
ЛЕКПИЯ 9.

Спонтанные и вынужденные переходы. Лазеры.

При попадании света в вещество происходит обмен между фотонами входного светового пучка и

вынужденными переходами электронов среды.

Спектральная объёмная плотность излучения W_{ω} – var.

Закон сохранения энергии:
$$\frac{dW_{\omega}}{dt} = \hbar \omega B_{10} N_1 \cdot W_{\omega} - \hbar \omega B_{01} N_0 \cdot W_{\omega} = \hbar \omega B \cdot W_{\omega} \cdot (N_1 - N_0) \qquad (9.0)$$

Здесь $\mathbf{B_{10}} = \mathbf{B_{01}} = \mathbf{B}$ — коэффициенты Эйнштейна, характеризуют вероятности переходов: $\mathbf{c} \ 0 \to 1 \ \text{и} \ 1 \to 0$. Имеют размерность [1/c]

 N_1 и N_0 – концентрации атомов, у которых внешние электроны расположены на уровне 1 и 0

Спонтанные и вынужденные переходы:

- это вынужденный переход, т.к. возможен только под действием падающего излучения или какого-либо другого взаимодействия.

- может быть как спонтанным, так и вынужденным

Условие динамического равновесия Эйнштейна:
$$M_{10}^{(C)} + M_{10}^{(B)} = M_{01}^{(B)}$$
 (9.1)

Иными словами, в равновесной среде сумма спонтанных и вынужденных переходов вида $0 \to 1$ и $1 \to 0$ остаётся неизменной.

Здесь обозначено: $M_{10}^{(C)} = N_1 \cdot A_{10}$, A_{10} – коэффициент Эйнштейна, характеризующий вероятность спонтанного перехода

$$M_{_{10}}^{_{(B)}}=N_{_{1}}\cdot B_{_{10}}\cdot W_{_{\varnothing}}$$
 и $M_{_{01}}^{_{(B)}}=N_{_{0}}\cdot B_{_{01}}\cdot W_{_{\varnothing}}$

Вынужденные переходы зависят от ВХОДНОЙ ПЛОТНОСТИ ИЗЛУЧЕНИЯ.

Соотношение (9.1) начинает иметь вид:

$$N_1 \cdot A_{10} + N_1 \cdot W_{\omega} \cdot B_{10} = N_0 \cdot W_{\omega} \cdot B_{01}$$
 (9.2)

В равновесном состоянии вещество подчиняется распределению Больцмана:

$$N_1 = A \cdot e^{-E_1/kT}$$
 и $N_0 = A \cdot e^{-E_0/kT}$; А – нормированная постоянная.

Подставляя в выражение (9.2), получаем:

$$A_{10} \cdot e^{-E_1/kT} + B_{10} \cdot e^{-E_1/kT} \cdot W_{\omega} = B_{01} \cdot e^{-E_0/kT} \cdot W_{\omega}$$
(9.3)

 ${\bf B_{10}}={\bf B_{01}}$, так как при T $ightarrow \infty$ из физических соображений очевидно, что $W_\omega
ightarrow \infty$. Если после этого разделить обе части выражения (9.3) на W_{ω} , то и получим: $B_{10} = B_{01}$.

Из (9.3) следует формула Эйнштейна для объёмной спектральной плотности излучения:

$$W_{\omega} = \frac{A_{10}}{B_{10}} \cdot \frac{1}{e^{\hbar \omega / kT} - 1}$$

Коэффициенты A_{10} и B_{10} находятся из соотношения: при $\hbar \omega << kT$ можно считать:

$$e^{\hbar\omega/kT} \approx 1 + \frac{\hbar\omega}{kT}$$

тогда
$$W_{\omega}=rac{A_{10}}{B_{10}}\cdotrac{kT}{\hbar\omega}=rac{\varpi^2\cdot kT}{\pi^2c^3}$$
 - это формула Рэлея-Джинса, отсюда $rac{A_{10}}{B_{10}}=rac{\hbar\omega^3}{\pi^2c^3}$

Окончательно получаем:

$$W_{\omega} = \frac{\hbar \omega^3}{\pi^2 c^3} \cdot \frac{1}{e^{\frac{\hbar \omega}{kT}} - 1}$$

Кроме этого в институте Басова и Прохорова было сделано ещё одно интересное наблюдение:

Кванты света, испущенные спонтанно, имеют случайные

НАПРАВЛЕНИЯ, ФАЗУ и ПОЛЯРИЗАЦИЮ.

