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Abstract

In Multi-Protocol Label Switching (MPLS) networks, traﬃc demands can be routed along tunnels called Label

Switched Paths (LSPs). A tunnel is characterized by a path in the network and a reserved bandwidth. These tunnels

can be created and deleted dynamically, depending on traﬃc demand arrivals or departures. After several operations of

this type, the network resource utilization can be unsatisfactory, with congestion or too long routing paths for instance.

One way to improve it is to reroute tunnels; the rerouting process depends on the LSP Quality of Service (QoS)

requirements.

Three levels of QoS are considered, with three associated types of LSPs. A global rerouting framework is proposed,

which enables us to consider independently each type of LSP. Then, mathematical models are introduced and analyzed.

A focus is made on complexity analysis and optimal resolution of these problems. Finally, some numerical results illustrate

the theoretical analysis.
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1. Introduction

In Multi-Protocol Label Switching (MPLS) networks, traﬃc demands can be routed along tunnels called

Label Switched Paths (LSPs)
[2,3]. An LSP corresponds to a path in the network with bandwidth reserved.

Depending on traﬃc demand arrivals, LSPs can be dynamically created to route them. Similarly, traﬃc

demand departures can lead to removing some LSPs from the network. After several creations/deletions of

LSPs, the network resource utilization can become very unsatisfactory. This can hardly be avoided, since

future events are not known when establishing an LSP.

A way to improve the situation at a given time is to reroute the existing LSPs into a better global conﬁg-

uration. This rerouting process is performed ‘‘oﬀ-line’’ during a quiet period when the network state is stable.

Diﬀerent levels of quality of service (QoS) have to be considered, depending on the services supported by an

LSP. Thus, the rerouting plan has to take into account these QoS diﬀerences. Indeed, there exist diﬀerent ways
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of rerouting LSPs, which have diﬀerent eﬀects on the traﬃc. Three diﬀerent classes of service are considered in

this paper, with high, medium and low QoS. Low quality LSPs can be broken and re-established afterwards.

Thus, the service is unavailable for possibly a few seconds. A medium level corresponds to the possibility of

rerouting the LSPs, but through a ‘‘make-before-break’’ process (see [2]): ﬁrst, a new LSP is established, and

then, the old one can be deleted. In practice, this process has little impact on the communication quality, and

can induce some packet losses. The highest QoS level requires that the corresponding LSPs cannot be moved

at all.

In [9–11], the authors have proposed a ﬁrst approach to this rerouting issue, considering only medium class

LSPs. They study the problem the following way: knowing the current (old) conﬁguration and the optimal

(new) one, they look for a feasible rerouting sequence. Each LSP is rerouted only once, i.e. no intermediate

path is used. This approach emphasizes the optimality of the ﬁnal routing which is calculated from scratch.

However, it may be necessary to break a few connections to be able to reach this target. Conditions on capac-

ities in the network are given to ensure the existence of a rerouting sequence without connection breaking. This

previous work has not taken into account the diﬀerent classes of service which could exist in such a network.

Moreover, even when considering only medium class LSPs, the proposed method is not totally satisfactory.

On the one hand, the LSPs are allowed to be possibly broken. On the other hand, the number of reroutings

to perform is possibly equal to the number of LSPs in the network. This number can be large, implying some

complexity in the network management.

In the current paper, a complementary approach is proposed. The emphasis is put on fulﬁlling the diﬀerent

levels of quality of service. In particular, medium quality LSPs cannot be broken. With this constraint, we try

to obtain the best possible state. Moreover, the maximum number of reroutings can be controlled, the goal

being to keep network management as easy as possible and to minimize the service disturbances. The problem

addressed has many connections with that of [1], where a rerouting problem is studied with the aim to improve

a telecommunication network state. The authors assume that each path in the network is assigned a usage

cost, and heuristics are designed to ﬁnd a rerouting sequence which leads to a small global network cost.

But such a ﬁxed path cost can hardly model QoS issues such as those considered in the current study. More-

over, we focus on exact solution procedures to ﬁnd optimal solutions.

Finally, such rerouting problems occur in ﬁelds other than telecommunications. The recent work of [17]
deals with moving processes from their initial processor to another one in order to improve the computation

resource utilization. This problem is in fact a special case of that exposed in [9–11]. This paper presents in par-

ticular a good review of the related literature, which shows that similar problems have in fact quite rarely been

studied in the past.

In Section 2, a global rerouting framework is proposed, which enables us to consider independently the dif-

ferent classes of QoS. Section 3 deals with medium quality LSP rerouting, while low quality LSPs are studied

in Section 4. In both sections, mathematical models are established and optimal resolution is more particularly

investigated. Section 5 provides some numerical results.

Note that only point-to-point (P2P) LSPs are dealt with; the problem is more diﬃcult for point-to-multi-

points ones (P2MP). Finally, in MPLS networks, several traﬃc demands can use the same LSP. Nevertheless,

from now on, without loss of generality for our study, the words ‘‘demand’’, ‘‘tunnel’’ and ‘‘LSP’’ will denote

the same thing.

2. General framework of the study

2.1. Network model and notations

Let G ј рV ; AЮ
be the graph of the network, n јj V
j, m јj A j. G will be assumed simple and directed. cрaЮ

is the total capacity of the arc a 2 A. Let v 2 V
be a node, we denote by AюрvЮ
(resp. A
рvЮ) the set of the arcs

terminating (resp. originating) at
v.
p ј рv1; . . . ; vlЮ 2 Vlis a
path
in
G
if for all
k 2 f1; . . . ; l
1g,

рvk; vkю1Ю 2A.

I denotes the set of demands, N
јj I j. Each demand i 2 I is characterized by a source si2 V , a destination

di2 V , a bandwidth requirement bi> 0 and an initial path pi. The initial routing scheme is assumed to be fea-

sible, that means that no arc capacity is exceeded by the initial demands.
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In telecommunication networks, the QoS parameters usually taken into account are bandwidth, delay, jitter

and packet loss rate (see for instance [18]). Due to QoS considerations, we are interested in using short routes,

which decrease the possible delay and packet loss rate, as well as jitter. But an operator has also to keep some

bandwidth available to face new ﬂow arrivals, or traﬃc variations.

Let x be a multicommodity ﬂow: xia2 Ѕ0; 1
is the fraction of demand i routed on arc a. Given an arc a 2 A,

let us denote by lрaЮ its load: lрaЮ јPi2Ixiabi. Thus, l denotes the vector of arc loads. Consider the following

family of cost functions related to network resource utilization [4,8,15], deﬁned for a P 0, a 6ј 1:

for a P 0 : FaрlЮ ј


1

a
1


X

рcрaЮ  lрaЮЮ1a:
a2A

Arc loads are assumed to be less than arc capacities: 8a 2 A; lрaЮ 6 cрaЮ. Note that when a > 1, if lрaЮ ј cрaЮ

for some arc a, FaрlЮ is supposed to take an inﬁnite positive value (ю1).

