
Search space reduction in QoS routing q

Liang Guo, Ibrahim Matta *

Computer Science Department, Boston University, 111 Cummington Street, Boston, MA 02215, USA

Received 11 December 2001; accepted 28 May 2002

Responsible Editor: B. Yener

Abstract

To provide real-time service or engineer constrained-based paths, networks require the underlying routing algorithm

to be able to find low-cost paths that satisfy given quality-of-service constraints. However, the problem of constrained

shortest (least-cost) path routing is known to be NP-hard, and some heuristics have been proposed to find a near-

optimal solution. However, these heuristics either impose relationships among the link metrics to reduce the complexity

of the problem which may limit the general applicability of the heuristic, or are too costly in terms of execution time to

be applicable to large networks. In this paper, we focus on solving the delay-constrained minimum-cost path problem,

and present a fast algorithm to find a near-optimal solution. This algorithm, called delay-cost-constrained routing

(DCCR), is a variant of the k-shortest-path algorithm. DCCR uses a new adaptive path weight function together with

an additional constraint imposed on the path cost, to restrict the search space. Thus, DCCR can return a near-optimal

solution in a very short time. Furthermore, we use a variant of the Lagrangian relaxation method proposed by Handler

and Zang [Networks 10 (1980) 293] to further reduce the search space by using a tighter bound on path cost. This makes

our algorithm more accurate and even faster. We call this improved algorithm search space reductionþDCCR

(SSRþDCCR). Through extensive simulations, we confirm that SSRþDCCR performs very well compared to the

optimal but very expensive solution.

� 2002 Elsevier Science B.V. All rights reserved.

Keywords: QoS routing; Traffic engineering; Constrained path optimization; Simulation

1. Introduction

The constrained shortest-path problem is en-
countered in many aspects of routing in integrated-

services networks. For example, delay-sensitive

applications, such as real-time voice and video,

require traffic to be received at the destination

within a given period of time. At the same time, it
is highly desirable to reduce the path cost as much

as possible; this could be monetary cost or the cost

of utilizing network resources. Recently, it has also

been recognized that the performance of opera-

tional networks can be improved by engineering

Internet traffic so as it is routed over resource-

efficient constrained-based paths [5]. However, this

constrained shortest (least-cost) path problem, or
in general the multiconstrained optimization path

qThis work was supported in part by NSF grants CAREER

ANI-0096045, ANI-0095988, and MRI EIA-9871022.
* Corresponding author. Tel.: +1-617-358-1062; fax: +1-617-

353-6457.

E-mail addresses: guol@cs.bu.edu (L. Guo), matta@cs.bu.

edu (I. Matta).

1389-1286/03/$ - see front matter � 2002 Elsevier Science B.V. All rights reserved.

PII: S1389-1286 (02 )00344-4

Computer Networks 41 (2003) 73–88

www.elsevier.com/locate/comnet

mail to: guol@cs.bu.edu


selection problem, is notoriously challenging and

has been proved to be NP-hard [7,11,17].

In this paper, we study the problem of finding a

least-cost communication path subject to an end-

to-end delay constraint. This problem can be for-

mulated as a delay-constrained least-cost (DCLC)
unicast routing problem, or more generally, a

constrained optimization problem. Widyono [19]

proposed an optimal solution, namely the con-

strained bellman-ford (CBF) algorithm, to solve

this problem. The CBF algorithm performs a

breadth-first search to find the optimal solution,

thus its running time might grow exponentially in

the worst case. The algorithms in [14,16] try to
compute the path distributively in order to allevi-

ate the centralized computation overhead, how-

ever, paths returned by these algorithms may be

costly, and the path setup time may be too long.

Ref. [12] assumes that delay, delay-jitter and buffer

space are functions of the available bandwidth,

thus the routing algorithm can take advantage of

these relationships to find a path in polynomial
time. Some previous studies mainly focus on a

related but possibly simpler problem––the multi-

ple-constraints path (MCP) problem. The differ-

ence between the MCP problem and the DCLC

problem is that MCP does not optimize the value

of any of the metrics, instead, it only seeks a fea-

sible path that satisfies all the constraints. Never-

theless, this problem is still NP-hard if more than
one metric is additive and takes real values (or

unbounded integer values) [17]. Jaffe [10] proposed

a pseudo-polynomial heuristic and a polynomial-

time heuristic for solving the MCP problem, given

that the metrics have a small range of values. In

[2], Chen and Nahrstedt try to reduce the prob-

lem�s complexity by approximating the real values

of link metrics by integer values and then use
dynamic integer programming to solve it in poly-

nomial time. However, to accurately find a near-

optimal path, this algorithm has to resort to using

a high granularity in approximating the values of

link metrics, thus it becomes very costly in terms of

space and time complexity. In [13], a non-linear

function of link cost and delay is proposed to

convert the problem into the much simpler single-
metric routing problem, so as to efficiently find a

path that is far away from all the metric bounds.

Since the MCP problem seems to be easier than

the DCLC problem and the heuristics to the for-

mer problem are generally more efficient in terms

of execution time, it appears attractive to trans-

form a DCLC problem to a MCP problem. Based

on this premise, we propose a heuristic, called
delay-cost-constrained routing (DCCR), to rap-

idly generate a near-optimal delay-constrained

path in large networks with asymmetric link

metrics (delay and cost). This algorithm first in-

troduces a cost bound according to the network

state, then, it employs the k-shortest-path algo-

rithm proposed by Chong et al. [3] with a new

non-linear weight function of path delay and cost
to efficiently search for a path subject to both the

requested delay constraint and the (introduced)

cost constraint. The search space is reduced as

paths that now do not satisfy both constraints are

pruned off. Our weight function is designed to give

more priority to lower cost paths. This algorithm

is very similar to the TAMCRA algorithm pro-

posed in [13], but we observe that our algorithm is
more suitable for solving the DCLC problem since

TAMCRA has a different objective, that of solv-

ing an MCP problem. Moreover, we also notice

that using a tighter cost bound may help increase

the accuracy and speed of the algorithm, thus, as

an improvement, we further employ the algorithm

proposed by Handler and Zang [8] to refine our

search space. We show by analysis that the com-
plexity of this algorithm, called search space

reductionþDCCR (SSRþDCCR), is asymptoti-

cally in the same order as a regular (uncon-

strained) single-metric shortest-path algorithm

such as Dijkstra�s algorithm [4]. Furthermore,

through extensive simulations, we confirm that the

cost of the path found by our SSRþDCCR al-

gorithm is very close to that of the optimal path
generated by the much more computationally ex-

pensive CBF algorithm.