НАПРАВЛЕНИЯ, ФАЗУ и ПОЛЯРИЗАЦИЮ.
В это же время кванты, испущенные под воздействием другого кванта, имеют совпадающие с ним НАПРАВЛЕНИЯ, ФАЗУ и ПОЛЯРИЗАЦИЮ.

Вернёмся к выражению (9.0). Обозначим: $\hat{\alpha} = \frac{\hbar \omega B(N_1 - N_0)}{v}$. Тогда уравнение имеет вид:

$$\frac{dW_{\omega}}{dt} = \hat{\alpha} \cdot W_{\omega} \cdot v$$
, где v – скорость света в данной среде.

Решение этого уравнения для ПЛОТНОСТИ ПОТОКА ЭНЕРГИИ имеет вид:

$$S(z) = S(0) \cdot e^{\hat{\alpha} \cdot z}$$
, $S = v \cdot W_{\infty}$

Или подставляя все коэффициенты: $S(z) = vW_{\omega}(0) \cdot \exp \left| \frac{\hbar \omega B(N_1 - N_0) \cdot z}{v} \right|$

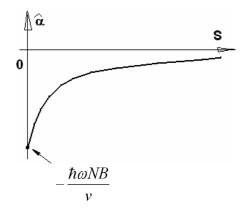
В равновесном состоянии имеет место: $E_1 \ge E_0$ и $N_1 \le N_0$, поэтому обязательно $\hat{\alpha} \le 0$!!!!

Из-за этого излучение будет затухать. Только если вещество будет в НЕРАВНОВЕСНОМ состоянии, то свет будет УСИЛИВАТЬСЯ!

Необходимое условие для усиления: $N_1 > N_0$

Рассмотрим воздействие светового пучка на концентрации атомов.

Пусть $N = N_1 + N_0$


Тогда изменение заселённости может быть представлено: $\frac{dN_1}{dz} = -W_{\omega}B(N_1 - N_0) - \frac{N_1}{\tau}$

Здесь $\frac{N_1}{\tau}$ учитывает частоту спонтанных переходов; τ - время жизни электрона на уровне 1.

Решение уравнения имеет вид: $N_1 = \frac{N}{2} \cdot \frac{1}{1 + \frac{v}{2\tau BS}}$

С учётом того, что при увеличении S заселённость верхнего уровня увеличивается, то

$$\hat{\alpha} = \frac{\hbar \omega B(N_1 - N_0)}{v} = \frac{\hbar \omega B(2N_1 - N)}{v} = -\frac{\hbar \omega NB}{v} \cdot \frac{1}{1 + \frac{2\tau BS}{v}}$$

При $S \to \infty$ поглощение света в среде прекращается, среда ПРОСВЕТЛЯЕТСЯ.

Наступает насыщение.

Техническое условие насыщения: $\frac{v}{2\tau BS} = 1$

И отсюда:
$$S_{nac} = \frac{v}{2\tau R}$$

НО ИНВЕРСНАЯ ЗАСЕЛЁННОСТЬ НЕ СОЗДАЁТСЯ!

