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Abstract

A tabu search metaheuristic algorithm for a classical routing and capacity assignment (CFA) problem in
computer networks is presented in this paper. Computational experiments across a variety of networks are
reported. The results show that the proposed tabu search algorithm is both e0ective and e1cient in 2nding
good solutions of the CFA problem compared with the traditional Lagrangean relaxation and subgradient
optimization technique. Extensive tests are made in order to choose the best values of the parameters for tabu
search algorithm.
? 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Network design is a fundamental problem with a large scope of applications that have given rise to
many di0erent models and solution approaches [1,2]. The general network design problem involves
the minimization of a cost objective function over a lot of design variables, such as link capacities,
>ow assignment, network topology, node locations, message priority discipline. The joint problem of
routing and capacity assignment, also known as the capacity and >ow assignment (CFA) problem,
is a special issue of the general network design problem.

The CFA problem was 2rst considered by Gerla in his thesis [3]. Fratta et al. [4] proposed
a model to minimize mean network delay in the case of general bifurcated routing and linear
design costs, allowing the application of the >ow deviation algorithm to solve the corresponding
convex multicommodity >ow problem. Ng and Hoang [5] examined a special case of the routing

∗ Corresponding author. Tel.: +86-931-8263681; fax: +86-931-8897029.
E-mail address: jian..shen@163.com (J. Shen).

0305-0548/$ - see front matter ? 2004 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cor.2004.04.004

mailto:jian..shen@163.com


2786 J. Shen et al. / Computers & Operations Research 32 (2005) 2785–2800

and capacity assignment problem in which a m-M/M/1 queuing structure is used to model parallel
transmission lines. They formulated the problem using continuous link capacity variables, and used
the >ow deviation method for solution. LeBlanc and Simmons [6] formulated the routing and capacity
assignment problem using continuous link capacity variables and suggested a new convex delay
function di0erent from the traditional M/M/1. Gavish and Neuman [7] proposed a model to jointly
minimize the delay and capacity costs in the case of nonbifurcated routing and discrete capacity
functions. The model was solved using a Lagrangean relaxation procedure. Gavish and Altinkemer [8]
extended the work in [7] by considering all possible routes for every communicating node pair. They
included cut constraints that are redundant in the original problem to improve the lower bounds and
proposed an interesting heuristic to generate a feasible solution. Amiri and Pirkul [9] developed a new
mixed integer nonlinear programming formulation for the CFA problem using Lagrangean relaxation
and subgradient optimization techniques and a two phases heuristic solution procedure to obtain lower
bounds as well as feasible solutions. The model overcame the shortcoming of previous methods.
The results were compared to those reported in [8]. Amiri [10] presented a new mathematical
programming model that includes a constraint that sets an upper limit on the average link queuing
delay in the network, and considered all possible routes for every communicating node pair. Amiri
and Pirkul [11] developed the model in [10] with multi-busy-hour tra1c conditions. Mahey et al. [12]
considered discrete capacities and the cost function combines the installation cost with a measure of
the quality of service (Qos) of the resulting network for a given tra1c, and proposed a mixed integer
nonlinear model of the joint capacity and >ow assignment problem solved by a generalized Benders
decomposition method. Queiroz and Jr. [13] proposed a heuristic method for the continuous capacity
and >ow assignment problem by rephrasing the problem in the context of concave programming
and bringing an alternative formulation of the projected pairwise multicommodity >ow polyhedron.
The key idea is to use local minima to de2ne concavity cuts, thus avoiding cycling and an explicit
enumeration of the vertices.

Several authors incorporated reliability constraints into the CFA problem. Monma and Sheng [14]
presented a global network design and analysis model to analyze network performance in low-cost
backbone packet-switched networks. Lim [15] proposed an optimal procedure for minimizing the
total link cost of the common channel signaling network under joint performance and reliability
constraints. Al-Rumaih et al. [16] proposed a methodology for network topology design considering
the problems of single link and node failures tolerances. Their method is based on systematic topo-
logical modi2cations of an initial network constructed without reliability requirements but for which
the link capacities satisfy a set of link and path performance requirements. Chamberland and Sanso
[17] presented a model to take failures into account in the CFA problem. The model provides a way
to evaluate a trade-o0 between increasing capacity and lower performance in the event of failures.
Two di0erent algorithms, corresponding to two di0erent levels of parallelism, were proposed and
implemented.

