in Table 3.

In our satellite network, the links are modeled as finite capacity queues, the traffic

requirements between satellites are mapped to the ISLs according to the shortest
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Table 3: Continental Traffic Flow Shares in %.
Source Destination

N. America Europe Asia S. America Africa Oceania

North America 86.18 6.74 4.18 1.76 0.45 0.70
Europe 25.10 55.88 13.52 1.62 2.84 1.04
Asia 24.04 20.89 47.74 1.15 1.75 4.43

South America 52.39 13.02 5.96 25.12 1.85 1.66
Africa 25.63 43.34 17.33 3.53 7.95 2.22

Oceania 26.48 10.58 29.22 2.11 1.49 30.12

path the packets will take. They provide the arrival rates in the queuing model.

We assume Poisson arrival rate and exponentially distributed service time, then the

queuing delay of each link can be deduced by the M/M/1/K queuing model.

The average packet arrival rate of each pair of satellites (packets/sec) is computed

by:

λij =
T ij

∑NL×ML
k=0

∑NL×ML
l=0 T kl

× (total offered traffic), (24)

where i, j = 1, 2, ..., NL × ML, the “total offered traffic” represents the total traffic

generated worldwide.

4.6.3 Delay Performance Evaluation

We developed our own simulator on C++. For each simulated routing protocol, the

simulator measures the corresponding end-to-end delay metric. In all simulations, the

capacity of all UDLs and ISLs are chosen as 160Mbps, and each outgoing link has been

allocated a buffer size of 5MB. If we assume an average packet size of 1, 000 bytes, the

link capacity becomes 20, 000 packets per second and the buffer size becomes 5, 000

packets. The delay metric is sampled every 1 minute.

Three types of routing protocols are evaluated using our simulator: our SGRP, the

datagram routing algorithm (DRA) [30], and the optimal routing computed by the

Dijkstra’s algorithm [62]. Data packets are carried in the LEO satellite layer. DRA

forwards packets in the minimum propagation delay paths. Therefore, the queuing
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delays caused by the non-uniform traffic distribution are ignored. SGRP measures

the link delay values every Tc period and uses the delay values as a reference for com-

puting the minimum delay paths. The Dijkstra’s algorithm [62] is used to calculate

the routing tables in SGRP. Paths are adjusted when link congestion or satellite fail-

ures occur. The SGRP parameters used in the simulator are: the delay measurement

interval Tc = 4 minutes unless specifically stated, the radius r of congestion area is set

as 1. The optimal routing represents the ideal scenario that each satellite is assumed

to be aware of the overall satellite topology and its knowledge of the link delays is

updated in real time. Therefore, the optimal routing returns the best delay perfor-

mance, which is hard to achieve in real systems and can only be approached at the

cost of frequent delay measurement as well as heavy communication and computation

overhead.

Our comparisons are based on the observation of the end-to-end delay between cer-

tain terrestrial source-destination pairs. To evaluate the performance of the LEO/MEO

satellite architecture and SGRP, three sets of simulations are conducted:

• Path Optimality: The first set of the simulations show the differences of end-

to-end delay returned by SGRP, DRA, and the optimal routing.

• Effect of Satellite Failures: This set of simulations shows the effect of satellite

failures on the performance of SGRP, compared with DRA and the optimal

routing.

• Effect of Link Congestion: Our SGRP has reaction mechanism when congestion

occurs. This set of simulations shows the performance difference among SGRP,

DRA, and the optimal routing in case of link congestion.
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4.6.3.1 Path Optimality

The first set of simulations compares the end-to-end delay among the paths computed

by SGRP, DRA, and the optimal routing. The comparisons are based on the obser-

vation of the end-to-end delay between three terrestrial source-destination pairs. The

first two pairs are with the same source node located at (112.5oE, 37.5oN) in Asia. The

destination nodes are at (277.5oW, 33.25oN) in North America and (52.5oE, 52.5oN)

in Europe, respectively. The paths between these two pairs go through areas with

traffic concentration. The path between source-destination pair 1 is with longer dis-

tance than that of pair 2. The third pair has the source located at (142.5oE, 37.5oS)

in Oceania and the destination at (37.5oE, 18.25oS) in Africa. The path associated

with the third pair does not travel through high traffic concentration areas. For each

of the source-destination pair, the sender generates traffic with an average rate of

8Mbps (1, 000 packets per second) for 100 minutes.

To compare the delays of different schemes under different link load, we increase

the ISL utilization in the LEO layer gradually. It is done as follows:

• First, the packet arrival rate is generated by Equation (24) and gives the average

traffic rates of flows between each pair of satellites. Flows are generated with

exponentially distributed rates with fixed mean values (λij).

• The rates are mapped to ISLs according to the minimum propagation delay

paths the packets will take. The load of a link is the sum of all the rates of

flows that pass through this link. Some ISLs are more heavily loaded than

others according to the traffic distribution model.

• Assume that the average load proportion across all the links keeps the same,

hence to increase the ISL utilization statistically, the “total offered traffic” in

Equation (24) is increased, which affects the flow rates λij and in turn changes
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the average load of each satellite link. The queuing delays of all the satellite

links are calculated by the M/M/1/K queuing model.

• The delay of a link is the sum of its propagation delay and queuing delay at

computation times.

In our simulations, each time a different value of the “total offered traffic” is cho-

sen, the routes and end-to-end delays of certain flows are monitored for 100 minutes.

The satellite link loads are changing dynamically with fixed nominal means. The end-

to-end delay performance of the SGRP, DRA, and the optimal routing are depicted

in Figure 19. For each specific value of average link load, the end-to-end delay is av-

eraged over the 100-minute monitoring time. Note that as the result of non-uniform

traffic distribution shown in Table 3, the load of links varies greatly among different

satellite links. Thus, some of the links may get congested even when the average link

load is as low as 3%.

It can be seen that for paths that go through some high traffic concentration areas,

e.g., source-destination pair 1 and 2, when the average link load is below 3%, the end-

to-end delay performance of the three protocols is similar. This is reasonable because

when the traffic load is light, the propagation delay is the dominant factor in the

end-to-end delay. As the average link load increases, however, the delay performance

of SGRP and DRA deviates from the value returned by the optimal routing. The end-

to-end delay of the path calculated by DRA increases dramatically when the average

link load is greater than 8%. This is because when average link load increases, ISLs

in areas with higher traffic density tend to be congested more easily. DRA reflects

packets only when they approach or enter into the congestion area, whereas the

routing scheme based on SGRP can have a big picture of the traffic distribution in

the LEO network and reduce the traffic entering into the congested area. As SGRP

leads long paths away to avoid even the vicinity of the congested links, however, these
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Figure 19: Comparison of Average End-to-End Delay Performance.

routes may experience longer delay compared to the paths calculated by the optimal

routing.

For paths that travel only through areas with lower traffic concentration, e.g.,

source-destination pair 3, SGRP does not introduce higher delay than the optimal

value until the average link load is high, e.g., 57% in Figure 19(c). The delay perfor-

mance of both DRA and SGRP is very close to the optimal value, e.g., the delay de-

viations from the optimal value for SGRP and DRA are within 0.5msec and 2.5msec,

respectively (Note that the scale of the y-axis is different than those in Figures 19(a)

and 19(b)). Hence, for paths that do not travel through high traffic density areas,

the performances of SGRP and DRA are not affected by congestion in other areas
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and are very close to the optimal value.

As explained in Section 4.5, the LEO satellites periodically measure delays of

adjacent links. This delay information is then used to compute the routing tables for

the coming measurement interval Tc. The length of Tc affects the delay performance

of SGRP. If Tc is too large, the delay report obtained will not be able to capture

the delay behavior in the next Tc period, which may cause the computed path sub-

optimal. We have simulated SGRP with different Tc values of 8, 4, and 2 minutes,

respectively. As seen in Figure 19, with the decrease of measurement interval Tc,

i.e., when routing tables are updated more frequently, the end-to-end delay values

returned by SGRP approach the optimal value more closely. If the path does not

travel through high traffic concentration areas, the delay difference of SGRP from

the optimal value is ignorable. For example, in Figure 19(c), when Tc = 2min, the

curve representing the path delay between source-destination pair 3 overlaps with

that of the optimal delay. When Tc is large (Tc = 8min in Figure 19), the delay

difference of SGRP from the optimal value grows rapidly under link congestion.

4.6.3.2 Effect of Satellite Failure

SGRP introduces a reaction mechanism against satellite failures and link congestion.

In the following two sets of simulations, we compare the end-to-end delay of three

different routing schemes mentioned previously under these events. To reflect the

effect of real-time changes on delay performance, the background traffic is adjusted

every hour according to the time of the day. All paths and link loads are updated

after recalculation.

When a satellite fails, it affects the routing decision and the path delay. In this set

of simulations, we keep track of the end-to-end delay of source-destination pair 1 using

these three protocols, respectively. The sender generates traffic of 1, 000 packets per

second for 60 minutes from 8:00am to 9:00am. The satellite representing the logical
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Figure 20: Comparison of Instantaneous End-to-End Delay Performances.

location of (292.5oW, 67.5oN) is assumed to be out of service from 8:15am to 8:35am.

In Figure 20(a), instantaneous end-to-end delays associated with these three pro-

tocols are depicted. DRA routes packets on the minimum propagation delay path,

the satellites do not send delay reports to others. Thus, only the immediate neigh-

bors know the satellite failure. When a packet is received by one of these neighbor

satellites, and is destined to the failed one, it is deflected to one of the orthogonal

directions. In SGRP, the satellite failure is immediately reported to the MEO layer

by its neighbors. This failure report is then exchanged among all MEO satellites,

causing them to update the routing tables of all the LEO satellites. Hence, we expect

SGRP to have better performance than DRA under satellite failures. From the figure,

we can see that the failure has minor effect on SGRP, yet in the satellite failure pe-

riod, the path calculated by DRA undergoes higher end-to-end delay, which is about

55% higher than that of SGRP. On the other hand, the delays of SGRP and optimal

routing are very close either under normal condition or when a satellite fails. Because

when a satellite fails, the failure report packets are immediately received and passing

around in the MEO layer. New shortest paths are calculated and take effect after

the LEO satellites receive the new routing tables. This mechanism compensates the

effect of satellite failures.
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4.6.3.3 Effect of Link Congestion

Similarly, we depict the change of instantaneous end-to-end delay for source-destination

pair 1 of the three protocols when link congestion occurs. This congestion is created

by injecting some heavy traffic into the satellite network in a certain area. In our

simulations, the sender generates traffic of 1, 000 packets per second for 60 minutes

in a peak hour from 10:00am to 11:00am. The congestion occurs at the link from

LEO logical location (277.5oW, 63.25oN) to (277.5oW, 48.25oN) between 10:20am and

10:40am. To simplify the simulation, we confine the congestion to this link, and set-

ting the load on this path to 100% of the link capacity.

From Figure 20(b), the path calculated by DRA always undergoes higher delay

within the congestion period. This delay is about 13% higher than that of the path

calculated by SGRP. The average difference between the delays of SGRP and the

optimal routing is about 0.5msec. When congestion occurs, however, their delay

performance is about the same. SGRP recalculates the routing tables right after con-

gestion happens. The recalculation tries to keep the local traffic within the congestion

area, but route the long path away from the congested area. Therefore, the effect of

congestion will be compensated by enacting the new routing tables.

4.6.4 Communication Overhead Analysis

SGRP divides the LEO satellites into groups according to the snapshot periods and

distribute the routing table calculation of all LEO satellites to several MEO satellites.

Therefore, a hierarchy is introduced in the architecture. In order to demonstrate the

efficiency of SGRP, we analytically compare the communication overhead of each

round of routing table calculation in SGRP with the centralized and fully distributed

routing table calculation approaches in a single-layer satellite network architecture.

In the centralized routing table calculation scheme, all routing tables are calculated

by a designated terrestrial gateway. The satellites in LEO layer create their delay
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Figure 21: Communication Overhead Comparison.

reports and send them to the gateway through minimum hop paths. The terrestrial

gateway calculates the individual routing tables for all the LEO satellites separately

and sends these routing tables to the corresponding satellites again over minimum-hop

paths.

In the fully distributed routing table calculation approach, every satellite is re-

sponsible for calculating its own routing table. The delay reports are broadcast to all

satellites. Once a satellite receives all delay reports, it calculates the shortest paths

to all other nodes. Using the shortest paths, every satellite creates its own routing

table that contains the next hop to reach all other nodes in the network.

In Figure 21, the communication overhead of the three routing table calculation

schemes are compared. In the hierarchical architecture in SGRP, the number of

MEO satellites is set as 10, i.e., 2 planes with 5 satellites in each plane as in the ICO

constellation. The total number of LEO satellites was changed and its effect on the

communication overhead of the three schemes was recorded. The total communication

overhead is expressed in terms of transmission units, which is an entry either in the

delay report or in a routing table.
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Among these three schemes, SGRP has the least amount of communication over-

head. Central routing table calculation generates more communication overhead as

the total number of satellites in the network increases. By introducing the hierarchy

in SGRP, every LEO satellite only sends delay report to its MEO primary man-

ager. Rather than broadcasting, delay reports are exchanged in the MEO layer in

an efficient way. After calculation, routing tables are sent back to the corresponding

LEO satellites through one hop from a MEO primary manager to its care-of mem-

bers. SGRP’s communication overhead stays below that of the centralized calculation

scheme in all cases. On the other hand, as the distributed calculation scheme requires

broadcasting of delay reports to all LEO satellites, which boosts up its communica-

tion overhead, the distributed calculation scheme’s communication overhead is the

highest among the three.

4.6.5 Summary and Discussion

In summary, we assessed the performance of the SGRP protocol with simulations,

which revealed that SGRP has better delay performance than the datagram routing

algorithm. When satellite failure or link congestion occur, SGRP has mechanisms to

reduce their effects on routing. We also showed that SGRP calculates the routing

decisions with low communication overhead. SGRP distributes the computational

burden to multiple MEO satellites, thus balances the power consumption between

LEO and MEO satellites.