Fadepends directly on the residual capacity of arcs and has to be minimized. If a ј 0, minimizing F0is equiv-

alent to maximizing the total network residual capacity (or, by dividing by the number of arcs, the average arc

residual capacity). This criterion is strongly related to the routing path lengths, since F0рlЮ can be written:

F0рlЮ ј


X

i2I



bi

(X
a2A


)X
xia
a2A



cрaЮ:

This criterion is unsatisfactory, since it provides no guarantee on the minimum residual capacity in the net-

work. On the contrary, a ! 1 leads to maximize this minimum residual capacity. For the sake of simplicity,

we assume that:

1

F1рlЮ ј max

a2A
cрaЮ  lрaЮ


:

This criterion seems more relevant, but gives no guarantee on the routing path lengths. a ј 2 is an inter-

mediate objective, related to the transfer delay [12]. It is intuitive that it will penalize both saturated arcs

and long paths. Observe that F2and F1are correlated, since for any ﬂow x: F1рxЮ 6 F2рxЮ 6 mF1рxЮ.

2.3. On the way to handle the classes of service

The highest class of service is the easiest to take into account, since none of the corresponding LSPs can be

rerouted. These LSPs can be very simply integrated to the inputs of the problem. From now on, they will be

ignored.

We would like to control the number of reroutings for each of the two other classes. Indeed, they corre-

spond to diﬀerent rerouting operations. It is easy to see that there always exists an optimal rerouting scheme

following these successive chronological steps:

(i) break some low quality LSPs to free resources, then

(ii) reroute medium quality LSPs through ‘‘make-before-break’’, and ﬁnally

(iii) re-allocate low quality LSPs on their new paths.

Indeed, consider any feasible rerouting scheme of low and medium quality LSPs, called here-after ‘‘ﬁrst

scheme’’. Let IL, resp. IM, denote the set of rerouted low, resp. medium, quality tunnels. It is possible to build

a new rerouting scheme following steps (i)–(iii): ﬁrst break all tunnels of IL, then reroute tunnels of IMin the

same order than in the ﬁrst scheme, and ﬁnally reroute tunnels of IL. The feasibility of step (ii) comes from the

fact that there are at least as many resources in the network as in the ﬁrst scheme to perform medium quality

tunnels rerouting. Step (iii) is clearly feasible, since the ﬁnal state reached by the ﬁrst scheme is feasible.

As a ﬁrst approach to this global problem, we could consider steps (i) and (ii) successively, performing the

following steps:
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Rerouting optimization framework

Step 1:

Step 2:


ignore all of the low quality LSPs, and solve the rerouting problem

for medium quality LSPs;

then, solve the rerouting problem for low quality LSPs.

For each of the two steps, the number of reroutings has to be bounded. This rerouting framework allows

more particular control of operations for medium quality LSPs. This is interesting, since the possible interrup-

tion time for low quality LSPs is related to the number of medium quality LSPs rerouted.

Note that Step 1 may impose some constraints on Step 2. For instance, the state reached by Step 1 may

require resources which imply the deﬁnitive deletion of some low quality LSPs. Nevertheless, this resolution

will probably provide a feasible global rerouting scheme.

This practical framework is not an optimal resolution, but it seems natural, and as we will see, it is yet very

diﬃcult.

Finally, from a theoretical point of view, the diﬃculties induced by each of the two classes of service are

quite diﬀerent. While rerouting the low quality LSPs is a problem very close to classical unsplittable multicom-

modity ﬂow problems, the medium class introduces a new and very diﬃcult problem. Thus, it is worth study-

ing the medium and low quality LSP rerouting problems separately.

3. Rerouting medium quality LSPs

In this section, we suppose that there are only medium quality LSPs in the network (cf. Step 1 of the above

rerouting optimization framework). Note that this is the framework of the papers [9–11]. The ‘‘make-before-

break’’ constraint leads to rerouting the tunnels one by one. That is, we must choose a sequence of rerouting

operations.

3.1. A mathematical program

Let s be the maximum number of performed reroutings, we introduce the set T ј f1; . . . ; sg. We denote by

F рxsЮ
the objective function to minimize, which depends only on the ﬁnal state. The goal is to ﬁnd a rerouting

sequence, of length at most s, optimizing this criterion. This Reroute Sequence Planning Problem (RSPP) can

be formulated with the following mathematical program, based on an arc-node formulation:

min
F рxsЮ

8


1
if v ј si;

s:t:


X

	
x
	t

ia



X


xtiaј

<


1
if v ј di;


8i 2 I; v 2 V ;
t 2 T ;


р1Ю

a2AюрvЮ

X


a2A
рvЮ


:0otherwise;

i2I

xt

xtiabi6cрaЮ;
8a 2 A;
t 2 T ;

t1t


р2Ю

iaxia6pi;
8i 2 I ;
a 2 A;
t 2 T ;


р3Ю

X

i2I

xt

pti61;
8t 2 T;

t


р4Ю

ia2 f0; 1g;
pi2 f0; 1g;
8i 2 I;
a 2 A;
t 2 T :


р5Ю

This model will be referred to as the basic formulation. We suppose that all data (capacity, bandwidth require-

ments) are integers. xtiaј1 means that the demand i uses the arc a at step
t (i.e. after the t ﬁrst reroutings).

ptiј1 if the demand i is rerouted at period t.

(1) and (2) are respectively the classical ﬂow conservation and capacity constraints. Note that if the rero-

uted path has an arc in common with the original one, there is no need to double the capacity reservation cor-

responding to the considered demand [2].
Inequalities
(3)
give the evolution rule for
x. Indeed, if for a given
рi; tЮ 2 I
T,
ptiј0, then for all

a 2 A:
xtia6xtia1. This means that the demand
i
is not moved from its current path at step
t. On the
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contrary, ptiј1 makes it possible to reroute i at step t. Finally, (4) ensure that at most one demand is rerouted

at a time.

x0denotes the initial state of routings in the network, and is assumed to be known.

Let X denote the set of feasible solutions of RSPP:

X ј fрx; pЮ 2 f0; 1gsNm f0; 1gsNjр1Ю; р2Ю; р3Ю
and р4Юg

Let convрX Ю denote the convex hull of X. Let us introduce the set ~
corresponding to the linear relaxation of

variables p:

~ ј fрx; pЮ 2 f0; 1gsNmRsюNjр1Ю; р2Ю; р3Ю
and р4Юg

Lemma 1.
convр ~ Ю ј convрX Ю.

