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Abstract

A tabu search metaheuristic algorithm for a classical routing andcapacity assignment (CFA) problem in

computer networks is presentedin this paper. Computational experiments across a variety of networks are

reported. The results show that the proposedtabu search algorithm is both e0ective ande1cient in 2nding

goodsolutions of the CFA problem comparedwith the traditional Lagrangean relaxation andsubgradient

optimization technique. Extensive tests are made in order to choose the best values of the parameters for tabu

search algorithm.
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1. Introduction

Network design is a fundamental problem with a large scope of applications that have given rise to

many di0erent models and solution approaches [1,2]. The general network design problem involves

the minimization of a cost objective function over a lot of design variables, such as link capacities,

>ow assignment, network topology, node locations, message priority discipline. The joint problem of

routing andcapacity assignment, also known as the capacity and>ow assignment (CFA) problem,

is a special issue of the general network design problem.

The CFA problem was 2rst considered by Gerla in his thesis [3]. Fratta et al. [4] proposed

a model to minimize mean network delay in the case of general bifurcated routing and linear

design costs, allowing the application of the >ow deviation algorithm to solve the corresponding

convex multicommodity >ow problem. Ng and Hoang [5] examineda special case of the routing
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andcapacity assignment problem in which a m-M/M/1 queuing structure is usedto model parallel

transmission lines. They formulatedthe problem using continuous link capacity variables, andused

the >ow deviation methodfor solution. LeBlanc andSimmons [6] formulatedthe routing andcapacity

assignment problem using continuous link capacity variables andsuggesteda new convex delay

function di0erent from the traditional M/M/1. Gavish and Neuman [7] proposeda model to jointly

minimize the delay andcapacity costs in the case of nonbifurcatedrouting anddiscrete capacity

functions. The model was solved using a Lagrangean relaxation procedure. Gavish and Altinkemer [8]
extended the work in [7] by considering all possible routes for every communicating node pair. They

included cut constraints that are redundant in the original problem to improve the lower bounds and

proposedan interesting heuristic to generate a feasible solution. Amiri andPirkul [9] developed a new

mixedinteger nonlinear programming formulation for the CFA problem using Lagrangean relaxation

andsubgradient optimization techniques anda two phases heuristic solution procedure to obtain lower

bounds as well as feasible solutions. The model overcame the shortcoming of previous methods.

The results were comparedto those reportedin [8]. Amiri [10] presenteda new mathematical

programming model that includes a constraint that sets an upper limit on the average link queuing

delay in the network, and considered all possible routes for every communicating node pair. Amiri

andPirkul [11] developed the model in [10] with multi-busy-hour tra1c conditions. Mahey et al. [12]
considered discrete capacities and the cost function combines the installation cost with a measure of

the quality of service (Qos) of the resulting network for a given tra1c, andproposeda mixedinteger

nonlinear model of the joint capacity and>ow assignment problem solvedby a generalizedBenders

decomposition method. Queiroz and Jr. [13] proposeda heuristic methodfor the continuous capacity

and>ow assignment problem by rephrasing the problem in the context of concave programming

andbringing an alternative formulation of the projectedpairwise multicommodity >ow polyhedron.

The key idea is to use local minima to de2ne concavity cuts, thus avoiding cycling and an explicit

enumeration of the vertices.

Several authors incorporatedreliability constraints into the CFA problem. Monma andSheng [14]
presenteda global network design andanalysis model to analyze network performance in low-cost

backbone packet-switchednetworks. Lim [15] proposedan optimal procedure for minimizing the

total link cost of the common channel signaling network under joint performance and reliability

constraints. Al-Rumaih et al. [16] proposed a methodology for network topology design considering

the problems of single link andnode failures tolerances. Their methodis basedon systematic topo-

logical modi2cations of an initial network constructed without reliability requirements but for which

the link capacities satisfy a set of link andpath performance requirements. ChamberlandandSanso

[17] presented a model to take failures into account in the CFA problem. The model provides a way

to evaluate a trade-o0 between increasing capacity and lower performance in the event of failures.

Two di0erent algorithms, corresponding to two di0erent levels of parallelism, were proposed and

implemented.

The previous methods, however, are all traditional mathematical programming techniques with high

complex computation process. The results generatedby these methods are local optimal solutions

insteadof global optimal ones.

