
MATE: multipath adaptive traffic engineering

Anwar Elwalid a, Cheng Jin b, Steven Low c,*, Indra Widjaja a

a Lucent Technologies, Bell Laboratories, 600 Mountain Avenue, 07974 Murray Hill, NJ, USA
b Electrical Engineering and Computer Science Department, University of Michigan, Ann Arbor, MI 48109-2122, USA

c Computer Science and Electrical Engineering, Caltech, Pasadena, CA 91125, USA

Received 9 March 2002; accepted 12 March 2002

Responsible Editor: I.F. Akyildiz

Abstract

Destination-based forwarding in traditional IP routers has not been able to take full advantage of multiple paths

that frequently exist in Internet service provider networks. As a result, the networks may not operate efficiently, es-

pecially when the traffic patterns are dynamic. This paper describes a multipath adaptive traffic engineering scheme,

called MATE, which is targeted for switched networks such as multiprotocol label switching networks. The main goal

of MATE is to avoid network congestion by adaptively balancing the load among multiple paths based on measure-

ment and analysis of path congestion. MATE adopts a minimalist approach in that intermediate nodes are not required

to perform traffic engineering or measurements besides forwarding packets. Moreover, MATE does not impose any

particular scheduling, buffer management, or a priori traffic characterization on the nodes. This paper presents an

analytical model, derives a class of MATE algorithms, and proves their convergence. Several practical design tech-

niques to implement MATE are described. Simulation results are provided to illustrate the efficacy of MATE under

various network scenarios.

� 2002 Published by Elsevier Science B.V.

Keywords: Traffic engineering; Multipath routing; Optimal routing; Asynchronous routing algorithm

1. Introduction

Internet traffic engineering is emerging as

an important tool to provide fast, reliable and

differentiated services. According to the Internet

engineering task force (IETF), Internet traffic
engineering is broadly defined as that aspect of

network engineering dealing with the issue of per-

formance evaluation and performance optimiza-

tion of operational IP networks [1]. More

specifically, traffic engineering often deals with ef-

fective mapping of traffic demands onto the net-

work topology, and adaptively reconfiguring the

mapping to changing network conditions. It is

more general than QoS routing in the sense that
traffic engineering typically aims at maximizing

operational network efficiency while meeting cer-

tain constraints, whereas the main objective in QoS

routing is to meet certain QoS constraints for a

given source–destination traffic flow.

The emergence of multiprotocol label switch-

ing (MPLS) with its efficient support of explicit

*Corrersponding author.

E-mail addresses: anwar@lucent.com (A. Elwalid), cheng

jin@cs.caltech.edu (C. Jin), slow@caltech.edu (S. Low).

1389-1286/02/$ - see front matter � 2002 Published by Elsevier Science B.V.
PII: S1389-1286 (02 )00308-0

Computer Networks 40 (2002) 695–709

www.elsevier.com/locate/comnet

mail to: anwar@lucent.com


routing provides basic mechanisms for facilitating

traffic engineering [9]. Explicit routing allows a

particular packet stream to follow a pre-deter-

mined path rather than a path computed by hop-

by-hop destination-based routing such as OSPF

or IS–IS. With destination-based routing as in
traditional IP network, explicit routing may be

provided by attaching to each packet the network-

layer address of each node along the explicit path.

This approach generally incurs prohibitive over-

head. In MPLS, a path (known as a label switched

path or LSP) is identified by a concatenation of

labels which are stored in the nodes. As in tradi-

tional virtual-circuit packet switching, a packet is
forwarded along the LSP by swapping labels.

Thus, support of explicit routing in MPLS does

not entail additional packet header overhead.

In this paper, we propose a state-dependent

traffic engineering mechanism called multipath

adaptive traffic engineering (MATE). MATE as-

sumes that several explicit LSPs (typically ranges

from 2 to 5) between an ingress node and an egress
node in an MPLS domain have been established

using a standard protocol such as CR-LDP [6] or

RSVP-TE [2], or configured manually. This is a

typical setting which exists in an operational ISP

network that implements MPLS. The goal of the

ingress node is to distribute the traffic across the

LSPs so that the loads are balanced and congestion

is minimized. The traffic to be balanced by the in-
gress node is the aggregated flow (called traffic

trunk in [7]) that shares the same destination (and

possibly quality of service). Fig. 1 shows an example

of a network environment where there are two in-

gress nodes, AI and BI, and two egress nodes, AE

and BE, in an MPLS domain. MATE would be run

on AI and BI to balance traffic destined to AE and

BE, respectively, across the LSPs connecting AI to

AE and BI to BE. Note that the LSPs connecting

the two pairs may share links. In the following, we

will derive adaptive MATE algorithms, discuss

their implementation, and present simulation re-

sults to illustrate their performance. We will prove
that it is possible to achieve stability even when

ingress–egress (IE) pairs operate asynchronously

and in a distributed manner.

We now comment on related work. Several

researchers have proposed to add traffic engi-

neering capabilities in traditional datagram net-

works using shortest path algorithms (e.g., see

[5,10]). Although such schemes have been shown
to improve the efficiency of the network, they

suffer from several limitations including:

• load sharing cannot be accomplished among
paths of different costs,

• traffic of different QoS classes follow the same
route,

• traffic/policy constraints (for example, avoiding
certain links for particular source–destination

traffic) are not taken into account,

• modifications of link metrics to re-adjust traffic
mapping tend to have network-wide effects and

may cause undesirable and unanticipated traffic

shifts, and

• traffic demands must be predictable and known
a priori.

The combination of MPLS technology and its

traffic engineering capabilities are expected to

overcome these limitations. Explicit LSPs and

flexible traffic assignment address the first two

limitations. Constraint-based routing has been

proposed to address the third limitation. Further-

more, network-wide effects can be prevented since
LSPs can be pinned down. A change in LSP route

limits the disturbance of the traffic for the corres-

ponding source–destination pair. The objective of

this paper is to address the final limitation.