Proof.
Let рx; pЮ 2
e . We prove that if p is not integral, then рx; pЮ
is not an extreme point of convр e Ю.

Constraints
(4)
imply that
pti61. Suppose that there exists
рi0; t0Ю 2 I
T
such that 0 < pti00<1. Then,

because of (4), for all i: pti0< 1. As x 2 f0; 1gsNm,(3) implies that for all рi; aЮ, xtia0ј xtia01. Let us now consider

pюand
p
equal to
p, except:
pi0t0
ј pti00e(e > 0). IfPi2Ipti0<1,
e
is taken such that
pi0t0P0 and

P


юЮ 2e
and рx; p
Ю 2
e , and рx; pЮ ј Ѕрx; pюЮ ю рx; p
Ю=2.

i2Ipt0i61. Then, рx; p

If nowPi2Ipti0
ј 1, it is suﬃcient to choose arbitrarily another index i16ј i0such that pti10> 0. Then, p
is

changed by imposing also: pi1t0јpti01eto guaranteePi2Ipit0ј1. e has to be chosen to ensure p
t0i1P0.

As before, рx; pюЮ
and рx; p
Ю
deﬁne feasible solutions of RSPP, and рx; pЮ ј Ѕрx; pюЮ ю рx; p
Ю=2.

Then, it is proved that any non-integral рx; pЮ
is not an extreme point of convр e Ю. Then, any extreme point

of convр e Ю is in X, that ensures: convр e Ю  convрX Ю. As clearly convр e Ю  convрX Ю, the result holds.
h

Hence, the extreme points of convрX Ю
and convр e Ю
are exactly the same. Thus, when solving the problem

with a branch-and-bound algorithm relying on a simplex algorithm, which always provides basic solutions,

integrality constraints on p can be relaxed: the integrality of x will imply that of p in the obtained solution.

As a consequence, we are led to focus theoretically on the integrality of variables xia.

In the proposed model, it is possible to reroute the same demand several times. This allows us to reach better

conﬁgurations on heavily loaded networks. Consider for example the following simple case, where each arc rep-

resents a path in the network. C denotes the minimum capacity along each path, and b is the traﬃc of demands:

To reach the right-hand state from the left-hand one, and thus to avoid the congestion of a link, it is nec-

essary to reroute the demand of traﬃc b = 2 twice. Then, we need more than N = 2 reroutings to obtain the

optimal solution.

To ﬁnish with this general presentation of the model, observe that the sequential aspect is strongly related

to the network load. Indeed, if the network is not too loaded, any rerouting order will be feasible. The rero-

uting of medium quality LSPs is then equivalent to that of low quality ones, at least from a mathematical

model point of view. This will be more precisely explained in Section 4.3.
3.2. Complexity

Lemma 2.
Consider the objective function F0. Suppose that s P N=2, then RSPP is NP-hard even for networks

with three nodes and three arcs.
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Proof.
Consider the graph below:

Suppose that the two right-hand arcs have the same capacity c1јPi2Ibi, and that the left-hand arc has a

capacity c2ј c1=2. Suppose also that all of the N demands are initially routed on the two right-hand arcs. The

optimal rerouting conﬁguration is obtained by rerouting the maximum amount of trafﬁc on the single arc

рs; dЮ. Since s P N=2, the question is: is there a rerouting set I0I
such that j I00j6 s andPi2I0biј c2? This

problem is exactly the problem PARTITION
[7]. Indeed, since
s P N =2, the cardinality condition is not

constraining: either I0or I n I0will satisfy it.
h

Lemma 3.
Consider the objective function F2. Suppose that s P N=2, then RSPP is NP-hard even for networks

with four nodes and four arcs.

Proof.
Consider the network graph below:

All arcs are assumed to be of capacity c јPi2Ibi. Suppose that s P N =2 and that all of the N demands are

initially routed on one of the two paths from s to d. We know that for any solution x, F2рxsЮ P 4
2=c ј 8=c.

This value is obtained if, and only if, all arcs are exactly half-loaded.

The question is: is there any rerouting sequence such that F2рxsЮ ј 8=c? A subset I00I
such that j I0j6 s

andPi2I0biј c=2 has to be found. As before, the cardinality condition is not constraining, and we obtain the

problem PARTITION.
h

Lemma 4.
Consider the objective function F1. Suppose that s P N=2, then RSPP is NP-hard even for networks

with three nodes and three arcs.

Proof.
Consider the network graph already used in the proof of
Lemma 2, all arcs being of capacity

c јPi2Ibi. It is easy to see that F1рsЮ P 2=c. Then, the question is: is there any rerouting sequence such that

F1рxsЮ ј 2=c? This is equivalent to ﬁnding a subset I0I such that j I0j6 s andPi2I0biј c=2. As before, this

is the problem PARTITION.
h

3.3. Link with the multicommodity ﬂow problem

Given a mixed integer problem P, we call LрPЮ
the problem P without integrality constraints. Some simple

notations are proposed to compare the optimal values of diﬀerent problems. Given two problems P and P0,

P
P0(resp. P
P0, P
P0) means that the optimal value of P is equal to (resp. not larger than, lower than)

that of P0.
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Let us introduce the Unsplittable Multicommodity Flow Problem (UMFP) corresponding to RSPP:

min
F рxЮ



7

s:t:X
a2AюрvЮ

X



xia


X

a2A
рvЮ



xiaј


8

><>
:>

1
if v ј si;

1
if v ј di;

0
otherwise;



8i 2 I;
v 2 V ;

i2I


xiabi6 cрaЮ;
8a 2 A;
t 2 T ;

xia2 f0; 1g;
8i 2 I;
a 2 A;

Clearly, UMFP
RSPP and LрUMFPЮ _ LрRSPPЮ. Let x be a feasible solution of LрUMFPЮ, we denote:

kxk1ј maxi;ajxiaj.

Proposition 1.
Let ~ be a feasible solution of LрUMFP Ю. If k~
x0k16s=N, then there exists a feasible solution

рx; pЮ of LрRSPPЮ
such that xsј~.

Proof.
Let ~ be a feasible solution of LрUMFPЮ, we build рx; pЮ period by period. Let t 2 T, suppose that xt1

is a feasible ﬂow (true for t = 1), different from ~. Let us deﬁne:

xtј xt1юktр~
xt1Ю ј р1
ktЮxt1юkt~

with kt2 Ѕ0; 1 . As xt1and~ are feasible ﬂows, xtis also a feasible ﬂow: constraints (1) and (2) are satisﬁed.