The rest of this paper is organized as follows.

Section 2 defines the DCLC problem. Section 3

describes our SSRþDCCR algorithm after moti-

vating the design of our path weight function. In

Section 4, we analyze the complexity of the algo-

rithm. We compare our SSRþDCCR algorithm
with some other heuristics via simulations in Sec-

tion 5. We conclude the paper in Section 6.

74 L. Guo, I. Matta / Computer Networks 41 (2003) 73–88



2. Problem description

The DCLC problem has been formulated in

[14]. For completeness, we briefly restate it here.

We represent the network by a directed graph
G ¼ ðV ;EÞ, where V is the set of all vertices

(nodes), representing routers or switches, E is the

set of edges (links) representing physical or logical

connectivity between nodes. Each link is bidirec-

tional, i.e., the existence of a link e ¼ ðu; vÞ from

node u to node v implies the existence of another

link e0 ¼ ðv; uÞ for any u; v 2 V . Any link e 2 E has

a cost cðeÞ : E 7!Rþ and a delay dðeÞ : E 7!Rþ

associated with it, where Rþ is the set of non-

negative real numbers. The function cð	Þ defines

the measure we want to optimize (minimize). The

function dð	Þ defines the measure we want to con-

strain (bound). Due to the asymmetric nature of

computer networks, it is possible that cðeÞ 6¼ cðe0Þ
and dðeÞ 6¼ dðe0Þ.

For a given source node s 2 V and destination
node d 2 V , Pðs; dÞ ¼ P1; . . . ; Pm is the set of all

possible paths from s to d. The cost and delay of a

path Pi are defined as

CðPiÞ ¼
X
e2Pi

cðeÞ

and

DðPiÞ ¼
X
e2Pi

dðeÞ;

respectively. A delay constraint Dd is specified by

the application as a performance guarantee. The

DCLC problem thus can be formulated as follows:

Problem 1 (DCLC path problem). Given a di-

rected network G, a source node s, a destination

node d, a non-negative link delay function dð	Þ, a
non-negative link cost function cð	Þ for each link

e 2 E and a positive delay constraint Dd, the con-

strained minimization problem is to find a path

that satisfies the following:

min
Pi2P0ðs;dÞ

CðPiÞ ð1Þ

and

Pi 2 P0ðs; dÞ iff DðPiÞ6Dd ð2Þ

where P0ðs; dÞ � Pðs; dÞ is the set of paths from s
to d for which the end-to-end delay is bounded by

Dd.

The DCLC problem can be more generally
categorized as a constrained optimization problem,

which involves optimizing one or more variables

and imposing constraints on other variables. A

variation of this problem, namely the MCP prob-

lem, only searches for a feasible solution for which

all variables are bounded by the constraints. A

special case of the MCP problem is the delay-cost-
constrained (DCC) problem which can be stated
similarly as the DCLC problem except that the

objective is to find a path Pi 2 P0ðs; dÞ, where
Pi 2 P0ðs; dÞ iff DðPiÞ6Dd and CðPiÞ6Dc ð3Þ
where Dc is the application specified cost bound.

Both the DCLC and DCC problems are NP-

hard [6], however, since DCC does not involve

optimization, it appears easier to find an efficient
DCC heuristic. Thus, first converting a DCLC

problem to a DCC problem may help to efficiently

solve the original DCLC problem. This idea is

applied in our DCCR algorithm.

3. Our SSRþDCCR algorithm

3.1. Motivation

We convert the DCLC problem into a DCC

problem by defining an appropriate cost bound for
DCC so that the solution to the original DCLC

problem remains a feasible solution to the new

DCC problem. This could be easily achieved by

using a sufficiently loose cost bound. In our algo-

rithm, we solve a DCC problem, where we start

with the least-delay path (LDP) as a possible fea-

sible solution. The cost of the LDP is selected as

the cost bound. The goal is then to search for a
feasible path of possibly higher delay but of lower

cost. If such a path does not exist, then the LDP

itself must be the optimal (least-cost) feasible path

and this is what our algorithm returns. Thus, we

can convert the original DCLC problem into the

problem of searching for a near-optimal path in

the solution space of this new DCC problem. As

L. Guo, I. Matta / Computer Networks 41 (2003) 73–88 75



illustrated in Fig. 1, the solution space of DCC is

clearly smaller than that of DCLC since there are

fewer paths that satisfy both delay and cost con-

straints.

To search the solution space for the least-cost
path (LCP), we need to examine the feasible paths

for the DCC problem (i.e., those paths that satisfy

both the requested delay bound and the intro-

duced cost bound). For this purpose, we can use

any well-known shortest-path algorithm (e.g., Di-

jkstra, Bellman–Ford [4]). But since these algo-

rithms only deal with a single metric, we need to

define a weight function which combines all fea-
tures of the link metrics so that by optimizing

(minimizing) the weight, we will finally find a so-

lution that minimizes all link metrics simulta-

neously. A simple way to mix the metrics is to use a

linear function, for example, wðeÞ ¼ acðeÞþ bdðeÞ
as the new weight for each edge. Indeed, this is the

approach taken in [8], where a and b were chosen

through an optimization step to maximize the
chance of finding the optimal path. This approach

has the advantage that it is easy to implement since

now the multiple constraints on path delay and

cost become a single path weight constraint

D ¼ aDc þ bDd. However, this linear weight func-

tion may not reflect the actual quality of a path,

i.e., an optimal path according to the new weight
function may in fact violate the constraints while a

suboptimal path satisfies them. Fig. 2 shows why a

linear function may not work.