Для коэффициентов Эйнштейна справедливы следующие соотношения:

$$A_{nm} = \frac{64\pi^4 v_{mm}^3}{3hc^3} \cdot \sum_{m,n} |p_{mn}|^2, \qquad B_{nm} = \frac{8\pi^2}{3h} \cdot \sum_{m,n} |p_{mn}|^2$$

$$p_{mn} = -e \cdot \int_{V} \psi_{m}^{*} \cdot \vec{r} \cdot \psi_{n} \cdot dV$$
 - матричный элемент дипольного момента,

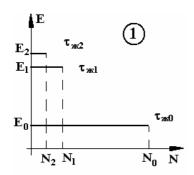
$$P_{mn} = \frac{16\pi^3}{h^2} \cdot \left| W_{mn}(\nu_{mn}) \right|^2$$
 - вероятность перехода электрона с $m \to n$ за единицу времени

 $\psi(x, y, z, t)$ – комплекснозначная волновая функция электрона (квантовой частицы),

 $\psi \cdot \psi^*$ - вероятность нахождения электрона в некоторой области.

$$A_{nm} = \frac{8\pi h \cdot v_{mn}^3}{c^3} \cdot \frac{g_m}{g_n} \cdot B_{mn}, \quad g_m, \ g_n - \text{статистические веса или степени вырождения соответст- }$$
 вующих уровней

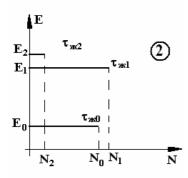
 $W_{\rm mn}$ – энергия возмущения, входит в выражение для полной энергии системы:


$$\frac{ih}{2\pi} \cdot \frac{\partial \psi}{\partial t} = H^{(0)}(x) \cdot \psi + W(x,t) \cdot \psi, \qquad W << H^{0}$$

 $H^0 - \Gamma$ амильтониан невозмущённой системы.

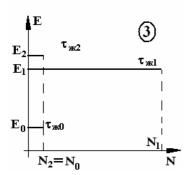
СОЗДАНИЕ ИНВЕРСНОЙ ЗАСЕЛЁННОСТИ (ИВ):

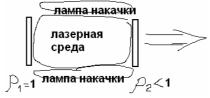
Этот физический эффект не зависит от усиливаемого света.


Наиболее простой путь создания ИВ: в 3-х уровневых атомных системах. Воздействие внешнего излучения приводит к переходу на уровень 2, минуя уровень 1. На рисунке показано развитие во времени процесса накопления концентрации атомов, имеющих электроны на метастабильном уровне.

$$au_{m2} << au_{m0}, \ au_{m1} \cong au_{m0}$$

K моменту прихода системы в состояние равновесия концентрации N_0 и N_2 выравниваются, а концентрация N_1 увеличивается.


Накачка требуется с частотой: $\omega_{\it pump} = \frac{E_2 - E_0}{\hbar}$, переход с уровня 2 на уровень 1, как правило, является безизлучательным.



Излучение возможно с частотой
$$\varpi_{laser} = \frac{E_{\rm l} - E_{\rm 0}}{\hbar}$$

МЕТАСТАБИЛЬНЫЙ УРОВЕНЬ — переход с него на стабильный уровень возможен только как вынужденный — из-за действия квантовых правил ОТБОРА.

ПРИНЦИПИАЛЬНАЯ СХЕМА ЛАЗЕРА:

Расстояние между зеркалами L

Лазерный ИФП должен быть настроен на ту же частоту, что и $\omega_{laser} = \frac{E_1 - E_0}{\hbar}$

За первый цикл прохождения вдоль резонатора изменение ПЛОТНОСТИ ПОТОКА ЭНЕРГИИ имеет вид:

$$S=S_0\cdot
ho_1
ho_2\cdot e^{2\hat{lpha}L}$$
 , или то же самое можно записать: $S=S_0\cdot e^{2\hat{lpha}L-2\,f}$ где $2f=-\ln(
ho_1
ho_2)$ — порог лазерной генерации

Условие стационарной лазерной генерации: $\hat{\alpha} \cdot L = f$

Влияние добротности лазерного резонатора:

Добротность =
$$\frac{3 \text{апасённая } 6$$
 системе энергия $\frac{1}{1000}$ Потери энергии за одно колебание