Consider now constraints (3):

8рi; aЮ 2 I
A : xtiaxtia16pti

() 8i 2 I : ktmaxр~iaxtia1Ю 6 pti

()
kt6 min


a2A

	
p
	t

i




:

i2I


maxa2Aр~iaxtia1Юю

We can write this last line, since ~ 6ј xt1 and there necessarily exists рi; aЮ 2 I
A such that ~ia> xtia1. We im-

pose now that for all i 2 I, ptiјpt. The previous condition becomes:

pt

kt6


maxрi;aЮ2I
Aр~iaxtia1Юю

:

We denote Dt1јmaxрi;aЮ2I
Aр~iaxtia1Юю. Let us consider: ptј minf1=N; Dt1g, and

min 1=N; Dt1

ktј


Dt1


:

Observe that for all рi; aЮ 2 I
A: ~iaxtiaј р1
ktЮр~iaxtia1Ю. Then, if Dt1>0: Dtј р10ktЮDt1<Dt1.
As long as0Dt1P1=N, this means:
Dtј Dt11=N . Thus, there exists
t0such that
Dt6 1=N. Then:

ktю1ј1, that implies: xt0ю1ј~. Note that, since D0ј k~
x0k16s=N , t06s
1.

Finally, we have to check that constraints
(4)
are satisﬁed by the considered vector
p, that is

straightforward. Thus, we have given a way of building a solution x such that xsј~.
h

Corollary 1.
If s P N , LрRSPPЮ  LрUMFPЮ.

More precisely, if ~
is an optimal solution of
LрUMFPЮ
and if
s P N, there exists an optimal solution

рx ; pЮ of LрRSPPЮ such that xsј ~ . The proof of Proposition 1 indicates how to build x
from ~ . As a con-

sequence, if
s P N, UMFP
LрRSPPЮ: UMFP provides a better lower bound on RSPP than the linear

relaxation LрRSPPЮ.
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However, RSPP and UMFP have diﬀerent values most of the time, whatever the value of s: it is often not

possible to reach the optimal ﬂow conﬁguration given by UMFP from a given initial state of RSPP. Consider

for instance the following ring example, where an arc is saturated (not optimal for UMFP), but no rerouting is

possible (consider that each arc represents a path in the network):

Furthermore, although it has been proved unnecessary to consider s > N
when dealing with LрRSPPЮ, this

is not the case for RSPP. Indeed, let us call an instance of RSPP a set рG; c; b; x0Ю, where G is the graph of the

network, c the capacity vector, b
the bandwidth requirements vector corresponding to demands, and x0the

initial paths used by demands. Given an instance of RSPP, a relevant notion is the minimum number of rerou-

tings which have to be performed before obtaining the best possible conﬁguration. Let us denote by s this

(ﬁnite) number of steps, called the
optimal rerouting horizon. Observe that in the previous ring example,

s ј 0 (no possible rerouting).

Lemma 5.
There exist instances of RSPP for which the optimal rerouting horizon is at least 3N
1: s P 3N
1.

Proof.
Consider the following example, with N = 2. Bottom arcs are saturated. At least 3N
1 ј 5 moves are

needed to invert the two routing paths:

This example is used as a basis (sub-network) to build the following instance with N P 2 demands:

Each demand
i 2 f1; . . . ; N
1g
has a bandwidth requirement
biј 3, and the demand number
N has a

bandwidth requirement bNј 2. Then, 3N
1 reroutings are needed to avoid the saturation of any arc.
h

In fact, it seems that it is not possible to bound s with a function of
N only (contrary to the linear case).

All of these observations highlight the deep diﬀerence between UMFP and RSPP, although LрUMFPЮ and

LрRSPPЮ
are quite close. As a consequence, the relaxation LрRSPPЮ
needs to be strengthened, since it is the

base for many solution approaches (e.g., branch-and-bound and approximation algorithms). With this goal,

we propose some valid inequalities which could be added to the problem.
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3.4. Additional inequalities

3.4.1. Valid inequalities
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LрRSPPЮ
has been shown to be very close to LрUMFPЮ, although RSPP and UMFP appear to be very

diﬀerent problems (Section 3.3). Then, more valid inequalities are strongly needed to reinforce the linear relax-

ation of RSPP.

Lemma 6.
The following symmetrical evolution inequalities are valid for X:

xtiaxtia1Ppti;8i 2 I; a 2 A; t 2 T


р6Ю

(In other words, we have: j xtiaxtia1j6 pti.) Note that inequalities (6) strengthen the linear relaxation of RSPP.

Indeed, consider the following example with only one demand from
s to
d with a bandwidth requirement

b = 1, and suppose that p ј 1=4:

We see that this feasible solution of LрRSPPЮ is such that: x1sdx0sdј 1=2
1 ј 1=2 <
p. Note that the

previous integrality constraints relaxation result (Lemma 1) still applies.

The following valid inequalities, called rerouting capacity inequalities, are introduced:

Lemma 7.
For any рx; pЮ 2 X :

X

8рa; tЮ 2 A
T ;



i2I


bimaxfxtia1; xtiag6 cрaЮ:


р7Ю

Proof.
Let рx; pЮ 2 X
and рa; tЮ 2 A
T . If for all i 2 I , xtiaј xtia1, then (7) is equivalent to the capacity con-

straint (2) corresponding to рa; tЮ. If there exists i 2 I such that xtia> xtia1, then for all j 6ј i, xtjaј xtja1. Thus, (7)
is equal to the capacity constraint corresponding to рa; tЮ. The result is similar in the last case (xtia< xtia1).h

As a consequence, for any рa; tЮ 2 A
T , and for any partition рI1; I2Ю
of I:Pi2I1xtia1biюPi2I2xtiabi6 cрaЮ.

Then, for a given non-integral solution ~
of LрRSPPЮ, the most violated of these linear inequalities can be

obtained in linear time with I1ј fi 2 I j ~tia1> ~tiagand I2ј fi 2 I j ~tia16 ~tiag.

	Note that if only one demand is rerouted at periodt, then for any arca, for allij:рxt1ia

t


xtt1
iaЮрxjaxjaЮ ј 0. Let us show that a fractional point violating an inequality (7) also violates this condition:

Lemma 8.
Let рx; pЮ
be a feasible solution LрRSPPЮ. If рx; pЮ
violates the inequality (7) for рa; tЮ 2 A
T , then

there exists рi; jЮ 2 I2such that: рxtia1xtiaЮрxtja1xtjaЮ< 0.

Proof.
LetPрa; tЮ 2 A
T , suppose that:Pi2Ibimaxfxtia1; xtiag> cрaЮ. As capacity constraints (2) are satisﬁed

for
рa; tЮ:i2Ibiрmaxfxtia1;xtiag  xtiaЮ
> 0. This means that there exists
i 2 I
such that: maxfxtia1;xtiag > xtia.