In recent years, a new tabu search (TS) metaheuristic algorithm has been quickly developed. It

was introduced by Glover [18–20], andsuccessfully appliedto solve the problems, such as graph

coloring [21], traveling salesman problem [22], >ow shop sequencing [23], job shop scheduling

[24], andmany other combinatorial optimization problems [25,26]. In the area of telecommunica-
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tions, Laguna andGlover [27] discussed the development of a TS method for the bandwidth packing

problem. Costamagna et al. [28] presenteda TS algorithm for topological optimization of broadband

communication networks. ChamberlandandSanso [29] presenteda tabu search algorithm for topo-

logical expansion of multiple-ring metropolitan area networks. Berger et al. [30] applieda TS for

a network loading problem with multiple facilities. Shyur and Wen [31] developed a simple TS

for optimizing the system of virtual paths in an ATM network. Youngho et al. [32] developed an

e0ective TS procedure to provide tight upper bounds for a 2ber routing problem arising from the

design of optical transport networks.

The achieved success of TS in all applications is due to its implementation as problem-oriented.

For each implementation, it needs particular de2nitions of structural elements and parameters. In order

to study the performance of TS, a simple TS algorithm for the classical CFA problem is proposed

in this paper. The performances of the algorithm are comparedwith the traditional techniques, and

extensive tests are made to determine appropriate parameter values for the TS algorithm.

The remainder of the paper is organized as follows. In Section 2, the CFA problem is formulated.

Section 3 describes the TS algorithm for the CFA problem. The results of computational experiments

are presentedin Section
4. Finally we conclude and suggest further research in Section 5.
2. Problem formulation

The classical routing andcapacity assignment problem can be describedas follows: given a basic

topology anda requirement matrix, how to simultaneously select link capacities androutes usedby

nodes in the network in order to ensure an acceptable performance level at a minimum cost [7–9].
This problem is a complex nonlinear programming which has many restrainedconditions andit is

known to be NP-completeness [33–36].
In order to formulate the classical CFA problem, we make the same assumptions used in

[7–9]. It is assumedthat the network topology, the queuing andcapacity cost structure, andthe

tra1c requirements between every pair of communicating nodes are given. We also assume that

nodes have in2nite bu0ers to store messages waiting for transmission on the links, that the arrival

process of message to the network follows a Poisson distribution and that message lengths follow

an exponential distribution. We further assume that the propagation delay in the links is negligible,

that there is no message processing delay at the nodes, and there is only a single class of service

for each communicating node pair. Under these assumptions, the computer network is modeled as

a network of independent M/M/1 queue [37,38] in which links are treatedas servers with service

rates proportional to the link capacities. The customers are messages whose waiting areas are the

network nodes.

We use the following notation:

Z :
the total cost,

:
the set of communicating origin-destination pairs in the network,

L:
the total number of links in the network,

R:
the set of candidate routes,

Sp:
the set of candidate route for
p; p ∈
. We assume that
Sp ∩ Sq =
for p = q,

1=: the average message length [bits/message],
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rl:
an indicator function, taking 1 if link
l is usedin route
r, and0 otherwise,

r:
the message arrival rate [messages/s] of the unique origin-destination pair associated with

route r; r ∈ R,

Il:
the index set of link types available for link
l; l ∈ L,

Fl:
the average bit rate [bits/s] on link
l,

Qlk : the capacity [bps] of line type
k,
k ∈ Il,

Slk: the setup cost [$/month] of line type
k,
k ∈ Il,

mlk : the distance cost[$/month/mile] of line type
k,
k ∈ Il,

Clk: the variable cost [$/month/bits/s] of line type
k,
k ∈ Il,

D:
unit cost of delay [$/month/message],

G:
2xedcost multiplier,

V :
variable cost multiplier,

dl:
the distance for link l,

xr:
a decision variable, which is 1 if route r
is selectedfor message routing, and0 otherwise,

ylk : a decision variable, which is 1 if link type k
is assignedto link
l, and0 otherwise.