Если полная энергия равна $W = w\sigma L$, σ – поперечная площадь пучка света, w - удельная энергия,

Потеря энергии за один цикл:
$$\Delta W = \frac{\left(w/2\right) \cdot \sigma L \cdot \left(1 - e^{-2f}\right)}{2L/v} \cdot T = \frac{1}{2} \cdot wv \ \sigma \cdot f \cdot T$$

Здесь $T = 2\pi/\omega$, v – скорость света в данной среде,

тогда добротность определяется:
$$Q = \frac{\sigma wL}{wv\sigma \cdot f \cdot T/2} = \frac{2L}{\lambda} \cdot \frac{1}{f}$$

число стоячих полуволн в резонаторе.

Порог генерации f тем больше, чем меньше Q!

ИМПУЛЬСНЫЕ И НЕПРЕРЫВНЫЕ ЛАЗЕРЫ НАКАЧКИ

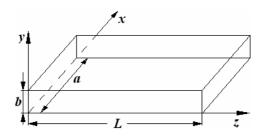
Режим излучения лазера зависит от режима накачки! При непрерывной накачке излучение лазера будет непрерывным.

Повышение мощности лазерного излучения возможно за счёт:

- 1) Увеличения числа атомов, участвующих в усилении, т.е. плотности оптической среды и её размеров.
- 2) Уменьшения длительности импульса до значений $10^{-7}....10^{-8}$ с (при том же значении выделяющейся энергии).

МОДЫ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ.

Мода колебаний в резонаторе зависит от:


- 1) Геометрических размеров резонатора,
- 2) От граничных условий, определяющих эффективность отражения, т.е. ρ_1 и ρ_2 , и
- 3) От коэффициента преломления в резонаторе n.

Для прямоугольного резонатора, см. рисунок, частное решение волнового уравнения имеет вид:

$$E = \vec{E}_0 \cdot \begin{bmatrix} \sin \omega t \\ \cos \omega t \end{bmatrix} \cdot \begin{bmatrix} \sin(k_x \cdot x) \\ \cos(k_x \cdot x) \end{bmatrix} \cdot \begin{bmatrix} \sin(k_y \cdot y) \\ \cos(k_y \cdot y) \end{bmatrix} \cdot \begin{bmatrix} \sin(k_z \cdot z) \\ \cos(k_z \cdot z) \end{bmatrix}$$

Вектор E_0 определяет поляризацию колебаний:

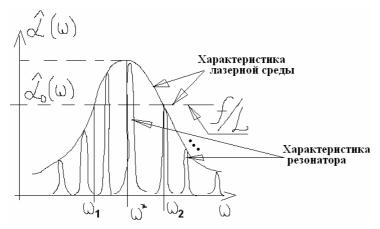
$$k_x^{+2} + k_y^{+2} + k_z^{+2} = k^{+2} = \mu \varepsilon \cdot \omega^2$$
, $k' = \frac{2\pi}{\lambda_{sonh}}$, $\lambda_{sonh} -$ длина волны в среде (волноводе).

Условие возникновения стоячих волн в направлении z: $\mathbf{m} \cdot \lambda_{\text{волн}} = 2L$

В других направлениях – аналогично.

Согласно условию возникновения стоячих волн:

$$\begin{cases} k_x^{'} \cdot a = m_x \cdot \pi \\ k_y^{'} \cdot b = m_y \cdot \pi \text{, так каждая мода характеризуется набором чисел: } m_x, m_y \text{ и } m_z. \\ k_z^{'} \cdot L = m_z \cdot \pi \end{cases}$$


Главная мода представляется в виде: $(0, 0, m_z)$. Эта мода не имеет отражений (узлов) в направлениях х и у.