In this research, we assume that the traffic load on satellite system is moderate

and packets are routed within LEO layer. MEO satellites are used for routing table

calculation and transmission of signaling and data control packets. Since the signaling

traffic is physically separated from the data traffic, the congested links do not affect

the transmission of the delay measurements. SGRP enables the collaboration between

different satellite network constellations. MEO satellites are aware of the overall
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topology of LEO and MEO layers, which gives them the possibility of not to constrain

the routing to LEO layers. Besides the management functions and route computation,

MEO satellites can be used for other purposes as well, such as packet forwarding and

navigation.
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CHAPTER V

TERRESTRIAL/SATELLITE NETWORK

INTEGRATION THROUGH BORDER

GATEWAY PROTOCOL - SATELLITE

VERSION

5.1 Motivation and Related Work

Satellite networks are becoming increasingly important for global communications.

With the explosive growth of the Internet, the IP technology is being pushed to the

satellite networks. To realize this, satellites carry IP-switches that forward packets

independently. These IP-switches are connected to each other as well as to ground

stations. Several issues related to IP-based satellite networks have been reviewed in

[42]. Routing in the LEO satellite environment is a challenging problem because of the

dynamic nature of the satellite networks. In recent years, several routing algorithms

and protocols have been proposed for IP-based LEO satellite networks [38, 30, 40, 26].

The use of the IP-based satellite networks as a part of the Internet, however,

cannot be accomplished only by solving the routing problem of the satellite networks.

The integration of the IP-based satellite networks must assure their interoperability

with the terrestrial IP networks. Previously, satellite network integration issues were

pointed out in [42, 52, 74]. As suggested in these papers, the satellite network can be

viewed as a separate autonomous system (AS) with a different addressing scheme. To

reduce the load on the satellite network, terrestrial gateways act as border gateways

on behalf of the satellite network and perform address translation. Then, paths over

both networks can be discovered using an exterior gateway protocol such as BGP [57].

Since the internal and external metrics for terrestrial ASs and the satellite network

are different, however, special care must be taken. None of the studies mentioned
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above provides a detailed solution as to how this network-level integration can be

accomplished.

In this chapter, the border gateway protocol - satellite version (BGP-S) is pro-

posed. The BGPS protocol was first introduced in [31] and refined in [32]. The

satellite network is considered an AS with special properties. BGP-S is designed

to coexist with the BGP-4 [57] and support the automated discovery of paths that

include the satellite hops. It is designed to be implemented in only one terrestrial

gateway in every AS that is connected to the satellite network. Since the delay in

the satellite network can be much longer than in a terrestrial AS, the acceptance of

paths involving satellite hops is accomplished through active delay measurements.

5.2 The Hybrid Terrestrial/Satellite Network Ar-

chitecture

The general hybrid network consists of the terrestrial Internet and an IP-based satel-

lite network. The terrestrial Internet is organized into ASs. Inside every AS, the

routing is accomplished through interior gateway protocols (IGPs). The inter-AS

routing is based on an exterior gateway protocol (EGP), specifically, Border Gateway

Protocol version 4 (BGP-4) [57]. The satellite network should carry the following

properties:

• The satellite network should be able to forward individual data packets between

two gateways on the Earth. The satellite network may use its own native packet

formats and its own addressing scheme.

• There is no constraint on the satellite topology as long as any two terrestrial

gateways can be connected over the satellite network. The satellite network

can consist of any number of satellites in one or more orbits as long as every

terrestrial gateway is always in the coverage area of at least one satellite and

there exist a path to every other terrestrial gateway.
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Figure 22: The Hybrid Terrestrial/Satellite Network Architecture.

• There is no constraint on the routing protocol used in the satellite network, i.e.,

any custom routing protocol with static or dynamic routing tables/strategies is

acceptable.

5.2.1 Network Components

A sample structure of the hybrid terrestrial/satellite network is shown in Figure 22.

In this figure, two autonomous systems, ASi and ASr, are depicted. The autonomous

systems are connected to the satellite network via a gateway. ASi and ASr are also

connected with terrestrial links. Note that this figure is only a partial view of a likely

network topology. There may be more autonomous systems with possibly different

number of gateways and connected in a more complex way.

The following is a list of notations used in this work:

• Autonomous System: The collection of routers under the same technical and

administrative control is referred to as an autonomous system. The autonomous

systems are denoted by ASi as shown in Figure 22.

• Routers and BGP Speakers: The routers in every autonomous system ASi

are denoted by Ri,j, for j = 0, · · · ,NR
i − 1, where NR

i is the number of routers
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in ASi. The BGP speakers are the routers that implement BGP and they are

denoted by BSi,j, for j = 0, · · · ,NBS
i − 1, where NBS

i is the number of BGP

speakers in ASi. Note that NBS
i ≤ NR

i and {BSi,j} ⊆ {Ri,j}.

• Network Address: A network address NAi is the longest common IP pre-

fix shared by the network elements in that subnetwork. An example network

address is 193.140.196.0/24.

• AS Path: An AS path Pj
ASi

(NAk) is an ordered list of autonomous systems

(ASi, · · · , ASx), which is the jth alternative path for ASi to reach the network

address NAk, where NAk resides in ASx.

• Gateways and Peer Gateways: The gateways are the terrestrial stations

that enable the communication between the autonomous systems and the satel-

lite network. In an autonomous system ASi, the number of gateways is NGW
i ,

and the gateways are denoted by GWi,j, for j = 0, · · · ,NGW
i − 1. One of the

gateways is designated as the peer gateway and implements the BGP-S proto-

col used for path discovery over the satellite network. The peer gateway in an

autonomous system ASi is denoted by PGWi as shown in Figure 22. A peer

gateway is a gateway, a router, and a BGP speaker at the same time.

• Active Peer Register: The active peer register (APR) is the list of active

peer gateways connected to the satellite network. APR can be maintained on

the Earth as well as in the satellite network, where it can be reached by peer

gateways over pre-configured paths. APR can also be duplicated as long as all

copies are updated in real-time.

In addition to these components, there are also other components in the hybrid

network. The terrestrial network contains routers and hosts, and there are satellites

with on-board routers. Satellites are denoted by Si, for i = 0, · · · ,NS − 1, where NS
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is the number of satellites. Note that no specific satellite constellation or organization

of the satellites is assumed. Thus, only the index i in Si is sufficient to refer to a

specific satellite.

5.2.2 Packet Forwarding

The packet forwarding from one terrestrial gateway to the next occurs with “IP over

IP” tunneling in the satellite network. Under this scheme, packets are encapsulated

individually into native satellite packets before they are sent to the satellite network

by the terrestrial gateway. Native satellite packets carry the address of the next

terrestrial gateway which can be interpreted by all satellites in the network. Hence,

satellites do not need to keep track of all IP addresses. The satellite network is

responsible for relaying the packets between terrestrial gateways only. It is assumed

that the addressing scheme used by the satellite network and the mappings of these

addresses to IP-addresses are available in the terrestrial gateways.

The packet processing in the terrestrial gateways is the most important step to use

the satellite network as a part of IP paths. While the routers in the terrestrial network

continue using the standard packet forwarding procedures, the terrestrial gateways

must translate the IP addresses and encapsulate the IP packets into native satellite

packets. For this procedure to work, the terrestrial gateways must be addressable

both by the terrestrial and satellite network.

Definition 11 (Next Hop Function NH) Let P denote a packet received by a ter-

restrial gateway. The function NH(P) returns the next hop on the path of the packet

P towards its destination.

Definition 12 (Satellite Next Hop Function SNH) Let P denote a packet re-

ceived by a terrestrial gateway GWi,j, and the next hop for packet P be a terrestrial

gateway GWr,s, i.e., NH(P ) = GWr,s, where (r, s) 6= (i, j), which is reachable through
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the satellite network. The function SNH(GWr,s) returns the satellite St, to which

GWi,j should first send the packet P such that P reaches GWr,s.

Upon receiving a packet P , a terrestrial gateway GWi,j processes the packet as

follows:

1. The gateway determines the next hop NH(P ) for the received packet P .

2. If the packet’s next hop is not a terrestrial gateway, i.e.,

NH(P ) 6∈ {GWr,s | (r, s) 6= (i, j)}, it forwards the packet to the next hop without

any modification.

3. If the next hop of packet P is a terrestrial gateway, i.e., NH(P ) = GWr,s, (r, s) 6=
(i, j), then P is encapsulated into a native satellite packet with GWr,s as the

destination and sent to its next hop St in the satellite network, where St =

SNH(GWr,s).

Note that it is assumed that no two terrestrial gateways are connected to each

other with terrestrial links. If it is the case, then the function NH should be modified

such that it also indicates if the next hop should be reached through the satellite

network or over a direct terrestrial link. When a terrestrial gateway receives a native

satellite packet from a satellite, it simply extracts the payload from the satellite packet

and processes it as a regular IP packet.

5.3 BGP-S: Border Gateway Protocol - Satellite

Version

To allow the automated discovery of paths that pass through the satellite network, we

introduce a new protocol called the border gateway protocol - satellite version (BGP-

S). BGP-S possesses the same basic functionality as BGP-4 [57], which means that

the AS policies used in BGP-4 are adopted to control routing traffic among networks.
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However, using BGP-S together with BGP-4 has two main advantages. First, the

satellite network does not directly participate in the path calculations. Instead, it is

only responsible for carrying data packets and (possibly) keeping track of the active

peer gateways. Hence, the complexity added to the satellite system is kept at a min-

imum. Second, if the satellite network is regarded as a regular autonomous system,

there would not be any difference between a terrestrial AS and the satellite network.

This may be misleading in many cases since the delays in the satellite network are

much larger than in a terrestrial AS. Therefore, under BGP-4, if one or more satellite

hops are involved in the AS-path, it is necessary to manually configure the routing

strategies according to the location of the ASs and delay estimations. BGP-S elimi-

nates the need for manual configuration and enables automatic adaptation based on

the delays in the satellite and terrestrial networks.

In the hybrid network model, BGP-4 and BGP-S are used together as shown in

Figure 22, where APR is located in the satellite network. Between the terrestrial BGP

speakers, the BGP-4 protocol is used. More specifically, the Interior-BGP (IBGP)

is used among the BGP speakers in the same AS. The BGP speakers that belong

to different ASs use Exterior-BGP (EBGP). Although the message formats are the

same for both IBGP and EBGP, there are differences in message processing. Peer

gateways communicate over the satellite network using the BGP-S protocol. Peer

gateways must implement both BGP-4 and BGP-S.

There are two important rules in a system implementing BGP-S:

• Rule 1. There is only one peer gateway in an AS.

• Rule 2. The routing policies that are configured for the BGP-4 are automatically

adopted by BGP-S.

The first rule aims to limit the number of peer gateways to the number of ASs

directly connected to the satellite network. Furthermore, it eliminates duplication of
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Figure 23: The Activation of Peer Gateways and Connection Setup.

information received in an AS. The second rule ensures that BGP-S is fully compatible

with the BGP-4 protocol, hence with the existing Internet infrastructure. These

policies may eliminate paths that contain certain ASs, or may ensure that transit

traffic is not carried, etc. Detail descriptions of BGP-4 can be found in [57, 60]. The

details of the BGP-S protocol are provided in the following sections.

5.3.1 BGP-S Connection Setup

The BGP-S protocol uses TCP connections between two peer gateways for communi-

cation. A BGP-S connection is closed either by an explicit NOTIFICATION message or

when no messages are received from the other party within a predetermined time-out

period. Considering the number of active peer gateways, the time-out period is sug-

gested to be longer than in BGP-4, approximately 10 seconds. The connection setup

is accomplished through the following steps, as also shown in Figure 23:

1. When a peer gateway PGWi becomes active and wants to connect to other peer

gateways, it sends an Alive(PGWi) message to the active peer register (APR).

2. The APR sends a list of already active peer gateways to PGWi.

3. PGWi acknowledges the reception of the active peer gateway list to the APR.
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4. The APR sends to all other active peer gateways the Alive Fwd(PGWi) to

notify them about the availability of the peer gateway PGWi.

5. If an already active peer gateway PGWj wants to establish a BGP-S connection,

it then sends an OPEN message to PGWi.

6. PGWi can establish a BGP-S connection to any other peer gateway PGWk in

the active peer register by sending an OPEN message.

The Alive(PGWi) message contains the IP and satellite network addresses of

the peer gateway PGWi as well as the AS number where PGWi resides. The

Alive Fwd(PGWi) message contains the same information as the Alive(PGWi)

message. The difference is that Alive messages are created by the peer gateways

that become active, and Alive Fwd messages are created by the APR to notify other

peer gateways of the availability of a new peer gateway. The OPEN message has the

same format as in the BGP-4 protocol.

5.3.2 Path Discovery and Prioritization

A peer gateway learns paths both via BGP-S and BGP-4. If it decides to advertise

the paths to other peer gateways over BGP-S, it then uses UPDATE messages that

have the same format as in BGP-4. It is important to note that the paths learned via

BGP-S cannot be processed like the paths learned through BGP-4. The reasons for

this differentiation were presented at the beginning of Section 5.3. While processing

these paths, it is important to be consistent with policies configured with the BGP-4

protocol. Then, the paths are compared based on the delay to the target network.

Note that the delay comparison is just an approximation of the real-time delay. The

delay changes continuously because of fluctuations in the traffic load and it is not

feasible to check the delay to all possible network addresses periodically. In order to

discover the delay to a given network, the following new messages are used:
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• POLL() message: The POLL message is used to request a delay measurement to a

specified network or network element. POLL(PGWi, PGWj, A) is a message

sent by the peer gateway PGWi to PGWj to learn about the delay between

PGWj and A, where A can be a network or a network element. Every POLL

message contains the message creation timestamp.

• DELAY() message: The DELAY message is a reply to a POLL message. The

DELAY(PGWj, PGWi, A, B, d) is a message sent by the peer gateway PGWj

to PGWi telling that the delay between itself and a network element B in the

network A is d. If A is a network element, then A = B.

If A = PGWj, then DELAY is like a ping response; the receiving peer gateway

PGWj replies immediately with a delay equal to the timestamp in the POLL message.