We can see from Fig. 2(a) that although the

delay of path P2 violates the delay bound, it still

has the least weight since its cost is relatively low,

thus, the search process may miss the actual opti-

mal and feasible path P1. We can also see from the
illustration that for the DCLC problem, the fea-

sible path P3 may be returned by the linear weight

based algorithm as it has a relatively low delay,

and we miss the actual optimal (least-cost) path P1.
Furthermore, when the number of candidate paths

is large, using a linear function may suffer from

slow convergence.

Using a non-linear function may help overcome
this difficulty. De Neve and Van Mieghem pro-

pose to use the concave path weight function

maxðCðP Þ=Dc;DðPÞ=DdÞ in their TAMCRA algo-

rithm [13]. It is shown that with this function, the

algorithm can find the shortest path (path whose

both cost and delay are far from the bounds) with

a relatively high success rate. Fig. 2(b) illustrates

the advantage of using a non-linear weight func-
tion over a linear one. Now, the search process

would not return P2 nor P3 since they have high

Fig. 2. Why a linear function fails? (a) Linear weight function, (b) non-linear weight function.

Fig. 1. Reduced search space under DCC.

76 L. Guo, I. Matta / Computer Networks 41 (2003) 73–88



delay and high cost respectively, resulting in a high

weight value.

The problem with defining a non-linear weight

function for a link is that now the weight of a path

is no longer the sum of the weight of all links on

this path, i.e., W ðP Þ 6¼
P

e2P wðeÞ. But since it is
easy to record the cumulative delay and cumula-

tive cost of a path, we can easily solve this problem

by computing the path weight as a function Fð	Þ
of the delay and cost of the path (rather than as

the sum of link weights), i.e., W ðPÞ ¼ FðCðP Þ;
DðP ÞÞ.

A more serious problem is that a non-linear

function does not have the optimal-substructure
property [4], i.e., subsections of shortest (least-

weight) paths are not necessarily shortest paths

themselves. Therefore, a shortest-path algorithm

like Dijkstra�s will sometimes fail to find the

shortest (least-weight) path. Consider the follow-

ing example shown in Fig. 3 assuming a concave

(max) weight function is used.

For intermediate node u, path P2 will be chosen
since it has a smaller weight, 1 thus the actual

feasible path to the destination through P1, with
feasible delay and cost of 11, will be missed. De

Neve and Van Mieghem solve this problem by

taking advantage of the k-shortest-path algorithm

proposed by Chong et al. [3], which can store k-
shortest paths in increasing weight order at each

node. Thus with an appropriate value of k, the
algorithm can almost always find the least-weight

and feasible path.

The non-linear (max) weight function in

TAMCRA works well so as to find a path that is

far from all the bounds. It is not a goal of TAM-

CRA to optimize any of the metrics. However,

since now our objective is to find a path with least

cost, this function is no longer suitable since it
treats all link measures equally. Instead, we should

use a weight function that gives priority to low-

cost paths. The weight function used in our algo-

rithm is defined as:

W ðPu
i Þ ¼

DðPu
i Þ

1� CðPu
i Þ=Dc

if DðPu
i Þ6Dd

and CðPu
i Þ6Dc;

1 otherwise;

8>>><
>>>:

ð4Þ
where Pu

i 2 Pðs; uÞ is the ith path from source node

s to node u found by the algorithm. With our

definition, the path weight has an exponential

growth with the path cost, and is only linearly

proportional to the path delay. The difference be-

tween this new (multiplicative) function and the

concave (max) function defined in TAMCRA al-

gorithm can be well illustrated in Fig. 4.
In Fig. 4, ���s represent the paths visited by

CBF (the optimal algorithm), ���s represent paths

visited by the TAMCRA algorithm, and ���s rep-

resent paths visited by our DCCR algorithm. We

can see that with the concave (max) function, it is

almost impossible for TAMCRA to find the opti-

mal (least-cost) path denoted by OPT, whose delay

is close to the delay bound. On the other hand,
with our multiplicative function used in our

DCCR algorithm, paths that are close to the op-

timal one will have a better chance to be visited.

Fig. 5 shows these paths in a two-dimensional

(path cost/delay) view (HZ_1 paths will be ex-

plained later in Section 3.3). The path marked with

��� is the final solution returned by the TAMCRA

algorithm, while �-� is the final solution returned by
our algorithm. We notice that in this example, the

solution of DCCR is exactly the optimal path,

while the cost of the TAMCRA path is much

higher than that of the optimal solution. The effect

of the weight function is reflected in the difference

in areas that TAMCRA (��� paths) and DCCR (���
paths) visited. Clearly, the area visited by our

DCCR algorithm is closer to the optimal solution.
Fig. 6 shows an example to summarize the idea

behind DCCR. Path weights are computed using

Fig. 3. Problem with a non-linear function.

1 W ðP1Þ ¼ maxð10=12; 1=12Þ ¼ 10=12; W ðP2Þ ¼ maxð5=12;
5=12Þ ¼ 5=12.

L. Guo, I. Matta / Computer Networks 41 (2003) 73–88 77



Eq. (4). The LDP from source S to destination D is
(S,C,E,B,D). The cost of that LDP is taken as an

additional cost bound of 6. DCCR returns path

(S,A,B,D) as it has lower weight and cost, while

reducing the search space by pruning off other

infeasible paths.

3.2. Algorithm description

We now describe in detail how our DCCR al-

gorithm works. DCCR takes the same greedy

strategy as in Dijkstra�s algorithm, but uses a non-

linear weight function in searching for the best

solution. However, as mentioned earlier, a non-

linear weight function does not have the optimal-

substructure property, thus only recording one

best path from the source node to each node may
lead to failure in finding the optimal path. The

DCCR algorithm solves this problem by applying

Chong�s k-shortest-paths algorithm [3], which re-

cords k-shortest paths, listed in increasing weight

order, for each node. Therefore, out of the k-
shortest paths, we can pick up and return the path

with the lowest cost in the final stage as the best

feasible solution. This way, we have more candi-
date paths to every node, which increases the

chance of finding an optimal feasible path (cf. Fig.