Частоты этой моды находятся из соотношения: $\omega_{mz} = \frac{k_z^{'} \cdot c}{n} = \frac{\pi c m_z}{Ln}$ с интервалом $m_z = 1, 2, 3...$

Шаг по круговой частоте (или разность частот)
$$\Delta \omega_{mz} = \frac{\pi c \cdot \Delta m_z}{Ln} = |\Delta m_z| = 1 = \frac{\pi c}{Ln}$$

Тогда шаг по линейной частоте:
$$\Delta v_{mz} = \frac{\Delta \omega_{mz}}{2\pi} = \frac{c}{2Ln}$$
 u $\frac{\Delta v_{mz}}{v_0} = \frac{\lambda_0}{2Ln}$

Таким образом, в лазере есть два контура управления: резонатор (с набором резонансных частот) и усиливающая среда (с линией усиления), определяющие характеристики лазерного излучения — центральную частоту и модовый состав излучения, см. рисунок.

Лазер генерирует не все моды резонатора, а только те, которые являются выше порога генерации, который определяют добротность резонатора и спектральная линия усиливающей среды (т.е. электронный переход). Ширина этой спектральной линии характеризуется уширением метастабильного уровня.

Ширина линии излучения: $\Delta v \cdot \tau \cong 1$, τ - продолжительность излучения, если $\tau \cong 10^{-8}$ с, то $\Delta v \cong 10^{8}$ Γ_{II} .

Для лазера, излучающего в непрерывном режиме значение τ теоретически может быть каким угодно, значит Δv - теоретически — бесконечно тонким.

ОДНАКО, влияние уширений из-за:

- 1) броуновского движения зеркал (тепловые колебания),
- 2) всегда существующего спонтанного излучения, реально

$$\Delta \nu = 10^2 \dots 10^{\text{--}1} \; \Gamma$$
ц и при $\nu_0 = 10^{15} \; \Gamma$ ц, получаем: $\frac{\Delta \nu}{\nu_0} = 10^{-13} \dots 10^{-16}$

Боковые моды $(m_x, \neq 0, m_y \neq 0)$ приводят к оттоку энергии от основного лазерного излучения и к увеличению расходимости лазерного луча.

ЛЕКЦИЯ 10.

Распределение интенсивности разных мод на выходе лазера со сферическими зеркалами:

Для частот с прямоугольным резонатором справедливо:

$$\omega_{m_x,m_y,m_z} = \frac{\pi c}{n} \cdot \sqrt{\left(\frac{m_x}{a}\right)^2 + \left(\frac{m_y}{b}\right)^2 + \left(\frac{m_z}{L}\right)^2}$$

Шаг при переходе от одной моды к другой имеет вид:

$$\Delta arphi_{m_x} = rac{\pi c}{n} \cdot rac{m_x}{a^2} \cdot rac{1}{\sqrt{\left(rac{m_x}{a}
ight)^2 + \left(rac{m_y}{b}
ight)^2 + \left(rac{m_z}{L}
ight)^2}}$$
 , аналогично и для других мод. Запи-

шем для продольной моды:

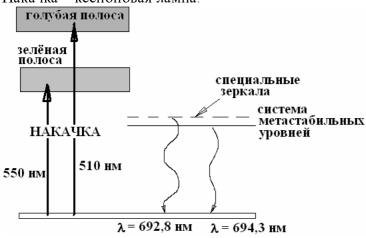
$$\Delta \omega_{m_z} = \frac{\pi c}{n} \cdot \frac{m_z}{L^2} \cdot \frac{1}{\sqrt{\left(\frac{m_x}{a}\right)^2 + \left(\frac{m_y}{b}\right)^2 + \left(\frac{m_z}{L}\right)^2}}$$

Тогда
$$\frac{\Delta \omega_x}{\Delta \omega_z} = \frac{m_x}{m_z} \cdot \left(\frac{L}{a}\right)^2$$
, учитывая, что $m_z \approx \frac{L}{\lambda}$ и $m_x = 1$, получаем, что $\frac{\Delta \omega_x}{\Delta \omega_z} << 1$

Иными словами, расстояние (шаг) между боковыми модами значительно меньше, чем шаг между продольными (аксиальными) модами.

