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Abstract

We present SAMCRA, an exact QoS routing algorithm that guarantees to find a feasible path if such a path exists. Because SAMCRA is an

exact algorithm, its complexity also characterizes that of QoS routing in general. The complexity of SAMCRA is simulated in specific classes

of graphs. Since the complexity of an algorithm involves a scaling of relevant parameters, the second part of this paper analyses how routing

with multiple independent link weights affects the hopcount distribution. Both the complexity and the hopcount analysis indicate that for a

special class of networks, QoS routing exhibits features similar to single-parameter routing. These results suggest that there may exist classes

of graphs in which QoS routing is not NP-complete.

q 2002 Elsevier Science B.V. All rights reserved.
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1. QoS routing in perspective

After almost 5 years since the appearance of our ‘Aspects

of QoS routing’ [20], a brief update seems desirable because

more understanding has been gained since then although

basically little on the concepts has been changed. Our

starting point here is the complementarity between routing

algorithm and routing protocol. We quote from Ref. [20]

Network routing essentially consists of two identities, the

routing algorithm and the routing protocol. The routing

algorithm assumes a temporarily static or frozen view of

the network topology. [· · ·] The routing protocol, on the

other hand, provides each node in the network topology

with a consistent view of that topology at some

moment…

If this duality is acceptable, it says that capturing the

dynamics of the topology and the link weights is taken care

of by the routing protocol. Once the graph where each link is

specified by a QoS link weight vector with as components

for example delay, cell/packet loss, available bandwidth,

monetary cost, etc.… is offered by the routing protocol to a

node, a local QoS routing algorithm is applied to determine

in that graph a path from A to B subject to a QoS constraint

vector. If an effective QoS routing protocol exists together

with a QoS routing algorithm, we argue intuitively that the

load in the network will be distributed automatically by QoS

routing (both protocol and algorithm) and will tend closely

to an optimally load-balanced network. Thus, under these

assumptions, many of the current goals in traffic engineering

(ietf-tewg) would be achieved as a natural spin-off of QoS

routing. We believe that this potential additionally under-

lines the importance of QoS routing.

Relatively many papers have been devoted to QoS

routing algorithms, but very few to the QoS routing protocol

[2,3], which seems to indicate that the latter poses

considerably more difficulty than the former as solutions

are (very) rare. Undoubtedly, the difficulty lies in the QoS

routing protocol and less in the QoS routing algorithm. Even

stronger as commented below, we claim that the ‘QoS

routing algorithm’-part of the dual problem is nearly

entirely solved. Although a promising QoS routing protocol

in the connection oriented world (PNNI in ATM) has been

standardized, the complex parts (apart from the routing

algorithm) have been left over as ‘vendor specific parts’, in

particular, the topology and link weight vector update

strategy. As a side remark and an argument why these

difficult issues have been treated in a step motherly fashion,

many operators are reluctant to outsource the control of their

network to ‘intelligent’ QoS routing software.

A corresponding protocol in the connectionless world

(Internet) is not available due to a number of reasons.
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First, the Internet suffers from a routing legacy. Whereas the

intradomain link state protocols (e.g. OSPF) could be

upgraded relatively easy if, as in PNNI, a consistent

topology and link weight vector update strategy existed,

the situation for the interdomain routing protocols (e.g.

BGP-4 and updates) is more problematic. Mainly the

chaotic and unstandardized way in which peering agree-

ments are signed makes current end-to-end (QoS) routing

opaque and inefficient. Recent measurements [7] of the end-

to-end delay show that the length of the end-to-end path can

be several times (even an order of magnitude) longer than

the shortest possible distance. Further, the average number

of hops in the Internet [19] is about 15 while telephony

operates with only half that number. Hence, there is room

for improvements on the interdomain level! However, even

if the interdomain routing would have been solved, the

connectionless or hop-by-hop paradigm in Internet implies

that QoS routing needs an exact algorithm (and concepts of

active networking) as proved in Ref. [21].

The need for an exact routing algorithm brings us

from the protocol to the algorithm, which is the focal

point of this paper. The difficulty does not lie in the

existence of an exact QoS algorithm—we have proposed

SAMCRA (Section 2)—but in its complexity. For some

time already, it is known [12,23] that QoS routing with

additive link weights is an NP-complete problem1 which

is interpreted, in practice, as unfeasible. Hence, only

approximations (heuristics) with polynomial time com-

plexity of the QoS algorithm are considered feasible.

This point of view resulted in the publication of a wealth

of heuristics [17], each of them claiming some attractive

features over the others. Thus, these heuristics introduced

a blurring factor in the already complex field of QoS

routing because, as we claim here, their need or

existence is argued as superfluous. Indeed, after about

5 years of extensive simulations on a huge number of

graphs (of a particular class), we have never observed

tendencies towards NP-complete behavior [11,21]. Goal

of this paper is to provide some arguments why we

believe that, for a large class of graphs (and most likely

also realistic networks), the QoS routing problem is not

NP-complete. Unfortunately, so far, for that class of

graphs we are unable to prove that SAMCRA (or

equivalent QoS routing since SAMCRA is exact2) is

not NP-complete.