The previous methods, however, are all traditional mathematical programming techniques with high
complex computation process. The results generated by these methods are local optimal solutions
instead of global optimal ones.

In recent years, a new tabu search (TS) metaheuristic algorithm has been quickly developed. It
was introduced by Glover [18–20], and successfully applied to solve the problems, such as graph
coloring [21], traveling salesman problem [22], >ow shop sequencing [23], job shop scheduling
[24], and many other combinatorial optimization problems [25,26]. In the area of telecommunica-
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tions, Laguna and Glover [27] discussed the development of a TS method for the bandwidth packing
problem. Costamagna et al. [28] presented a TS algorithm for topological optimization of broadband
communication networks. Chamberland and Sanso [29] presented a tabu search algorithm for topo-
logical expansion of multiple-ring metropolitan area networks. Berger et al. [30] applied a TS for
a network loading problem with multiple facilities. Shyur and Wen [31] developed a simple TS
for optimizing the system of virtual paths in an ATM network. Youngho et al. [32] developed an
e0ective TS procedure to provide tight upper bounds for a 2ber routing problem arising from the
design of optical transport networks.

The achieved success of TS in all applications is due to its implementation as problem-oriented.
For each implementation, it needs particular de2nitions of structural elements and parameters. In order
to study the performance of TS, a simple TS algorithm for the classical CFA problem is proposed
in this paper. The performances of the algorithm are compared with the traditional techniques, and
extensive tests are made to determine appropriate parameter values for the TS algorithm.

The remainder of the paper is organized as follows. In Section 2, the CFA problem is formulated.
Section 3 describes the TS algorithm for the CFA problem. The results of computational experiments
are presented in Section 4. Finally we conclude and suggest further research in Section 5.

2. Problem formulation

The classical routing and capacity assignment problem can be described as follows: given a basic
topology and a requirement matrix, how to simultaneously select link capacities and routes used by
nodes in the network in order to ensure an acceptable performance level at a minimum cost [7–9].
This problem is a complex nonlinear programming which has many restrained conditions and it is
known to be NP-completeness [33–36].

In order to formulate the classical CFA problem, we make the same assumptions used in
[7–9]. It is assumed that the network topology, the queuing and capacity cost structure, and the
tra1c requirements between every pair of communicating nodes are given. We also assume that
nodes have in2nite bu0ers to store messages waiting for transmission on the links, that the arrival
process of message to the network follows a Poisson distribution and that message lengths follow
an exponential distribution. We further assume that the propagation delay in the links is negligible,
that there is no message processing delay at the nodes, and there is only a single class of service
for each communicating node pair. Under these assumptions, the computer network is modeled as
a network of independent M/M/1 queue [37,38] in which links are treated as servers with service
rates proportional to the link capacities. The customers are messages whose waiting areas are the
network nodes.

We use the following notation:

Z : the total cost,
�: the set of communicating origin-destination pairs in the network,
L: the total number of links in the network,
R: the set of candidate routes,
Sp: the set of candidate route for p;p∈�. We assume that Sp ∩ Sq = 	 for p �= q,
1=�: the average message length [bits/message],
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�rl: an indicator function, taking 1 if link l is used in route r, and 0 otherwise,
�r: the message arrival rate [messages/s] of the unique origin-destination pair associated with

route r; r ∈R,
Il: the index set of link types available for link l; l∈L,
Fl: the average bit rate [bits/s] on link l,
Qlk : the capacity [bps] of line type k, k ∈ Il,
Slk : the setup cost [$/month] of line type k, k ∈ Il,
mlk : the distance cost[$/month/mile] of line type k, k ∈ Il,
Clk : the variable cost [$/month/bits/s] of line type k, k ∈ Il,
D: unit cost of delay [$/month/message],
G: 2xed cost multiplier,
V : variable cost multiplier,
dl: the distance for link l,
xr: a decision variable, which is 1 if route r is selected for message routing, and 0 otherwise,
ylk : a decision variable, which is 1 if link type k is assigned to link l, and 0 otherwise.