ТИПЫ И ХАРАКТЕРИСТИКИ ЛАЗЕРОВ

Разнообразие лазеров определяется:


- 1) Активным веществом,
- 2) Мощностью,
- 3) Режимом работы,
- 4) Конструктивно-эксплуатационными характеристиками и параметрами.

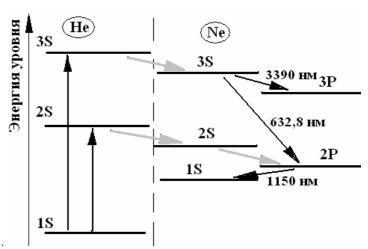
1) РУБИНОВЫЙ ЛАЗЕР (с активным веществом Al_2O_3).

Ширина линии при комнатной температуре: порядка 0,4 нм. Наиболее вероятная длина волны: 694,3 нм.

Кристалл рубина обычно выращивается в виде цилиндра: L = 5 см., диаметр = 1 см.

Накачка – ксеноновая лампа.

2) Гелий-неоновый лазер (активная среда – смесь Не и Ne).


В процессе генерации используются атомы Ne, а He является катализатором – обеспечивает «сталкновительное» возбуждение электронов.

<u>Имеется несколько линий вероятного излучения:</u> 1. 632,8 нм;

2. 1150 нм; и

3. 3390 нм.

Энергия перекачивается следующим образом: Эл. ток \rightarrow возбуждение $\text{He} \rightarrow$ возбуждение Ne.

Давление газа: Не: 332 Па, Ne: 66 Па.

3) Лазер на углекислом газе СО2.

Типы конструкций: 1. Проточный,

2. Т-лазер (с атмосферным давлением газа).

4) Лазеры на красителях.

Красители – сложные органические молекулы. Используются колебательные и вращательные квантовые переходы.

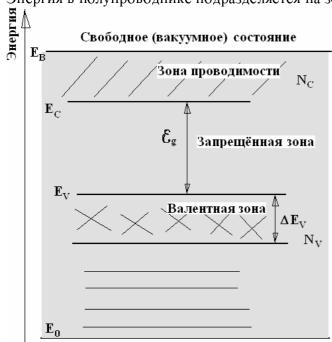
Результат: очень большое количество переходов, получается перекрытие уровней, следовательно — перестраиваемая длина волны.

ТРЕБОВАНИЯ К ОПТИЧЕСКОМУ ИСТОЧНИКУ ДЛЯ ВОСП:

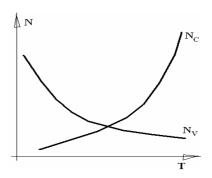
- 1). Высокая энергетическая яркость в диапазоне длин волн 0,8....1,7 мкм.
- 2). Излучение должно легко модулироваться,
- 3). Площадь светового пучка должна составлять порядок 9 мкм по площади поперечного сечения световодов.
- 4). Оптимальные показатели КПД, стоимость, надёжность, стабильность параметров.

<u> РЕАЛЬНО это достигается только с использованием полупроводниковых материалов !</u>

Собственные


ПОЛУПРОВОДНИКИ

→ <u>Примесные</u>


<u>Гетероструктуры</u>

Существуют: светоизлучающие диоды (СИД) и лазерные диоды (ЛД).

Энергия в полупроводнике подразделяется на зоны:

- 1) Валентная зона полностью занята электронами, расположенными на соответствующих энергетических уровнях в атомных оболочках.
- Зона проводимости содержит частично или целиком не заполненные области.

С ростом температуры **T** в зоне С (проводимости) появляются электроны проводимости

Концентрация электронов в зоне проводимости N_c растёт, а концентрация электронов валентной зоны N_v снижается.