Proving or disproving NP-completeness is known to be

notoriously difficult. The fact that QoS routing is, in general,

NP-complete follows from Fig. 1: if the chain topology is

continued according to the triangular structure (bottom left),

at each node i, the path vector or sum of the link weight

vectors from left on up to node i (that are not dominated,

explained below) grows as a power of 2. This example

learns two basic features. First, NP-completeness involves a

scaling of the relevant parameters. For example, if the

number of added nodes N in the chain topology increases

without bound, the number of entries (non-dominated path

vectors) to make a QoS routing decision grows as Oð2N=2Þ:

Second, the cause of NP-completeness lies hidden in the

special structure of the topology and, perhaps more

important, in the specifics of the link weight vector. The

latter is seen to be correlated over the path from A (left node)

to B (node at the right). The proof that QoS routing is NP-

complete in Ref. [23] heavily relies on the correlation of the

link weight vectors. Furthermore, it suffices to show that

there exists one case (a specific topology and link weight

structure) in which QoS routing is NP-complete to catalogue

QoS routing as a whole as an NP-complete problem. Both

the chain topology and the correlated link weight vectors are

unlikely to occur in realistic networks and this article

Fig. 1. An example of a ‘chain’ topology that, when continued for large N

(dotted lines), illustrates the NP-completeness of QoS routing. The basic

ingredients for NP-completeness in this example are both the special

topology structure that regularly (in the i þ 2 nodes) forces paths to

coincide and the link weight structure that is correlated over the entire

chain.

1 A problem is NP-complete if it cannot be solved in polynomial time.

This means that the number of elementary computations or complexity C

grows faster than any polynomial function if the problem parameters

increase. Mathematically, let be a the basic problem parameter of problem

P. Problem P is said to be NP-complete if, for 1 . 0; CP ¼ Oðexpð1aÞÞ as

a !1 for any algorithm thatsolves problem P. If at least one algorithm is

known, for which CP ¼ Oða1Þ for some 1; then P is not NP-complete or is a

polynomial problem. More details can be found in Garey and Johnson [12].
2 In Ref. [21], it has been proved that SAMCRA is exact. However, it has

not been shown that SAMCRA is the most efficient algorithm possible.

Therefore, the complexity derived from SAMCRA is strictly speaking an

upper-bound for the complexity of QoS routing.
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suggests that QoS routing in realistic networks may not be

NP-complete. In other words, the QoS routing problem

confined to a particular class of networks (topology and link

weight structure) may not be NP-complete. We know that

there are classes of graphs that are polynomially solvable.

For example, QoS routing for the class of graphs where all

nodes have degree 2 can always be solved in polynomial

time irrespective of the link weight structure. Another

‘polynomially solvable’ case is the class of graphs where all

link weight vectors are identical. In summary, the difficulty

remains in determining the full (or at least a large) set of

classes for which QoS routing is not NP-complete and this

article is a first, tiny step towards this goal.

After a brief presentation of SAMCRA [21], an exact

Self-Adaptive Multiple Constraints Routing Algorithm, in

Section 2, the complexity is studied through simulations.

The results show that for certain classes of graphs, the

complexity of QoS routing does not seem to point towards a

NP-complete behavior. The scaling (limit of N to infinity)

cannot be simulated. Therefore, the second part (Section 4)

of this paper analyses the hopcount of the shortest path in

multiple dimensions. This section is an extension to

previous work on the hopcount in the Internet [20]. The

analytic results indicate that, for the class of random graphs

with uniformly distributed link weight components, further

denoted as the RGU class, the hopcount in multiple

dimensions behaves as a single dimension routing problem

with modified link weight distribution. Hence, the combi-

nation of both results hints (unfortunately does not prove)

that, for a large class of graphs, the QoS routing problem is

not NP-complete.

2. SAMCRA: a self-adaptive multiple constraints

routing algorithm

A network topology is denoted by GðN;EÞ; where N is

the set of nodes and E is the set of links. With a slight abuse

of notation we will also denote by N and E, respectively, the

number of nodes and the number of links. A network

supporting QoS consists of link weight vectors with m non-

negative QoS measures (wiðeÞ; i ¼ 1;…;m; e [ E) as

components. The QoS measure of a path can either be

additive in which case it is the sum of the QoS measures

along the path (such as delay, jitter, the logarithm of 1 minus

the probability of packet loss, cost of a link, etc.) or it can be

the minimum(maximum) of the QoS measures along the

path (typically, available bandwidth and policy flags).

Min(max) QoS measures are treated by omitting all links

(and possibly disconnected nodes) which do not satisfy the

requested min(max) QoS constraints. We call this topology

filtering. Additive QoS measures cause more difficulties: the

multiple constrained path (MCP) problem, defined as

finding a path subject to more than one additive constraint

(Li), is known to be NP-complete [12,23] and hence

considered as intractable for large networks.

2.1. The concepts behind SAMCRA

SAMCRA is the successor of TAMCRA, a Tunable

Accuracy Multiple Constraints Routing Algorithm [10,11].

As opposed to TAMCRA, SAMCRA guarantees to find a

path within the constraints, provided such a path exists.