The CFA problem can now be formulated as follows:

Z =min




∑
l∈L

D · Fl∑
k∈Il Qlkylk − Fl

+ G
∑
l∈L
k∈Il

(slkylk + dlmlk) + V
∑
l∈L
k∈Il

ClkFlylk




(1)

subject to

Fl =
1
�

∑
r∈R

�r�rlxr6
∑
k∈Il

Qlkylk (∀l∈L); (2)

∑
r∈Sp

xr = 1 (∀p∈�); (3)

∑
k∈Il

ylk = 1 (∀l∈L); (4)

xr = 0; 1 (∀r ∈R); (5)

ylk = 0; 1 (∀k ∈ Il; l∈L): (6)

The objective function is to minimize the total cost of network given by expression in Eq. (1).
The 2rst term of the objective function indicates the total cost of delay. The second term refers to
the total 2xed cost computed as the sum of the initial setup cost and the distance cost. The third
term is the variable cost associated with the links in the network. The constraint (2) guarantees the
feasibility of the >ow on each link in terms of the capacity assigned to it. The constraints (3) and
(4) guarantee that only one route for each origin-destination pair and only one line type is chosen
for each link, respectively.
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3. Tabu search for the CFA

Tabu search is a procedure using ideas from arti2cial intelligence, which guides local search
methods to overcome local optimality and obtain optimal or near optimal solutions for hard com-
binatorial optimization problems. Starting from an initial solution, the method explores the solution
space by moving from a solution to the best solution in the neighborhood at each iteration. This
allows the method to escape from a local optimum and explore other regions of the search space,
but the quality of the solution may deteriorate from one iteration to the next, which distinct TS
form the classical local search methods. To avoid cycling, a specially designed memory mechanism,
known as the tabu list, is used to store previously visited solutions or certain attributes of them,
which will not be reversed for a certain number of iterations. In particular, the status of a tabu move
can be overruled and make accessible right away if a certain aspiration criterion is met. For a more
comprehensive description of TS, readers can refer to Ref. [25].

Since the TS is compared with the traditional techniques in this paper, we propose a simple TS
algorithm for the CFA problem, and the fundamental components of the procedure are speci2ed in
the following.

3.1. Solution representation

To a communicating origin-destination node pair p;p∈�, there are |Sp| candidate routes, among
which one and only one is selected to route the corresponding tra1c. Using an integral variable
rp to represent the index number of the route, we will get |�| such variables all together, each
representing a certain route for a node pair. A route vector r = (r0; r1; �; r|�|−1) can be obtained if
we put all the |�| variables together, for 06 rp6 |Sp|−1. To a link l; l∈L, there are |Il| candidate
capacity types, among which only one is assigned to a line. Using an integral variable cl to represent
the index number of the capacity types. We will get |L| such variable all together, each representing
a capacity type for a line. A capacity vector c = (c0; c1; �c|L|−1) can be obtained if we put all the
|L| variables together, for 06 cl6 |Il| − 1. It is natural for us to use these two vectors to represent
a solution of the CFA.

3.2. Initial solution

Usually there are advantages to starting from an initial solution that is of high quality. We study
the following methods for the CFA problem.

3.2.1. Initial route selection
We use four route methods as follows:
The random route method (RRM): Each time before the TS procedure starts, a program is used

to generate |�| random integers, which lie in the interval [0; |Sp| − 1]. Let components of the route
vector r equal those random numerals respectively, so an initial route solution could be attained.
The shortest route method (SRM): For each communicating node pair, select the shortest route

from its candidate route set to carry the corresponding tra1c.
The minimum hops method (MHM): The hop of a route is de2ned as the number of nodes (or

links) it traverses. This method is to select the one with the minimum hops from the candidate route
set for each communicating node pair.
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Head 

Tail 

(10.0)(9.1)

(23.1) (...) (...)

(...)

Fig. 1. The structure of tabu list.

The longest route method (LRM): For each communicating node pair, select the longest route
from its candidate route set to carry the corresponding tra1c.

3.2.2. Initial capacity assignment
Many methods can also be applied to the capacity assignment. In this paper, we only adopt the

best capacity assignment method. If the routes of all communicating node pairs have been selected,
the >ow of each link is also decided. In the candidate capacity set, there must be a best candidate
capacity value that can make the total cost of network is the minimum. We can 2nd these capacity
values, and assign to the links.

3.3. Move de8nition

Two kinds of moves are de2ned only to route solution, i.e., M+ and M−. The former can lead
to a tentative solution rt = rc + ei, and the latter, rt = rc − ei. For ei is an identical vector and rt
and rc represent the trial solution and the current solution, respectively. Obviously, those two moves
satisfy the ‘completeness’ condition, i.e., any solution, wherever it lies in the solution space, can be
reached from another solution through certain number of such moves.