3).

The k-shortest-paths algorithm (see Fig. 7 for

pseudo-code) is basically an extension of Dijkstra�s
algorithm. The basic idea of this algorithm is to

Fig. 4. Paths selected by different heuristics and their weights: (a) concave path weight function used by TAMCRA, and (b) multi-

plicative path weight function used by our DCCR algorithm.

Fig. 5. Path distribution in cost-delay plane, network

size ¼ 4000, node degree 4, negative correlation between cost

and delay.

Fig. 6. DCCR example.

78 L. Guo, I. Matta / Computer Networks 41 (2003) 73–88



maintain a k-element array for each node to record
the currently k best paths from the source to this

node. Ref. [3] proves that at most k-shortest paths
need to be maintained at each node to find k-
shortest paths from a source to a destination node.

The algorithm uses a heap to store the nodes that

have not yet been visited k times. Each element of

the heap has fields n_id, wgt and idx, where n_id
identifies the node and idx locates an element of

the array NDðn id; 	Þ of the k-shortest paths asso-
ciated with the node. The heap operations are

based on node weight wgt. The relaxation step is

almost the same as in Dijkstra�s algorithm, except

that when an unvisited node�s weight is updated,

Fig. 7. The DCCR algorithm.

L. Guo, I. Matta / Computer Networks 41 (2003) 73–88 79



the corresponding element in the heap also needs

to be updated. More specifically, if the weight of

current path is less than the weight of one of the k
paths recorded, then the recorded path with the

maximum weight is replaced by the new path (lines

17–23 in the pseudo-code).
Since the original k-shortest-paths algorithm

may return a path that contains loops, we use the

same non-dominated strategy as in [13]. A path p
is said to be dominated by another path p0 if and
only if DðpÞ > Dðp0Þ and CðpÞ > Cðp0Þ. We do not

allow the algorithm to visit a dominated path in

our relaxation step (line 18). Since delay and cost

are additive metrics, a path that contains a loop
will always be dominated by the corresponding

loop-free subpath. Thus, the final candidate solu-

tions will not contain any paths with loops.

3.3. Improvement to DCCR algorithm

Recall that our DCCR algorithm restricts the

search space by only examining paths that satisfy
the requested delay bound as well as a cost bound.

The cost bound is taken to be the cost of the LDP.

This is reasonable since if there is no path with

lower cost than that of the LDP, then the LDP

itself is the optimal path, and this is the path re-

turned by DCCR. However, this cost bound may

be too loose, especially when the relationship be-

tween cost and delay is negative, i.e., the lower the
delay, the higher the cost and vice versa. Since we

set the weight of all infeasible paths to be infinity,

it is easy to see that if we use a tighter cost bound,

the number of possible feasible solutions de-

creases, and thus the opportunity that our algo-

rithm finds the optimal (least-cost) solution

increases. Another advantage of using a tighter

bound is that since the success rate becomes
higher, only a small value of k would work well,

thus the speed of the algorithm is also enhanced.

To search for a tighter cost bound, we use an-

other heuristic to the DCLC problem as a prelude

to our DCCR algorithm. This heuristic, namely

the HZ_1 algorithm, was proposed by Handler

and Zang [8]. It still uses a linear function of the

link delay and cost to compute link weight. A sa-
lient feature of it is that it adjusts the weights given

to cost and delay in the weight function according

to the quality of the current path, thus it iteratively

approaches the optimal (least-cost) solution.

Fig. 8 illustrates how the HZ_1 algorithm

works (the pseudo-code is given in Fig. 9) The

algorithm starts from two paths: the LDP and the

LCP, computed using any shortest-path algorithm
(Dijkstra�s algorithm in our simulations) with the

weight function being link delay and link cost,

respectively (lines 1 and 2). If LCP is a feasible

(delay-bounded) path, then it is the optimal solu-

tion and the algorithm stops. If it is not feasible,

then at each iteration, the algorithm maintains two

solutions (paths), the current best feasible (delay-

bounded) path LDP and the current best infeasible
path LCP. It then defines two parameters a and b
(line 7) to construct a new linear path weight

Fig. 8. HZ_1 algorithm illustrated.

80 L. Guo, I. Matta / Computer Networks 41 (2003) 73–88



function W ðpÞ ¼ a � DðpÞ þ b � CðpÞ for each

path p, which is represented by the dashed lines in

Fig. 8. Using this new linear function of link cost

and delay, the algorithm tries to find a new path

LWP with least weight so as to reduce both path

cost and delay. If successful (that is, when

W ðLWPÞ < c where c is the current least path
weight) and LWP is feasible (i.e., DðLWPÞ6Dd as

case 1 of Fig. 8), LWP replaces LDP to become the

best feasible path, thus the weight given to link

cost increases in the next round (i.e., lower cost

paths are given more preference). If LWP is in-

feasible (case 2), LWP replaces LCP in the next

iteration, thus the weight given to link delay in-

creases (i.e., lower delay paths are given more
preference). The algorithm stops when no more

progress can be made (that is, when W ðLWPÞ ¼ c,
lines 8–12) and returns the best feasible path out of

LWP and LDP as the near-optimal solution.

An example of how HZ_1 works is also shown

in Fig. 5. All HZ_1 paths are linked by a dashed

dotted line in the order in which they have been

visited. We can see that the cost of the HZ_1 path
is getting closer to that of the optimal path at each

iteration. The path found by the HZ_1 algorithm

may still not be the optimal path due to the in-

herent weakness of the linear weight function (cf.

Fig. 2). But its cost is close enough to the optimal

cost to be effectively used as a tight cost bound for

DCCR. We denote this improved algorithm by

SSRþDCCR since using a tighter cost bound is a
mechanism for search space reduction. Note that

Fig. 9. The HZ_1 algorithm.