Thus:
xtia1>xtia. Similarly, as capacity constraints are satisﬁed for
рa; t
1Ю, there exists
j 2 I
such that

xt
1


t


h

ja<xja.

Unfortunately, the reciprocal result is not true. Another more practical illustration of the impact of these

inequalities can be provided. Consider LрRSPPЮ
with the additional inequalities (7). If a is a saturated arc at

period t, no (fractional) ﬂow can be rerouted on a at t + 1. For example, in the ring instance of Section 3.3, no

rerouting is possible. As a consequence, when taking into account inequalities (7), Proposition 1 is fortunately

no more valid.

Cover inequalities can be associated with these additional knapsack constraints (see e.g. [14,16]). C
I is a

cover of an arc a 2 A ifPi2Cbi>cрaЮ. C is called a minimal cover of a if for any element j 2 C, C n fjg is not a
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cover of a. Given a cover C of a, and due to rerouting constraints (7), the following rerouting cover inequalities

are valid for RSPP:

X

8t 2 T;



i2C


maxfxtia;xtia1g 6 jCj  1:


р8Ю

Minimal cover inequalities are known to be the strongest ones. Let t 2 T . Given a fractional solution x of

LрRSPPЮ, the most violated rerouting cover inequality can be obtained by the resolution of the following

knapsack problem (considering that data b and c are integral):

X

min

s:t:



i2I

X

i2I


yiр1
maxfxtia;xtia1gЮ

yibiP cрaЮ ю 1;

yi2 f0; 1g;
8i 2 I:

Any cover can be extended into EрCЮ ј C [ fi 2 I j maxj2Cbj6big. Then, the following inequalities are stron-

ger for RSPP:

8t 2 T;Xmaxfxtia;xtia1g 6 jCj  1:

i2EрCЮ

Extended cover inequalities are proved to be strong constraints for knapsack problems [6,16]. (This is a special

and easy-to-perform case of lifting. For an exact generation scheme, see [6].)
3.4.2. On the interest of multiple solutions

The basic model can have many extreme optimal solutions. To reduce their number, the following con-

straints could be introduced:

X
X

i2I


ptiю16

i2I


pti;8t 2 T n fsg:


р9Ю

Thus, if no rerouting occurs at period t, none will occur at period t + 1. Note that to consider this constraint

does not impact the size of the problem, since inequalities (4) can now simply be replaced by the single con-

straint:Pi2Ip1i6 1.

Another reinforcement of the basic model lies in forbidding a solution to move the same demand on two

consecutive periods:

ptiюptiю161;
8i 2 I; t 2 T n fsg:


р10Ю

It remains possible to relax integrality constraint for p with these new constraints (9) and (10) (cf. Lemma 1).

Both inequalities reduce the size of the search space. Nevertheless, computational experiments have shown

that they do not help the optimal solution process. Indeed, when performing branch-and-bound, it is partic-

ularly important to have good feasible solutions (i.e. upper bounds) as soon as possible. Keeping only con-

straints (4)
in the model, optimal solutions are more numerous and are found faster during the process:

this accelerates the optimal solution process, and/or provides good feasible solutions faster. This appeared

to be of particular importance in our practical tests.

4. Rerouting low quality LSPs

In this section, we suppose that there are only low quality LSPs in the network.

4.1. The associated mathematical program

As with medium quality, we impose an upper bound r on the maximum number of reroutings to perform.

Let us introduce the Reroute Planning Problem (RPP):
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s:t:


X

a2AюрvЮ



xt
ia


X

a2A
рvЮ



xiaј


8

<

:


1
if
v ј si;

1
if
v ј di;

0
otherwise;



8i 2 I;
v 2 V ;
t 2 T ;



р11Ю

X

i2I


xiabi6 cрaЮ;
8a 2 A;


р12Ю

xiax0ia6pi;
8i 2 I; a 2 A;


р13Ю

X

i2I


pi6 r;


р14Ю

xia2 f0; 1g;
pi2 f0; 1g;
8i 2 I; a 2 A:


р15Ю

This mathematical program appears to be easier than RSPP. In particular, it has fewer variables and fewer con-

straints. Nevertheless, it remains NP-hard, since all of the results of Section 3.2 can directly be applied to RPP.

As with RSPP, integrality constraints on p can be relaxed (cf. Lemma 1).
4.2. Valid inequalities

Among the results of 3.4, we can adapt Lemma 6:
Lemma 9.
The following symmetrical evolution inequalities are valid for RPP:

xiax0iaPpi;
8i 2 I; a 2 A;

As before, these cuts strengthen eﬃciently the initial model.


р16Ю

Let us denote for all i 2 I: A1iј fa 2 A j x0iaј1g. Hence, A1i
is the set of arcs used by the initial routing of

demand
i. Consider the following reformulation RPP’ of RPP, obtained by replacing inequalities (13)
with

inequalities (16) on a restricted set of arcs:

min
F рxЮ

s:t:X
a2AюрvЮ

X



xt
ia


X

a2A
рvЮ



xiaј


8

<

:


1
if v ј si;

1
if v ј di;

0
otherwise;



8i 2 I;
v 2 V ;
t 2 T;

i2I


xiabi6 cрaЮ;
8a 2 A;

xiax0iaPpi;
8i 2 I;
a 2 A1i;

р17Ю

X

i2I


pi6 r;

xia2 f0; 1g;
pi2 f0; 1g;
8i 2 I ;
a 2 A:

Lemma 10.
RPP0and RPP are equivalent. Moreover, a feasible solution of LрRPP0) is a feasible solution of

LрRPPЮ.

Proof.
First observe that any feasible solution
рx; pЮ
of
LрRPP0Ю
satisﬁes in fact:
8рi; aЮ 2 I

A; xiax0iaPpi. Indeed, the inequality is obvious on arcs where
x0iaј0. As a consequence, RPP0and

RPP have exactly the same set of 0–1 feasible solutions, and thus they are equivalent.

Consider now a feasible solution
рx; pЮ
of
LрRPP0Ю. Let us check that
рx; pЮ
satisﬁes constraints
(13).

Suppose that this is not the case: there exists рi; aЮ 2 I
A with: xiax0ia> pi. This occurs only if: x0iaј 0, and

so: xia> pi. But from inequality (17), we know that an amount of traﬃc at most pihas been removed from the

initial path. Thus, there would be some traﬃc creation in the network, and the ﬂow conservation would not be

satisﬁed (contradiction).
h

Hence, LрRPP0Ю is a stronger relaxation of RPP than LрRPPЮ. Moreover, the size of RPP’ is smaller than

that of RPP. As a consequence, in practice, inequalities (17) should be used instead of (13).
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4.3. Link with make-before-break rerouting

We ﬁrst have to observe that if medium quality LSPs are not too numerous in the network, their rerouting

plan can be obtained in solving RPP instead of RSPP:

Lemma 11.
Suppose that

8a 2 A;
cрaЮ PXbi:

i2I

Then an optimal solution to RPP provides an optimal solution to RSPP.