In MPLS, traffic engineering mechanisms may

be time dependent or state dependent. In a time-

dependent mechanism, historical information based

on seasonal variations in traffic is used to pre-
program LSP layout and traffic assignment. Addi-

tionally, customer subscription or traffic projectionFig. 1. A transit network running MATE.

696 A. Elwalid et al. / Computer Networks 40 (2002) 695–709



may be used. Pre-programmed LSP layout typi-

cally changes on a relatively long time scale (e.g.,

diurnal). Time-dependent mechanisms do not

adapt to unpredictable traffic variations or chang-

ing network conditions. An example of a time-

dependent mechanism is a global centralized
optimizer where the input to the system is a traffic

matrix and multiclass QoS requirements as de-

scribed in [8].

When there are appreciable variations in actual

traffic that could not be predicted using historical

information, a time-dependent mechanismmay not

be able to prevent significant imbalance in loading

and congestion. In such a situation, a state-depen-
dent mechanism can be used to deal with adaptive

traffic assignment to the established LSPs accord-

ing to the current state of the network whichmay be

based on utilization, packet delay, packet loss, etc.

In this paper, we assume that LSP layout has been

determined. The focus is on load balancing traffic

among multiple LSPs between an ingress node and

an egress node.
The rest of the paper is organized as follows.

Section 2 details the overall MATE scheme and

discusses several implementation techniques, such

as traffic filtering and distribution, traffic measure-

ment, bootstrapping, etc. Section 3 presents an

analytical model of MATE and proves its stabi-

lity and optimality. Section 4 describes an experi-

mental setup to verify the effectiveness of the
proposed scheme. Section 5 presents the simula-

tion results that illustrate the behavior of the al-

gorithm in different environments. Conclusions are

given in Section 6. Analytical proofs are collected

in the Appendix A.

2. MATE algorithms and implementation tech-
niques

2.1. Overview

The basic idea of MATE is as follows. The in-

gress node of each LSP periodically sends probe

packets to estimate a congestion measure on the

forward LSP from ingree to egress. The congestion
measure can be delay, loss rate, or other perfor-

mance metrics; see below for measurement details.

Each ingress node then routes incoming traffic

onto multiple paths to its egress node in a way that

equalizes the marginal congestion measure (their

derivatives). That is, traffic will be shifted from

LSPs with higher marginals to LSPs with lower

marginals. In equilibrium all LSPs that carry any
flow will have minimum and equal marginals. As

will be shown in the next section, equalizing the

marginal measure minimizes the total congestion

measure of the entire MPLS network.

Fig. 2 shows a functional block diagram of

MATE located at an ingress node. Incoming traffic

enters into a filtering and distribution function

whose objective is to facilitate traffic shifting
among the LSPs in a way that reduces the possi-

bilities of having packets arrive at the destination

out of order. The mechanism does not need to

know the statistics of the traffic demands or flow

state information. The traffic engineering function

decides when and how to shift traffic among the

LSPs. This is done based on LSP statistics which

are obtained from the measurement and analysis

function.

MATE operates in two phases: a monitoring

phase and a load balancing phase. In the moni-

toring phase, probe packets are sent periodically,

and congestion measure on the LSPs and their

derivatives are estimated. If an appreciable and

persistent change in the network state is detected,

transition is made to the load balancing phase. In
the load balancing phase, the algorithm continues

to monitor congestion measures on the LSPs and

tries to equalize their marginals. Once the mea-

sures are approximately equalized, the algorithm

transits to the monitoring phase and the whole

process repeats.

Fig. 2. MATE functions in an ingress node.

A. Elwalid et al. / Computer Networks 40 (2002) 695–709 697



One-way LSP statistics (congestion measure)

such as packet delay and packet loss are measured

by transmitting probe packets periodically to the

egress node which returns them back to the ingress

node. Probing may be done per class, i.e., probe

packets have the same type of service header in-
formation as the traffic class being engineered.

Based on the information in the returning probe

packets, the ingress node is able to compute the

one-way LSP statistics. Estimators of LSP sta-

tistics from the probes are obtained reliably and

efficiently using bootstrap resampling techniques

(see below). Recent measurements in the Internet

indicate little variations of aggregate traffic on
links in 5-min intervals [12]. This quasi-stationa-

rity condition where traffic statistics change rela-

tively slowly (much longer than the round-trip

delay between the ingress and egress nodes) faci-

litates traffic engineering and load balancing based

on measurement of LSP statistics.

The derivative can be derived by measuring

these statistics at different loads. Specifically, the
ingress node varies the traffic on each LSP slightly,

measure the statistics before and after the varia-

tion, and use the scaled difference as an estimate

of marginal congestion measure. For example, let

DsðxsÞ be the delay on LSP s when xs amount

of traffic is routed on the LSP, and let Dsðxs þ �Þ
be the new delay when an amount � of traffic is
added to the LSP. Then the marginal delay D0

sðxsÞ
is estimated as ðDsðxs þ �Þ � DsðxsÞÞ=�. Note that
fixed propagation delay has no effect on the de-

rivative.

Some of the features of MATE include:

• distributed adaptive load-balancing algorithm,
• end-to-end control between ingress and egress
nodes,

• no new hardware or protocol requirement in
intermediate nodes,

• no knowledge of traffic demand is required,
• no assumption on the scheduling or buffer man-
agement schemes at a node,

• optimization decision based on path congestion
measure,

• minimal packet reordering, and
• no clock synchronization between two nodes
(see Section 2.3).

2.2. Traffic filtering and distribution

The traffic filtering and distribution function

first distributes the engineered traffic for a given IE

pair equally among N bins, where the number of
bins determines the minimum amount of the traffic

that can be shifted. If the total incoming traffic to

be engineered is of rate R bps, each bin would

receive an amount of r ¼ R=N bps. Then, the

traffic from the N bins is mapped into theM LSPs

according to the MATE algorithm described in

Section 2.1.