Then, the peer gateway PGWi calculates the round trip delay to PGWj. If A is a

network address, then PGWj measures the delay to the network element B in the

network A. Then the DELAY message contains this measured delay as d. When the

delay to a network A is needed, PGWj selects a network element B in the network A

and measures the delay from itself to B. The delay can be measured using the ping

utility. Any other method can be used for delay measurement, as well.

5.3.2.1 New Path Discovery via BGP-S

Assume a peer gateway PGWi learns from PGWj via BGP-S the AS path PASj
(NAk)

to reach the network NAk. The new AS path PASj
(NAk) is processed following the

steps below, which are also shown in Figure 24.

1. PGWi checks PASj
(NAk) with the policies setup for BGP-4 protocol. If there

is a conflict, then PASj
(NAk) is discarded.

2. If PASj
(NAk) conforms with the BGP-4 policies and the delay from PGWi to

PGWj is not available to PGWi, then PGWi sends a POLL(PGWi, PGWj,
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Figure 24: The Processing of AS Paths Learned via BGP-S.

PGWi) message to PGWj.

3. PGWi also sends a POLL(PGWi, PGWj, NAk) message to PGWj to learn

the delay between PGWj and the network NAk.

4. PGWi receives the DELAY(PGWj, PGWi, PGWj, PGWj, d1) message from

PGWj. The delay d1 to PGWj, is estimated as half of the difference of the cur-

rent time Tcur and the timestamp d, i.e., d1 = Tcur−d
2

.

5. PGWj measures the delay d2 to the network element B in network NAk.

6. PGWi receives the DELAY(PGWj, PGWi, NAk, B, d2) message from PGWj.

7. PGWi measures the delay d3 to B if there exists an AS path PASi
(NAk) to reach

the network NAk in the routing information base (RIB) of BGP-4. If there is

no such entry in the BGP-4 RIB, then the delay to B is assigned infinity, i.e.,

d3 = ∞.

8. If d3 is infinity, then P1
ASi

(NAk) is created by appending ASi to PASj
(NAk) and

inserted to BGP-4 RIB with a default local preference value.

9. Assume that there is already an AS path P∗
ASi

(NAk) used in ASi to reach the

network NAk such that P∗
ASi

(NAk) = arg max
X∈{PASi

(NAk)} LocalPref(X),
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where the function LocalPref(X) gives the local preference value of the AS

path X. If d1 + d2 ≥ d3, i.e., the new path over the satellite network is longer

than the already available AS path, then the new AS path Pp+1
ASi

(NAk) is inserted

into BGP-4 RIB with a local preference value of LocalPref(P∗
ASi

(NAk)) − 1,

where p is the number of AS paths to NAk already in the RIB.

10. Under the same conditions as in the previous step, if d1 + d2 < d3, i.e., the new

path over the satellite network is shorter, then the new AS path Pp+1
ASi

(NAk) is in-

serted into BGP-4 RIB with the local preference value of LocalPref(P∗
ASi

(NAk))+

1, where p is the number of AS paths to NAk already in the RIB.

When an AS path is inserted into the BGP-4 RIB by a peer gateway, the delay

information remains local to the BGP-S protocol. The delay comparison is advertised

to the BGP speakers in the same network implicitly with the local preference value,

which is propagated with the new path information. Note that the local preference

values of the AS paths inserted by BGP-S are related with the existing AS paths in

the RIB. Although a relative local preference assignment is not allowed under BGP-4,

BGP-S assigning relative local preference values does not affect the integrity of the

BGP-4 because there is only one network entity per AS that is allowed to perform

this operation.

5.3.2.2 New Path Discovery via BGP-4

Assume that a new AS path Pp+2
ASi

(NAk) is advertised via BGP-4, which has a higher

local preference value than the currently used, i.e., LocalPref(Pp+2
ASi

(NAk)) >

LocalPref(P∗
ASi

(NAk)). Also let Pq
ASi

(NAk) be the AS path with the best delay

performance to the network NAk among the AS paths learned via BGP-S. The peer

gateway PGWi performs the following steps to process the new AS path:

1. If the BGP-4 RIB does not contain any path to NAk that was learned via

BGP-S, then no action is taken.
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2. Otherwise, the delay to the network element B in NAk is measured for Pp+2
ASi

(NAk)

and Pq
ASi

(NAk). The measurements are taken following the Steps 2-7 in Section

5.3.2.1, obtaining the delays d1, d2, and d3.

3. If d1 + d2 ≥ d3, i.e., the AS path over the satellite network Pq
ASi

(NAk) is longer

than the new AS path Pp+2
ASi

(NAk), then no action is taken.

4. If d1 +d2 < d3, i.e., the AS path over the satellite network Pq
ASi

(NAk) is shorter

than the new AS path Pp+2
ASi

(NAk), then PGWi updates the local preference of

Pq
ASi

(NAk) as LocalPref(Pp+2
ASi

(NAk)) + 1. Then, PGWi advertises the path

Pq
ASi

(NAk) with the updated local preference value.

Note that the delay of the paths over the satellite network is re-measured by

the peer gateways when learning new paths over BGP-4. However, regular delay

monitoring of all the paths by peer gateways would not be feasible given the number

of the ASs we consider and the high protocol overhead it would introduce.

5.3.2.3 Path Withdrawal

When a path is withdrawn either via BGP-4 or BGP-S, the peer gateway PGWi

in ASi must check the RIB and possibly modify the local preference value of the

shortest AS path that goes over the satellite network. Assume that there are p paths

in the BGP RIB to reach the network NAk. Upon receiving an UPDATE message that

contains the withdrawal of an AS path that leads to NAk, the peer gateway PGWi

performs the following operations:

1. If the withdrawn AS path is not the one that is currently used, no action is

taken.

2. If the currently used path is withdrawn and the AS path with the next highest

local preference value is learned via BGP-4, then no action is taken.
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3. If the AS path with the next highest local preference value is learned over

BGP-S, then the AS path that is learned via BGP-4 and has the largest local

preference value is found, which we call Pt
ASi

(NAk).

4. All AS paths with larger local preference values than Pt
ASi

(NAk) are collected

in the set PSat
ASi

(NAk).

5. The delays of all AS paths in PSat
ASi

(NAk) are measured as described in Section

5.3.2.1, Steps 2-7. The delay of Pt
ASi

(NAk) is also measured as described in

these steps.

6. Let us assume that the AS path Ps
ASi

(NAk) has the lowest delay ds among all

paths in PSat
ASi

(NAk). Also assume that the delay of Pt
ASi

(NAk) is dt. If dt < ds,

i.e., all AS paths over the satellite network are longer, then the local preference

values of all AS paths in PSat
ASi

(NAk) are set to LocalPref(Pt
ASi

(NAk))− 1, i.e.,

LocalPref(P) = LocalPref(Pt
ASi

(NAk))− 1, ∀P ∈ PSat
ASi

(NAk).

7. If dt > ds, one of the AS paths over the satellite network is shorter, then the lo-

cal preference values of all AS paths in PSat
ASi

(NAk) except for Ps
ASi

(NAk) are set

to LocalPref(Pt
ASi

(NAk))−1, i.e., LocalPref(P) = LocalPref (Pt
ASi

(NAk))−
1, ∀P ∈PSat

ASi
(NAk) and P 6= Ps

ASi
(NAk). The local preference value of Ps

ASi
(NAk)

is set to LocalPref(Pt
ASi

(NAk)) + 1.

8. The updated local preference values are advertised in the autonomous system

ASi.

5.3.3 BGP-S Connection Termination

Assume that a BGP-S connection between two peer gateways PGWi and PGWj is

terminated because PGWj does not receive any message from PGWi within a time-

out period. If the connection terminates due to time-out, PGWj notifies the APR

about the termination. APR checks if PGWi alive. If PGWi is alive, no action is
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taken. If PGWi does not respond, then APR records this in its database and informs

all active peer gateways about this. Any existing connections to PGWi is terminated

and all RIB entries that use ASi are withdrawn by active peer gateways within their

ASs.

On the other hand, if a peer gateway PGWi will be turned off or if ASi does

not want to receive any traffic from the satellite network, then PGWi terminates

all active connections with NOTIFICATION messages. The peer gateways that receive

NOTIFICATION messages do not contact APR. Then PGWi sends a message to APR

indicating that it is no longer active. APR records this in its database and forwards

this message to all active peer gateways. All RIB entries that use ASi are withdrawn

by active peer gateways.

5.4 Performance Evaluation

We evaluated the performance of BGP-S on an integrated terrestrial/satellite IP net-

works model. This integrated network model consists of terrestrial ASs and a satellite

network. The new network generation tool we use to create the integrated network

topology is called the Integrated Terrestrial/Satellite Topology Generator (ITSTG).

The performance of BGP-S is evaluated with simulations run on the network topolo-

gies created by ITSTG.

− Satellite Network Parameters

− Terrestrial Network Parameters

Configuration File

Integrated Topology
Topology

Integrator

Terrestrial Topology

Satellite Topology

Topology Generation

Engine

Figure 25: The Schematic Structure of ITSTG.
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5.4.1 Topology Generation Process

The structure of ITSTG is shown in Figure 25. It is extended from the Boston uni-

versity Representative Internet Topology gEnerator (BRITE) [1]. The parameters for

terrestrial and satellite network are specified in a configuration file. Using these pa-

rameters, the topology generation engine generates terrestrial AS-level topology and

the satellite network topology separately. Finally, these two topologies are used as the

inputs to the topology integrator to create the integrated terrestrial/satellite network

topology. The terrestrial, satellite, and integrated terrestrial/satellite topologies are

generated as described in the following sections.

5.4.1.1 Terrestrial Topology

The specific details regarding how a terrestrial topology is generated depend on the

specific generation model being used. In general, the generation process is divided

into three steps:

1. Placing the nodes: The nodes are placed on the terrestrial sphere with heavy-

tailed distribution, which describes the topological properties of the Internet

[36]. The sphere is divided into squares, and each square is assigned a number

of nodes drawn from a heavy tailed distribution. Then these nodes are placed

randomly in the square. The positions of nodes have longitude in [0o, 360o) and

latitude in [−90o, 90o].

2. Interconnecting the nodes: The methods of interconnecting nodes are different

for two different models: Waxman and Barabasi. The placing procedures are

taken from BRITE with minor modifications.

• Waxman Model: In the Waxman model [68], a new node tends to

be connected to existing nodes that are closer in distance. The nodes

are added into the topology in an incremental way. A node is selected
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randomly to join the network and interconnected to other existing nodes.

The incremental growth is a possible cause for power law of “outdegree

exponent” [36] in any network topology.

• Barabasi Model: The Barabasi model is proposed by Barabási and

Albert [16]. This model suggests two possible causes for power law of

“outdegree exponent” in network topologies: “incremental growth” and

“preferential connectivity”. Incremental growth refers to growing networks

that are formed by the continuous addition of new nodes, which simulates

the gradual increase in the size of the network. Preferential connectivity

refers to the tendency of a new node to connect to existing nodes that

already have high connectivity.

3. Assigning attributes: The bandwidth of a terrestrial link is assigned a value

randomly drawn between BWmin and BWmax. The delay within an AS is a

random variable uniformly distributed within ASmin and ASmax, which are

specified in the configuration file.

5.4.1.2 Satellite Topology

We consider a single-layer Walker Star [67] type LEO satellite network. Satellites are

placed on the sphere of radius RE + h, where h is the altitude of LEO satellites. We

utilize the “logical location” concept in [30]. The logical locations are equally spaced

points in the grid of the LEO satellite constellation. They do not move with respect

to the Earth and are embodied by the nearest LEO satellites. The communication

between the satellites occurs through ISLs. One satellite can have at most four

adjacent links. Inter-orbital links only exist between neighboring satellites outside

polar areas. The bandwidth of links in the satellite network is fixed.
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5.4.1.3 Integrated Terrestrial/Satellite Topology

In BGP-S, the detailed topology of the satellite network is hidden from the terrestrial

network. The communication between satellite and terrestrial parts of this integrated

topology is accomplished through the terrestrial gateways. We assume that one gate-

way belongs to one terrestrial AS and has only one UDL to one satellite, which is

represented by the nearest logical location.

The generation process of integrated network topology has the following three

steps:

1. Interconnecting gateways and satellites: First, we select the value of p, which is

the percentage of ASs having connections with the satellite network. For every

terrestrial node, a value is randomly generated between 0 and 1. If the value is

smaller than p, then a link is added between that node and its nearest satellite

logical location.

2. Condensing the satellite topology: The condensed satellite topology only in-

cludes the satellites that have UDLs. These satellites are referred to as repre-

sentative nodes (RNs). Virtual links are built between every pair of representa-

tive nodes. The cost of the virtual link between two representative nodes RN1

and RN2 is the accumulated cost of the nodes and links along the path from

RN1 to RN2 within the satellite network. If we define the cost as the delay of

the link, then the cost of a virtual link is the sum of delays of all links along

the minimum delay path. A virtual link is counted as one hop.

3. Creating the integrated topology: The integrated topology is the combination

of terrestrial topology and the condensed satellite topology. It includes all

terrestrial nodes and links, the satellite representative nodes and links between

them, and the links between terrestrial gateways and satellite representative

nodes.
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Figure 26: Integrated Terrestrial/Satellite Topology Generation.

Figure 26(a) gives an example of interconnected terrestrial/satellite network, in

which the terrestrial network has five ASs, three of which contain gateways. After

going through the above three steps, the integrated terrestrial/satellite topology is

generated as shown in Figure 26(b). In the satellite part, only the three satellites

that have UDL connection to terrestrial gateways are kept in the condensed topology.

The dashed lines are virtual links that connect these three satellites.

5.4.2 Simulation Results

Based on the topology created, we have simulated the routing between any of the two

terrestrial AS nodes. In the simulations, we do not consider the source or destination

located in the satellite network, as the users and service providers reside on Earth.

In the BGP-4 protocol, the configured policies override the efficiency considerations

in the path selection process [57]. We cannot simulate BGP-4 as it works in the

real Internet because it is not possible to make realistic assumptions about the ad-

ministrators’ preferences. Hence, we implement minimum hop routing to reflect the

characteristics when AS-path hop length is the decision criterion of choosing the path

in BGP-4.