р18Ю

Proof.
Indeed, under condition (18), any rerouting order is feasible: we just have to decide the set of demands

which are to be moved.
h

As a consequence, under condition (18), RSPP can be replaced by RPP. Within the global optimization

framework of Section 2.3, the result can be adapted by considering the set ILof low quality LSPs, and the

set
IMof medium quality LSPs. If condition (18)
holds for
IM(ignoring demands of IL), i.e. if for any arc

a:
cрaЮ
PPi2IMbi, then only model RPP has to be used, ﬁrst to reroute demands of
IM(Step 1), and then

for demands of IL(Step 2).

Remark.
It has been underlined that
LрRSPPЮ
was a particularly weak relaxation of RSPP. An approach

could be to consider other relaxations instead of linear ones (for instance, lagrangian relaxations). But the

relaxation of capacity constraints leads in fact to solve RPP. The relaxation of rerouting constraints leads to

an even weaker problem, UMFP. As both RPP and UMFP are NP-hard, there is little hope to obtain

computationally eﬃcient bounds from these constraint relaxations. Roughly speaking, we could state the

following (non-rigorous) relations: LрUMFPЮ  LрRPPЮ  LрRSPPЮ _ UMFP
RPP
RSPP.

4.4. On the number of necessary reroutings

For RSPP, it has been shown that the number of reroutings required to obtain the best possible network

state could be very large (possibly more than 3N
1). This is not the case for RPP: it is clear that if r ј N,

RPP is equivalent to UMFP, and consequently reaches its best possible value. Nevertheless, an interesting

question is to know how many reroutings are necessary to ‘‘suﬃciently’’ improve the solution.

Lemma 12.
There exist instances of RPP for which r ј N
reroutings are required to decongestion a link in the

network.

Proof.
Consider the following network:

with N
1 demands of trafﬁc b = 2 initially routed on arc рA; CЮ, and one demand of trafﬁc b ј 2N
initially

routed from A to C via рA; BЮ
and рB; CЮ. Thus, arcs рA; BЮ and рA; CЮ
are saturated. In this example, r ј N

reroutings are necessary to obtain a network without any saturated arc: all of the demands have to be

rerouted.
h

As a consequence, when considering objective functions F1or F2, there exist instances for which the objec-

tive value is unchanged until we move all of the N tunnels. Nevertheless, in realistic instances, numerical exper-

iments will show that the rerouting of only a fraction of the tunnels is often suﬃcient to reach very good states

(see Section 5.3).
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5. Numerical experiments

5.1. Instances description and resolution method
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Five synthetic instances have been designed to perform numerical tests. Each of them is characterized by a

network topology, generated with the software Tiers (see [5]), of 10 nodes and about 40 arcs of same capacity

c. The sixth instance relies on the NSFnet network topology, which acted as an internet backbone in the Uni-

ted States (14 nodes, 44 arcs). As with the ﬁve other networks, all arcs are supposed to have the same capacity

c. The ﬁgures of Table 1 give a description of the underlying undirected graphs, then transformed into bidi-

rected networks (that is, if the arc рu; vЮ
exists, рv; uЮ
also exists).

On each network, successive LSP arrivals and removals are randomly simulated to obtain the initial net-

work state to be improved through reroutings. The tunnel sizes are between
c=10 and c=3, that leads to dif-

ﬁcult combinatorial instances. Other details on the simulation process are not given here, the obtained

instances are described in Table 2. Note that the considered networks are quite heavily loaded.

To assess the impact of each of the proposed inequalities, problems have been solved in a linear framework.

Thus, a piecewise linear approximation of the objective
F2has been deﬁned, cf. Fig. 1. We have considered

R ј 1=4
mina2AcрaЮ.

All tests are performed using the branch-and-bound framework of Cplex 9.0 on the arc-node models pre-

sented above (all automatic cut generations are set oﬀ). The computer runs an Intel(R) Xeon(TM) processor

2.8GHz with 3Gb of RAM. The solution time limit is 30 minutes (CPU time). Indeed, one hour appears as the

Table 1

Initial network states description

Instance

Number of LSPs

Minimal arc residual capacity


1



71

0


2



48

0


3



58

0


4



82

0


5



71

0


6



70

0

Average arc load

Table 2

Topologies of instances

Topology 1

4500

4000

3500

3000

2500

2000

1500

1000

 500

0

-500



’-’

71%

 4000

 3500

 3000

 2500

 2000

 1500

 1000

 500


74%

Topology 2


69%



’-’
’-’


 3500

 3000

 2500

 2000

 1500

 1000

 500

0

-500


82%



Topology 3


76%


82%

-500
0
 500
 1000
 1500
 2000
 2500
 3000
 3500
 4000

Topology 4

4000

3500

3000

2500

2000

1500

1000

 500


-500
0
 500
 1000
 1500
 2000
 2500
 3000
 3500
 4000

’-’
Topology 5

 3500

 3000

 2500

 2000

 1500

 1000

 500

0



 950

 900

 850

 800

 750

 700

 650


-500
0
 500
 1000
 1500
 2000
 2500
 3000
 3500

Topology 6

0
 500
 1000
 1500
 2000
 2500
 3000
 3500


-500
0
 500
 1000
 1500
 2000
 2500
 3000
 3500
 4000


 200
 300
 400
 500
 600
 700
 800
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Fig. 1. Piecewise linear approximation of F2.

typical duration which can be devoted in practice to calculations before performing rerouting in the network.

According to the global framework described in Section 2.3, both problems RSPP and RPP have to be suc-

cessively solved in practice. This motivated a time limit of 30 minutes for each problem.

5.2. Solving RSPP to optimality

In this section, we suppose that all the tunnels are medium quality ones. Let us recapitulate the diﬀerent

potential strengthenings proposed for RSPP:

• (I): integrality constraints relaxation on p (cf. Lemma 1),
• (S): symmetrical evolution inequalities (cf. Lemma 6),

• (C1): valid rerouting capacity inequalities (7),

• (C2): valid rerouting cover inequalities (8).

Moreover, in the result tables, the symbol / denotes the absence of any modiﬁcation of the initial model

RSPP. With option (S), all symmetrical evolution inequalities are added to the model at the root node. With

option (C1) or (C2), dynamic cut generation is performed at each node of the branch-and-bound process.