The CFA problem can now be formulatedas follows:





F


Z = min

subject to


l∈LD·


l

k∈IlQlk ylk− Fl

+G


l∈L

k∈Il


(slkylk
+ dlmlk ) + V



l∈L

k∈Il


Clk Flylk





(1)

Fl=1


r∈R



r
rlxr6



k∈Il



Qlkylk(∀l ∈ L);



(2)

r∈Sp

k∈Il


xr= 1 (∀p ∈
);

ylk
= 1 (∀l ∈ L);


(3)

(4)

xr= 0; 1 (∀r ∈ R);

ylk
= 0; 1 (∀k ∈ Il; l ∈ L):


(5)

(6)

The objective function is to minimize the total cost of network given by expression in Eq. (1).
The 2rst term of the objective function indicates the total cost of delay. The second term refers to

the total 2xedcost computedas the sum of the initial setup cost andthe distance cost. The third

term is the variable cost associatedwith the links in the network. The constraint (2) guarantees the

feasibility of the >ow on each link in terms of the capacity assignedto it. The constraints (3) and

(4) guarantee that only one route for each origin-destination pair and only one line type is chosen

for each link, respectively.
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Tabu search is a procedure using ideas from arti2cial intelligence, which guides local search

methods to overcome local optimality andobtain optimal or near optimal solutions for hardcom-

binatorial optimization problems. Starting from an initial solution, the methodexplores the solution

space by moving from a solution to the best solution in the neighborhoodat each iteration. This

allows the methodto escape from a local optimum andexplore other regions of the search space,

but the quality of the solution may deteriorate from one iteration to the next, which distinct TS

form the classical local search methods. To avoid cycling, a specially designed memory mechanism,

known as the tabu list, is usedto store previously visitedsolutions or certain attributes of them,

which will not be reversedfor a certain number of iterations. In particular, the status of a tabu move

can be overruledandmake accessible right away if a certain aspiration criterion is met. For a more

comprehensive description of TS, readers can refer to Ref. [25].
Since the TS is comparedwith the traditional techniques in this paper, we propose a simple TS

algorithm for the CFA problem, and the fundamental components of the procedure are speci2ed in

the following.

3.1. Solution representation

To a communicating origin-destination node pair p; p ∈
, there are |Sp| candidate routes, among

which one andonly one is selectedto route the corresponding tra1c. Using an integral variable

rp
to represent the index number of the route, we will get
|
|
such variables all together, each

representing a certain route for a node pair. A route vector
r = (r0; r1; ; r||−1) can be obtainedif

we put all the |
| variables together, for 0 6 rp 6 |Sp|− 1. To a link l; l ∈ L, there are |Il| candidate

capacity types, among which only one is assignedto a line. Using an integral variable clto represent

the index number of the capacity types. We will get |L| such variable all together, each representing

a capacity type for a line. A capacity vector
c = (c0; c1; c|L|−1) can be obtainedif we put all the

|L| variables together, for 0 6 cl 6 |Il| − 1. It is natural for us to use these two vectors to represent

a solution of the CFA.

3.2. Initial solution

Usually there are advantages to starting from an initial solution that is of high quality. We study

the following methods for the CFA problem.

3.2.1. Initial route selection

We use four route methods as follows:

The random route method (RRM): Each time before the TS procedure starts, a program is used

to generate
|
| random integers, which lie in the interval [0; |Sp| − 1]. Let components of the route

vector r
equal those random numerals respectively, so an initial route solution could be attained.

The shortest route method (SRM): For each communicating node pair, select the shortest route

from its candidate route set to carry the corresponding tra1c.

The minimum hops method (MHM): The hop of a route is de2ned as the number of nodes (or

links) it traverses. This method is to select the one with the minimum hops from the candidate route

set for each communicating node pair.
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Head

Tail


(9.1)

(23.1)


(10.0)

(...)


(...)

(...)

Fig. 1. The structure of tabu list.

The longest route method (LRM): For each communicating node pair, select the longest route

from its candidate route set to carry the corresponding tra1c.

3.2.2. Initial capacity assignment

Many methods can also be applied to the capacity assignment. In this paper, we only adopt the

best capacity assignment method. If the routes of all communicating node pairs have been selected,

the >ow of each link is also decided. In the candidate capacity set, there must be a best candidate

capacity value that can make the total cost of network is the minimum. We can 2ndthese capacity

values, andassign to the links.

3.3. Move de8nition

Two kinds of moves are de2ned only to route solution, i.e., M+
andM−. The former can lead

to a tentative solution
rt = rc + ei, andthe latter,
rt
= rc − ei . For
ei
is an identical vector and
rt

and rc
represent the trial solution andthe current solution, respectively. Obviously, those two moves

satisfy the ‘completeness’ condition, i.e., any solution, wherever it lies in the solution space, can be

reachedfrom another solution through certain number of such moves.