L. Guo, I. Matta / Computer Networks 41 (2003) 73–88 81



HZ_1 has unbounded time complexity, whereas

SSRþDCCR�s time complexity is bounded since

HZ_1 is only used as a prelude to DCCR with a

very small number of iterations (lines 7–18 in Fig.

9).

3.4. Comparison to HZ_k algorithm

Handler and Zang [8] proposed an algorithm

which uses HZ_1 as the initial step, then uses a k-
shortest-path algorithm in the second step. We

henceforth refer to this complete Handler and

Zang�s algorithm as HZ_k. Unlike our SSR þ
DCCR algorithm, HZ_k uses a linear path weight
function in its second step. Due to the inherit

weakness of the linear function, HZ_k might take

a significant amount of time (in other words,

significantly high value of k would be required) to

find a close-to-optimal solution. This weakness

was indeed illustrated in the conclusion part of [8]

by an example. Briefly speaking, if the linear path

weight function returned by HZ_1 is a ‘‘bad’’
function, k has to be very large (close to the

number of paths in the network) to approach the

optimal solution. However, our method over-

comes this problem by using a non-linear function

(as illustrated by Fig. 2) which gives higher pref-

erence to low-cost paths. In other words, since the

HZ_k algorithm does not change the ‘‘optimality’’

of the weight function in its second stage, the
convergence to the optimal solution is much

slower than that of our SSRþDCCR algorithm.

Thus, our algorithm can approach the optimal

solution with a much smaller k in the worst case.

4. Algorithm analysis

4.1. Correctness of SSRþDCCR

Theorem 1. There exists k such that SSRþDCCR
always returns a delay-constrained path for a given
source s and destination d, if such a path exists.

Proof. If no feasible path exists, i.e., the delay

of each path that connects s and d is greater than

the delay bound, then the minimum path weight

computed at node d will have a weight of infinity

(cf. Eq. (4)). Thus no relaxation step will be made

at d, which means SSRþDCCR returns no path

when the search is over.

Now we prove by contradiction that
SSRþDCCR returns a path if one or more fea-

sible paths exist. If there are one or more feasible

paths, the only possible reason for SSRþDCCR

to return no path is if the algorithm finds no fea-

sible path leading to an intermediate node along

the feasible path from s to d. In other words, let

Pd
i ¼ fs; v1; v2; . . . ; vm; dg 2 Pðs; dÞ be a feasible

path from s to d, and v1 to vm are intermediate
nodes, we would have the following two condi-

tions satisfied:

9Pd
i s:t: DðPd

i Þ6Dd ð5Þ
and

9vj 2 Pd
i s:t: 8Pvj

l 2 Pðs; vjÞ; DðPvj
l Þ > Dd: ð6Þ

However, since delay is an additive metric, and we

had assumed that link delay is non-negative, it is

not possible that the subpath of a feasible path is

not feasible. This contradiction shows that

SSRþDCCR can always find a feasible solution if

there is one. �

Theorem 2. The final path returned by SSR þ
DCCR for a given source s and destination d is loop-
free.

Proof. Since the algorithm does not visit domi-

nated paths, a path that contains a loop is never

recorded and thus the final k-shortest paths re-
corded at node d are loop-free, and so is the final

path returned. �

4.2. Complexity analysis

Lemma 1. The time complexity of the original
DCCR algorithm is OðkjEj logðkjV jÞ þ k2jEjþ
tðAÞÞ, where A is any single-metric shortest-path
algorithm and tðAÞ is the time complexity of A.

Proof. The task of extracting a minimum element

from a binary heap takes OðlogðkjV jÞÞ. Since the

algorithm considers a maximum of kjV j paths,

thus we need to extract kjV j elements at worst,

82 L. Guo, I. Matta / Computer Networks 41 (2003) 73–88



which gives OðkjV j logðkjV jÞÞ. At most kjEj edges
can be used in the relaxation process. Each relax-

ation step includes extracting the maximum ele-

ment from the k-array of the neighbor node

(OðkÞ), one heap search operation (OðlogðkjV jÞÞ),
and one heap replacement or insertion opera-

tion (OðlogðkjV jÞÞ). Thus the total time spent for

each relaxation step is OðkjEjðlogðkjV jÞ þ kÞÞ ¼
OðkjEj logðkjV jÞ þk2jEjÞ. We also need to compute

a cost bound for DCCR by running a shortest-

path algorithm A to find the cost of the LDP in

tðAÞ time. If A is the Dijkstra�s algorithm and the

priority queue is implemented as a binary heap,
then the total time complexity of the DCCR algo-

rithm is OðkjEj logðkjV jÞ þ k2jEj þ jEj log jV jÞ for

jEj > jV j. �

Lemma 2. The time complexity of the HZ_1 algo-
rithm is OðmðGÞðjEj þ tðAÞÞ þ 2tðAÞÞ, where mðGÞ
is the total number of executed iterations, A is any
single-metric shortest-path algorithm and tðAÞ is
the time complexity of A.

Proof. The outer loop (lines 7–18 in Fig. 9) exe-

cutes mðGÞ times, and at each iteration, we need to

compute the weight of at most jEj edges, and also

compute the least-weight path in tðAÞ time. Thus,

the total time is OðmðGÞðjEj þ tðAÞÞÞ. We also

need to runA before the loop to find the LDP and
LCP, which takes 2tðAÞ. If A is the Dijkstra�s
algorithm and the priority queue is implemented

as a binary heap, then the time complexity be-

comes OðmðGÞðjEj þ jEj log jV jÞ þ 2jEj log jV jÞ ¼
Oððm ðGÞ þ 2ÞjEj log jV jÞ. �

Lemma 3. The time complexity of the improved
SSRþDCCR algorithm is OððmðGÞ þ 2ÞjEj log jV jÞ
þOðkjEj logðkjV jÞ þ k2jEjÞ.