From a computational point of view, RSPP appears to be a very diﬃcult problem. For all of the considered

instances, whose sizes are small from a practical point of view, we have not been able to obtain optimal solu-

tions for more than 5 reroutings (s = 5) within the time limit imposed (30 minutes). In the following tables,

when the time limit has been reached without having proved optimality of the current solution, the proved

gap to optimal value is indicated. Note that these ﬁnal gaps remain often quite large. Furthermore, the con-

vergence was very slow. Then, solving more instances to optimality would have required a substantial increase

in solution time.

In the following, when numerical comparisons are performed between diﬀerent models, only cases solved to

optimality are taken into account.

Table 3 enables us to compare models with and without relaxation of integrality constraints on p. Surpris-

ingly, considering these variables as non-integral does not help the solution process. It has been observed that

the solution times of model (I) are about 20% higher, on average, than those of the basic model /. This can be

explained by considering that branching on rerouting variables pti
provides very constrained sub-problems. In

particular,
ptiј1 implies automatically that
ptjј0 and
xtjјxtj1, for all
j 6ј i. It appears in practice that

branching on these variables is beneﬁcial.

The interest of adding symmetrical evolution inequalities (S) can be assessed from Table 3 also. This option

generally improves the solution times, which are decreased by more than 40% on average compared to the

basic model. Note that in half of the cases, it provided an optimal solution while model /
failed (instances

4, 5 and 6). However, it failed to prove optimality for instance 2 with s = 5.

Please cite this article in press as: O. Klopfenstein, Rerouting tunnels for MPLS network resource optimization, Eur-
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Solution times in seconds, or gaps (%) when time limit is reached, for RSPP

Instance

1


Model

/

(I)

(S)


Number of reroutings s

1
2

6
82

7
59

2
24



3

627

709

239



4

1589

0.10%

1216



5

7.44%

11.21%



6

2

3

4

5

6

Table 4


/

(I)

(S)

/

(I)

(S)

/

(I)

(S)

/

(I)

(S)

/

(I)

(S)


2

2

1

5

4

2

7

9

1

7

9

0

23

27

6


29

26

28

64

87

20

47

51

24

52

62

28

165

258

75


139

142

100

197

271

113

394

423

98

435

510

175

21.23%

18.85%

479


241

258

169

647

895

374

7.40%

7.15%

934

6.90%

6.12%

687

5.51%


1001

0.01%

9.23%

10.75%

11.65%

13.83%

6.60%

10.95%


18.17%

Number of computation nodes, or gaps (%) when time limit is reached, for RSPP

Instance


Model


Number of reroutings s

1
2



3



4



5

1

2

3

4

5

6


(S)

(S) + (C1)

(S) + (C2)

(S)

(S) + (C1)

(S) + (C2)

(S)

(S) + (C1)

(S) + (C2)

(S)

(S) + (C1)

(S) + (C2)

(S)

(S) + (C1)

(S) + (C2)

(S)

(S) + (C1)

(S) + (C2)


27

9

10

4

15

9

20

18

18

12

11

10

8

5

5

18

0

0


140

336

136

235

137

93

212

347

100

119

82

72

219

199

134

151

80

29


1236

3.54%

4.15%

1045

610

336

1032

940

364

355

327

246

969

777

522

858

1.01%

16


4287

841

10.51%

3.14%

2129

12.17%

9.80%

1645

8.50%

8.40%

2884

11.24%

12.57%

21.23%

3.65%


7.44%

18.17%

10.75%

7.40%

6.90%

Table 4 highlights the impact of rerouting cuts (C1) and (C2). In each case, these cuts are dynamically gen-

erated by CPLEX at each node of the branch-and-bound tree. Note that the exact separation of the most vio-

lated cover cut would require us to solve a knapsack problem; to avoid this, we have chosen to generate cuts

(C2) in a heuristic way, by using the well known greedy algorithm [14]. The table reports the number of com-

putation nodes performed in the branch-and-bound tree when solving RSPP to optimality. Most of the time,

the use of rerouting cuts decreases greatly the number of branch-and-bound nodes; on average, this decrease is

of about 30% for (C1), and about 65% for (C2). This shows that the proposed inequalities eﬀectively cut the

feasible polyhedron for the considered instances.
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Nevertheless, the solution times are generally increased by the cut generation process. This explains why

many instances are not solved to optimality within the time limit when adding cuts, while the same

instances are solved without any cuts. Moreover, the eﬃciency of these rerouting cuts is strongly dependent

on the considered instances. As stated in Sections 3.1 and 4.3, if networks are not too loaded, RSPP can in

fact be solved with no regard to rerouting order. Thus, in such a case, rerouting cuts are obviously of no

interest.

5.3. Solving RPP to optimality

The six test instances described in Section 5.2 have been used also for RPP. Here, it is assumed that all the

tunnels are low quality ones. As before, (I) denotes the relaxation of integrality constraints and (S) the taking

into account of symmetrical evolution inequalities (17) instead of
(16) in the model. RPP appears much eas-

ier to solve than RSPP. Table 5 presents the solution times for models / (basic model with no modiﬁcation),

(I) and (S). As with RSPP, the relaxation of integrality constraints on
p
decreases the performance, since

solution times are increased by about 40% on average. By contrast, model (S) leads to large improvements

in resolution, since times are decreased by about 90%. This model has enabled us to solve many instances

unsolved with
/. Furthermore, when the instances are not solved to optimality with option (S), the gaps

are small. Even though the observed convergence is very slow, this means that good feasible solutions are

proved to be available.

Figures of
Table 6 show the evolution of the objective value according to the number of reroutings per-

formed. It appears that the objective value can be improved a lot by rerouting only a small fraction of the

tunnels. For example, rerouting only 15% of the total number of tunnels in instance 1 leads to a near-optimal

network state.

5.4. Heuristics for RSPP

Finally, we focus on heuristics to solve RSPP. Indeed, RPP can be quite easily treated through heuristics

classically used for unsplittable multicommodity ﬂow problem (see [13]). This is not the case for RSPP; in par-

ticular, the weakness of its linear relaxation makes most of the classical approaches ineﬀective (cf. Section 3.3).