3.4. Tabu list

A list (Fig.
1) is usedto form the tabu list. Each unit in the list consists of two parts, i.e., the

index number of the communicating node pair, which ranges from 0 to
|
| − 1, andthe operations

imposedon it, which is representedby either 0 or 1, where 0 refers to M+
and 1 to M−. For

example, a unit containing (10,0) means that the move is prohibitedif it leads to
rt
= rc + e10. The

tabu list operates as 2rst-in-2rst-out (FIFO) stacks. During the search procedure, a new tabu move

is addedat the endof the list andthe oldest move is removedfrom the headof the list.

The length of the list is tabu list size (Tmax). The tabu list size represents the number of iterations

that a move remains tabu, preventing the search from cycling. When the tabu list is short, tabu moves

are allow to be reversedafter few iterations, which makes the search emphasize intensi2cation. If

the tabu list is long, many moves are tabu andthe search is forcedinto areas that were not yet

visited, which makes the search focus on diversi2cation. Thus the size of the tabu list should depend

on the size andthe characteristics of the problem suggestedby Glover [25]. In the experiments, we

investigate various values of the tabu list sizes.
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The neighborhoodsearch strategy speci2es which move in the neighborhoodis chosen at each

iteration. It is of great importance for the solution quality andthe search e1ciency. The following

three methods are tested.

The best method
(BM): Generate andevaluate all solutions in the neighborhoodof the current

solution. Choose the move yielding the solution with the best objection function value as the next

move. Note that if the move is tabu, the best non-tabu move is selected.

The 8rst method
(FM): Generate sequentially the set of solutions in the neighborhoodof the

current solution. Choose the 2rst move identi2ed as yielding a solution with the improved objective

function value. If no improving move exists, select the best non-tabu move.

The sample method
(SM): Under the conditions where the neighborhood size is very large, it

is time-consuming to search the whole neighborhood. The sample method randomly generates a

neighborhoodsubset of the current solution. All solutions in this subset are obtainedandevaluated,

andthe move yielding the best objective function value is chosen as the next move. If the move is

tabu, the best non-tabu move in the subset is selected.

3.6. Aspiration criterion

Comparedwith the constraining e0ect of tabu restrictions, aspiration criteria make the search

process free. An aspiration criterion is designed to overrule tabu status and make a candidate move

in tabu status admissible. In this article, the following aspiration criterion is used: if a move gives

a better objective function value than the best foundso far, then it can be taken as the next move

in spite of its tabu status.

3.7. Stopping criterion

Many stopping criteria can be developed depending on the nature of the problem being studied.

The most common criterion, which is employedin this paper, is a maximum number of iterations.

3.8. Objective function

The objective function of the CFA problem is given in Eq. (1). However, in many cases, it is

di1cult to seek a feasible solution or it will take considerable time to seek such one, which satis2es

the constraints mentionedabove. So we rede2ne the objective function for the CFA problem as

follows:

 




Z =







l∈LD·


F

l

k∈IlQlk ylk− Fl

+G



l∈L

k∈Il


(slkylk+ dlmlk) + V




l∈L

k∈Il


ClkFlylk



;

1




r∈R


r
rlxr6




k∈Il


Qlkylk
C



r∈R


r
rlxr



k∈Il


Qlk ylk


otherwise;




(7)
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where, C
is a large, positive constant, which is 1Ч105
in this paper. By doing so, we can transfer the

constrainedoptimization problem into an equivalent non-constrainedproblem, which is convenient

in practice.

3.9. Tabu search procedure

Based on the previous discussion, we present a TS procedure for the CFA problem.

Step
1. Initialization: Generate an initial solution (r0; c0) according to the selected initial method, and

calculate the total cost Z(r0; c0); Initialize the current solution (rc; cc) andthe best solution

(rb; cb) by setting (rc
= r0, cc
= c0) and(rb = r0, cb = r0), respectively; initialize the tuning

parameters.

Step
2. Neighborhoodsearch (SM):

(1) Generate a neighborhoodsubset M, andall solutions in M are obtained.

(2) Evaluate solutions: Let (rtb; ctb) be the best solution for
Z(rtb; ctb) is minimum in M.

If the move (rc
→ rtb) is not tabu, andZ(rtb; ctb) Ў Z(rb; cb), go to (3); otherwise go

to (4).
If the move is tabu, but corresponding Z passes the aspiration criterion, i.e. Z(rtb; ctb) Ў

Z(rb; cb), go to (3); otherwise let (rtb; ctb) be the solution for Z(rtb; ctb) is the nearest

minimum in M, repeat this step.