The engineered traffic can be filtered and dis-
tributed into the N bins in a number of ways. A

simple method is to distribute the traffic on a per-

packet basis without filtering. For example, one

may distribute incoming packets at the ingress

node to the bins in a round-robin fashion. Al-

though it does not have to maintain any per-flow

state, the method suffers from potentially having

to reorder an excessive number of packets for a
given flow. On the other extreme, one may filter

the traffic on a per-flow basis (e.g., based on

<source IP address, source port, destination IP
address, destination port, IP protocol> tuple), and
distribute the flows to the bins such that the loads

are similar. Although per-flow traffic filtering and

distribution preserves packet sequencing, this ap-

proach has to maintain a large number of states to
keep track of each active flow.

MATE filters the incoming packets using a hash

function on the IP field(s). The fields can be based

on the source and destination address pair, or

other combinations. A typical hash function is

based on cyclic redundancy check (CRC). The

purpose of the hash function is to randomize the

address space to prevent hot spots. Traffic can be
distributed into the N bins by applying a modulo-

N operation on the hash space. Note that packet

sequence for each flow is maintained with this

method.

After the engineered traffic is distributed into

the N bins, a second function maps each bin to the

corresponding LSP according to the MATE al-

gorithm. The rule for the second function is very
simple. If LSP i is to receive twice as much traffic

as LSP j, then LSP i should receive traffic from

twice as many bins as LSP j. The value N should

698 A. Elwalid et al. / Computer Networks 40 (2002) 695–709



be chosen so that the smallest amount of traffic

that can be shifted, which is equal to 1=N of the
total incoming traffic, has a reasonable granular-

ity.

2.3. Traffic measurement and analysis

MATE does not require each node to perform

traffic measurement. Only the ingress and egress

nodes are required to participate in the measure-

ment process.

Our experience suggests that packet delay is a

metric that can be reliably measured. The delay of

a packet on an LSP can be obtained by transmit-
ting a probe packet from the ingress node to the

egress node. The probe packet is time-stamped at

the ingress node at time T1 and recorded at the

egress node at time T2. If the ingress� clock is faster
than the egress� clock by Td, then the total packet
delay (i.e, queueing time, propagation time, and

processing time) is T2 � T1 þ Td. A group of probe
packets sent one at a time on an LSP can easily
yield an estimate of the mean packet delay

E½T2 � T1� þ Td. The reliability of the estimator can
be evaluated by bootstrapping (see details below)

to give the confidence interval for the mean delay.

An important point to note is that, since we use

only marginal delay, the value of Td is not re-

quired. Therefore, clock synchronization is not

necessary.
Packet loss probability is another metric that

can be estimated by a group of probe packets. In

general, only reasonably high packet loss rates can

be reliably observed. Packet loss probability can be

estimated by encoding a sequence number in the

probe packet to notify the egress node how many

probe packets have been transmitted by the ingress

node, and another field in the probe packet to
indicate how many probe packets have been re-

ceived by the egress node. When a probe packet

returns, the ingress node is able to estimate the

one-way packet loss probability based on the

number of probe packets that has been transmitted

and the number that has been received. The ad-

vantage of this approach is that it is resilient to

losses in the reverse direction.
The bootstrap is a powerful technique for as-

sessing the accuracy of a parameter estimator in

situations where conventional techniques are not

valid [14]. Most other techniques for computing

the variance of parameter estimators or for setting

confidence intervals for the true parameter assume

that the size of the available set of sample values is

sufficiently large, so that asymptotic results (cen-
tral limit theorem) can be applied. However, in

many situations the sample size is necessarily

limited, such is the case in traffic engineering

mechanisms like MATE, where the probe packet

load should not consume significant network re-

sources. In MATE, we use the bootstrap to obtain

reliable estimates of the congestion measures of the

mean delay and cell loss rate from a given set of
measurements obtained via the probe packets. By

selecting a desirable confidence interval, we get a

dynamic way of specifying the number of obser-

vations needed. This provides a built-in reliability

estimator which automatically selects the required

number of probe packets to send. We have found

this quite useful in our implementations, in com-

parison with schemes where the number of probe
packets is set in an ad hoc manner, and the number

of probes may be too small or too large. The fol-

lowing is a basic procedure for computing a con-

fidence interval:

• Step 0: Suppose the original sample is X ¼
fx1; x2; . . . ; xmg.

• Step 1: Draw a random sample of m values,
with replacement, from X. This produces the

bootstrap resample Y.

• Step 2: Calculate the mean for Y (say, l1).
• Step 3: Repeat steps 1 and 2 a large number of

times to obtain n bootstrap estimates l1; l2;
. . . ; ln.

• Step 4: Sort the bootstrap estimates into in-

creasing order lð1Þ; . . . ; lðnÞ.
• Step 5: The desired ð1� aÞ100% bootstrap confi-
dence interval for the mean is (lðq1Þ, lðq2ÞÞ,
where q1 ¼ ðna=2Þ and q2 ¼ n� q1 þ 1.

3. MATE stability

In this section we present an analytical model
of MATE and prove their stability and optima-

lity.

A. Elwalid et al. / Computer Networks 40 (2002) 695–709 699



3.1. Model

We model a MATE network by a set L of

unidirectional links. It is shared by a set S of IE

node pairs, indexed 1; 2; . . . ; S. Each of these IE
pairs s has a set Ps � 2L of LSPs available to it.
Note that, by definition, no two (distinct) IE pair

uses the same LSP, even though some of their

LSPs may share links. Hence Ps are disjoint sets.

An IE pair s has a total input traffic of rate rs
and routes xsp amount of it on LSP p 2 Ps such
thatX
p2Ps

xsp ¼ rs; 8 s:

Let xs ¼ ðxsp, p 2 PsÞ be the rate vector of s, and let
x ¼ ðxsp, p 2 Ps, s 2 SÞ the vector of all rates. The
flow on a link l 2 L has a rate that is the sum of
source rates on all LSPs that traverse link l:

xl ¼
X
s2S

X
l2p;p2Ps

xsp:

Associated with each link l is a cost ClðxlÞ as a
function of the link flow xl. We assume that, for all
l, Clð�Þ is convex (and hence continuous).
Our objective is to minimize the total cost

CðxÞ ¼
P

l ClðxlÞ by optimally routing the traffics
on LSPs in

S
s Ps:

min
x

CðxÞ ¼
X
l

ClðxlÞ ð1Þ

subject to
X
p2Ps

xsp ¼ rs; 8 s 2 S; ð2Þ

xsp P 0; 8p 2 Ps; s 2 S: ð3Þ

A vector x is called a feasible rate if it satisfies (2)

and (3). A feasible rate x is called optimal if it is a
minimizer to the problem (1)–(3).