Furthermore, SAMCRA only allocates queue-space (mem-

ory) when truly needed, whereas in TAMCRA the allocated

queue-space is predefined. The major performance criterion

for SAMCRA, namely the running-time/complexity, will be

discussed in Section 2.2. Similar to TAMCRA, SAMCRA is

based on three fundamental concepts:

(1) A non-linear measure for the path length. Motivated

by the geometry of the constraints surface in m-dimensional

space, we defined the length of a path P as follows [11]:

lðPÞ ¼ max
1#i#m

wiðPÞ

Li

� �
ð1Þ

where wiðPÞ ¼
P

e[P wiðeÞ:

The definition of the path length has to be non-linear in

order to guarantee that a retrieved path lies within the

constraints, i.e. lðPÞ # 1: A solution to the MCP problem is

a path whose link weights are all within the constraints,

wiðPÞ # Li; for all i ¼ 1;…;m: SAMCRA can also be

applied to solve multiple constrained optimization pro-

blems, e.g. delay-constrained least-cost routing. Depending

on the specifics of a constrained optimization problem,

SAMCRA can be used with different length functions,

provided they obey the criteria for length in vector algebra.

Examples of length functions different from Eq. (1) are

given in Ref. [21]. In Refs. [13,15], TAMCRA-based

algorithms with specific length functions are proposed and

evaluated. By using the length function (Eq. (1)), all QoS

measures are considered as equally important. An important

corollary of a non-linear path length as Eq. (1) is that the

subsections of shortest paths in multiple dimensions are not

necessarily shortest paths. This suggests to consider in the

computation more paths than only the shortest one, leading

us naturally to the k-shortest path approach.

(2) The k-shortest path approach. The k-shortest path

algorithm [8] is essentially Dijkstra’s algorithm that does

not stop when the destination is reached, but continues until

the destination has been reached k times. If k is not

restricted, the k-shortest path algorithm returns all possible

paths between A and B. The k-shortest path approach is

applied to the intermediate nodes i on the path from source

node s to destination node d, where we keep track of

multiple sub-paths from s to i. Not all sub-paths are stored,

but an efficient distinction based on non-dominance is made.

(3) The principle of non-dominated paths [14]. A (sub)-

path Q is dominated by a (sub)-path P if wiðPÞ # wiðQÞ for

i ¼ 1;…;m; with an inequality for at least one link weight

component i. SAMCRA only considers non-dominated

(sub)-paths. The principle of non-dominance enables an

efficient reduction in the search-space (all paths between the

source and destination) without compromising the solution.
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2.2. The complexity of SAMCRA

2.2.1. Worst-case complexity

In the graph GðN;EÞ; the queue in SAMCRA can never

contain more than kN path lengths, where k denotes the

number of non-dominated paths (within the constraints) that

are stored in the queue of a node. Because SAMCRA self-

adaptively allocates the queue-size at each node, k may

differ per node. When using a Fibonacci (or relaxed) heap to

structure the queues [9], selecting the minimum path length

among kN different path lengths takes at most a calculation

time of the order of logðkNÞ: As each node can at most be

selected k times from the queue, the extract_min function

(explained in Ref. [9]) in line 6 of SAMCRA’s meta-code

(Appendix B) takes OðkN logðkNÞ at most. The for-loop

starting on line 11 is invoked at most k times from each side

of each link in the graph. Calculating the length takes OðmÞ

when there are m metrics in the graph while verifying path

dominance takes OðkmÞ at most. Adding or replacing a path

length in the queue takes O (1). Adding the contributions

yields a worst-case complexity CSAMCRA with k ¼ kmax of

CSAMCRA ¼ OðkN logðkNÞ þ k2mEÞ ð2Þ

where kmax is an upper-bound on the number of non-

dominated paths in GðN;EÞ: A precise expression for k is

difficult to find. However, two upper-bounds can be

determined. The first upper-bound kmax for k,

kmax ¼ beðN 2 2Þ!c

is an upper-bound on the total number of paths between a

source and destination in GðN;EÞ [22].

If the constraints (or link weight components) have a

finite granularity, a second upper-bound applies,

kmax ¼

Ym
i¼1

Li

max
j

ðLjÞ
ð3Þ

where the constraints Li are expressed as an integer number

of a basic metric unit. For instance, if the finest granularity

for time measurements is 1 ms, then the constraint value for,

e.g. end-to-end delay is expressed in an integer number

times 1 ms. This bound (Eq. (3)) has been published earlier

in Ref. [11] but first proved here in Appendix A.

Clearly, for a single constraint (m ¼ 1 and k ¼ 1), the

complexity (Eq. (2)) reduces to that of Dijkstra’s algorithm.

As mentioned above, for multiple (additive) metrics the

worst-case complexity of SAMCRA is NP-complete. The

NP-complete behavior also follows from Eq. (2) and the two

expressions for kmax:

2.2.2. Average-case complexity

Although there exist many problems that are NP-

complete, the average-case complexity might not be

intractable, suggesting that such an algorithm could

have a good performance in practice. The theory of

average-case complexity was first advocated by Levin

[18]. We will now give a calculation that suggests that the

average and even amortized3 complexity of SAMCRA is

polynomial in time for fixed m and all weights wi

independent random variables.