(3) Renew the best solution: Set (rb = rtb,
cb = ctb) andZ(rb; cb) = Z(rtb; ctb).

(4) Move: Set (rc = rtb,
cc = ctb).

(5) Modify the tabu list: Put the opposite move into the tabu list and remove the oldest

move in it.

Step
3. Check stopping criterion: If the stopping criterion is satis2ed, go to step 4; otherwise go to

step 2.

Step
4. Stop andreport the results.

4. Computational results

We studied the four topologies shown in Figs.
2–5, viz. ARPA, OCT, USA andRING. These

networks along with tra1c parameters andcost structure are similar to those testedin [7–9]. In all

four networks each node communicates with every other node. In the ARPA network there were

420 communicating node pairs with 4 messages per second being sent along the chosen route. The

corresponding values were 650 and1 for OCT, and650 and4 for USA, and992 and1 for RING.

The set of candidate routes was obtained using a modi2ed shortest path algorithm previously, and

5 routes were chosen for every communicating node pair. The di0erent capacities used in the base

case andtheir corresponding cost components are presentedin Table
1. The algorithm was coded

in C language andrun on a PC with Pentium III-866 MHz CPU.

Table 2
shows the results with di0erent message lengths. In order to compare the e0ectiveness of

our procedure with the traditional method, we also report the results obtained by Amiri and Pirkul

[9]. The unit cost of delay is assumed to be $2000 per month per message for the base case. Both

2xedandvariable cost multipliers are equal to 1. Computational results indicate that both delay

cost andoverall cost decrease comparedwith the results in [9]. The lower delay cost, the shorter


J. Shen et al. / Computers & Operations Research 32 (2005) 2785–2800



2793

678



1



1395
2 
413

701

700



3

699



238



4



262



5



308

252



6



551



7

188

12 



959


8



484



13



11



337


10

369



9

347


14



588



663


15

424


205

16


1240


17


225


18


318


19


669


20
923
21

Fig. 2. The topology of ARPA network.
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Fig. 3. The topology of OCT network.
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Fig. 5. The topology of RING network.

Link capacity set andits cost components

Capacity
Setup cost

(bps)
($/month)



Distance cost

($/month/mile)



Variable cost

($/month/bps)

4,800

9,600

19,200

50,000

108,000

230,000

460,000


650

750

850

850

2,400

1,300

1,300


0.4

0.5

2.1

4.2

4.2

21.0

60.0


0.360

0.252

0.126

0.030

0.024

0.020

0.017

response time to users. That is to say, our proposedTS algorithm obtainedthe minimum total cost

andthe better quality of service at the same time. We also noticedthat the solutions are slightly

improvedin ARPA network. With the increasing of the network scale, the results have a signi2cant

improvement. In OCT network the total cost reduced67%. In USA network it is 59%, and61% in

RING. It can be concluded from these results that TS is e0ective in solving the CFA problem, and

superior in large scale networks.

In order to implement the proposed algorithm e0ectively, the properties of the key tabu parameters

are examined.

Fig. 6 shows the results with di0erent methods used to generate the initial solution. It can be seen

that the initial solution has a signi2cant e0ect on the results. The solutions of SRM andMHM are

superior to those of RRM andLRM. There is slight di0erence between SRM andMHM. This can

be attributedto the fact that MHM is usedto select the route with the minimum hops or links, as

a result, the overall tra1c in each link is lighter, andthe total cost is lower comparedwith other


Table 2
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Computational results with di0erent message lengths