As observed in [4, Chapter 5], the derivative of

the objective function with respect to xsp is

oC
oxsp

ðxÞ ¼
X
l2p

C0
lðxlÞ:

We will interpret C0
lðxlÞ as the first derivative

length of link l, and oC=oxspðxÞ as the (first deri-
vative) length of LSP p.

The following characterization of optimal rate is

a direct consequence of the Kuhn–Tucker theorem

(see also [4, Chapter 5]). It says that at optimality

a pair splits its traffic only among LSPs that have

the minimum (and hence equal) first derivative

lengths.

Theorem 1. The rate vector x� is optimal if and only
if, for each pair s, all LSPs p 2 Ps with positive
flows have minimum (and equal) first derivative
lengths.

3.2. Asynchronous algorithm

A standard technique to solve the constrained

optimization problem (1)–(3) is the gradient pro-
jection algorithm. In such an algorithm routing is

iteratively adjusted in opposite direction of the

gradient and projected onto the feasible space de-

fined by (2) and (3). Each iteration of the algo-

rithm takes the form

xðt þ 1Þ ¼ ½xðtÞ � crCðtÞ�þ;
where c > 0 is a stepsize and should be chosen
sufficiently small, rCðtÞ is a vector whose ðs; pÞth
element is the first derivative length ½rCðtÞ�sp ¼
oC=oxsp of LSP p at time t, and ½z�þ is the projec-
tion of a vector z onto the feasible space. The al-
gorithm terminates when there is no appreciable

change, i.e., jjxðt þ 1Þ � xðtÞjj < � for some prede-
fined �.
Note that the above iteration can be distribu-

tively carried out by each pair s without the need
to coordinate with other pairs:

xsðt þ 1Þ ¼ ½xsðtÞ � crCsðtÞ�þ; ð4Þ

where xsðtÞ ¼ ðxspðtÞ; p 2 PsÞ is rate vector of s at
time t, and rCsðtÞ ¼ ðoC=oxspðxðtÞÞ; p 2 PsÞ is the
vector of first derivative lengths of LSPs in Ps.
However (4) is not realistic, for two reasons.

First (4) assumes all updates are synchronized.

Second it assumes zero feedback delay. Specifically

(4) assumes that as soon as the IE pairs have cal-

culated a new rate vector xðtÞ, it is reflected im-
mediately in all the link flows:

xlðtÞ ¼
X
s

X
l2p; p2Ps

xspðtÞ ð5Þ

and in all the first derivative lengths:

700 A. Elwalid et al. / Computer Networks 40 (2002) 695–709



oC
oxsp

ðxðtÞÞ ¼
X
l2p

C0
lðxlðtÞÞ: ð6Þ

Moreover all pairs s have available these new
values in rCsðtÞ for computation of the rate vector
in the next period. In practice the IE pairs update

their rates asynchronously and in an uncoordi-

nated manner. Moreover the first derivative length

of a LSP can only be estimated empirically by

averaging several measurements over a period of

time. We now extend the model to take these

factors into account.

Let Ts � f1; 2; . . . ; g be a set of times at which
IE pair s adjusts its rate based on its current
knowledge of the (first derivative) lengths of LSPs

p 2 Ps. At a time t 2 Ts, s calculates a new rate
vector

xsðt þ 1Þ ¼ ½xsðtÞ � cksðtÞ�þ ð7Þ

and, starting from time t þ 1, splits its traffic rs
along its LSPs in Ps according to xsðt þ 1Þ until
after the next update time in Ts. Here ksðtÞ is an
estimate of the first derivative length vector at time

t, and is calculated as follows.
The new rates calculated by the IE pairs may be

reflected in the link flows after certain delays. We

model this by (cf. (5))

x̂xlðtÞ ¼
Xt

t0¼t�t0

X
s

X
l2p; p2Ps

alspðt0; tÞxspðt0Þ; ð8Þ

Xt

t0¼t�t0

alspðt0; tÞ ¼ 1; 8 t; 8 l; s; p 2 Ps: ð9Þ

In the above x̂xlðtÞ represents the flow rate available
at link l at time t and is an weighted average
(convex sum) of past source rates xspðt0Þ. The
weights alspðt0; tÞ depend on ðl; s; p; tÞ and can be
different between each source s and link l, on dif-
ferent LSPs p, and at different times t. This model
is very general and includes in particular the fol-

lowing two popular types:

• Latest data only: only the latest rate xspðsÞ, for
some (typically unknown) s 2 ft � t0; . . . ; tg, is
used in the measurement of x̂xlðtÞ, i.e.,
alspðt0; tÞ ¼ 1 if t0 ¼ s and 0 otherwise.

• Latest average: only the average over the latest
k rates is used in the measurement of x̂xlðtÞ,
i.e., alspðt0; tÞ > 0 for t0 ¼ s � k þ 1; . . . ; s and 0
otherwise, for some (typically unknown) s 2
ft � t0; . . . ; tg.

An IE pair s estimates the first derivative length
of an LSP p 2 Ps by asynchronously collecting a
certain number of measurements (using probe

packets, see below), and forming their mean.