Lemma 1. The expected number of non-dominated vectors

in a set of T i.i.d. vectors in m dimensions is upper bounded

by ðln TÞm21:

A proof of Lemma 1 can be found by adopting a similar

approach as presented by Barndorff-Nielsen and Sobel [4]

or by Bentley et al. [5]. To gain some insight into the

number of non-dominated paths in a graph, we will assume

that the path-vectors are i.i.d. vectors. When we apply

Lemma 1 to the complexity of SAMCRA, we see that, in the

worst-case, SAMCRA examines T ¼ beðN 2 2Þ!c paths,

leading us to an expected number of non-dominated paths

between the source and destination in the worst-case of

ðln TÞm21 ¼ ðlnðbeðN 2 2Þ!cÞÞm21

# ð1 þ ðN 2 2ÞlnðN 2 2ÞÞm21

Hence, the amortized complexity of SAMCRA is given by

Eq. (2) with k ¼ ðln TÞm21 ¼ ðlnðbeðN 2 2Þ!cÞÞm21; which is

polynomial in N for fixed m.

In the limit m !1 and for wj independent random

variables, all paths in GðN;EÞ are non-dominated, which

leads to the following Lemma (proved in Ref. [21]).

Lemma 2. If the m components of the link weight vectors

are independent random variables and the constraints Lj

are such that 0 # wj=Lj # 1; then any path with K hops has

precisely a length (as defined by Eq. (1)) equal to K in the

limit m !1:

This means that for m !1 it suffices to calculate the

minimum hop path, irrespective of the link weight

distribution of the m independent components. Since the

minimum hop problem is an instance of a single metric

shortest path problem, it has polynomial complexity. Of

course, this limit case m !1 mainly has theoretically

value. In realistic QoS routing, only a few link weights are

expected to occur. The number m of QoS link weights is a

design choice for the QoS routing protocol.

In summary, if the link weights are independent random

variables, there are two properties reducing the search-space

(the number of paths to be examined) of SAMCRA. For m

small the concept of non-dominance is very powerful,

resulting in the presence of only a small number of non-

dominated paths between two points in a graph. At the other

extreme, for m large, the values Lj of the constraints cause

3 Amortized analysis differs from average-case analysis in that

probability is not involved; an amortized analysis guarantees the average

performance of each operation in the worst-case [9].
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the largest search-space reduction, because only a few paths

between the source and destination lie within the con-

straints. Even if the constraints are chosen infinitely large,

SAMCRA may lower them in the course of the computation

(by means of endvalue, line 25/26 meta-code) without

affecting the solution.

The two properties complement each other, resulting in

an overall good average performance of SAMCRA. The

simulation results of Section 3 indicate that the average

complexity of SAMCRA is OðN log N þ mEÞ which

follows from Eq. (2) with E½k� < 1; for the class GpðNÞ of

random graphs [6], with independent uniformly distributed

link weights, further denoted by RGU.

3. Simulation results on complexity

3.1. The class RGU

The simulations were performed on random graphs of the

type GpðNÞ [6]. The expected link density p also equals the

probability that there is a link between two nodes. The m

components of the link weight vector, wiðeÞ; are indepen-

dent uniformly distributed random variables in the range

[0,1].

SAMCRA searches for the shortest path within the

constraints instead of just any path obeying the constraints.

Since all link weights are in the range [0,1], the highest

possible weight of a loop-free path wiðPÞ is N 2 1: By

choosing all the constraints equal to N, all possible (loop-

free) paths between the source and destination will be able

to satisfy these constraints. When the goal is to find the

shortest path within a set of constrained paths, choosing the

constraints large and hence increasing the amount of paths

that need to be evaluated, will increase the complexity of

finding the shortest path. Hence, we are simulating a worst-

case scenario by choosing the constraints equal to N.

For each simulation run, we used SAMCRA to

compute the shortest path between a source node (labeled

1) and destination node (labeled N ) for a large number

(minimum of 105) of random graphs of the type GpðNÞ:

For each computation we stored the hopcount and

minimum queue-size (kmin) needed to find the shortest

path within the constraints. If TAMCRA had used that

particular kmin under the same conditions, it would have

found the same shortest path as SAMCRA did, but if a

smaller value had been used TAMCRA would not have

found the shortest path.

For all simulations in this section, we have computed the

95% confidence intervals, which were all less than 0.52% of

the mean. Furthermore, we have validated our simulations

with the chain topology of Fig. 1. These simulations

confirmed that, once the constraints are large enough, kmin

grows exponentially (as Oð2N=2Þ) with N. Moreover, if for

the same topology wiðeÞ ¼ wiðe
pÞ; for i ¼ 1;…;m; ;e; ep [

E or if wiðeÞ ¼ wðeÞ; for i ¼ 1;…;m; e [ E; then we found

that kmin ¼ 1: This shows that the link weight structure is

very important.

We will start by presenting the simulation results for

m ¼ 2: Fig. 2 gives the minimum queue-size (kmin)

needed to find the shortest path within the constraints.

Fig. 2 also gives the statistics corresponding to the

results for kmin:

Fig. 2 shows that an increase of N does not result in an

exponential increase in kmin: The expectation E½k� remains

close to 1 and hardly increases with N. If we extrapolate

these results to N !1; Fig. 2 suggests that for the class of

random graphs GpðNÞ with 2 independent uniformly

distributed link weights, the average complexity of

SAMCRA is approximately OðN log N þ 2EÞ:

Figs. 3 and 4 show a similar behavior (E½k� < 1). The

only difference is that the worst-case values (max½k�)

have slightly increased with m, as a result of the

increased expected number of non-dominated paths.

Fig. 2. Results for kmin with m ¼ 2:
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However, since E½k� stays close to one, the simulation

results suggest that the two search-space-reducing con-

cepts, dominance and constraint values, are so strong that

the average complexity of SAMCRA is not significantly

influenced by the number of metrics m. The behavior of

kmin as a function of the number of constraints m is

illustrated in Fig. 5.