Proof. Follows directly from Lemmas 1 and 2. �

Note that mðGÞ depends on the configuration of

the graph, thus the complexity of the HZ_1 algo-

rithm is not known. However, as found in [8,9],

this number is relatively small since the heuristic
converges very fast (50% gain at each iteration).

And since the main purpose of using the HZ_1

heuristic in our algorithm is just to provide a

tighter cost bound, we add an upper bound on the

number of iterations in our implementation of

the HZ_1 algorithm. Now the time complexity of

the improved SSRþDCCR algorithm becomes

OðmjEj log jV jÞ þOðkjEj logðkjV jÞ þ k2jEjÞ, where

m is the upper bound. With a small k, we can argue
that the time complexity of the improved SSRþ
DCCR algorithm is only k þ m times that of the

regular (unconstrained) Dijkstra�s algorithm. Ac-

tually, applying the HZ_1 heuristic helps to reduce

the value of k as our simulations indicate in the

next section.

5. Simulation model and results

5.1. Simulation model

We built a discrete-event simulator to investi-

gate the performance of different algorithms in a

realistic communication environment. We use the

same graph generation process as in [15] where the
positions of the nodes lie in a rectangular area. A

random generator based on Waxman�s generator

[18] is used to create links interconnecting the

nodes. Some modifications are added to ensure

that the generated network is connected and the

probability of existence of a short link is larger

than that of a longer link. We fixed the position of

the source node s and the destination node d such
that theManhattan distance between s and d is the
longest possible distance in the graph. The average

node degree is set to 4, which is approximately

what the situation is in current networks.

The link delay function consists of the propa-

gation delay Tp, the transmission delay Tt and the

queuing delay Tq. Since we are considering high-

speed links, transmission delay is assumed negli-
gible. Denote by s ¼ Tq=Tp the ratio between the

queuing delay and propagation delay; this para-

meter reflects how busy the communication link

is. Thus, the link delay is defined as

dðeÞ ¼ ð1þ sÞ � Tp

In our simulation model, we let s be uniformly

distributed in ½0; T �, where T is a parameter that
reflects the maximum queuing delay allowed at

each switch. Also, the larger the value of T is, the

L. Guo, I. Matta / Computer Networks 41 (2003) 73–88 83



more likely the generated network is asymmetric.

We set T to be 10.0 in our experiments.

The way to generate the link cost can affect the

difficulty in finding the optimal path. If there is a

positive correlation between link cost and delay,

i.e., the higher the link delay is, the more costly the
link is, then it is enough to just use a single-metric

shortest-path algorithm since faster paths are also

likely to be cheaper. Thus, in our simulation

model, we consider the most difficult situation

where a negative correlation exists between cost

and delay, for example, to model the case that

high-speed (low-delay) links cost more. We define

link cost as

cðeÞ ¼ M=ðcþ dðeÞÞ
where M and c are parameters chosen so as to

adjust the value of cðeÞ within a reasonable range.

We choose M ¼ 1000 and c ¼ 1 in our simula-

tions, and dðeÞ varies from 0.1 to 20.
Since the tightness of the delay bound might

affect the performance of the algorithms under

investigation, we choose the delay bound based on

the configuration of the graph. Each time a new

graph is generated, we first use Dijkstra�s algo-

rithm to find the LDP and LCP, then compute the

delay of these two paths, denoted by DðLDPÞ and
DðLCPÞ respectively. We then define the delay
bound Dd to be

Dd ¼ DðLDPÞ þ qðDðLCPÞ � DðLDPÞÞ

where q 2 ½0; 1� is called the delay bound ratio [9]

and reflects the tightness of the delay bound. In

most of our experiments, q is set to 0.5.

We assume a link-state type routing, where the

routing nodes have complete knowledge of the

state of the entire network, and the state infor-

mation is accurate (up-to-date). The network size
is set to 200, 500, 1000, and 2000. 500 executions

on different networks are conducted for each ex-

periment, and 95% confidence intervals were

computed for all performance measures. We

choose k ¼ 3 and m ¼ 5 for all network sizes,

where k is the number of shortest (least-weight)

paths maintained from the source to each node,

and m is the number of HZ_1 iterations executed
to compute a tight cost bound for DCCR. Note

that k and m are much smaller than the network

size, but we will see shortly that even such a small

value is enough to get good performance.

5.2. Performance metrics

Two performance metrics are used to measure
the inefficiency (inaccuracy) and speed of the

heuristics. As mentioned earlier, the CBF algo-

rithm provides the optimal solution in terms of

path cost. Thus we define the inefficiency of an

algorithm A as the path cost difference relative to

the cost of the CBF path:

inefficiencyA ¼ ðCðPAÞ � CðPCBFÞÞ
CðPCBFÞ

:

We also measure the actual execution time of

each investigated algorithm. The experiments were

conducted on a SUN Ultra 10 workstation.

5.3. Simulation results

Fig. 10 shows the performance measures of

different heuristics for different network sizes.

Confidence intervals are also shown. 2 We can see

that with negative correlation between link cost

and delay, the LDP can cost as high as three times

(200% more than) that of the optimal path. HZ_1

returns a path that costs about 4–5% higher than

the optimal path. Increasing k to 3 in the HZ_k
algorithm does not significantly reduce the excess

cost. DCCR, which only takes advantage of the

non-linear function, does not have much advan-

tage over its counterpart HZ_1; they both achieve

about the same cost level. The improved SSR þ
DCCR algorithm, however, as a combination of

HZ_1 and DCCR, shows a very attractive cost

performance; the relative excess cost of SSRþ
DCCR always remains under 1%. We can also see

that the relative order and the scale of cost dif-

ference does not change much with the network

size. Considering that we set k ¼ 3 for all network

sizes, we can then argue that k can be kept small

even for a very large network. As for the execution

time, Fig. 10(b) shows the data for all heuristics

2 We use log scale for the cost axis due to the huge difference

between the algorithms under investigation.