Hence (cf. (6))

kspðtÞ ¼
Xt

t0¼t�t0

X
l2p

blspðt0; tÞC0
lðx̂xlðt0ÞÞ; ð10Þ

Xt

t0¼t�t0

blspðt0; tÞ ¼ 1; 8 t; 8 l; s; p 2 Ps: ð11Þ

Again the estimate is obtained by �averaging� over
the past values of LSP lengths, and can depend on

ðl; s; p; tÞ. The model is very general and include
the special cases of using only the last received

measurement or the average over the last k values,
as discussed above. The interpretation in both

cases is that the measurements
P

l2p C
0
lðx̂xlðt0ÞÞ for

t0 > s have not been received by s by time t, and
the measurements for t0 < s (latest data only) or
for t0 6 s � k (latest average) have been discarded.
This concludes the description of our algorithm

model (Eqs. (7)–(11)). The model is similar to that

in [13], with two differences. First their model

distinguishes between the desired rate xðtÞ as cal-
culated by the projection algorithm and the actual
realized source rate x̂xðtÞ. The actual rate x̂xðtÞ is a
convex combination of the current desired rate xðtÞ
and the previous actual rate x̂xðt � 1Þ. This models
the fact that a desired rate xðtÞ may not be realized
immediately, as in a virtual circuit network where

virtual circuits may persist over several update

cycles. We are however only dealing with IP data-

grams and hence it is reasonable to assume that
each ingress node can shift its traffic among the

LSPs available to it immediately after each update.

Second their model assumes that, at time t, each s
has available the current first derivative lengthsP

l2p C
0ðx̂xlðtÞÞ and uses it in place of the gradient in

the update algorithm. We however assume that, at

time t, s may only have outdated first derivative

A. Elwalid et al. / Computer Networks 40 (2002) 695–709 701



lengths (see (10) and (11)); moreover s uses a
weighted average over several past lengths in the

update algorithm. This is because, in our case, s
can only estimate the first derivative lengths

through noisy measurement. Despite these differ-

ences, stability can be established using the same
techniques.

The next result states that the algorithm con-

verges to an optimal routing, provided the fol-

lowing conditions are satisfied:

C1 The cost functions ClðzÞ are twice continu-
ously differentiable and convex.

C2 Their derivatives C0
lðzÞ are Lipschitz over any

bounded sets, i.e., for any bounded set Bl �
R there exists a constant cl such that for all
z; z0 2 Bl, we have jC0

lðzÞ � C0
lðz0Þj6 cljz� z0j.

C3 For any constant c the sets fzjClðzÞ6 cg are
bounded.

C4 The time interval between updates is bounded.

Theorem 2. Under conditions C1–C4, starting from
any initial vector xð0Þ, there exists a sufficiently
small stepsize c such that any accumulation point of
the sequence fxðtÞg generated by the asynchronous
algorithm is optimal.

A more careful accounting shows that the

stepsize c, and hence the speed of convergence,
depends on the degree of asynchronism as ex-
pressed by the parameter t0 defined in (8), the
�steepness� of the cost function as expressed by the
Lipschitz constant in condition C2, and the size of

the network. For ease of exposition, suppose the

cost functions are uniformly globally Lipschitz,

i.e., for all links l and all z, z0, we have

jC0
lðzÞ � C0

lðz0Þj6 Ljz� z0j:

Theorem 3. An upper bound in Theorem 2 is

c <
1

Lð1þ phkð2t0 þ 1ÞÞ
;

where p is the total number of LSPs in the network,
h is the number of hops in the longest (maximum-
hop) LSP, k is the maximum number of LSPs going
through a link, and t0, defined in (8), measures the
degree of asynchronism.

The theorem suggests that the larger the degree

of asynchronism measured by t0, the smaller the
stepsize (required for convergence) and hence

slower the convergence.

4. Experimental methodology

In this section, we use simulations to evaluate

the effectiveness of MATE. We concentrate on two

network topologies: one with a single IE pair

connected by multiple LSPs, and the other with

multiple IE pairs where some links are shared

among the LSPs from different pairs, as shown in
Figs. 3 and 4. All links are identical so that the

LSPs have the same bottleneck link bandwidth.

Note that in the latter case, there is a considerable

interaction between the pairs.

We wrote a packet level discrete-event simula-

tor, which supports entities such as packet queues,

switched LSPs, network connections. We consider

Fig. 3. Experiment network topology 1.

Fig. 4. Experiment network topology 2.

702 A. Elwalid et al. / Computer Networks 40 (2002) 695–709



networking environments where the traffic condi-

tions vary due to changes in network load (link

utilization), for example, due to ‘‘rush hour’’

conditions, or some LSP failures, and traffic varia-

tions due to correlations and dependencies. We

have two types of traffic in our simulator: engi-
neered traffic and cross-traffic. The engineered

traffic is the traffic that needs to be balanced, and

the cross-traffic is the background traffic that we

have no control over such as traffic on short-lived

connections. We assign a lifetime to each traffic

source so we are able to simulate the dynamic

behavior of a network by switching on and off

cross-traffic sources. We consider a traffic model
which exhibits short-range dependencies, such as

Poisson, and another model which can be tuned to

approximate long range dependence. For the latter

we use the DAR(p) process (discrete autoregressive
process of order p) [11]. The parameter p deter-
mines the time-scale over which traffic dependency

and correlation are exhibited. If p is 1, the pro-
cess is a standard Markov process. In our experi-
ments we set p to a value of 10; this leads to a
substantial degree of correlation in the generated

traces.

In each of our simulations, the engineered

traffic for each pair flows from the ingress node to

the egress node. The cross-traffic enters at the in-

termediate node and exits at egress node(s). We

consider two implementations of the basic algo-
rithm. In the first one, a small random delay is

introduced before the algorithm moves from the

monitoring phase to traffic engineering phase upon

detection of change in traffic conditions. This dam-

ping mechanism reduces synchronization among

multiple ingress nodes. In the second implemen-

tation, there is a coordination among the ingress

nodes so that only one ingress node at a time en-
ters the traffic engineering phase. This obviously

requires a special coordination protocol. We omit

the details in this paper.

5. Simulation results

In this section, we present simulation results
that illustrate the convergence properties of

MATE.