In the previous paragraph we indicated that there are two

concepts reducing the search-space of SAMCRA. For small

m the dominant factor is the non-dominance property,

whereas for m !1 the constraint values are more

dominant. Because these properties are most effective in a

certain range of m’s, we expect the worst-case behavior to

occur with an m that is neither small nor large. Fig. 5 shows

the k-distribution for different values of m. The best

performance is achieved with m ¼ 2 and the worst

performance is for m around 8. However, as Fig. 4

illustrates, E½k� for m ¼ 8 is still approximately 1, leading

us to believe that for the class of random graphs GpðNÞ with

independent uniformly distributed weights, the average

complexity of SAMCRA is approximately OðN log

N þ mEÞ for every m.

Our last simulation concerns the granularity of the

constraints (or link weights). When the granularity is finite,

an upper-bound, in terms of the constraints, on the number

of non-dominated paths can be found (Eq. (3)). The finer the

granularity, the larger this upper-bound. Fig. 6 confirms this

behavior (for N ¼ 20 and p ¼ 0:2). In practice the

constraints (or link weights) have a finite granularity,

which according to Fig. 6 will positively influence the

running-time of SAMCRA.

Because SAMCRA solves the MCP problem exactly, and

since the simulations suggest that SAMCRA’s average

complexity is polynomial for GpðNÞ with independent

uniformly distributed link weights, the MCP problem for

that class RGU seems, on average, solvable in polynomial

time. The observation that E½k� < 1 indicates that, for the

sizes N considered, routing in multiple dimensions is

analogous to routing in a single dimension (m ¼ 1).

3.2. A two-dimensional lattice

Contrary to the class of RGU graphs, this

section is devoted to extremely regular graphs, namely

Fig. 3. Results for kmin with m ¼ 4:

Fig. 4. Results for kmin with m ¼ 8:
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two-dimensional lattices. The regular structure of Fig. 1

has inspired us to investigate the complexity of SAMCRA

in lattices. The m components of the link weight vector,

wiðeÞ; remain independent uniformly distributed random

variables. We refer to the class of two-dimensional lattices

with uniformly distributed link weight vectors as 2LGU.

Fig. 7 gives an example of a two-dimensional lattice

consisting of 16 nodes: every internal node has degree 4

while nodes on the boundary have degree 3 and the 4

corner nodes have degree 2.

For our simulations we only generated square-shaped

lattices. Since the sides of this square consist of
ffiffiffi
N

p
nodes,ffiffiffi

N
p

must be an integer number. The source node is chosen in

the upper left corner and the destination node in the right

lower corner. This location of source and destination is

expected to lead to worst-case behavior for SAMCRA

because it yields the longest hop-count path. All simulations

were performed on 105 graphs in the class 2LGU.

Fig. 8 displays the probability distribution of kmin with

the most important statistical parameters. As expected,

Fig. 8 illustrates that kmin indeed increases faster than for

the class RGU with same size N. Fig. 8 also shows that

maxðkminÞ increases only linearly with N (in the range up

to 625 nodes). Hence, if this linear tendency can be

extrapolated to large N, we would be able to conclude that

also the class 2LGU does not cause SAMCRA’s

complexity to be NP-complete.

Fig. 9 shows the behavior of kmin as function of the

dimension m (at a fixed size N ¼ 25). Up to m ¼ 32; the

statistics for kmin increase with m. For the class RGU

displayed in Fig. 5, a similar increase of kmin up to m ¼ 8

is observed, but kmin decreases afterwards. This decrease

is due to the constraint values, that are chosen ‘infinitely’

large but are reduced in the course of the path

computation to the path weight vector of an already

discovered path that obeys the constraints (see Appendix

B line 25 and 26 in SAMCRA’s meta code). The

minimum number of hops between the source and

destination is on average larger in the class 2LGU than

in the class RGU. As a result the constraint values are

reduced at a later point in the path computation and

therefore we do not see a decrease in Fig. 9 as soon as we

did in Fig. 5. In reality the constraint values will not be

chosen infinitely large, leading to a smaller search-space

and consequently smaller complexity.

4. The expected hopcount E½hN� for the random graph

GpðNÞ

Only the class RGU is considered here. Each link is

specified by a weight vector with m independent

components possessing the same distribution function

FwðxÞ ¼ Pr½w # x� ¼ xa1½0;1�ðxÞ þ 1ð1;1ÞðxÞ; a. 0 ð4Þ

For this network topology, the expected hopcount E½hN� or

the average number of traversed routers along a path

between two arbitrarily chosen nodes in the network will be

computed. The behavior of the expected hopcount E½hN� in

multiple dimension QoS routing will be related to the single

metric case (m ¼ 1). That case m ¼ 1 has been treated

Fig. 5. P.d.f. of kmin; N ¼ 20:

Fig. 6. kmin for different granularity.