84



Table 4: Simulation Parameters for Hybrid Terrestrial/Satellite Network.
Terrestrial Satellite

LS=10 planes = 12
m = 2 satellites per plane = 24

link bandwidth (BWmin=10Mbps, BWmax=1Gbps) ISL bandwidth = 160Mbps
intra-AS delay (ASmin=5msec, ASmax=50msec) altitude = 1400km

In our integrated terrestrial/satellite network, every link is associated with an

instantaneous delay. This link can be an intra-AS link on earth, a UDL between a

gateway and a satellite, or an ISL. Each link is modeled as an infinite capacity queue.

Given link load and link capacity, with the assumption of Poisson arrival rate and

exponentially distributed service time, the queuing delay of each link can be deduced

by the M/M/1 queuing model. As the terrestrial part of the ITSTG is built on AS-

level, a packet also experiences delay within an AS, which is represented by intra-AS

delay value of the AS node.

In all simulations, the number of nodes in the terrestrial network is chosen as

3, 000. The simulation parameters are listed in Table 4. In this table, LS=10 stands

for a side length of 10o for the square used in the heavy-tailed node-placement method,

and m stands for the number of links per new node. The bandwidths of inter-AS

links and the intra-AS delays are uniformly distributed between selected minimum

and maximum values. The link loads are uniformly distributed between 0% and 100%

of the respective link bandwidths. The bandwidth of UDLs is set as 1.6Mbps.

We conducted simulations on the integrated topology and compared the delay

performance of different routing policies. The terrestrial part is generated from the

Waxman and Barabasi models. For different values of percentage p, which is the

ratio of AS nodes having satellite connections, we generated 100 different integrated

terrestrial/satellite network topologies. Taking a topology generated independently

each time, we chose 100 different source-destination pairs. For each source-destination

pair, BGP-S and BGP-4 are run separately, and the delay results for different routing
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Figure 27: Performance Comparison of BGP-4 in Integrated and Terrestrial Net-
works.

method are recorded. This procedure is repeated for every topology. The delay

comparisons are made by averaging all 100× 100 = 10, 000 results.

5.4.2.1 Performance Comparison of BGP-4 in Integrated and Terrestrial Net-
works

The first set of the simulations compares the delay metric when BGP-4 is implemented

both in the terrestrial network and the integrated terrestrial/satellite network. Figure

27 gives the ratio of path delay by implementing BGP-4 globally with and without

satellite network versus p. If the ratio equals 1, it means that the delay of the path

selected by BGP-4 does not change after the satellite network is included. If the

ratio is larger than 1, it means that including satellite network in route selection of

BGP-4 introduces longer delays. If the ratio is less than 1, the path delay will be

reduced if satellite AS is included in BGP-4. Figure 27 shows that for the Waxman

Model and Barabasi Model (when p is larger than 15%), if we apply BGP-4 in the

integrated terrestrial/satellite network, the delay is smaller than that in terrestrial

network alone. This shows that when satellite links are included in routing selection,

the performance improves in terms of delay metric. As p increases, it is easier for

BGP-4 to choose the path through satellite network, the performance of BGP-4 in
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Figure 28: Performance Comparison between BGP-S and BGP-4.

the terrestrial/satellite network gets better.

5.4.2.2 Performance Comparison between BGP-S and BGP-4

For the following set of simulations, BGP-S and BGP-4 are simulated on the inte-

grated terrestrial/satellite network. Their results are compared according to the path

delay characteristics. The ratio of the delays using BGP-S and BGP-4 versus p is

depicted in Figure 28. If the ratio is larger than 1, it means that implementing BGP-S

increases the delay of path. Otherwise, the path delay will be reduced if BGP-S is

used. In this figure, the ratio is always less than 1 for both the Waxman and Barabasi

models, which means that BGP-S always produces lower delays than BGP-4 in the

integrated network. This set of simulations show that the satellite network can be

utilized with BGP-S in a much better way. However, the decrease/increase of delay

ratio as p increases depends on the specific model (Waxman or Barabarsi) used for

the terrestrial AS-level network. Later simulations in the following section will show

that the change also varies with different selections of satellite constellation.
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Figure 29: Effect of Satellite Parameters on BGP-S Performance.

5.4.2.3 Effect of satellite parameters on BGP-S performance

The performance of BGP-S is affected by the architecture of satellite network, such

as the number of nodes in satellite network and the altitude of the satellite layer.

In this set of simulations, we show the effect of satellite network architecture on the

BGP-S performance. In Figure 29(a), the delay ratio of BGP-S and BGP-4 versus p

is depicted for satellite architectures with different satellite numbers. The altitudes of

all three architectures are fixed as 1, 400km, whereas the satellite numbers are chosen

as 60 (with 6 planes), 120 (with 10 planes) and 288 (with 12 planes) respectively. It
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shows that when the satellite number decreases, the delay ratio is smaller. In fact,

BGP-S produces similar results in all three different architectures. As the satellite

number decreases, however, the paths selected by BGP-4 give longer delay as the

satellite nodes become sparse.

Next, we fixed the satellite number as 60, and changed the altitude of satellite layer

as 700km, 1, 000km, and 1, 400km. The routing procedure is repeated for all three

architecture independently. The delay ratio of BGP-S and BGP-4 in the integrated

satellite/terrestrial network versus p is plotted in Figure 29(b). It can be seen that

as the altitude of satellite layer increases, the performance of BGP-S gets better.

This is because when the altitude of satellites is higher, the hops represented by

UDLs to/from satellites are longer. If BGP-4 chooses such links, the selected path

introduces longer delay. However, BGP-S also gives longer delay as the satellite

altitude grows. As the result, the delay ratio varies only slightly (within 1%) under

the three different architectures. Hence, we conclude that the satellite altitude does

not affect much on the performance gain of BGP-S over BGP-4.

5.4.2.4 Effect of gateway selection methods on BGP-S performance

In previous simulations, the peer gateways are randomly positioned according to the

explanation in Section 5.4.1.3. However, we expect that some AS nodes are more likely

to have connections to the satellite network. These nodes may include the backbone

nodes (e.g., Tier-1 ISPs) and remote nodes (e.g., stub ASs which are several hops away

from the Tier-1 ISPs). Hence, in this section, another method called “filtered gateway

selection” is used to place the gateways. We set m = 1 in this set of simulations,

thus, the stub ASs are those with node degree equal to 1.

First, we search for the backbone nodes and remote nodes, where backbone nodes

are those with outdegree larger or equal to nb, remote nodes are the terrestrial nodes

with node degree equal to 1 and are nr hops away from all the backbone nodes. If
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Table 5: Values of p Under Filtered Gateway Selection Method.

nr

1 2 3 4 5 6 7 8
Waxman model (nb=9) 0.506 0.497 0.470 0.416 0.340 0.254 0.173 0.109
Barabasi model (nb=25) 0.670 0.591 0.432 0.260 0.132 0.059 0.024 0.010
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Figure 30: Effect of Gateway Selection Methods on BGP-S Performance.

a node is either a backbone node or a remote node, a peer gateway is equipped and

a link is added between this node and its nearest satellite logical location. After

placing all gateways, the satellite topology is condensed and the integrated topology

is created. We chose several different values of nb and nr for the Waxman model and

Barabasi model, respectively. This gave different percentage p of AS nodes having

satellite connections. Table 5 lists the values of p corresponding to different nb and

nr values. Because the topologies built by the Waxman and Barabasi models have

different node degree distributions, their nb values are different, the change of nr also

maps to different values of p for the two models.

Figure 30 shows the performance comparison of BGP-S under random gateway

selection method and filtered gateway selection method. The y-axis represents the

ratio of BGP-S and BGP-4 in the integrated terrestrial/satellite network. Note that

the results for random gateway selection method are different from those in Figure 28
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due to different m values. The results show that as p grows, BGP-S performs better

under filtered gateway selection method. Moreover, the growth of p has greater effect

on the delay ratio of BGP-S and BGP-4 in the integrated terrestrial/satellite network,

if the gateways are installed pre-selectively in backbone ASs and remote ASs.

5.4.3 Summary

Based on the topologies created by ITSTG, we simulated the routing between any

pair of terrestrial AS nodes and compared the delay performance of BGP-S and BGP-

4 routing policies. The simulation results show that BGP-S always produces lower

delays than BGP-4 in the integrated terrestrial/satellite network. The effect of satel-

lite parameters on BGP-S performance was also evaluated. The following conclusions

can be made from the simulation results: As the satellite number decreases, the paths

selected by BGP-4 have longer delay than those of BGP-S. The satellite altitude does

not affect much on the performance gain of BGP-S over BGP-4. Moreover, the growth

of p, i.e., the ratio of AS nodes having satellite connections, has greater effect on the

delay ratio of BGP-S and BGP-4 in the integrated terrestrial/satellite network if the

gateways are installed pre-selectively in backbone ASs and remote ASs.
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CHAPTER VI

A ROUTING FRAMEWORK FOR

INTERPLANETARY INTERNET

6.1 Motivation and Related Work

The developments in the space technologies enable the realization of deep-space sci-

entific missions such as Mars exploration. These missions require reliable control and

produce a significant amount of data to be delivered to the Earth. Moreover, as the

next step in the design and development of deep-space networks, the Interplanetary

(IPN) Internet is envisioned by NASA enterprises to provide communication services

for scientific data delivery and navigation services for the explorer spacecrafts and

orbiters of the future deep-space missions [18].

All of these future space missions have a common objective of scientific data

acquisition and delivery, which are also the main possible applications of the IPN

Internet described as follows [20]:

• Time-Insensitive Scientific Data Delivery: The main objective of IPN

Internet is to realize communication between in-space entities allowing large

volume of scientific data to be collected from planets and moons.

• Time-Sensitive Scientific Data Delivery: Great volumes of audio/visual

information about local environment is expected to be delivered to the Earth,

in-situ controlling robots, or eventually in-situ astronauts [20].

• Mission Status Telemetry: The status and the health report of the mission,

spacecraft, or the landed vehicles could be delivered to the mission center or

other nodes. This application requires periodic or event-driven transmission

services which do not require 100% reliable transport.
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• Command and Control of In-situ Elements: The closed-loop command

and control may involve indirect or multi-hop communication of the remote

nodes, i.e., Earth station commands the mission rover on planet surface or close

proximity nodes, i.e., planetary orbit commands the lander.

The main challenges that affect routing in the IPN Internet are listed as follows

[11]:

• Long and Variable Propagation Delay: The deep-space communication links

have extremely long and variable propagation delay. For example, Mars-Earth

round-trip time varies from 8.5 minutes to 40 minutes according to the orbital

location of the planets [29]. In such networks, the most severely affected routing

protocols are the distributed ones that require timely dissemination of the topol-

ogy information. Node movement during propagation time must be considered

in the process of route computation and message scheduling.

• Intermittent Connectivity: Link outage may occur for natural reasons such as

planetary body blockage and environmental interference. Furthermore, for eco-

nomical reasons, the radio transceivers of backbone nodes are shared and the

link connectivity is scheduled to be episodic. Optimal path selection is difficult

because of the temporal nature of the topology graph and the non-negligible

link propagation time, especially when the network size is large.

• High Bit Error Rates: The raw bit error rate can be in the order of 10−1 on

IPN links [29]. Furthermore, burst errors that last on the order of minutes can

also be expected. Therefore, the delivery in the IPN Internet is unreliable.

• Power Constraints: The operation of the space elements mainly depends on

rechargeable batteries using solar energy [53]. The use of nuclear power has

also been explored in space applications [6]. The high cost of nuclear power
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and the risk of radioactivity release in case of accidents, however, prevent it

from extensive communication usage. Therefore, routing protocols in the IPN

Internet need to be power efficient.

• Link Asymmetry: The quality of a space link is affected by the sender’s power

generation capability, the receiver’s power amplification capability, the distance

between sender and receiver, and the path condition. The link quality is there-

fore different in opposite directions. The time-dependent nature of the network

topology also causes the deep-space links to be asymmetric in delay and stabil-

ity. Finally, because of application requirements, forward/reverse channels of

deep-space communication links have bandwidth asymmetry, which is typically

on the order of 1000:1 in spacecraft missions [29]. Therefore, routing in the IPN

Internet needs to address the link asymmetry property.

Most of these characteristics are unique to the space communication paradigm

and thus lead to different research approaches from those in the terrestrial networks.

The IPN Internet is composed of different subnetworks, which face specific challenges.

While the existing routing protocols for mobile ad hoc and sensor networks can be

applied to some parts in this architecture, there exists significant challenges that

necessitate specifically tailored solutions for routing in the IPN Internet.

Space Communication Protocol Standards - Network Protocol (SCPS-NP) by Con-

sultive Committee for Space Data Systems (CCSDS) [10] is proposed as a scalable

network standard for routing through space networks. SCPS-NP provides multiple

design options to meet the requirements and constraints of different missions. For ex-

ample, routing tables can be configured statically, centrally, or locally by exchanging

state information among each other. In addition, datagrams with different priorities

can select end system routing, path routing, multicast routing, or flood routing. In

spite of its diversified design options, SCPS-NP does not discuss how these options

can be implemented in a real space-based network.
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Figure 31: Proposed Routing Framework in the IPN Internet.

The IPN Internet is a special type of the delay-tolerant networks (DTNs) [19],

where continuous end-to-end connectivity cannot be assumed. Routing through the

DTNs is done in the bundle layer [58], which resides between the application and the

lower layers. To address the intermittent connectivity property, a store-and-forward

message switching mechanism called “tiered routing” is proposed in the bundle layer.

Node-to-node reliability is added into the network by the storage and retransmission

functionalities of the bundle agents. A recent paper [44] formulates the DTN routing

problem based on different knowledge about network topology. The proposed algo-

rithms require error-free communication and no effective solutions are given when

unpredictable link failures occur. Furthermore, neither the bundle layer descriptions

[58] nor the DTN routing paper [44] provides mechanisms for gathering the forwarding

information through the network.