First we present two sets of results for the single

IE pair. Figs. 5 and 6 show the results of an ex-

periment with Poisson traffic on the network in

Fig. 3. Initially, all of the engineered traffic streams

are routed on one of the LSPs, and cross-traffic
enter the network at the intermediate nodes con-

necting the ingress and egress nodes. We have an

unbalanced situation with one heavily congested

LSP and five lightly loaded LSPs. As shown in the

plot, the algorithm is able to successfully reduce

the engineered traffic from the overloaded link and

distribute them to the under-utilized links. The loss

curve shows clearly that the loss rate on the first

Fig. 5. Offered load under Poisson traffic for network topology

1.

Fig. 6. Loss under Poisson traffic for network topology 1.

A. Elwalid et al. / Computer Networks 40 (2002) 695–709 703



LSP dropped from 40% to a value that is too small

to observe. The loss rates on the other LSPs are

maintained at negligible levels throughout the

simulation. The final traffic distribution converges

to a steady state, where utilizations are very close

on all LSPs. We observe similar behavior in Figs. 7
and 8 where the Poisson streams are replaced with

DAR traffic streams. The probe traffic required in

each phase of the algorithm is around 0.5% of the

engineered traffic.

Figs. 9–12 show the simulation scenario for Fig.

4 under the two implementations mentioned ear-

lier. Again the engineered traffic streams travel

Fig. 7. Offered load under DAR traffic for network topology 1.

Fig. 8. Loss under DAR traffic for network topology 1.

Fig. 9. Offered load under Poisson traffic for network topology

2.

Fig. 10. Loss under Poisson traffic for network topology 2.

Fig. 11. Offered load under Poisson traffic with coordination

for network topology 2.

704 A. Elwalid et al. / Computer Networks 40 (2002) 695–709



from the ingress node to the egress node, and the

cross-traffic enters through the intermediate nodes

and exit at the egress nodes. The cross-traffic dy-

namics are shown in Fig. 13. There is a decrease in

cross-traffic on link 3 right before 2000 s and a
increase in cross-traffic on link 2 around 3600 s. In

order to balance traffic, the algorithms must shift

traffic into link 3 and possibly out of link 2. Both

implementations essentially achieve the same per-

formance, where utilizations and loss rates on

three LSPs are comparable. Figs. 14 and 15 show

the same simulation with DAR traffic instead of

Poisson traffic where coordination among ingress
node is used.

6. Conclusion

Our focus on this paper is to apply adaptive

traffic engineering to utilize network resource more

efficiently and minimize congestion. We have

proposed a class of algorithms called MATE,
which tries to achieve these objectives using mini-

mal assumptions through a combination of tech-

niques such as bootstrap probe packets, which

control the amount of extra traffic, and marginal

delays that are easily measurable and do not re-

quire clock synchronization. Further, we prove the

stability and optimality of MATE. Our simula-

tion results show that MATE can effectively re-
move traffic imbalances among available LSPs. We

observe that, in many cases, high packet loss rates

Fig. 12. Loss under Poisson traffic with coordination for net-

work topology 2.

Fig. 13. Cross-traffic for network topology 2.

Fig. 14. Offered load under DAR traffic with coordination for

network topology 2.

Fig. 15. Loss under DAR traffic with coordination for network

topology 2.

A. Elwalid et al. / Computer Networks 40 (2002) 695–709 705



can be significantly reduced by properly shifting

some traffic to less loaded LSPs. This should

benefit many applications such as TCP. For future

work we will consider more realistic networking

environments and examine the impact of MATE

on the application level.

Appendix A

Proof of Theorem 1. Since the cost function is convex the first order optimality condition is both necessary

and sufficient: x� is optimal if and only if x� is feasible and there exist constants ns such that for all ðs; pÞ
oC
oxsp

ðx�Þ ¼
X
l2p

C0
lðx�

lÞP ns ðA:1Þ

with equality if x�sp > 0. Hence all LSPs p 2 Ps with x�sp > 0 have their first derivative lengths equal to ns. �

Proof of Theorem 2. Its proof is adapted from that in [13]. Let zðtÞ ¼ xðt þ 1Þ � xðtÞ. Using a first order
Taylor expansion for C we have for some rate vector yðtÞ 1

Cðxðt þ 1ÞÞ ¼ CðxðtÞÞ þ rCðxðtÞÞzðtÞ þ 1
2
zðtÞr2CðyðtÞÞzðtÞ

6CðxðtÞÞ þ kðtÞzðtÞ þ jjrCðxðtÞÞ � kðtÞjj � jjzðtÞjj þ A1jjzðtÞjj2; ðA:2Þ

where kðtÞ ¼ ðksðtÞ; s 2 SÞ and the constant A1 depends on the initial vector xð0Þ. We next show that

kðtÞzðtÞ6 � 1
c
jjzðtÞjj2; ðA:3Þ

jjrCðxðtÞÞ � kðtÞjj � jjzðtÞjj6A2
Xt

t0¼t�2t0

jjzðt0Þjj2 ðA:4Þ

for some constant A2 that depends on xð0Þ.
First, note that (A.3) holds if the following holds for all s:

ksðtÞzsðtÞ6 � 1
c
jjzsðtÞjj2: ðA:5Þ

For t 62 Ts (A.5) trivially holds. For t 2 Ts apply the projection theorem [3] to (7) to obtain

ðxðtÞ � ckðtÞ � xðt þ 1ÞÞðxðtÞ � xðt þ 1ÞÞ6 0:
Rearranging terms yields (A.5).

To show (A.4) note that since all norms in Rn are equivalent there exist constants A3 and A4 such that

jjrCðtÞ � kðtÞjj26A3 max
s
max
p2Ps

oC
oxsp

ðxðtÞÞ
���� � kspðtÞ

����
6A3 max

s
max
p2Ps

X
l2p

C0
lðxlðtÞÞ

�� �
Xt

t0¼t�t0

blspðt0; tÞC0
lðx̂xlðt0ÞÞ

������ ðA:6Þ

6A4 max
s
max
p2Ps
max
l2p

max
t�t0 6 t0 6 t

C0
lðxlðtÞÞ

��� � C0
lðx̂xlðt0ÞÞ

���
¼ A4 max

l2L
max

t�t0 6 t0 6 t
C0

lðxlðtÞÞ
��� � C0

lðx̂xlðt0ÞÞ
���: ðA:7Þ

1 For simplicity we write xy instead of the more correct notation xTy for the inner product of two vectors x and y. We usually use
jjxjj to denote the Euclidean norm, but sometimes jjxjj2 for emphasis.