3.4. Tabu list

A list (Fig. 1) is used to form the tabu list. Each unit in the list consists of two parts, i.e., the
index number of the communicating node pair, which ranges from 0 to |�| − 1, and the operations
imposed on it, which is represented by either 0 or 1, where 0 refers to M+ and 1 to M−. For
example, a unit containing (10,0) means that the move is prohibited if it leads to rt = rc + e10. The
tabu list operates as 2rst-in-2rst-out (FIFO) stacks. During the search procedure, a new tabu move
is added at the end of the list and the oldest move is removed from the head of the list.

The length of the list is tabu list size (Tmax). The tabu list size represents the number of iterations
that a move remains tabu, preventing the search from cycling. When the tabu list is short, tabu moves
are allow to be reversed after few iterations, which makes the search emphasize intensi2cation. If
the tabu list is long, many moves are tabu and the search is forced into areas that were not yet
visited, which makes the search focus on diversi2cation. Thus the size of the tabu list should depend
on the size and the characteristics of the problem suggested by Glover [25]. In the experiments, we
investigate various values of the tabu list sizes.
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3.5. Neighborhood search strategy

The neighborhood search strategy speci2es which move in the neighborhood is chosen at each
iteration. It is of great importance for the solution quality and the search e1ciency. The following
three methods are tested.
The best method (BM): Generate and evaluate all solutions in the neighborhood of the current

solution. Choose the move yielding the solution with the best objection function value as the next
move. Note that if the move is tabu, the best non-tabu move is selected.
The 8rst method (FM): Generate sequentially the set of solutions in the neighborhood of the

current solution. Choose the 2rst move identi2ed as yielding a solution with the improved objective
function value. If no improving move exists, select the best non-tabu move.
The sample method (SM): Under the conditions where the neighborhood size is very large, it

is time-consuming to search the whole neighborhood. The sample method randomly generates a
neighborhood subset of the current solution. All solutions in this subset are obtained and evaluated,
and the move yielding the best objective function value is chosen as the next move. If the move is
tabu, the best non-tabu move in the subset is selected.

3.6. Aspiration criterion

Compared with the constraining e0ect of tabu restrictions, aspiration criteria make the search
process free. An aspiration criterion is designed to overrule tabu status and make a candidate move
in tabu status admissible. In this article, the following aspiration criterion is used: if a move gives
a better objective function value than the best found so far, then it can be taken as the next move
in spite of its tabu status.

3.7. Stopping criterion

Many stopping criteria can be developed depending on the nature of the problem being studied.
The most common criterion, which is employed in this paper, is a maximum number of iterations.

3.8. Objective function

The objective function of the CFA problem is given in Eq. (1). However, in many cases, it is
di1cult to seek a feasible solution or it will take considerable time to seek such one, which satis2es
the constraints mentioned above. So we rede2ne the objective function for the CFA problem as
follows:

Z =







∑
l∈L

D · Fl∑
k∈Il

Qlkylk − Fl
+ G

∑
l∈L
k∈Il

(slkylk + dlmlk) + V
∑
l∈L
k∈Il

ClkFlylk



;

1
�

∑
r∈R

�r�rlxr6
∑
k∈Il

Qlkylk

C
�

∑
r∈R

�r�rlxr
/ ∑

k∈Il

Qlkylk otherwise;
(7)
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where, C is a large, positive constant, which is 1×105 in this paper. By doing so, we can transfer the
constrained optimization problem into an equivalent non-constrained problem, which is convenient
in practice.

3.9. Tabu search procedure

Based on the previous discussion, we present a TS procedure for the CFA problem.

Step 1. Initialization: Generate an initial solution (r0; c0) according to the selected initial method, and
calculate the total cost Z(r0; c0); Initialize the current solution (rc; cc) and the best solution
(rb; cb) by setting (rc = r0, cc = c0) and (rb = r0, cb = r0), respectively; initialize the tuning
parameters.

Step 2. Neighborhood search (SM):
(1) Generate a neighborhood subset M, and all solutions in M are obtained.
(2) Evaluate solutions: Let (rtb; ctb) be the best solution for Z(rtb; ctb) is minimum in M.

If the move (rc → rtb) is not tabu, and Z(rtb; ctb)¡Z(rb; cb), go to (3); otherwise go
to (4).

If the move is tabu, but corresponding Z passes the aspiration criterion, i.e. Z(rtb; ctb)¡
Z(rb; cb), go to (3); otherwise let (rtb; ctb) be the solution for Z(rtb; ctb) is the nearest
minimum in M, repeat this step.