In this research, a new routing framework for the IPN Internet, i.e., space backbone

routing (SBR), is introduced as shown in Figure 31. SBR is proposed based on the

hierarchical architecture of the IPN Internet and specifically addresses its challenges.

SBR was first described in [23]. SBR has two integral parts: SBR-external and

SBR-interior. SBR-external addresses the delivery of remote control messages and

scientific data through the IPN Internet. The control and data messages are delivered

in a store-and-forward manner and they may need to be buffered in intermediate

nodes for a considerably long time. Location-predicted directional broadcast (LPDB)

is proposed for fast and reliable delivery of remote control messages and automatic

data reports. Paths to the destination are calculated en route based on the predictable
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node locations and reachability information. These paths are used to direct and limit

the forwarding area of the control message broadcast. For controlled data delivery

that contains large amounts of scientific data from remote exploration sites back

to the Earth and requires high reliability, a combination of reactive and proactive

approach is utilized in our proposed receiver-initiated on-demand routing (RIOR)

protocol. Route discovery is initiated on-demand by the receiver and routing tables

are maintained in soft state at the nodes along the forwarding area. No end-to-

end path is recorded for the data delivery. Link state exchange during the data

transmission process provides the nodes with up-to-date path information. SBR-

interior is executed within an autonomous region (AR). It exchanges inter-AR routing

information among backbone nodes within an AR and schedules inter-AR message

transmissions. The problem definitions of two important functionalities of SBR-i, i.e.,

contact allocation and traffic dispatching, are given. As a first attempt, we propose

the longest queues (LQ) policy for contact allocation and the minimum waiting (MW)

policy for traffic dispatching.

6.2 Network Description

The IPN Internet shown in Figure 1 supports data delivery across interplanetary

distances for deep-space exploration. The properties and assumptions of the nodes

and links in the IPN Internet, and the proposed routing framework for this network

architecture are described in this section.

6.2.1 Network Components

• Autonomous Regions

The IPN Internet is composed of multiple autonomous regions (ARs). An AR

contains communication entities that are located close (i.e., much shorter than the

interplanetary distance) to each other. These regions are called “autonomous” since

the local nodes can communicate among themselves using a single common protocol
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family. The routing decisions within a region can be made locally without consulting

a centralized authority in the IPN Internet or intervention from other regions. The

Mars planetary network in the IPN Internet architecture shown in Figure 1 is an

example of AR. The IPN backbone network provides a common infrastructure for

communications among different ARs. An AR topology is formed by abstracting each

AR as a meta-node called an AR node. The location of an AR node can be represented

by a position within the AR. For example, the location of the Mars region can be

represented by the geometrical center of the Mars planet.

• Backbone Nodes

The nodes in the IPN backbone network have long haul communication capability

and are called “backbone nodes.” Examples of backbone nodes include:

1. Planet surface elements such as the Earth ground stations for NASA’s Deep

Space Network [8].

2. Relay satellites orbiting around planets such as Earth satellites and those con-

sisting Mars Network [39].

3. Other intermediate relay nodes, such as mission-specific space shuttles and relay

stations at the Lagrangian points1 of planets like Jupiter and Pluto [18].

As described previously, these backbone nodes are organized into different ARs ac-

cording to their locations.

The backbone nodes are constantly moving abiding by the orbital mechanics. This

kind of node mobility is calculable by the knowledge of their trajectory information.

For example, an ephemeris, which is a table of the positions of celestial bodies at

specified intervals of time, can be built to describe the predictable aspects of the

1The Lagrangian points are positions where the gravitational pull of two large masses precisely
cancels the centripedal accelerationrequired to rotate with them. A third body of negligible mass
could be placed at the Lagrangian points and maintains its position relative to the two massive
bodies.
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node mobility [28].

• AR Links

Consider the solar system as a linear vector space centered at the sun, the position

of an AR node u at time t is then represented by a vector ~ru(t) originating from the

sun. An AR node v is reachable by node u and called an AR neighbor of node u at

time t, if there exists some ∆(t) > 0 that satisfies the following condition:

||~rv(t + ∆(t))− ~ru(t)|| = C ·∆(t) < Luv(t), (25)

where C is the speed of light and Luv(t) is the reachable range limit between node u

and v. If the transmission delay can be omitted, Equation (25) states that a signal

transmitted at time t from node u located at ~ru(t) can be received by node v at position

~rv(t + ∆(t)) at time t + ∆(t), as shown in Figure 32. For clarity, we associate ∆(t)

with each link and write it as duv(t), which represents the link propagation delay from

u to v. Both duv(t) and Luv(t) vary with time. For deep-space communication links,

duv(t) may be as long as several minutes. Luv(t) is decided by factors such as node

u’s transmission power and transmit antenna gain, node v’s receive antenna gain, and

the path condition between u and v within time period [t, t+duv(t)]. The reachability

from u to v at time t is denoted by an AR link luv(t). Each backbone node maintains

its reachability information, which specifies possible reachability opportunities with

its AR neighbors.
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The signal transmission and reception on AR links are assumed to have the fol-

lowing properties:

1. Inter-AR communication uses different frequency band from that used for intra-

AR communication. Therefore, signals targeted for receivers within the local

AR and those for the backbone nodes in a different AR do not interfere with

each other.

2. Due to the extremely long distance, communication via AR links require huge

power consumption and the cost per second of transmission can become very

high. To reduce the transmission cost associated with AR links, directional

antennas are used to increase the power efficiency toward targets. Moreover,

a backbone node can only transmit to one AR neighbor in a timeslot (Tslot in

length).

3. Omni-directional antennas or multiple directional antennas with different point-

ing angles are used for signal reception. A backbone node can receive signals

from different ARs simultaneously and differentiate them by their distinct angle-

of-arrivals (AoAs). Signals from different backbone nodes in the same AR to

the same AR neighbor collide with each other, as their AoAs are approximately

the same.

4. Incoming signal from an AR neighbor can be picked up by any local backbone

nodes that are within the transmission antenna’s field-of-view.

• Contacts

It is assumed that the backbone nodes in an AR are time-synchronized and time

is slotted with length Tslot. The local time at different ARs can be translated to a

common time, e.g., the coordinated universal time (UTC) [3]. The difference in time

synchronization between ARs is omittable compared to the propagation delay on AR
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links. As one of the communication properties of AR links, there can be only one

backbone node in an AR that transmits to a specific AR neighbor within a timeslot.

Therefore, some scheduling mechanism is needed to allocate the next contact toward

an AR neighbor to one local backbone node. A contact describes an allocated time

period when a backbone node, but not other backbone nodes in the same AR, can

transmit to one AR neighbor. In this research, the length of a contact is a multiple

of Tslot. An AR node u is “connected” to an AR neighbor v at time t only if v is

reachable by u and one of u’s backbone nodes is in contact with v at time t.

In the AR topology, there is at most one AR link between any two AR nodes. AR

links may be intermittent and represented by a series of different contacts at different

time. A contact is characterized by the transmit backbone node, the reception AR

neighbor, start time, end time, and a link capacity.

6.2.2 Routing Framework

The terrestrial Internet is organized into autonomous systems (ASs). Inside every

AS, routing is accomplished through interior gateway protocols (IGPs). Inter-AS

routing is based on an exterior gateway protocol (EGP), namely the border gateway

protocol (BGP). BGP has two parts: external BGP (EBGP) used between ASs and

interior BGP (IBGP) to exchange inter-AS routes within an AS. Similarly, the IPN

Internet is organized into ARs. Different routing protocols can be developed for

intra-AR communications to address specific challenges inside each AR, whereas a

common routing protocol is needed for communication across the IPN Internet. For

this purpose, we propose a common routing framework, namely space backbone routing

(SBR), for communication among ARs through the IPN Internet. As shown in Figure

31, SBR has two integral pieces: SBR-external (SBR-e) and SBR-interior (SBR-i).

• SBR-external populates the forwarding information through the IPN Internet

and selects AR paths for inter-AR messages.
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• SBR-interior routes inter-AR traffic through an AR and schedules inter-AR

message transmission at backbone nodes.

6.3 Space Backbone Routing - External

The objective of the IPN Internet is to realize communication among in-space entities

allowing large volume of scientific data to be collected from remote space exploration

sites. The main traffic through the IPN Internet contains the following:

• Remote Control: The command and control messages sent from the Earth

to remote devices at the exploration sites. Although in-situ command and

control by local components (such as a lander controls a rover) within an AR is

preferred to avoid the long propagation delay [20], the Earth control center is

still responsible for backup remote control and new instructions injection. The

delivery of remote control messages is time-sensitive and requires high reliability.

• Data Delivery: The scientific data delivery from the exploration sites back to

the Earth. We further classify the data delivery into two types with respect to

the initiator and the service requirements:

– Automatic Data Delivery: This type of data delivery is initiated by

the mission devices at the remote exploration site, reporting mission status

and some environmental data typically via repetitive transmissions [20].

Automatic data delivery is time sensitive and does not have strict reliability

requirement.

– Controlled Data Delivery: The Earth control center actively queries the

mission devices for important scientific data delivery. In this application,

the Earth center is aware of where to retrieve the scientific data from and

initiates the data delivery. Compared to other traffic types, this type of

data delivery requires the higheest level of reliability.
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Table 6: Comparison of Different Traffic Types in IPN Internet.
Traffic type Initiator Message size Time-sensitive Reliability

remote control sender small yes high
automatic data delivery sender medium yes medium
controlled data delivery receiver large no highest

Control and data messages are self-contained units of work, which are called “bun-

dles” in [19]. A message contains whatever the application wishes to send and is

delivered in an atomic fashion. Messages are routed through the IPN Internet in a

store-and-forward manner and may need to be stored in an AR for a considerably

long time (minutes or even hours), waiting for an outgoing contact opportunity.

According to the traffic types in the IPN Internet, we propose to use

• Location-predicted directional broadcast (LPDB) for remote control and auto-

matic data delivery, and

• Receiver-initiated on-demand routing (RIOR) for controlled data delivery.

The characteristics of different traffic types and their respective routing strategies

proposed in this paper are listed in Table 6.

6.3.1 Location-Predicted Directional Broadcast (LPDB)

Although the locations of the AR nodes are predictable, there exist unpredictable

factors in the AR topology caused by different contact schedules at AR nodes, envi-

ronmental interferences, and power variation. Flooding is the most reliable method

for fast delivery of control messages and automatic data delivery, but at the expense

of network resource wastage and high power consumption. Therefore, we limit the

broadcast area in space and time.

A control message or an automatic data delivery message contains fields of {destAR,
expireAt}, where destAR identifies the destination AR node and expireAt indicates

the time constraint set by the application. The LPDB protocol is done independently
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at each AR node and has two parts: reference AR path computation and directional

forwarding.

6.3.1.1 Reference AR path computation

A reference AR path is computed according to the predictable AR topology at all

times and some locally available information at the source AR. The problem of ref-

erence AR path computation can be formulated as follows: Given the following pa-

rameters,

- A time-varying AR topology G(V, E(t), t), which composes of AR nodes V and

a set of AR links E(t). AR links are directed links that describe the reachability

and the associated propagation delay between AR nodes, as defined in Section

6.2.1.

- Source AR s, destination AR d, and message arrival time ts.

- Expected waiting time ωsv at s to its AR neighbors ∀v ∈ N s, where N s is the

set of possible AR neighbors of AR s. ωsv consists of the buffering time at s

waiting for a contact opportunity to AR neighbor v to occur, and the queuing

time waiting for all the locally-buffered messages to v to be serviced2.

A fastest traversal AR path can be computed as a concatenation of possibly time-

disjoint AR links Ps→d = (lsv1(τ0), lv1v2(τ1), ..., lvm−1d(τm−1)), where lvi−1vi
(τi−1) is an

AR link at time τi−1 as defined in Section 6.2.1. Then π = (s, v1, ..., vm−1, d) is the

topological AR path. The departure times at the AR nodes on the topological AR

path are computed by τ0 = ts +ωsv1 , τi = τi−1 +dvi−1vi
(τi−1)+ εi, 0 < i ≤ m−1, where

εi is the message buffering time at node vi.

This type of problems can be solved using extensions of Dijkstra’s algorithm in

time-dependent networks [54], where the fixed link cost is replaced by the sum of

2The estimation of this expected waiting time is done by SBR-i inside every AR as in Section 6.4
and the updated values are locally available to LPDB.
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message buffering time and the time-dependent link propagation delay (duv(t)). In

the first hop, this buffering time is the locally-available expected waiting time (ωsv),

which is the sum of the buffering time at s waiting for a contact opportunity to v1 to

occur and the queuing time waiting for all the locally buffered messages to v1 to be

serviced. With queuing delay omitted, the message buffering time (εi) in later hops

is approximated by the waiting time for the next AR neighbor (vi) to be reachable,

which can be calculated by the predictable location information of AR nodes. The

modified Dijkstra’s algorithm for the time-dependent AR topology is given below:

Algorithm 3 Modified Dijkstra’s algorithm

Input: G = (V, E(t), t); s, d, ts; ωsv,∀v ∈ N s

Output: Ps→d = (lsv1(τ0), lv1v2(τ1), ..., lvm−1d(τm−1))

Set D(s) = ts; D(v) = ts + ωsv + dsv(ts + ωsv), tau(v) = ts + ωsv, pred(v) = s,
hop(v) = 1, ∀v ∈ N s; D(v) = ∞,∀v ∈ V, v 6= s, v 6∈ N s

Set S = V \{s}
while S 6= ∅, do

Let u = arg minx∈S D(x)
S = S\{u}
for each v ∈ S, do

t∗ = min{t | luv(t) ∈ E(t), t ≥ D(u)}
if D(v) > t∗ + duv(t

∗), then
D(v) = t∗ + duv(t

∗), tau(v) = t∗

pred(v) = u, hop(v) = hop(u) + 1
end if

end for
end while
Set v = d, m = hop(d)
while v 6= s, do

τm−1 = tau(v), vm−1 = pred(v)
v = pred(v), m = m− 1

end while

The AR path computed in this way only represents the shortest-delay path under

the condition that the queuing delay can be omitted at the computed departure time

(τi, 0 < i ≤ m− 1) and the intermediate nodes are ready to pick up the messages at

the reception time. When scheduling or retransmission delays the messages, however,

the computed AR path may not be optimal or exist any more. The computed AR
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Figure 33: Location-Predicted Directional Broadcast.

path is used just as a reference to direct the message forwarding and thus called

“reference AR path”. As actual message delivery can deviate from the pre-calculated

timeline, the AR paths calculated by previous AR nodes may be obsolete. Therefore,

the intermediate AR nodes update the reference AR path as messages traverse the

IPN Internet.