706 A. Elwalid et al. / Computer Networks 40 (2002) 695–709



Let B :¼ fxjCðxÞ6Cðxð0ÞÞg and Bl :¼ ff jf ¼
P

s

P
l2p;p2Ps xsp, for some x 2 Bg. In words, B is the set of

rate vectors x at which the total cost CðxÞ is no greater than the initial cost. As will be seen, provided the
stepsize c is sufficiently small, CðxðtÞÞ6Cðxð0ÞÞ for all t (see (A.11)). That is, B is the set of all possible rate
vectors given the initial xð0Þ. (This can be made more rigorous by induction.) Then Bl is the set of all

possible link flows on link l. By condition C2, we have for some constants A5, A6, A2

jjrCðtÞ � kðtÞjj26A5 max
l2L

max
t�t0 6 t0 6 t

xlðtÞ
��� � x̂xlðt0Þ

���

6A5 max
l2L

max
t�t0 6 t0 6 t

X
s

X
l2p;p2Ps

xspðtÞ

������ �
Xt0

t00 ¼t0�t0

alspðt00; t0Þxspðt00Þ

������ ðA:8Þ

6A6 max
s
max
p2Ps

max
t�t0 6 t0 6 t

max
t0�t0 6 t00 6 t0

xspðtÞ
�� � xspðt00Þ

�� ðA:9Þ

6A6 max
s
max
p2Ps

xspðtÞ
�� � xspðt � 1Þ

��þ � � � þ xspðt
�� � 2t0 þ 1Þ � xspðt � 2t0Þ

��

6A2
Xt�1

t0¼t�2t0

jjzðt0Þjj2 ðA:10Þ

Hence

jjrCðxðtÞÞ � kðtÞjj � jjzðtÞjj6A2
Xt�1

t0¼t�2t0

jjzðt0Þjj � jjzðtÞjj6A2
Xt

t0¼t�2t0

jjzðt0Þjj2

where the last inequality follows from the fact that the convex function
P

i yiy þ y2 �
P

i yiy attains its
minimum of zero over fyi; yjyi P 0; y P 0g at the origin. This completes the proof of (A.4).
Substituting (A.3) and (A.4) into (A.2) we have

Cðxðt þ 1ÞÞ6CðxðtÞÞ � 1

c

�
� A1

�
jjzðtÞjj2 þ A2

Xt

t0¼t�2t0

jjzðt0Þjj2:

Summing over all t we have

Cðxðt þ 1ÞÞ6Cðxð0ÞÞ � 1

c

�
� A1

�Xt

s¼0
jjzðsÞjj2 þ A2

Xt

s¼0

Xs

t0¼s�2t0

jjzðt0Þjj2

6Cðxð0ÞÞ � 1

c

�
� A1 � A2ð2t0 þ 1Þ

�Xt

s¼0
jjzðsÞjj2: ðA:11Þ

Choose c small enough such that 1=c � A1 � A2ð2t0 þ 1Þ > 0. Since xðtÞ is in a compact set and C is con-
tinuous, CðxðtÞÞ is lower bounded. Then since CðxðtÞÞ is bounded for all t we must have

P1
s¼0 jjzðsÞjj

2
< 1,

which implies

jjzðtÞjj ! 0 as t ! 1: ðA:12Þ

Substituting this into (A.10) we conclude that

kðtÞ ! rCðtÞ as t ! 1: ðA:13Þ

Let x� be an accumulation point of fxðtÞg. One exists since fxðtÞg is in a compact set. By (A.13) and the fact
that C is continuously differentiable we have

A. Elwalid et al. / Computer Networks 40 (2002) 695–709 707



References

[1] D. Awduche, A. Chui, A. Elwalid, I. Widjaja, X. Xiao,

Overview and Principles of Internet Traffic Engineering.

Available from Internet draft <draft-ietf-tewg-principles-

02.txt >, May 2001.

[2] D.O. Awduche et al., RSVP-TE: Extensions to RSVP for

LSP Tunnels, IETF RFC 3209, December 2001.

[3] D. Bertsekas, Nonlinear Programming, Athena Scientific,

1995.

[4] D. Bertsekas, R. Gallager, Data Networks, second ed.,

Prentice-Hall, Englewood Cliffs, NJ, 1992.

[5] B. Fortz, M. Thorup, Internet traffic engineering by

optimizing OSPF weights, in: Proceedings of INFO-

COM�2000, Tel-Aviv, Israel, March 2000.
[6] B. Jamoussi et al., Constraint-based LSP setup using LDP,

IETF RFC 3212, January 2002.

[7] T. Li, Y. Rekhter, Provider architecture for differentiated

services and traffic engineering (PASTE), RFC 2430,

October 1998.

[8] D. Mitra, K.G. Ramakrishnan, A case study of multiser-

vice, multipriority traffic engineering design for data net-

works, in: Proceedings of the Globecom�99, December 1999.
[9] E.C. Rosen, A. Viswanathanm, R. Callon, Multiprotocol

label switching architecture, IETF RFC 3031, January 2001.

[10] M.A. Rodrigues, K.G. Ramakrishnan, Optimal routing in

shortest-path networks, ITS �94, Rio de Genero, Brazil.
[11] B.K. Ryu, A. Elwalid, The importance of long-range de-

pendence of VBR video traffic in ATM traffic engineering,

in: Proceedings of SIGCOMM�96, August 1996, pp. 3–14.
[12] K. Thompson, G.J. Miller, R. Wilder, Wide-area internet

traffic patterns and characteristics, IEEE Networks 6 (6)

(1997).