84 L. Guo, I. Matta / Computer Networks 41 (2003) 73–88



except the CBF algorithm. The LDP (Dijkstra�s
least-delay path algorithm) runs the fastest. Then

comes the HZ_1 algorithm, which implies that

practically, HZ_1 can converge very fast to the

final solution even though an analytical bound

does not exist. The speed of DCCR is a little bit

slower than HZ_1 since DCCR uses a non-linear

path weight function and requires a k-shortest-
path algorithm. Not surprisingly, HZ_3 slows
down the process by a factor of 3. What is sur-

prising is that the improved SSRþDCCR algo-

rithm, i.e., the combination of HZ_1 and DCCR,

runs in almost the same speed as the original

DCCR algorithm, which implies a more effi-

cient search under SSRþDCCR. The speed of

both algorithms using a non-linear path weight

Fig. 10. Path cost and execution time versus network size: average node degree ¼ 4:0, q ¼ 0:5, T ¼ 10:0, negative correlation between

cost and delay.

Fig. 11. Execution time of CBF and SSRþDCCR, same

configuration as in Fig. 10.

Fig. 12. Path cost and execution time versus k: network size ¼ 500, average node degree ¼ 4:0, q ¼ 0:5, T ¼ 10:0, negative correlation

between cost and delay.

L. Guo, I. Matta / Computer Networks 41 (2003) 73–88 85



function, DCCR and SSRþDCCR, is only about

four times that of the LDP algorithm. This result
confirms the complexity analysis in Section 4.2

since we use k ¼ 3 in this experiment.

We also compared the speed of the optimal

CBF solution and the SSRþDCCR algorithm in

Fig. 11. It is clear that the CBF algorithm has an

exponential growth with the network size in terms

of its execution time, as opposed to the polynomial

growth of the SSRþDCCR algorithm. The dif-
ference in execution time, in a 2000-node network,

can be as high as two orders of magnitude.

To see the role k plays in the performance of the

heuristics that use the k-shortest-path method, we

conduct another experiment whose results are

shown in Fig. 12. Increasing k�s value results in

more candidate paths being examined, thus both

heuristics, namely HZ_k and SSRþDCCR, re-

turn a cheaper path as k becomes larger. However,

for HZ_k, this performance improvement is offset

by a large increase in execution time. Since in

SSRþDCCR, we already use the HZ_1 heuristic

to find a tighter cost bound, there are not many
feasible paths left in the solution space, thus, a

small k is enough to find a good (low-cost) path.

Thus, SSRþDCCR requires less space and time.

On the contrary, to achieve the same performance

level (e.g., <1%), HZ_k requires a much larger k
value (>8 in this example), which implies a much

longer execution time (about four times higher).

We can also observe from this figure that, due to
the strict admission policy of the non-linear func-

tion, the number of candidate paths is relatively

small for our SSRþDCCR algorithm, thus, in-

creasing k does not significantly increase the exe-

cution time.

Fig. 13 shows the effect of the delay bound on

the performance. We can see that the relative

excess cost of HZ_1, HZ_k, and DCCR, is in-
creasing as the delay bound gets looser. This is

because a looser bound will enlarge the solution

space, thus the capability of these algorithms be-

comes limited by either the weakness of the linear

weight function (cf. Fig. 2) or by the fixed value

of k (cf. Fig. 12). On the contrary, the perfor-

mance of SSRþDCCR is less sensitive to the

delay bound. As analyzed earlier, this is because
the cost bound given by the HZ_1 heuristic is

already tight enough to restrict the number of

feasible paths.

Fig. 13. Path cost versus q: network size ¼ 1000 nodes, aver-

age node degree ¼ 4:0, T ¼ 10:0, negative correlation between

cost and delay.

Fig. 14. Path cost and execution time versus network size: average node degree ¼ 4:0, q ¼ 0:5, T ¼ 10:0, cost and delay are inde-

pendent.

86 L. Guo, I. Matta / Computer Networks 41 (2003) 73–88



All the above experiments assume that the link

cost and link delay are negatively correlated. This

assumption is valid for some networks, and in-

creases the difficulty in finding the optimal path.

We also note that in some cases, the link cost may

not have any relationship with the link delay. Thus,
in the next experiment, we assume that link cost is a

random number, and is not correlated to link delay.

Fig. 14 shows the performance of all the investi-

gated algorithms for different network sizes. The

relative order of the heuristics remains the same,

i.e., SSRþDCCR performs the best, followed by

DCCR, HZ_3, then HZ_1. LDP performs the

worst. The difference here is that the performance
gaps are smaller. However, we still confirm that

SSRþDCCR produces paths whose cost is very

close to the optimal cost at competitive speed.

6. Conclusions

An efficient algorithm for obtaining a DCLC
path is presented in this paper. This algorithm uses

a non-linear path weight function and applies a k-
shortest-path heuristic to make the path search

more accurate and faster. To further enhance the

accuracy and speed of the algorithm, we also pro-

pose to use another DCLC heuristic that uses a

linear path weight function as a prelude to further

reduce the solution/search space. Results from ex-
tensive simulations show that even under the most

difficult situation, i.e., when link cost and link delay

are negatively correlated, our improved SSRþ
DCCR algorithm always returns very quickly a

feasible path whose cost is very close to that of the

optimal one, which could only be found using a

computationally prohibitive search method.

Our SSRþDCCR algorithm could be applied
in multicast routing protocols to build a low-cost

multicast tree. Since it is common that the mem-

bership of a multicast group is dynamic, and the

network state (link delays and costs) is also dy-

namic, it is very hard, if not impossible, to maintain

all the time an optimal cost multicast tree that also

satisfies given performance (e.g., delay) constraints.

One possible solution to this problem is to, when-
ever a new group member joins or an existing

member becomes out-of-bound, add or replace the

old path with a new delay-bounded path. Thus,

reducing the cost of this delay-bounded path can

further reduce the cost of the whole tree. We will

investigate this approach in our future work. We

are also investigating using our algorithms for

traffic engineering in Diffserv environments [1].

References

[1] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, W.

Weiss, An Architecture for Differentiated Services, RFC

2475, December 1998.