6.3.1.2 Directional forwarding

When an AR node (including the source AR node) receives a control message or

an automatic data delivery message, it computes the reference AR path from itself

to the destination AR node. The message forwarding is limited in space and time.

Specifically, suppose an AR node v receives a message at time t0, the topological

AR path from v to the destination d is computed as π = (v, v1, ..., vm−1, d), and the

departure time at v is τ0. Then, only AR neighbors that lie within the forwarding

cone within time interval [t0, τ0 + Tthresh] can receive a copy of the message, where

Tthresh is a parameter set by the application or at the AR nodes.

As shown in Figure 33, if the antenna gain at different receivers is the same, the

forwarding cone contains the space that is within node v’s transmission power range

Lv and limited within cone angle θ around the axis from v to d. The cone angle is

105



calculated by

θ(π, t) = max
vi∈π\{v}

{ 6 vivd + δ}, (26)

where δ is a parameter that controls the width of the forwarding cone. In order to

adjust the forwarding cone to the movement of AR nodes during the message delivery

process, 6 vivd is computed by the predicted location of node vi on the reference AR

path, e.g., the location of vi on the path is represented by ~rvi
(τi−1 + dvi−1vi

(τi−1)). In

Figure 33, the reference AR path is π = (v, v1, v3, d), the control message is forwarded

to nodes v1 and v2 in the forwarding cone. Any redundant message or outdated

message received by an intermediate AR node gets dropped3.

Remark: LPDB can be classified as a special type of location-aware routing proto-

col [27]. Its difference from traditional algorithms like LAR [47] and DREAM [17]

is that no network-wide flooding is needed in LPDB to obtain nodes’ location infor-

mation, which can be calculated according to the orbital mechanics. Furthermore,

the network connectivity intermittency caused by predictable natural reasons, such

as the planetary body blockage, is addressed by allowing message buffering at the

AR nodes. Directional forwarding provides multipath routing near the reference AR

path in order to handle link unreliability and speed up end-to-end delivery.

6.3.2 Receiver-Initiated On-demand Routing (RIOR)

The Earth-controlled data delivery carries scientific data that are usually unprocessed

and very large in volume. Therefore, flooding and the directional broadcast in LPDB

would consume very high network resources. This type of traffic also requires high

reliability, which is difficult to achieve in the deep-space environment without re-

dundant delivery or maintenance of up-to-date routing information. Since the Earth

3To detect message redundancy, some state information about the messages needs to be
maintained.
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Table 7: Format of a Route Entry.
sink nh delayToSink

sink: destination AR;
nh: one upstream AR neighbor to sink;
delayToSink: delay from the local AR to the sink by way of nh.

control center knows when and where this type of data needs to be gathered, we pro-

pose the use of on-demand route discovery initiated by the receiver, i.e., the Earth

control center. Routing tables at the intermediate AR nodes that are possibly on the

data delivery path are built on-demand and maintained in soft state by exploring the

link status and load distribution. The proposed routing protocol is referred to as the

receiver-initiated on-demand routing (RIOR) thereafter.

6.3.2.1 Route Discovery and Maintenance

For convenience, we call the Earth control center the “sink” in this application sce-

nario. The route discovery contains two parts:

• RREQ notification and KeepAlive exchange,

• Routing table maintenance.

Table 7 shows the format of an entry in the routing table.

1) RREQ notification and KeepAlive exchange

At some time long enough4 before the data delivery will start, the sink initiates

route discovery by sending out an RREQ control message to the data source AR period-

ically at an interval TRREQ. The delivery of the RREQ message follows the same LPDB

scheme in Section 6.3.1 as for other control messages. Duplicated and outdated RREQ

messages are dropped.

The reception of the RREQ message also initiates periodic KeepAlive requests from

the receiving AR node to the message sender, and the KeepAlive reply in the reverse

4Considering the long propagation delay between the sink and the data source.
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direction. The KeepAlive exchange interval TKA is much smaller than TRREQ. The

exchange of KeepAlive message serves for two purposes:

• To measure the delay of AR links and monitor the AR link quality, and

• To build route entries to the sink AR.

Due to the constant movement of the AR nodes, new rounds of RREQ message

transmission are initiated periodically until the expected data arrives the sink or

after a specified timeout value. Later RREQ messages may follow different reference

AR paths to the data source. This is to adapt the area of the control message exchange

to node movement and AR link condition changes.

2) Routing table maintenance

Routing tables at the intermediate AR nodes are built upon reception of the

KeepAlive reply messages. There may be multiple route entries for the same sink,

enabling multipath routing and providing alternate paths when one path fails.

A new route entry is built as follows:

• Upon receiving the KeepAlive request, an AR node (u) records the directional

link delay (dvu) from the sending node (v). This link delay is the time elapsed

from the transmission of the request at v to its reception time at u.

• Node u selects the minimum delayToSink value (Du) in all entries associated

with the same sink in its routing table.

• A KeepAlive reply is sent in the reverse direction (from u to v), containing the

link delay (dvu) and the minimum delayToSink value (Du).

• Node v then retrieves the information (dvu and Du) from the KeepAlive reply

and creates a new route entry with parameters of (sink, nh=u, delayToSink=

dvu + Du).
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Once a route entry is built, delayToSink is updated as the value contained in the

latest KeepAlive reply to capture the current link property. If an AR node has not

received RREQ or KeepAlive message from one AR neighbor for a long time5, it stops

KeepAlive message exchange with this neighbor and the corresponding route entry

is removed as well.

The actual data delivery follows the information contained in local routing tables.

The nh with the minimum delayToSink value6 is chosen as the next-hop AR. As the

delayToSink value is augmented with the propagation of RREQ message from the sink

to the source, the delay of the previous part of the path that RREQ message traverses

may be outdated. The correctness of this delayToSink value therefore decreases as

the distance from an AR node to the sink grows. When the RREQ message first reaches

the source AR, the minimum delay path seen from the source may not be optimal.

Nevertheless, KeepAlive exchange continues updating the route state during the

data delivery and refining the remaining path toward the sink. As the data message

traverses closer to the sink, the delayToSink approaches its current value.

6.3.2.2 Route Repair

As a data message traverses the network, if an intermediate AR node finds that the

nh with the minimum delayToSink value is not reachable, or it cannot receive an

acknowledgment from the nh after a certain number of consecutive retransmission

attempts, a link failure to this nh is detected. In this case,

• It reroutes the data message to alternate, possibly longer delay paths in the

routing table.

• If no alternate path is available, a copy of the data message is sent back to the

previous hop, which may find an alternate path.

5Each AR node can decide its timeout period independently, taking consideration of its power
availability, the link propagation delay, or the delayToSink value.

6Data can also be forwarded to multiple next-hops for multipath routing.
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Figure 34: Route Discovery and Repair for Controlled Data Delivery.

• Meanwhile, an RREQ message is initiated and sent to the sink periodically with

interval TRREQ using the LPDB scheme in Section 6.3.1. KeepAlive exchange

is also initiated between AR neighbors along the forwarding path to the sink.

However, an AR nodes only starts new KeepAlive exchange with the AR neigh-

bors that it has no information about.

The above procedure facilitates route discovery in case of link failure.
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6.3.2.3 Example

An illustrative example of RIOR is shown in Figure 34, where the RREQ message

forwarding and KeepAlive message exchange are depicted in Figures 34(a) and 34(b),

respectively. The solid lines in Figure 34(a) represent the forwarding of the RREQ

message from the sink. The reception of RREQ along the forwarding paths initiates

KeepAlive exchange between AR neighbors as shown by the solid lines in Figure

34(b). The AR nodes in the forwarding paths, i.e., nodes v1 to v6, build and update

route entries to the sink.

Take node v4 as an example, it sends out KeepAlive request to its upstream

neighbors v1 and v5 after reception of RREQ messages from them. v1 and v5 inform

v4 that their minimum delayToSink values to the sink are 25min and 56min, respec-

tively. The KeepAlive replies from v1 and v5 also provide v4 the link delay values

(d41 = 20min and d45 = 30min, respectively). Based on these information, v4 builds

two route entries to the sink, which are {sink, v1, 45min} and {sink, v5, 86min} in

Figure 34(b). v4’s minimum delayToSink value D4 is set as 45min. The route entries

are updated as new KeepAlive replies are received.

Suppose a data message takes the path of (source, v4, v5) and finds that the link

to v2 is not reachable. As no alternate path is available at node v5, a copy of the

data message is reflected back to node v4. Meanwhile, an RREQ message is sent

from v5 to v7 in v5’s forwarding cone to the sink along the dashed lines in Figure

34(a). Periodic KeepAlive exchanges are initiated between the new nodes on the

forwarding path, as shown by the dashed lines in Figure 34(b). Thus, new paths,

such as (source, v4, v5, v7, v8, sink), can be found.

Remark: RIOR executes reactively to the application requests. There is no network-

wide topology propagation. RIOR does not look for a specific route used for the data

delivery session as other on-demand routing protocols in wireless ad hoc networks,
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such as DSR [45] and AODV [56], since this route may be obsolete after the long

route-discovery phase. Upon detection of link failures, DSR and AODV notify the

sender node, which then restarts the route-discovery process. In the RIOR protocol,

on the other hand, the KeepAlive messages are utilized to obtain the up-to-date

link property, so that the updated route entries reflect more recent delay metrics.

The maintenance of multiple route entries to the sink provides alternate routing

options. New route discovery can be issued at any intermediate node that encounters

link failure. These mechanisms help RIOR adapt fast to the changes in the IPN

Internet with long and variable delay. RIOR does not assume link symmetry, all

delay measurements are directional. In other words, the challenge of link asymmetry

as stated in Section 6.1 is addressed by RIOR.

Another related work is the directed diffusion [43] proposed for wireless sensor

networks, which is also a type of receiver-initiated protocol. In directed diffusion, an

interest message (like the RREQ message in RIOR) is injected into the network and

refreshed periodically by the sink node. Each sensor node maintains an interest cache,

of which an entry contains a gradient field associated with an upstream neighbor to

the sink. Each gradient field records the reception rate of interest message from

a neighbor. The sink reinforces the paths with better quality only after it starts

receiving the exploratory events from the event area. This type of feedback-based

adjustment, however, is not applicable in the IPN Internet with long delay. The

routing table in our RIOR protocol functions similar to the interest cache in directed

diffusion. However, RIOR records the delayToSink value instead of the data rate via

each upstream neighbor. The entries with shorter delayToSink metric are selected in

the data delivery session. Also note that end-to-end negotiation, which is described

in directed diffusion [43], does not exist in RIOR.

The location-predictability is not required for the functioning of RIOR. Therefore,

RIOR can also be used in other types of wireless networks with dynamic topology
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when schemes other than LPDB are used for RREQ propagation.

6.4 Space Backbone Routing - Interior

The computation of forwarding cone and routing table maintenance for inter-AR

traffic are done by SBR-external (SBR-e), whereas the actual information exchange

and message delivery between ARs are functions of SBR-interior (SBR-i). SBR-i

directs the inter-AR traffic through each AR by way of border routers, which may be

any backbone nodes as long as they can reach the next-hop AR neighbors.

As described in Section 6.2.1, a backbone node can only transmit to one distant

neighbor in a timeslot with length Tslot and only one border router in an AR can

transmit to an AR neighbor. To avoid signal collision, a contact allocation policy is

called to schedule the contacts for each border router to its AR neighbors. Meanwhile,

a traffic dispatching policy is needed to direct each incoming message to an egress

router. SBR-i is executed inside each AR and performs the functions of contact

allocation and traffic dispatching as follows:

• Allocate contact schedule for border routers in an AR,

• Direct messages to their next-hop ARs via dynamically selected border routers.

It is also pointed out in [20] that in the presence of intermittently available links,

the IPN gateway needs to decide not only the next-hop destination but also the time

at which to send a message. The routing function in IPN gateways is conceptually

described in [20] and has three parts: the contact scheduler, the route evaluation

algorithm, and the dispatcher algorithm. In our work, the second is addressed in

SBR-e whereas the first and the last are included in SBR-i in our routing framework.

6.4.1 Problem Modeling

Suppose that the number of backbone nodes in an AR is N , the transmission to

a specific AR neighbor can be thought as a queuing model consisting of a single
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server and N parallel queues, where the server is the AR neighbor and each queue

corresponds to a backbone node. If an AR has M AR neighbors, the transmission to

these neighbors contains M such queuing models with inter-dependent queue lengths

and server working schedules.

Consider AR u, given

- Bu, the set of backbone nodes in AR u,

- N u(t), u’s AR neighbors set at any timeslot t,

- Qiv(t), the queue length of a backbone node i ∈ Bu to any AR neighbor v ∈
N u(t) at the current timeslot t,

- Riv(t), a binary variable describing the reachability of an AR neighbor v ∈ N u(t)

by a backbone node i ∈ Bu at any timeslot t.

For clarity, we say that an AR neighbor v ∈ N u(t) is reachable by a backbone node

i ∈ Bu at timeslot t, i.e., Riv(t) = 1, if Equation (25) is satisfied for a period in

timeslot t and the signal transmission from i to v is not blocked by the body of AR

u.

SBR-i performs two major functions as follows:

• Contact Allocation: For each backbone node i ∈ Bu, decide its target AR

neighbor at any timeslot t, Ti(t) ∈ {N u(t), e}, where e stands for the IDLE

mode. According to the assumptions in Section 6.2.1, no more than one border

router can simultaneously transmit to the same AR neighbor, i.e., if j 6= i and

Ti(t) 6= e, then Tj(t) 6= Ti(t). For a specific backbone node i, the allocated

values of Ti(t) in continuous time give its contact schedule, which contains a

discontinuous set of contacts.