[13] J.N. Tsitsiklis, D.P. Bertsekas, Distributed asynchronous

optimal routing in data networks, IEEE Transactions on

Automatic Control 31 (4) (1986) 325–332.

[14] A.M. Zoubir, B. Boashash, The bootstrap and its appli-

cations in signal processing, IEEE Signal Processing

Magazine 15 (1) (1998) 56–76.

kðtÞ ! lim
t!1

rCðtÞ ¼ rCðx�Þ: ðA:14Þ

Since the time interval between updates is bounded, for any s, we can find a subsequence fxðtkÞ; tk 2 Tsg that
converges to x�, i.e., limk xðtkÞ ¼ x�. Applying again the projection theorem [4] to (7) we have for any
feasible xs

ðxsðtkÞ � cksðtkÞ � xsðtk þ 1ÞÞðxs � xsðtk þ 1ÞÞ6 0;
ðzsðtkÞ þ cksðtkÞÞðxs � xsðtk þ 1ÞÞP 0:

Taking k ! 1 we have by (A.12) and (A.14) that for any feasible xs,
rCsðx�s Þðxs � limk!1

xsðtk þ 1ÞÞP 0:

Since zðtÞ ¼ xðt þ 1Þ � xðtÞ ! 0 by (A.12), we have limk xsðtk þ 1Þ ¼ limk xsðtkÞ ¼ x�s , and hence

rCsðx�s Þðxs � x�s ÞP 0

for any feasible xs. Summing over all s, we have for any feasible x

rCðx�Þðx� x�ÞP 0

which, since C is convex, is necessary and sufficient for x� to be optimal. �

Proof of Theorem 3. Since the cost functions Cl are globally Lipschitz uniformly in l, the constant A1 in
(A.2) equals the Lipschitz constant L. For any n-tuple z, jjzjj26

ffiffiffi
n

p jjzjj1, and hence the constant A3 in (A.6)
is p. Similarly, since jjzjj16 njjzjj1, the constant A4 in (A.7) is ph. By Lipschitz continuity, the constant A5 in
(A.8) is A5 ¼ A4L ¼ phL, the constant A6 following is A6 ¼ A5k ¼ phLk. Finally, since jjzjj1 6 jjzjj2, we have
A2 ¼ A6 ¼ phLk in (A.11). Hence from (A.11) an upper bound for the stepsize c is

c <
1

A1 þ A2ð2t0 þ 1Þ
¼ 1

Lð1þ phkð2t0 þ 1ÞÞ
: �

708 A. Elwalid et al. / Computer Networks 40 (2002) 695–709

draft-ietf-tewg-principles-02.txt
draft-ietf-tewg-principles-02.txt


Anwar Elwalid is with Bell Labs, Lu-
cent Technologies, where he is a
DMTS (Distinguished Member of
Technical Staff). He received the BS
degree in Electrical Engineering from
Polytechnic Institute of New York,
Brooklyn, and the Ph.D. degree in
Electrical Engineering from Columbia
University, New York. Since 1991 he
has been with the Mathematics of
Networks and Systems Research De-
partment at Bell Labs, Murray Hill,
New Jersey, where he developed the-
ory and algorithms for network re-

source management and QoS support, and for the analysis and
engineering of multimedia traffic. He holds several patents. His
current research interests include IP and optical network ar-
chitectures, traffic engineering and stochastic systems. He has
been active in the Traffic Engineering and MPLS Working
Groups of the IETF, and co-authored Internet Drafts and
RFCs. He received best paper award from the ACM and IFIP.
He has been a guest editor of the IEEE Journal on Selected Area
in Communications, and served on the executive and technical
program committees of several conferences. Dr. Elwalid is se-
nior member of IEEE, and member of Tau Beta Pi (National
Engineering Honor Society) and Sigma Xi.

Cheng Jin is a Ph.D. candidate in the
Department of EECS at the University
of Michigan. He received his B.Sc.
in Electrical Engineering from Case
Western Reserve University in 1996.
His current area of research includes
the placement of servers of various
services inside a network and the
modeling of Internet topology. He is
a co-developer of the Inet topology
generator.

Steven H. Low received his B.S. degree
from Cornell University and Ph.D.
from the University of California,
Berkeley, both in electrical engineer-
ing. He was with AT&T Bell Labora-
tories, Murray Hill, from 1992 to 1996,
and was with the University of Mel-
bourne, Australia, from 1996 to 2000,
and is now an Associate Professor at
the California Institute of Technology,
Pasadena. He has held visiting aca-
demic positions in the US and Hong
Kong, and has consulted with com-
panies and government in the US and

Australia. He was a co-recipient of the IEEE William R. Ben-
nett Prize Paper Award in 1997 and the 1996 R&D 100 Award.
He is on the editorial board of IEEE/ACM Transactions on
Networking. He has been a guest editor of the IEEE Journal on
Selected Area in Communications, on the program committee of
several conferences. His research interests are in the control and
optimization of communications networks and protocols. His
home is netlab.caltech.edu.

Indra Widjaja received the Ph.D. de-
gree in Electrical Engineering from the
University of Toronto, Toronto, Can-
ada. From 1994 to 1997, he was an
Assistant Professor of the Electrical
and Computer Engineering Depart-
ment of the University of Arizona.
From 1997 to May 2001, he was with
Fujitsu Network Communications
where he was manager of systems en-
gineering. He joined Bell Labs Re-
search, Lucent Technologies, in May
2001. His research interests include
traffic engineering, high-speed switch-
ing, and optical networking.

A. Elwalid et al. / Computer Networks 40 (2002) 695–709 709

netlab.caltech.edu

	MATE: multipath adaptive traffic engineering
	Introduction
	MATE algorithms and implementation techniques
	Overview
	Traffic filtering and distribution
	Traffic measurement and analysis

	MATE stability
	Model
	Asynchronous algorithm

	Experimental methodology
	Simulation results
	Conclusion
	Appendix A
	References