Fig. 7. A two-dimensional lattice of 16 nodes.
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previously in Ref. [19], where it has been shown, under

quite general assumptions, that

E½hN� ,
ln N

a

var½hN� ,
ln N

a2

Lemma 2 shows that for m !1 in the class RGU, the

shortest path is the one with minimal hopcount. Thus the

derivation for a single weight metric in Ref. [19] for GpðNÞ

with all link weights 1 is also valid for m !1: The first

order (asymptotic) calculus as presented in Ref. [19] will be

extended to m $ 2 for large N. In that paper, the estimate

Pr½hN ¼ k;wN # z� . Nk21pkFkp
w ðzÞ

has been proved, where the distribution function Fkp
w ðzÞ is

the probability that a sum of k independent random variables

each with d.f. Fw is at most z and is given by the k-fold

convolution

Fkp
w ðzÞ ¼

ðz

0
Fðk21Þp

w ðz 2 yÞfwðyÞdy; k $ 2

and where F1p
w ¼ Fw: By induction it follows from (link

weights), that for z # 0;

Fkp
w ðzÞ ,

zakðaGðaÞÞk

Gðak þ 1Þ

In multiple (m ) dimensions, SAMCRA’s definition of the

path length (Eq. (1)) requires the maximum link weight of

the individual components wNðgÞ ¼ maxi¼1;…;m ½wiðgÞ�

along some path g: Since we have assumed that the

individual links weight components are i.i.d random

variables, and hence Pr½wN # z� ¼ ðPr½wi # z�Þm; this

implies for m-dimensions that

Fkp
w ðzÞ ,

zakðaGðaÞÞk

Gðak þ 1Þ

" #m

such that

Pr½hN ¼ k;wN # z� . Nk21pk zakðaGðaÞÞk

Gðak þ 1Þ

" #m

We will further confine to the case a ¼ 1; i.e. each link

weight component is uniformly distributed over [0,1] as in

Fig. 8. Results for kmin with m ¼ 2 as a function of the number of nodes N.

Fig. 9. Results for kmin with N ¼ 25 for different dimensions m.
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the class RGU

Pr½hN ¼ k;wN # z� .
1

N

ðNpzmÞk

ðk!Þm
ð5Þ

For a typical value of z, the probabilities in Eq. (5) should

sum to 1

1 ¼
1

N

XN21

k¼1

ðNpzmÞk

ðk!Þm

At last, for a typical value of z, Pr½wN # z� is close to unity

resulting in

Pr½hN ¼ k;wN # z� . Pr½hN ¼ k�

Let us denote with y ¼ Npzm;

SmðyÞ ¼
XN21

k¼0

yk

ðk!Þm
ð6Þ

subject to

N þ 1 ¼ SmðyÞ ð7Þ

Hence, the typical value y of the end-to-end link weight that

obeys Eq. (7) is independent on the link density p for large

N. Also the average hopcount and the variance can be

written in function of SmðyÞ as

E½hN� ¼
y

N
S0

mðyÞ ð8Þ

var½hN� ¼
1

N
y2S00

mðyÞ þ yS0mðyÞ2
y2

N
ðS0

mðyÞÞ
2

" #
ð9Þ

We will first compute good order approximations for E½hN�

in the general case and only var½hN� and the ratio a ¼

E½hN�=var½hN� in case m ¼ 2: Let us further concentrate on

VmðyÞ ¼
X1
k¼0

yk

ðk!Þm
ð10Þ

Clearly, VmðyÞ ¼ limN!1 SmðyÞ: It is shown in Ref. [16,

Appendix] that

VmðyÞ , AmðyÞexp½my1=m� ð11Þ

with

AmðyÞ ¼
ð2pÞð12mÞ=2ffiffiffi

m
p y21=2ð12ð1=mÞÞ ð12Þ

After taking the logarithmic derivative of Eq. (11), we

obtain

V 0
mðyÞ , VmðyÞ

A0
mðyÞ

AmðyÞ
þ yð1=mÞ21


 �

In view of Eq. (7), y is a solution of VmðyÞ , N; such that the

average (Eq. (8)) becomes

E½hN� ,
y

N
V 0

mðyÞ ,
VmðyÞ

N
y

A0
mðyÞ

AmðyÞ
þ y1=m


 �

or

E½hN� , y1=m þ y
A0

mðyÞ

AmðyÞ
ð13Þ

Using Eq. (12) in Eq. (13), we arrive at

E½hN� , y1=m 2
1

2
1 2

1

m

� �
ð14Þ

where y is a solution of VmðyÞ , N: As shown in Ref. [16],

the solution y is

y ,
ln N

m

� �m

þ
ln N

m

� �m21

£
1

2
ðm 2 1Þlnðln NÞ þ Q


 �
þ Oðlnðln NÞlnm22NÞ:

Introduced into Eq. (14), the average hopcount follows as

E½hN� ,
ln N

m
þ

1

2
1 2

1

m

� �
lnðln NÞ þ

ln m

2m
2

1

2


 1 2
1

m

� �
ln

m

2p

� �
þ 1

� �
þ O

lnðln NÞ

ln N

� �
ð15Þ

This formula indicates that, to a first order, m ¼ a: The

simulations (Figs. 10 and 11) show that, for higher values of

m, the expectation of the hopcount tends slower to the

asymptotic E½hN�-regime given by Eq. (15).

For the computation of the variance, we confine

ourselves to the case m ¼ 2; for which

V2ðyÞ ¼
X1
k¼0

yk
=ðk!Þ2 ¼ I0ð2

ffiffi
y

p
Þ

where I0ðzÞ denotes the modified Bessel function of order

zero [1, Section 9.6]. The variance of the hopcount from Eq.