[2] S. Chen, K. Nahrstedt, On finding multi-constrained paths,

in: Proceedings of the ICC�98, Atlanta, GA, 1998.

[3] E.I. Chong, S. Maddila, S. Morley, On finding single-

source single-destination k shortest paths, in: Proceedings

of the International Conference on Computing and Infor-

mation (ICCI)�95, Ontario, Canada, July 1995, pp. 40–47.

[4] T.H. Cormen, C.E. Leiserson, R.L. Rivest, Introduction to

Algorithms, The MIT Press and McGraw-Hill, Cambridge,

MA and New York, 1990.

[5] Internet Traffic Engineering, IETF Working Group. Avail-

able from <ftp://ftpext.eng.us.uu.net/tewg>.

[6] M.R. Garey, D.S. Johnson, Computers and Intractability:

A Guide to the Theory of NP-Completeness, Freeman,

New York, 1979.

[7] R. Guerin, A. Orda, QoS-based routing in networks with

inaccurate information: theory and algorithms, in: Pro-

ceedings of the IEEE INFOCOM�97, 1997.
[8] G.Y. Handler, I. Zang, A problem dual algorithm for the

constrained shortest path, Networks 10 (1980) 293–310.

[9] S.P. Hong, H. Lee, B.H. Park, An efficient multicast

routing algorithm for delay-sensitive applications with

dynamic membership, in: Proceedings of the INFO-

COM�98, San Francisco, CA, March 1998.

[10] J. Jaffe, Algorithms for finding paths with multiple

constraints, Networks 14 (1984) 95–116.

[11] D.H. Lorenz, A. Orda, QoS routing in networks with

uncertain parameters, in: Proceedings of the IEEE INFO-

COM�98, San Francisco, CA, March 1998.

[12] Q. Ma, P. Steenkiste, Quality-of-service routing for traffic

with performance guarantees, in: Proceedings of the IFIP

Fifth International Workshop on Quality of Service,

Columbia University, New York, May 1997, pp. 115–126.

[13] H. De Neve, P. Van Mieghem, A multiple quality of service

routing algorithm for PNNI, in: Proceedings of the IEEE

ATM�98 Workshop, Fairfax, VA, May 1998, pp. 306–314.

[14] H.F. Salama, D.S. Reeves, Y. Viniotis, A distributed

algorithm for delay-constrained unicast routing, in: Pro-

ceedings of the IEEE INFOCOM�97, Japan, April 1997.

[15] H.F. Salama, D.S. Reeves, Y. Viniotis, Evaluation of

multicast routing algorithms for real-time communication

on high-speed networks, IEEE J. Select. Areas Commun.

15 (1997) 332–346.

L. Guo, I. Matta / Computer Networks 41 (2003) 73–88 87

ftp://ftpext.eng.us.uu.net/tewg


[16] Q. Sun, H. Langendorfer, A new distributed routing

algorithm with end-to-end delay guarantee, in: Proceedings

of the IFIP Fifth International Workshop on Quality of

Service, Columbia University, New York, May 1997.

[17] Z. Wang, J. Crowcroft, Quality-of-service routing for

supporting multimedia applications, IEEE J. Select. Areas

Commun. 14 (7) (1996) 1188–1234.

[18] B.M. Waxman, Routing of multipoint connections, IEEE

J. Select. Areas Commun. (1988) 1617–1622.

[19] R. Widyono, The design and evaluation of routing

algorithms for real-time channels, technical report ICSI

TR-94-024, International Computer Science Institute, UC

Berkeley, June 1994.

Liang Guo received a M.S. in Com-
puter Science from Northeastern Uni-
versity (Boston, MA) in 1999. He
received his B.S. and M.E. in Com-
puter Science and Engineering from
Beijing University of Aeronautics and
Astronautics, P.R. China in 1994 and
1997, respectively. He is now a Ph.D.
candidate in the Computer Science
Department of Boston University. His
research involves traffic engineering,
scalable quality-of-service mecha-
nisms, multicast routing, and dynamic
system modeling and evaluation. He is
a member of IEEE and ACM.

Ibrahim Matta received his Ph.D. in
Computer Science from the University
of Maryland at College Park in 1995.
He is currently an Assistant Professor
at the Computer Science Department
of Boston University. He leads the
QoS Networking Laboratory and is a
member of the Web and InterNet-
working Group (WING). His research
involves the design and analysis of
quality-of-service and wireless archi-
tectures and protocols. His recent
projects investigate quality-of-service
routing, Internet topology modeling,

and TCP traffic management. Dr. Matta received the National
Science Foundation CAREER Award in 1997. He served as a
guest co-editor of two special issues on ‘‘Reliable Transport
Protocols for Mobile Computing’’ (Journal of Wireless Com-
munications and Mobile Computing, February 2002) and
‘‘Quality of Service Routing’’ (IEEE Communications Maga-
zine, June 2002). He has been serving on the technical program
committees of many conferences including Infocom, ICNP,
Globecom, and ICDCS. He is the Technical Program Co-chair
of the first International Workshop on Wired/Wireless Internet
Communications (WWIC 2002). He is the Publications Chair of
IEEE Infocom 2003, and was the Tutorial and Panel Chair of
the 9th Hot Interconnects Symposium 2001. He served as ses-
sion organizer and chair, reviewer and panelist for NSF net-
working grant proposals, and was the representative of the
IEEE Technical Committee on Computer Communications
(TCCC) for Globecom 1999. He is a member of IEEE and
ACM.

88 L. Guo, I. Matta / Computer Networks 41 (2003) 73–88


	Search space reduction in QoS routing
	Introduction
	Problem description
	Our SSR+DCCR algorithm
	Motivation
	Algorithm description
	Improvement to DCCR algorithm
	Comparison to HZ_k algorithm

	Algorithm analysis
	Correctness of SSR+DCCR
	Complexity analysis

	Simulation model and results
	Simulation model
	Performance metrics
	Simulation results

	Conclusions
	References