(3) Renew the best solution: Set (rb = rtb, cb = ctb) and Z(rb; cb) = Z(rtb; ctb).
(4) Move: Set (rc = rtb, cc = ctb).
(5) Modify the tabu list: Put the opposite move into the tabu list and remove the oldest

move in it.
Step 3. Check stopping criterion: If the stopping criterion is satis2ed, go to step 4; otherwise go to

step 2.
Step 4. Stop and report the results.

4. Computational results

We studied the four topologies shown in Figs. 2–5, viz. ARPA, OCT, USA and RING. These
networks along with tra1c parameters and cost structure are similar to those tested in [7–9]. In all
four networks each node communicates with every other node. In the ARPA network there were
420 communicating node pairs with 4 messages per second being sent along the chosen route. The
corresponding values were 650 and 1 for OCT, and 650 and 4 for USA, and 992 and 1 for RING.
The set of candidate routes was obtained using a modi2ed shortest path algorithm previously, and
5 routes were chosen for every communicating node pair. The di0erent capacities used in the base
case and their corresponding cost components are presented in Table 1. The algorithm was coded
in C language and run on a PC with Pentium III-866 MHz CPU.

Table 2 shows the results with di0erent message lengths. In order to compare the e0ectiveness of
our procedure with the traditional method, we also report the results obtained by Amiri and Pirkul
[9]. The unit cost of delay is assumed to be $2000 per month per message for the base case. Both
2xed and variable cost multipliers are equal to 1. Computational results indicate that both delay
cost and overall cost decrease compared with the results in [9]. The lower delay cost, the shorter
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Fig. 2. The topology of ARPA network.
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Fig. 5. The topology of RING network.

Table 1
Link capacity set and its cost components

Capacity Setup cost Distance cost Variable cost
(bps) ($/month) ($/month/mile) ($/month/bps)

4,800 650 0.4 0.360
9,600 750 0.5 0.252
19,200 850 2.1 0.126
50,000 850 4.2 0.030
108,000 2,400 4.2 0.024
230,000 1,300 21.0 0.020
460,000 1,300 60.0 0.017

response time to users. That is to say, our proposed TS algorithm obtained the minimum total cost
and the better quality of service at the same time. We also noticed that the solutions are slightly
improved in ARPA network. With the increasing of the network scale, the results have a signi2cant
improvement. In OCT network the total cost reduced 67%. In USA network it is 59%, and 61% in
RING. It can be concluded from these results that TS is e0ective in solving the CFA problem, and
superior in large scale networks.

In order to implement the proposed algorithm e0ectively, the properties of the key tabu parameters
are examined.

Fig. 6 shows the results with di0erent methods used to generate the initial solution. It can be seen
that the initial solution has a signi2cant e0ect on the results. The solutions of SRM and MHM are
superior to those of RRM and LRM. There is slight di0erence between SRM and MHM. This can
be attributed to the fact that MHM is used to select the route with the minimum hops or links, as
a result, the overall tra1c in each link is lighter, and the total cost is lower compared with other
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Table 2
Computational results with di0erent message lengths

Message Our method Method in [9]
length

Total Delay Fixed Variable Upper Lower Delay Fixed Variable
cost cost cost cost bound bound cost cost cost

200 180,920 36,184 113,980 30,756 185,565 176,513 38,999 118,634 27,932
300 234,638 49,274 140,783 44,581 245,740 235,370 54,134 152,107 39,499

ARPA 400 308,129 71,785 185,145 51,199 308,637 298,361 72,326 185,137 51,174
500 341,427 75,900 204,084 61,443 377,433 362,662 82,298 232,511 62,624
600 400,613 92,535 232,368 75,710 445,902 429,600 110,657 233,658 71,587

300 163,912 28,999 113,354 21,559 406,239 393,967 90,573 244,334 71,332
400 185,123 36,505 121,104 27,514 544,644 520,221 133,759 320,930 89,955

OCT 500 208,139 47,788 126,805 33,546 672,487 647,417 154,419 409,684 108,384
600 238,648 55,912 143,119 39,617 819,884 778,427 144,641 548,571 126,672

300 159,010 31,630 107,587 19,793 362,652 345,934 91,666 210,655 60,331
400 183,768 41,909 116,325 25,534 451,957 435,920 107,071 270,166 74,720