(9) with

S00
mðyÞ ¼

d2I0ð2
ffiffi
y

p
Þ

dy2
¼

I0ð2
ffiffi
y

p
Þ

y
2

I1ð2
ffiffi
y

p
Þ

y
ffiffi
y

p

Fig. 10. The average E½hN;2�; the variance var½hN;2� and the ratio a ¼

E½hN;2�=var½hN;2� of the shortest path found by SAMCRA, as a function of

the size of the random graph N with two link metrices (m ¼ 2). The full

lines are the theoretical asymptotics.
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var½hN;2� ,
y

N
I0ð2

ffiffi
y

p
Þ2

ffiffi
y

p

N
I1ð2

ffiffi
y

p
Þ þ E½hN;2�2 ðE½hN;2�Þ

2

, y 2 ðE½hN;2�Þ
2

At this point, we must take the difference between I0ðxÞ and

I1ðxÞ into account otherwise we end up with var½hN� , 0:

For large x

I0ðxÞ ,
exffiffiffiffiffi
2px

p 1 þ
1

8x
þ Oðx22Þ

� �

and

I1ðxÞ ,
exffiffiffiffiffi
2px

p 1 2
3

8x
þ Oðx22Þ

� �

such that

I1ðxÞ , I0ðxÞ 1 2
1

2x
þ Oðx22Þ

� �

E½hN;2� ,
y

N
I1ð2

ffiffi
y

p
Þ

1ffiffi
y

p

,
I0ð2

ffiffi
y

p
Þ

N

ffiffi
y

p
2

1

4
þ Oðy21Þ

� �

,
lnðNÞ

2
þ

lnðlnðNÞÞ

4
2

1

4
þ O

1

lnðNÞ

� �
ð16Þ

Thus

var½hN;2� , y 2
ffiffi
y

p
2

1

4

� �2

¼

ffiffi
y

p

2
2

1

16
þ O

1ffiffi
y

p

 !
ð17Þ

and

a ¼
E½hN;2�

var½hN;2�
, 2 2

1

4
ffiffi
y

p þ Oðy21Þ

, 2 2

ffiffi
2

p

4
ffiffiffiffiffiffi
ln N

p þ O
1

lnðNÞ

� �
This corresponds well with the simulations shown in Fig. 9.

In addition, the average and variance of the hopcount for

m ¼ 2 dimensions scales with N in a similar fashion as the

same quantities in GpðNÞ with a single link weight, but

polynomially distributed with Fw½w # x� ¼ x2:

In summary, the asymptotic analysis reveals that, for the

class RGU, the hopcount in m dimensions behaves similarly

as in the random graph GpðNÞ in m ¼ 1 dimension with

polynomially distributed link weights specified via Eq. (4)

where the polynomial degree a is precisely equal to the

dimension m. This result, independent of the simulations of

the complexity of SAMCRA, suggests a transformation of

shortest path properties in multiple dimensions to the single

parameter routing case, especially when the link weight

components are independent. As argued in Ref. [19], the

dependence of the hopcount on a particular topology is less

sensitive than on the link weight structure, which this

analysis supports.

5. Conclusions

Since constrained-based routing is an essential building

block for a future QoS-aware network architecture, we have

proposed a multiple constraints, exact routing algorithm

called SAMCRA. Although the worst-case complexity is

NP-complete (which is inherent to the fact that the multiple

constraints problem is NP-complete), when the link weight

vectors are i.i.d. vectors the average complexity in the

worst-case is polynomial. A large amount of simulations on

random graphs with independent link weight components

seem to suggest that the worst-case complexity is poly-

nomial for this class of graphs and that the average-case

complexity is similar to the complexity in the single

parameter case. Simulations on a different class of graphs,

namely the regular two-dimensional lattice graphs with

uniformly distributed link weights display, as expected, a

higher computational complexity. However, also these

simulations suggest a polynomial complexity in the worst

case. For the considered classes, the MCP problem thus

seems tractable.

Fig. 11. Hopcount statistics for m ¼ 4 (left) and m ¼ 8 (right).
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The second part of this paper was devoted the study of

the hopcount in multiple dimensions as in QoS-aware

networks. For random graphs of the class RGU, a general

formula for the expected hopcount in m dimensions has

been derived and only extended to the variance var½hN� as

well in m ¼ 2 dimensions, in order to compute the variance

and the ratio of the expected hopcount and its variance. To

first order, with the network size N q m large enough, the

expected hopcount behaves asymptotically similar as the

expected hopcount in m ¼ 1 dimension with a polynomial

distribution function (xa1½0;1�ðxÞ þ 1ð1;1ÞðxÞ) and polynomial

degree a ¼ m:

Both the complexity analysis and the hopcount compu-

tation suggests that for special classes of networks, among

which random graphs of the class RGU in m dimensions, the

QoS routing problem exhibits features similar to the one

dimensional (single parameter) case. The complexity

analysis suggested this correspondence for small N, whereas

the asymptotic analysis for the hopcount revealed the

connection for N !1: We showed that there are indeed

classes of graphs for which the MCP problem is not NP-

complete. The problem is to determine the full set of classes

of graphs which posses a polynomial, rather than non-

polynomial worst case complexity. Further, what is the

influence of the correlation structure between the link

weight components because Lemma 1 and the simulations

suggest that independence of these link weight components

seems to destroy NP-completeness. Moreover, we notice

that the proof presented in Ref. [23] strongly relies on the

choice of the link weights. At last, if our claims about

the NP-completeness would be correct, how large is then the

class of networks that really lead to an NP-complete

behavior of the MCP problem? In view of the large amount

of simulations performed over several years by now, it

seems that this last class fortunately must be small, which

suggests that, in practice, the QoS-routing problems may

turn out to be feasible.