• Traffic Dispatching: For an incoming message ξ arriving at t with next-hop

AR neighbor v, select Eξ(t) ∈ Bu, the backbone node that performs as its egress
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router in AR u.

The objective function can be the maximum AR throughput, the minimum buffer-

ing delay of incoming messages, or load sharing among backbone nodes, etc.

6.4.2 Possible Solutions

We propose two simple policies for the problem of contact allocation and traffic dis-

patching, respectively.

1) Longest Queues (LQ) policy: Allocate the next timeslot to the backbone nodes

that can reach and also have the longest queues associated with the AR neighbors.

The goal for this policy is to transmit as much inter-AR traffic load as possible, thus

achieving maximum throughput.

The LQ policy is executed at a contact allocator, which contains the queuing

information of all backbone nodes. In detail, at the start of each timeslot, every

backbone node reports to the contact allocator the queue lengths associated with its

reachable AR neighbors. The comparison of queue lengths takes into consideration of

the difference in message lengths. For example, if there are two messages in a queue,

with lengths of 4KB and 6KB, then the queue length is 10KB. A simplified version

of the LQ policy is executed in Algorithm 4.

Algorithm 4 LQ policy

Input: Qiv(t),∀i ∈ Bu,∀v ∈ N u(t)
Output: Ti(t), ∀i ∈ Bu

Set S = N u(t); Ti(t) = e, ∀i ∈ Bu

while S 6= ∅, do
Q∗ = max(i∈Bu,v∈S){Qiv(t) | Ti(t) = e,Riv(t) = 1}
if Q∗ = 0, then

break
end if
(i∗, v∗) = arg max(i∈Bu,v∈S){Qiv(t) | Ti(t) = e}
Allocate Ti∗(t) = v∗

S = S\v
end while

115



2) Minimum Waiting (MW) policy: Direct a message to the border router that is

expected to have the minimum waiting time to serve new traffic.

To execute the MW policy, each backbone node needs to calculate the expected

waiting time to its AR neighbors, and reports the values to a traffic dispatcher. The

MW policy can be written in Algorithm 5.

Algorithm 5 MW policy

Input: message ξ with next-hop AR v arriving AR u at t
Output: egress router Eξ(t) = arg mini∈Bu{ωiv}

Message ξ is encapsulated and sent to the selected egress router Eξ(t), which then

does the de-capsulation. If Eξ(t) is not allocated to the AR neighbor v at the current

timeslot t, the message is buffered there and waits for a future contact opportunity.

The estimation of the waiting time ωiv includes two parts: the calculation of the

time till the AR neighbor v to be reachable, and the estimation of the time to finish

serving the message contents in node i’s queue to AR neighbor v. The former can

be decided by node i and AR v’s trajectory information, whereas the latter needs to

take the current queuing information and the AR link capacity into consideration.

After decision of the egress router, the expected waiting time of AR node u to

AR neighbor v is represented by the waiting time from the egress router to v, i.e.,

ωuv = ωiv, where i = Eξ(t). ωuv is also provided to SBR-e and help computing the

reference AR path in LPDB, as described in Section 6.3.1.1.

6.4.3 Discussion

We give the problem definition of contact allocation and traffic dispatching, and pro-

pose some possible solutions for these SBR-interior functions. However, the proposed

solutions are some preliminary attempts. Further exploration is needed to address

the following issues:

• The contact allocation and the traffic dispatching policies are correlated to each
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other. For instance, the traffic dispatching policy directs traffic to different

border routers, thus affects the traffic arrival rates and queue lengths at each

backbone node, which are important decision factors of the contact allocation

policy. On the other hand, the contact allocation policy affects the message

buffering time at each backbone node, which in turn influences the decision

of the traffic dispatching. Therefore, the two policies cannot be considered

separately in order to achieve best performance.

• The performance of SBR-e is affected by the contact allocation and traffic dis-

patching policies in SBR-i as well. For example, in LPDB, the longer the mes-

sages need to wait at an AR to be serviced, the less accurate the computed

reference AR path will be. RIOR requires periodic RREQ and KeepAlive mes-

sage exchanges between AR neighbors; the scheduled property of link contacts

between AR neighbors would probably delay the exchange, which in turn affects

the timely propagation of routing information. Possible improvements include

priority-setting different types of messages (e.g., RREQ and KeepAlive messages,

and application data message) for queuing, and bandwidth reservation for ap-

plications with certain QoS requirements.

• The contact allocator and the traffic dispatcher can be located in a specific

device in an AR network, or distributely at multiple backbone nodes. Some

efficient information report/exchange scheme is required to reduce the control

overhead while keep the related information up-to-date.

• As mentioned in Section 6.2.1, an incoming message ξ can be captured by

several border routers in an AR. The redundant copies of ξ can be deleted at

the selected egress router Eξ(t). This method, however, introduces redundant

delivery inside AR networks. To design an efficient scheme that detects and

removes the redundant copies is also an ongoing research.
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6.5 Performance Evaluation

In this section, we evaluate through simulations the performance of the proposed

SBR-external (SBR-e) protocols for remote control and data delivery, and the pro-

posed SBR-interior (SBR-i) policies for contact allocation and traffic dispatching,

respectively. The results confirm that the protocols for SBR-e are efficient in both

message delivery and power consumption, and meet the service requirements of dif-

ferent traffic types in the IPN Internet. The policies for SBR-i achieve low buffering

delay and higher throughput with low message dropping probability.

6.5.1 Evaluation of SBR-external Protocols

An event-driven simulator on C++ is developed to evaluate the performance of SBR-

e. Two types of AR nodes are built in the network model: planet ARs and the

planetary Lagrangian ARs. Specifically, there are 9 planet ARs and 18 planetary

Lagrangian ARs. To simplify the model, all planets move around the sun in circular

orbits in the same plane. The orbit radii of the planets are from 1AU to 9AU (1AU

≈ 149, 600, 000km), with 1AU in between. The planet orbiting period T (in year)

is decided by the Kepler’s third law: T 2 = a3, where a is the planet orbit radius in

Sun

60o
60o

Figure 35: Network Model for IPN Internet.
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AU [5]. The Lagrangian ARs (of type L4 and L5 [59]) are on the same orbits of the

associated planet, 60o ahead of or behind the planet. The reachable range limits of

all AR pairs are set as 5AU. Our network model is shown in Figure 35, where the

dots refer to the planet ARs and the triangles are the planetary Lagrangian ARs. All

nodes circulate around the sun according to the orbital mechanics.

For the sake of simplicity and to minimize the effect of SBR-i on the performance

of SBR-e, we assume that contact allocation does not delay message forwarding. In

other words, whenever an AR catches a message, it is connected to the computed

next-hop AR neighbor at the time when the neighbor first becomes reachable. It

is further assumed that each contact has an associated link capacity that is large

enough to finish the transmission of a message before the contact’s end time. The

transmission and queuing delays can be omitted compared to the link propagation

delay.

In each simulation round, the initial positions of the planet AR nodes are randomly

set with central angles uniformly distributed in [0o, 360o). Control/Data messages are

sent in 1 hour interval within each simulation round of 1 day long. All results are

averages of 20 simulation rounds. Control/Data message delivery performances are

evaluated under different link failure probabilities. Each link between AR neighbors

is prone to failure according to a probability. Failure is independent across different

links.

6.5.1.1 SBR-e for Remote Control and Automatic Data Delivery

For remote control and automatic data delivery, our proposed location-predicted di-

rectional broadcast (LPDB) scheme in Section 6.3.1 utilizes the location predictability

of AR nodes. It also selects multiple next-hop nodes to forward the message to pro-

vide redundancy in the unreliable IPN Internet. To measure the performance of these

techniques, we compare LPDB with two other schemes:
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• Location-aided routing (LAR): This is the LAR scheme 2 in [47] with α = 1 and

β = 0, i.e., a message is forwarded from the current AR node to the neighbors

that are closer to the destination. The computation of distance takes into

consideration the movement of the destination node.

• Location-predicted single-path routing (LPSP): This is a special case of LPDB

where a message is forwarded only to the next-hop neighbor on the reference AR

path. The reference AR path is computed the same way as in Section 6.3.1.1

and updated at each intermediate AR node.

To measure the effect of forwarding cone angle on the performance of LPDB

scheme, two different values of δ (as explained in Section 6.3.1.2) are chosen in the

simulation.

We use both message delivery and message transmission cost metrics to evaluate

the performance of the three different routing schemes. The message delivery ratio

is defined as the ratio of the number of successfully delivered message to the total

number of messages generated. The message transmission cost gives the average total

transmissions at the intermediate AR nodes for each successful message delivery. This

metric also measures the efficiency of energy usage. The message delay is the average

delay between the time that the message is generated and the time that the message

is first received at the destination AR. Note that this delay is averaged only over the

cases of successful deliveries.

In our simulations, we test the performance of remote control delivery. Remote

control messages are sent from node 0 (orbit radius = 1AU) to node 7 (orbit radius

= 8AU), with maximum life time of 6 hours. Control messages are transferred in a

store-and-forward manner. Each AR node stores a copy of the message and should

make sure that every next-hop AR gets a correct copy of the message via per-hop

acknowledgment before it removes its local copy.

120



Figure 36(a) shows the message delivery ratio of these three schemes under dif-

ferent link failure probabilities. None of the schemes guarantees 100% end-to-end

delivery although hop-by-hop reliable delivery is assured by acknowledgments. The

reasons for message delivery failure may include: The LAR scheme cannot find any

AR neighbor that is closer to the destination than the current AR, hop-by-hop reliable

delivery takes too long that the next-hop neighbor moves out of current AR node’s

reachable range limit, no reference AR path can be computed thus the message must

be dropped, or the message times out during delivery. The LPSP scheme does not

provide path redundancy so that the message delivery ratio drops the fastest when

the link failure probability increases. For the LPDB scheme, as the forwarding cone

angle increases, more messages are successfully delivered to the destination. The de-

livery ratio is always higher than 90%. When δ = 60o, the message delivery ratio of

LPDB approximates that of LAR.

The LAR scheme provides high degree of redundancy for message delivery. Thus,

it achieves low end-to-end delay but with high transmission cost, as can be seen in

Figures 36(c) and 36(b), respectively. The message transmission cost of the LPSP

scheme is the lowest among the three schemes, as depicted in Figure 36(b). LPSP

introduces much higher end-to-end delay than the other two schemes. The reason is

that LPSP relies on successful message transmissions on the reference AR path to

reach the destination. The increase of link failure probability lengthens the time for

per-hop transmission over any AR link, which in turn affects the end-to-end delay

performance. The transmission cost and message delay performances of LPDB lie

between those of the other two schemes. As the forwarding cone angle (controlled by

δ, as shown in Figure 33) increases, LPDB’s performance gets closer to that of LAR.

Smaller value of δ leads the performance of LPDB closer to that of LPSP.
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Figure 36: Performance Comparison of LPDB with LAR and LPSP.

In summary, our LPDB scheme balances between reliability and redundancy, as

well as between delay and transmission cost. Depending on the application require-

ments and power availability, AR nodes can change the forwarding cone angle by the

adjustment of value δ, thus to control the message delivery performance.

6.5.1.2 SBR-e for Controlled Data Delivery

Earth-controlled delivery of data messages from the planetary exploration site usually

contains large amounts of unprocessed scientific data. These data messages are much

larger and require higher reliability than control messages and automatic data reports.

Our proposed receiver-initiated on-demand routing (RIOR) tends to minimize the
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utilization of bandwidth, energy, and buffer size by maintaining route states at the AR

nodes. Furthermore, updating of route information during the data delivery process

provides higher end-to-end reliability. In RIOR, data messages are transferred in a

store-and-forward manner. Different from LPDB, if an AR node cannot receive an

acknowledgment from the next-hop AR after K consecutive retransmissions, a link

failure is detected and no further retransmission attempt will be conducted.

We compare our RIOR scheme with LPDB proposed for remote control and auto-

matic data delivery. Same as in Section 6.5.1.1, the following metrics are selected to

compare their performance: message delivery ratio, message transmission cost, and

message delay, where the message transmission cost measures the total data trans-

missions on delivery path for each successful message delivery. In our simulation,

TRREQ = 1 hour, TKA = 10 minutes, and K = 3. Data messages are sent from node

7 (orbit radius = 8AU) to node 0 (orbit radius = 1AU). The maximum life time for

data messages is 10 hours. No multipath forwarding is utilized in RIOR, i.e., a data

message is forwarded to a single next-hop AR. The simulation results are shown in

Figure 37. The parameter δ in LPDB controls the width of the forwarding cone,

whereas δ in RIOR controls the forwarding cone of RREQ messages. The parameter δ

does not affect much the performance of RIOR.

Figure 37(a) depicts the message delivery ratio of the two protocols under different

link failure probabilities. RIOR always keeps the delivery ratio higher than 90%, even

when the link failure probability becomes as high as 0.6. Compared with RIOR, LPDB

is less reliable especially when the link failure probability is high. This is because

LPDB does not provide any route repair under link failure. When the transmission

cost is concerned, RIOR costs much less data overhead, which is around 30% to 50%

of those of LPDB with δ = 60o and 30o, respectively. This is because data message in

RIOR is transmitted over a single-path, which is discovered and maintained by the

route discovery and repair procedures. In the LPDB scheme, however, data message
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Figure 37: Performance Comparison of RIOR with LPDB.

is delivered in a multicast tree (although in a controlled manner), much higher data

overhead is produced as seen in Figure 37(b). Note that the transmission cost of

the LPDB scheme dose not show consistent growth as the link failure probability

(p) increases. When p grows beyond 0.4, the success ratio of message delivery starts

to decrease fast, more messages get delayed or lost early on the delivery path, only

“lucky” ones make their way to the destination. As the result, the average message

transmission cost for the successful end-to-end deliveries is lower compared to the

cases when the link failure probability is smaller. As a benefit of the multipath

transfer, LPDB results in lower message delay than RIOR as in Figure 37(c), thus is

more suitable for messages that require fast delivery.
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We also conducted simulations and compared RIOR with other on-demand ad

hoc routing protocols, such as DSR [45] and AODV [56]. It is obvious that they

cannot compete with RIOR since they are not specifically proposed for the IPN

Internet application scenario and the unique characteristics of the IPN Internet would

dramatically impair their performances. For example, DSR [45] attempt to find a

complete route before the actual data transmission takes place. The characteristics

(e.g., delay and connectivity) of the discovered route in the IPN Internet, however, are

under constant changes during the data delivery process. We do not list the results

of the comparison here because of unfairness.