USA 500 206,892 45,354 132,852 28,686 551,778 530,605 130,260 329,318 92,200
600 236,411 46,239 156,697 33,475 649,871 628,804 141,256 403,471 105,144

300 211,946 44,807 139,315 27,842 464,817 436,100 98,906 285,735 80,176
RING 400 248,614 57,585 156,429 34,600 571,185 550,219 133,858 335,183 102,144

500 280,602 53,695 186,975 39,932 697,968 663,173 155,114 418,662 124,192
600 306,929 56,494 205,034 45,401 811,630 778,604 168,312 499,155 144,163
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280000
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Fig. 6. Results with di0erent initial solution methods (RING).

methods. Because in most cases, fewer hops means shorter distance and vice versa, the di0erence
between MHM and SRM is negligible. The results indicate that the good initial solution should
be selected to improve the quality of solutions while using TS. For the CFA problem, the initial
solution should be generated by MHM or SRM, which is used for the rest of the study.
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Fig. 7. Results with di0erent neighborhood search strategies (RING).
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Fig. 8. CPU times with di0erent neighborhood search strategies (RING).

Figs. 7 and 8 show the e0ects and the CPU times with di0erent neighborhood search strategies.
We observe that the neighborhood search strategy make a signi2cant impact on the performance of
TS procedures, particularly when the neighborhood size is large. BM, in most cases, can yield better
solutions, but with most computation time. The solutions obtained by SM are very close to those
by BM, with lest CPU times. FM spends less CPU times than BM, but it leads to worse results in
each case, making it unsuitable for the TS procedure. Considering the solution quality and e1ciency
at the same time, we can draw a conclusion that SM should be selected with higher priority when
using TS. Only in circumstances where the size of neighborhood is small or time is not so critical,
can BM be applied.

When SM is used, how to select the neighborhood sample size is another important problem. The
results with di0erent neighborhood sample sizes are given in Fig. 9. Obviously, if the sample size is
too small, the algorithm could not 2nd a good solution. When the sample size is equal to 50 (about
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Fig. 9. Results with di0erent neighborhood sample sizes (RING).
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Fig. 10. Results with di0erent tabu list sizes (RING).

5% of the whole neighborhood), the algorithm arrives in an optimal solution. With the increase of
the size, the solutions have a slight improvement but pay more computational e0orts. Therefore, 5%
of the neighborhood should be selected as a subset in practice.

The results and the CPU times with di0erent tabu list sizes are reported in Figs. 10 and 11,
respectively. It is observed that the tabu list with a size of 7 that proposed by Glover [25] is also
suitable for the CFA problem. When the tabu list size is small (¡ 7), the algorithm visits the same
sequence of solutions over and over again, and ends up in a local optimum. When it is large (¿7),
the results have slight improvement with the increase of the tabu list size, but at the expense of
more computation time. So it is reasonable to select 7 as the tabu list size for the CFA problem.

In addition, the average number of iterations and the average CPU time for both our method
and the method proposed by Amiri and Pirkul [9] are summarized in Table 3. Evidently, our TS
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Table 3
Average number of iterations and CPU times

Our method Method in [9]

Number of Total CPU Number of Total CPU
iterations (S) iterations (S)

ARPA 60 0.36 300 590
OCT 70 0.63 291 1363
USA 110 0.64 285 1920
RING 120 0.64 300 3120

algorithm is able to converge very quickly to an optimal solution. The optimal solution could be
found at the average iteration 90, which is approximately 3 times less than the method in [9]. It
is need to point out that the solution method described in [9] was written in Pascal and run on
IBM-3081D. Taking machine di0erences into account, our method is still faster than the traditional
techniques. These further illustrate the high e1ciency of the TS method.

5. Conclusions

In this paper, a tabu search metaheuristic algorithm is proposed for the classical CFA problem
in computer networks. Better results are obtained compared with the traditional techniques, so the
high e0ectiveness of the TS method is further veri2ed. Extensive computational experiments show
that appropriate parameters will greatly improve the e0ectiveness and e1ciency of the TS proce-
dure. These results are also helpful to the other sophisticated performance optimization problems in
computer networks.
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In future research work, the performance of the TS method will be further studied. Advanced inten-
si2cation and diversi2cation strategies [39], and parallel, reactive and hybrid TS methods
[40–42] should be applied to improve the quality of the solutions. In addition, we will apply the TS
method to some new optimization problems arising in computer networks, for instance, the weight
setting problem in OSPF routing [43], etc.
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