Message
Our methodMethodin [9]
length

Total
Delay
FixedVariable
Upper
Lower
Delay
FixedVariable

cost
cost
cost
cost
boundboundcost
cost
cost

200

300

ARPA 400

500

600

300

400

OCT
500

600

300

400

USA
500

600

300

RING
400

500

600


180,920
36,184
113,980
30,756
185,565
176,513
38,999
118,634
27,932

234,638
49,274
140,783
44,581
245,740
235,370
54,134
152,107
39,499

308,129
71,785
185,145
51,199
308,637
298,361
72,326
185,137
51,174

341,427
75,900
204,084
61,443
377,433
362,662
82,298
232,511
62,624

400,613
92,535
232,368
75,710
445,902
429,600
110,657
233,658
71,587

163,912
28,999
113,354
21,559
406,239
393,967
90,573
244,334
71,332

185,123
36,505
121,104
27,514
544,644
520,221
133,759
320,930
89,955

208,139
47,788
126,805
33,546
672,487
647,417
154,419
409,684
108,384

238,648
55,912
143,119
39,617
819,884
778,427
144,641
548,571
126,672

159,010
31,630
107,587
19,793
362,652
345,934
91,666
210,655
60,331

183,768
41,909
116,325
25,534
451,957
435,920
107,071
270,166
74,720

206,892
45,354
132,852
28,686
551,778
530,605
130,260
329,318
92,200

236,411
46,239
156,697
33,475
649,871
628,804
141,256
403,471
105,144

211,946
44,807
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Fig. 6. Results with di0erent initial solution methods (RING).

methods. Because in most cases, fewer hops means shorter distance and vice versa, the di0erence

between MHM andSRM is negligible. The results indicate that the goodinitial solution should

be selectedto improve the quality of solutions while using TS. For the CFA problem, the initial

solution shouldbe generatedby MHM or SRM, which is usedfor the rest of the study.
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Fig. 8. CPU times with di0erent neighborhood search strategies (RING).

Figs.
7
and 8
show the e0ects andthe CPU times with di0erent neighborhoodsearch strategies.

We observe that the neighborhoodsearch strategy make a signi2cant impact on the performance of

TS procedures, particularly when the neighborhoodsize is large. BM, in most cases, can yieldbetter

solutions, but with most computation time. The solutions obtainedby SM are very close to those

by BM, with lest CPU times. FM spends less CPU times than BM, but it leads to worse results in

each case, making it unsuitable for the TS procedure. Considering the solution quality and e1ciency

at the same time, we can draw a conclusion that SM shouldbe selectedwith higher priority when

using TS. Only in circumstances where the size of neighborhoodis small or time is not so critical,

can BM be applied.

When SM is used, how to select the neighborhood sample size is another important problem. The

results with di0erent neighborhood sample sizes are given in Fig. 9. Obviously, if the sample size is

too small, the algorithm couldnot 2nda goodsolution. When the sample size is equal to 50 (about
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Fig. 9. Results with di0erent neighborhood sample sizes (RING).
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Fig. 10. Results with di0erent tabu list sizes (RING).

5% of the whole neighborhood), the algorithm arrives in an optimal solution. With the increase of

the size, the solutions have a slight improvement but pay more computational e0orts. Therefore, 5%

of the neighborhoodshouldbe selectedas a subset in practice.

The results andthe CPU times with di0erent tabu list sizes are reportedin Figs.
10
and
11,
respectively. It is observedthat the tabu list with a size of 7 that proposedby Glover [25] is also

suitable for the CFA problem. When the tabu list size is small (Ў 7), the algorithm visits the same

sequence of solutions over andover again, andends up in a local optimum. When it is large (ї7),

the results have slight improvement with the increase of the tabu list size, but at the expense of

more computation time. So it is reasonable to select 7 as the tabu list size for the CFA problem.

In addition, the average number of iterations and the average CPU time for both our method

andthe methodproposedby Amiri andPirkul [9] are summarizedin Table
3. Evidently, our TS
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0.36

0.63

0.64

0.64


300

291

285

300


590

1363

1920

3120

algorithm is able to converge very quickly to an optimal solution. The optimal solution couldbe

foundat the average iteration 90, which is approximately 3 times less than the methodin [9]. It

is needto point out that the solution methoddescribedin [9] was written in Pascal andrun on

IBM-3081D. Taking machine di0erences into account, our method is still faster than the traditional

techniques. These further illustrate the high e1ciency of the TS method.

5. Conclusions

In this paper, a tabu search metaheuristic algorithm is proposedfor the classical CFA problem

in computer networks. Better results are obtainedcomparedwith the traditional techniques, so the

high e0ectiveness of the TS methodis further veri2ed. Extensive computational experiments show

that appropriate parameters will greatly improve the e0ectiveness ande1ciency of the TS proce-

dure. These results are also helpful to the other sophisticated performance optimization problems in

computer networks.
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In future research work, the performance of the TS method will be further studied. Advanced inten-

si2cation anddiversi2cation strategies [39], andparallel, reactive andhybridTS methods

[40–42] shouldbe appliedto improve the quality of the solutions. In addition, we will apply the TS

methodto some new optimization problems arising in computer networks, for instance, the weight

setting problem in OSPF routing [43], etc.
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