In summary, RIOR achieves higher data delivery reliability when there is no strict

time constraint on the message content (i.e., the delay can be tolerated); whereas

LPDB provides fast delivery of messages with considerably smaller sizes and lower

reliability requirements. Based on the different performance of LPDB and RIOR, we

can utilize them in delivering different types of traffic in the IPN Internet, addressing

their specific requirements as in Table 6, and reduce the effect of their disadvantages

in each application scenario.

6.5.2 Evaluation of SBR-interior Policies

The evaluation of SBR-i is done by modeling the contact allocation and traffic dis-

patching processes in a single AR, which has N backbone nodes and M possible AR

neighbors. To simplify the evaluation, it is assumed that these N backbone nodes

have the same reachability pattern towards the AR neighbors, i.e., the binary reacha-

bility variable towards an AR neighbor v satisfies Riv(t) = Rjv(t) = Rv(t), ∀i, j ∈ Bx,

where t specifies any timeslot. To differentiate among the backbone nodes, however,

the start and finish time of the same reachability period at different backbone nodes

are set differently. Specifically, the reachability pattern and the associated time inter-

vals are generated as follows: First, in each timeslot, randomly decide the neighbor
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reachability which is designated by 1 or 0. Then, based on the generated binary reach-

ability sequences for the whole evaluation period, e.g., (110010111), each backbone

node randomly selects the start and finish time (within a timeslot) of every reach-

able period marked by consecutive 1’s. The generated reachability schedule should

guarantee that there is no blackout gap between two consecutive 1’s.

Four combinations of contact allocation and traffic dispatching policies are evalu-

ated:

• LQ+MW: Our proposed longest queues (LQ) policy combined with our min-

imum waiting (MW) policy, which are explained in Section 6.4.2. The calcula-

tion of expected waiting time is based on the following information: the con-

tact schedule in the current timeslot, current queue lengths at each backbone

node (assuming first-in-first-out scheduling), and the reachability schedules of

all backbone nodes.

• LQ only: The LQ policy with random traffic dispatching, i.e., incoming mes-

sages randomly choose one of the N backbone nodes as the egress router.

• MW only: Random contact allocation with the MW policy, i.e., the allocation

of contacts in the current timeslot is only based on the knowledge of the reach-

ability schedule, while the queue lengths at the backbone nodes are ignored.

The contact to a certain AR neighbor v is randomly allocated to a backbone

node if the reachability variable Rv(t) at the current timeslot t is 1.

• Random: Random contact allocation and random traffic dispatching without

considering any queuing information.

In our simulations, messages are of the same fixed length and the message arrival

process is Poisson with an arrival rate of λ. A message randomly chooses one of

the M AR neighbors as its next-hop. The message transmission rate µ is fixed. The
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parameters used in the simulation are: N = 3,M = 5, Tslot = 10 timeunit, µ = 1 mes-

sage/timeunit. The queue limit for each AR neighbor at backbone nodes is set as 10

messages. If a message finds that the queue at the egress router towards the next-hop

AR neighbor exceeds the queue limit, this message is dropped due to buffer overflow.

We evaluate the performance of the above four combinations of SBR-i policies under

different values of message arrival rate (λ). The performance metrics under evaluation

are message buffering delay, message throughput, and message dropping probability.

Figure 38(a) shows the delay performance of the four policy combinations. If

we ignore the queuing delay and remove the restrictions on the transmission on AR

links, i.e., a backbone node can transmit to different AR neighbors, and different

backbone nodes can transmit to the same AR neighbor at the same time, then an

incoming message can be transmitted at the earliest time that its next-hop AR neigh-

bor becomes reachable to a backbone node. This time is written as the “minimum

transmit bound”. The depicted “message buffering delay” in the figure is the differ-

ence between the actual message transmit time and this minimum transmit bound.

It accounts for the portion of the message delay that is caused solely by the contact

allocation and traffic dispatching. From this figure, it can be seen that as the message

arrival rate increases, i.e., the average message arrival interval decreases, messages are

buffered for a longer period of time. Our proposed “LQ+MW” policy causes min-

imum buffering delay among the four combinations. When only LQ or MW policy

is implemented, the message buffering delay is also reduced compared to that under

the random case.

The message throughput performance is shown in Figure 38(b), which also con-

firms that the “LQ+MW” policy achieves higher message throughput. The message

dropping probability due to buffer overflow is shown in Figure 39, where the queue

limit is set as 10 messages. The dropping of messages starts when the message arrival

interval decreases below 2 messages/unit. The “LQ+MW” and “LQ only” policies
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Figure 38: Performance Comparison of Different SBR-i Policies.
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Figure 39: Message Dropping Probability under Different Queue Limit.
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cause less message dropping than the other two policies. When we set the average

message arrival interval as 5 timeunits, and change the queue limit, the message

dropping probability of the “LQ+MW” policy is the lowest when the queue limit

decreases, as depicted in Figure 39. It can also be concluded from this figure that

the message dropping can be effectively controlled by increasing the queue limit at

backbone nodes. This is easy to achieve by employing large intermediate storage at

backbone nodes.

In summary, the combination of LQ and MW policies achieves low message buffer-

ing delay, high message throughput, and low message dropping probability under

contact allocation and traffic dispatching.

129



CHAPTER VII

CONCLUSIONS AND FUTURE RESEARCH

DIRECTIONS

7.1 Research Contributions

In this thesis, new advanced routing protocols have been developed for satellite and

space networks to support applications with different traffic types and heterogeneous

QoS requirements. Research contributions have been made in the following areas:

1. Connection-oriented routing in multimedia satellite networks.

2. Connectionless routing in hierarchical satellite IP networks.

3. Integration of satellite IP networks and the terrestrial Internet.

4. Routing in the Interplanetary Internet.

7.1.1 Connection-Oriented Routing in Multimedia Satellite Networks

Real-time multimedia applications impose strict delay bounds and are sensitive to

delay variations. The constant movement of non-GEO satellites causes the network

connectivity varying. Satellite link handover increases delay jitter and signaling over-

head as well as the termination probability of ongoing connections. To satisfy the QoS

requirements of multimedia applications, satellite routing protocols should consider

link handovers and minimize their effect on the active connections.

In Chapter 3, a new QoS-based routing algorithm (QRA) is proposed to support

real-time applications in multimedia satellite networks. Real-time applications have

strict requirements on bandwidth and delay variations. QRA aims to reduce the num-

ber of rerouting attempts because of satellite link handovers and to build stable paths
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for connection requests, thus reducing delay jitter while guaranteeing bandwidth re-

quirements. QRA can operate on a general satellite constellation model in which

satellite footprints may be overlapped. The deterministic UDL routing based on the

maximum coverage time together with the probabilistic ISL routing are introduced

for routing between two ground stations via satellite networks. A rerouting algorithm

is called when link handover occurs. QRA utilizes the satellite trajectory information

and the connection statistics to reduce the link handover probability while satisfying

users’ bandwidth requirements. Simulation results show that QRA results in small

delay jitter, low rerouting frequency, and low rerouting processing overhead.

7.1.2 Connectionless Routing in Hierarchical Satellite IP Networks

The rapid growth of Internet-based applications pushes broadband satellite networks

to carry on IP traffic. In previously proposed connectionless routing schemes in

satellite networks, the metrics used to calculate the paths do not reflect the total

delay a packet may experience.

In Chapter 4, a new satellite grouping and routing protocol (SGRP) that operates

in a hierarchical LEO/MEO satellite architecture is proposed. In SGRP, data traffic

is carried by the LEO satellite network and the collaboration between LEO and MEO

satellite layers is enabled. The main idea of SGRP is to transmit packets in minimum-

delay paths and distribute the routing table calculation of the LEO satellites to

multiple MEO satellites. In each snapshot period, SGRP divides the LEO satellites

into dynamic groups according to the footprint areas of the MEO satellites. Based on

the delay reports sent by the LEO satellites, the MEO satellite managers compute the

minimum-delay paths for their LEO members. Since the signaling traffic is physically

separated from the data traffic, link congestion does not affect the responsiveness of

delay reporting and routing table calculation. The snapshot and group formation

methods as well as fast reacting mechanisms to address link congestion and satellite
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failures are described in detail.

The performance of SGRP is evaluated through simulations and analysis. SGRP

performs better than datagram routing algorithm as it tries to route data packets

through minimum-delay paths. When satellite failures or link congestion occur, SGRP

has mechanisms to reduce their effects on routing. It is also shown by analysis that

SGRP calculates the routing decisions with low communication overhead, since it

distributes the computational burden to multiple MEO satellites, thus balances the

power consumption between LEO and MEO satellites.

7.1.3 Integration of Satellite IP Networks and the Terrestrial Internet

The use of the IP-based satellite networks as a part of the Internet cannot be accom-

plished only by solving the routing problem of the satellite networks. To accomplish

network layer integration of terrestrial and satellite IP networks, special exterior gate-

way protocols are needed. Moreover, the integration of the IP-based satellite networks

must assure their interoperability with the terrestrial IP networks. Previously, satel-

lite network integration issues have been pointed out in [42, 52, 74]. However, none

of these studies provides a detailed solution as how this network level integration can

be accomplished.

In Chapter 5, the border gateway protocol - satellite version (BGP-S) is proposed

as a novel protocol to accomplish the integration of terrestrial and satellite IP net-

works at the network layer. The BGP-S protocol does not require a special satellite

network architecture and works independent of the internal routing of the satellite

network. BGP-S elimiates the need for manual configuration and enables the auto-

mated path discovery based on the instantaneous delay measurements in the satellite

and terrestrial networks. BGP-S is fully compatible with the BGP-4 protocol. More-

over, BGP-S is implemented only in one terrestrial gateway in every terrestrial AS

to reduce the complexity. The functionalities of the BGP speakers in the terrestrial
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ASs remain the same.

The performance of BGP-S has been assessed with simulations. The results

show that BGP-S always produces lower delays than BGP-4 in the integrated terres-

trial/satellite network. When satellite altitude increases or satellite number decreases,

the performance gain of BGP-S over BGP-4 grows. The effect of terrestrial gateway

selection method on BGP-S performance is also evaluated.

7.1.4 Routing in the Interplanetary Internet

The characteristics of the IPN Internet are unique to the space communication par-

adigm and lead to different research approaches from those in terrestrial networks.

In Chapter 6, a novel routing framework called space backbone routing (SBR) is

proposed based on the hierarchical architecture and specifically addresses the chal-

lenges of the IPN Internet. SBR has two integral parts: SBR-external and SBR-

interior. To address the challenges in deep-space communication environment and

meet the application requirements, location-predicted directional broadcast (LPDB)

and receiver-initiated on-demand routing (RIOR) are proposed for remote control

and data delivery in the realm of SBR-external. The simulation results show that

LPDB and RIOR address the service requirements of different types of traffic, and are

efficient both in message delivery and power consumption. For contact allocation and

traffic dispatching, which are two important functionalities of SBR-interior, we give

the problem definition and further propose two simple policies: the longest queues

(LQ) policy and the minimum waiting (MW) policy, respectively. The simulation re-

sults show that a combination of proposed LQ and MW policies achieves good delay

and throughput performances.

7.2 Future Research Directions

• Integration of Wireless/Wired Networks: Wireless devices are becoming
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powerful tools to allow information access from anywhere at anytime, espe-

cially after the interconnection across networks. This evolution has motivated

the integration of wireless/wired networks and the seamless migration of ser-

vices between them. This integration can help extend network connections at

a low cost and relieve congestion over the wired network. Wireless networks,

however, have strict power constraints and comparatively low bandwidth, which

make it hard to ensure QoS requirements such as bandwidth and delay. Thus,

designing protocols that are both adaptive and secure is urgent and challenging.

Future trends include constructing efficient infrastructure with wireless access

enhancement and developing fast and secure schemes for roaming between sub-

net boundaries.

• Routing in Planetary Networks: The routing in planetary networks is a

necessary part to achieve end-to-end communication between Earth and outer-

space planets. Planetary networks face challenges of intermittent connectiv-

ity and power constraints. Furthermore, planetary networks have to be au-

tonomous and reconfigurable [18] to maintain the network connectivity despite

the extreme environmental challenges. The performance of the existing ad hoc

routing protocols [27] depends on node density and network connectivity. In

outer-space planets, frequent power failure and node damage may cause fre-

quent network partitioning that will significantly affect the performance of these

protocols. Moreover, according to the mission objectives, planetary surface net-

works may be divided into several physically disconnected sub-networks. Hence,

planetary satellite network should assist surface communications and node re-

configurations to help resume the connection between partitioned parts of a

network or between distant networks.

• End-to-end Routing Issues in the IPN Internet: Possible solutions to
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support end-to-end routing in the IPN Internet include developing a universal

addressing scheme. The new scheme should support the following functions:

Locating the elements in a hierarchical way in the IPN Internet architecture

to support efficient routing through different subnetworks; Allocating addresses

dynamically under node movement, node device depletion, and new device de-

ployment; Allowing the IPN Internet to expand while maintaining the address-

ability of previously-deployed elements.

• Routing in Delay Tolerant Networks: Delay tolerant networks (DTNs) [4]

are characterized by the lack of consistent infrastructures, interruption of com-

munication links, and network heterogeneity. Example application scenarios

of DTNs are deep-space networks, military battlefields, underwater commu-

nication, and some forms of ad hoc sensor/actor networks. The challenges of

communication in such networks may include large delay resulting from physical

link properties or extended periods of network partitioning, routing efficiently

with frequently disconnected, pre-scheduled, or opportunistic link availability,

high link error rates, heterogeneous underlying network technologies, and lack of

end-to-end negotiation. New protocols are needed to support routing in DTNs.
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