Appendix A. Proof of Eq. (3) for kmax

Recall that all weight components have a finite

granularity, which implies that they are expressed in an

integer number times a basic unit.

Definition 1. Non-dominance. A path P is called non-

dominated if there does not exist a path Pp for which

wiðP
pÞ # wiðPÞ;;i and ’j : wjðP

pÞ , wjðPÞ:

Ad definition 1. If there are two or more different paths

between the same pair of nodes that have an identical weight

vector, only one of these paths suffices. In the sequel we will

therefore extend Definition 1 to denote one path out of the

set of equal weight vector paths as being non-dominated and

regard the others as dominated paths.

Theorem 1. The number of non-dominated paths within the

constraints cannot exceed Eq. (3).

Proof. Without loss of generality we assume that L1 #

L2 # · · · # Lm such that Eq. (3) reduces to kmax ¼
Qm21

i¼1 Li:

First, if m ¼ 1; there is only one shortest and non-dominated

(according to Ad definition 1) path possible within the

constraint L1: This case reduces to single parameter shortest

path routing with kmax ¼ 1:

For m $ 2; the maximum number of distinct paths4 isQm
i¼1 Li: Two paths P1 and P2 do not dominate each other if,

for at least two different link weight components 1 # a –
b # m holds that waðP1Þ , waðP2Þ and wbðP1Þ . wbðP2Þ:

This definition implies that, for any couple of non-

dominated paths P1 and P2; at least two components of

the m-dimensional vector ~wðP1Þ must be different from

~wðP2Þ: Equivalently, if we consider a (m 2 1)-dimensional

subvector ~v by discarding the jth component in ~w; at least

one component of ~vðP1Þ must differ from ~vðP2Þ: The

maximum number of different subvectors ~v equalsQm
i¼1;i–j Li: If j – m such that Lj , Lm; within theQm
i¼1;i–j Li possibilities, there are paths for which only the

jth and/or mth component differ while all the other

components are equal. In order for these paths not to

dominate each other, the jth and mth component must satisfy

the condition that if wmðP1Þ . wmðP2Þ; then wjðP1Þ ,

wjðP2Þ or vice versa. For the mth component, there are Lm

different paths for which wmðP1Þ ¼ Lm . wmðP2Þ ¼ Lm 2

1 . · · · . wmðPLm
Þ ¼ 1: Since Lj , Lm; there are only Lj

paths for which wjðP1Þ ¼ 1 , wjðP2Þ ¼ 2 , · · · ,

wjðPLj
Þ ¼ Lj: Therefore, there are paths P1 and P2 for

which wmðP1Þ . wmðP2Þ; but wjðP1Þ ¼ wjðP2Þ: Hence, only

Lj instead of Lm non-dominated paths are possible, leading

to a total of Lj=Lm

Qm
i¼1;i–j Li ¼

Qm21
i¼1 Li non-dominated

paths. This proofs the upper-bound kmax ¼
Qm21

i¼1 Li: A

Corollary 1. Eq. (3) is strict.

Proof. Without loss of generality assume that L1 # L2 #

· · · # Lm: We will show that there exist sequences

{L1; L2;…;Lm} for which the bound (Eq. (3)) is achieved.

If for each pair of paths Pi;Pj the mth link weight compo-

nent obey

wmðPiÞ $ wmðPjÞ þ
Xm21

k¼1

ðwkðPjÞ2 wkðPiÞÞ ðA1Þ

then Eq. (3) is a strict, attainable bound.

Formula (A1) is found by recursively applying the

following prerequisite recalling that the smallest difference

between two weight components is one unit. If for two paths

P1;P2 applies that wjðP1Þ2 wjðP2Þ ¼ 1 (in units of the jth

weight component) for only one j of the first m 2 1 metrics

and wiðP1Þ2 wiðP2Þ ¼ 0 for the other 1 # i – j # m 2 1;

4 Two paths are called distinct if their path weight vectors are not

identical.
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then for non-dominance to apply, the mth weight com-

ponents must satisfy wmðP1Þ2 wmðP2Þ # 21: If Eq. (A1) is

not obeyed, then wmðP1Þ . wmðP2Þ2 1; i.e. wiðP1Þ $

wiðP2Þ for i ¼ 1;…;m and according to the definition of

non-dominance P1 is then dominated by P2:

The largest possible difference between two path vectors

provides us with a lower-bound on Lm;

Lm $ 1 þ
Xm21

i¼1

ðLi 2 1Þ

When this bound is not satisfied, then the number of non-

dominated paths within the constraints is smaller than

Eq. (3). A

For example, in m ¼ 5 dimensions, with L1 ¼ 1; L2 ¼ 2;

L3 ¼ 3; L4 ¼ 3; L5 ¼ 6 ð$ 1 þ 1 þ 2 þ 2Þ; all 18 non-

dominated vectors are
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Appendix B. SAMCRA’s meta-code

For a detailed explanation of this meta-code, we refer to

Ref. [21].
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