Table 5

Solution times in seconds, or gaps (%) when time limit is reached, for RPP

Instance
Model
Number of reroutings r

1
2


3


4


5


6


7


8


9


10


11


12

1


/

(I)

(S)


13
33
81
131
291
1772
889

14
52
97
206
363
1722
1.79%

2
3
6
14
21
84
60


2.38%

1172



36
164



422



0.43%

2


/

(I)

(S)


4

3

0


6
22
11

8
33
19

2
4
2


19
15

16
29

3
5


48

103

5


281

213

59


376
854

282
2.21%

70
159


1.12%

392



840

3

4

5


/

(I)

(S)

/

(I)

(S)

/

(I)


5
21
47
104
543
1173
3.56%

9
23
49
141
803
2.88%

1
2
3
7
31
60
309

6
22
73
195
408
595
1550

9
24
103
336
818
1572
7.04%

1
2
6
10
19
41
51

7
24
72
202
594
759
2.65%

9
28
88
333
1355
6.60%



198

4.39%

101



627
0.68%

77
291



475



296

(S)


0


3
11
12


28
39


144


243


515
745


3.28%

6


/


28
90
79
113
433
556


1322


10.69%

(I)

(S)


35
100
85
184
663
1721
13.47%

2
9
5
7
23
49
70



177



354
676



1341
1.06%
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Comparison of RPP and UMFP optimal values

Example 1
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 0
 2
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Nb of Reroutings



 12

The heuristics proposed below rely on shortest path computations, and are somewhat natural for MPLS net-

work managers, used to performing Constrained Shortest Path First (CSPF) calculations.

5.4.1. Deﬁnition

Let x be a multicommodity ﬂow. For each arc a 2 A, denoting lрaЮ јPi2Ixiabi the arc load, let faрlрaЮЮ be a

positive cost associated to the multicommodity ﬂow xPon arc a. We assume that fais increasing with arc load.

Denoting F рxЮ
the total cost of x, we deﬁne: F рxЮ јa2AfaрlрaЮЮ
(cf. Section 2.2).
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Rerouting heuristic

Step 0:

Step 1:

Step 2:

Step 3:

Step 4:
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Set i = 1, k = 0.

Let w be a permutation of I.

Remove the demand wрiЮ
from the network;

let x0be the new corresponding ﬂow.

For each arc a 2 A, compute a weight waј faрx0Ю.

Route the demand wрiЮ according to the shortest path for weights wa;

if the new routing path is diﬀerent from the previous one, k = 0;

else, k
k ю 1.

If k ј 2N, STOP;

else:

if i 6 N
1, set i
i ю 1; if i ј N :

possibly change the permutation w;

set i = 1;

go to Step 1.

The natural idea motivating this heuristic is to re-establish demands on paths where more resources are

available. This algorithm is not a descent method, since it is not ensured that each rerouting performed leads

to a better network cost. The theoretical convergence of the algorithm is not guaranteed, since cycling can

occur. This is especially the case when multiple shortest paths occur in Step 3. This diﬃculty can be avoided

very simply by bounding the number of reroutings performed (that is consistent with the operational

concerns).

Some little improvements could be added to this framework. For instance, the obtained rerouting sequence

may possibly be shortened if some useless sub-sequences are detected (they could be identiﬁed through multi-

ple reroutings of a same demand). Nevertheless, in our trials, it did not seem to be the case.

Three versions of the heuristic have been tested. In version A, the demands are ordered by non-increasing

bandwidth requirements. This means that
wрiЮ
is the
ith biggest LSP to reroute (in other words:

wрiЮ
< wрjЮ ) biP bj). In version B, the demands are ordered by non-decreasing bandwidth requirements:

wрiЮ is the ith smallest LSP to reroute. Finally, version C considers demands sorted by non-increasing resource

consumption. The resource consumption of a demand i routed in the network through a path of length liis

deﬁned as bi:li. In this latter case, the order w is updated at each Step 4.

Thus, heuristic A (resp. B) leads to reroute big (resp. small) demands ﬁrst, and heuristic C reroutes ﬁrst

demands which use more resources than others. Note that heuristics A and C are likely to provide similar results.

The main advantages of this heuristic rerouting framework are its simplicity and its scalability: since it relies

on shortest path computations, the method can be applied easily to very large instances.

5.4.2. Solutions characteristics

In all our tests, the proposed heuristics converged without imposing a maximum number of performed

reroutings. Thus, the resulting rerouting sequences cannot be improved in continuing the process any longer.

The ﬁgures of Table 7 represent the evolution of the objective function value, for each of the three heuris-

tics, according to the number of reroutings performed (heuristic A is denoted by ‘‘max’’, B is denoted by

‘‘min’’, and C is denoted by ‘‘maxfree’’). The optimal solutions available are also drawn for comparison pur-

pose. It seems diﬃcult to say that one of the heuristics is better than the others. Depending on instances, each

method can provide interesting solutions. In any case, as the computing times are very short, it is not a prob-

lem to perform all of the three heuristics and to choose afterwards the best solution.

These heuristic solutions are interesting, since, most of the time, they enable us to reach better states than

those obtained through optimal resolution. However, the corresponding rerouting processes are quite long,

between 18 and 38 reroutings for the tested instances. It may reasonably be thought that similar states can

be reached with a shorter rerouting process if optimal resolution could be performed. As an illustration,
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Comparison of heuristic and optimal solutions to RSPP
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instances 1 and 2 show that rerouting optimally only 4 or 5 tunnels leads to similar quality solutions than rero-

uting heuristically more than 15 tunnels.

6. Conclusion

This paper studies the problem of rerouting tunnels in an MPLS network in order to improve the resource

utilization. Three diﬀerent classes of tunnels have been considered, depending on the quality of service desired.
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Low quality tunnels can be broken and re-established afterwards. Intermediate quality tunnels can be rero-

uted, but only through ‘‘make-before-break’’; this process requires to create the new routing tunnel before

breaking the current one. In this case, the service is only very slightly impacted. Finally, high quality tunnels

cannot be moved at all.

A global rerouting framework has been proposed, in which low and intermediate quality tunnels can be

considered independently. Intermediate quality tunnel rerouting, in heavily loaded networks, leads to an ori-

ginal and very diﬃcult integer linear program. Its complexity is analyzed, in particular through its linear relax-

ation, which is proved to be very weak. Some improvements are brought to the initial model and tested on

small numerical examples. Nevertheless, this problem remains very diﬃcult to solve to optimality.

Low quality tunnel rerouting is associated to an easier integer program, close to the classical unsplittable

multicommodity ﬂow problem. Some of the theoretical results obtained for medium quality tunnels are

adapted to this case. On the other hand, medium and low quality rerouting problems are proved to be math-

ematically equivalent under speciﬁc but realistic conditions.

Finally, some numerical results show the computational interest of most of the strengthening inequalities

proposed for both problems. As medium quality rerouting appears so particular and diﬃcult, some natural

heuristics are deﬁned and compared to the optimal resolution. They often allow us to obtain good network

states, but require a large number of reroutings. This shows the interest of optimal solutions for diﬃcult

instances, to keep the number of reroutings reasonably low while reaching good conﬁgurations.
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