Концентрация электронов в области С: $N_c = K \cdot \exp \left[- \frac{\mathcal{E}_g}{2kT} \right]$

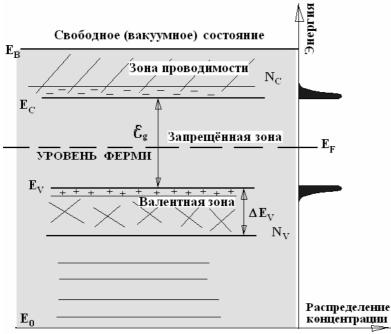
Здесь: $K = \frac{2}{h^3} \cdot \sqrt{(2\pi kT)^3} \cdot (m_e \cdot m_h)^{3/4}$. K – константа, характеризующая материал,

k – постоянная Больцмана, h – постоянная Планка,

 $m_{e},\ m_{h}$ — эффективные массы электронов и «дырок», могут быть значительно меньше массы покоя электрона.

<u>СВОЙСТВА ПОЛУПРОВОДНИКА</u> — «металлические» или «диэлектрические» - зависят от соотношения:

$$rac{m{\mathcal{E}}_g}{kT}$$
 :
$$rac{m{\mathcal{E}}_g}{kT} > 100 \;$$
 - диэлектрик, и $rac{m{\mathcal{E}}_g}{kT} < 10 \;$ - выраженные металлические свойства.


Далее рассматриваются материалы, для которых: $10 < \frac{\mathcal{E}_g}{kT} < 100$.

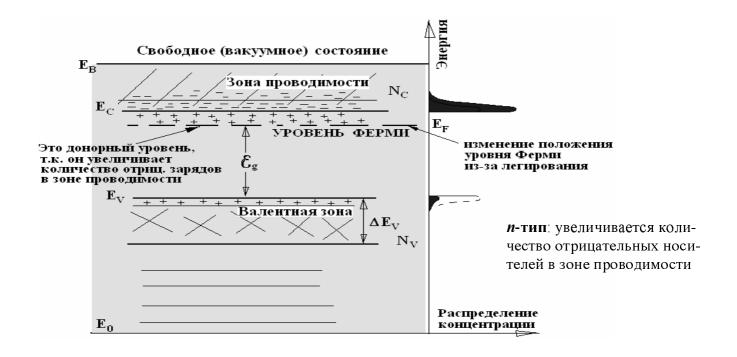
Важная характеристика материала: $\mathbf{E}_{\mathbf{F}}$ – энергия Ферми.

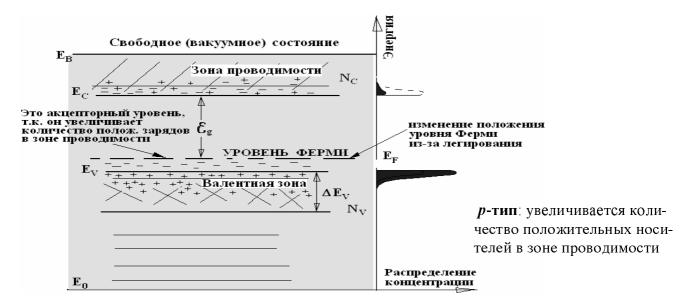
Функция Ферми – определяет вероятность заселения данного уровня с энергией Е:

$$F(E) = \frac{1}{1 + \exp\left[\frac{E - E_F}{kT}\right]}$$

Работа выхода для электрона: $E_{\rm B} - E_{\rm F}$.

В подавляющем большинстве используются ПРИМЕСНЫЕ ПОЛУПРОВОДНИКИ.

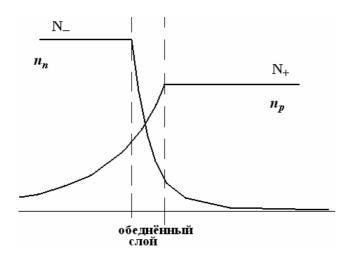

- 1) Основные носители заряда, и
- 2) Не основные носители заряда.


<u>В полупроводнике</u> n - типа основные носители — электроны, неосновные носители — дырки; p - типа — дырки, неосновные носители — электроны.

В примесных полупроводниках электрические свойства определяет СТЕПЕНЬ ЛЕГИРОВАНИЯ, а не ТЕМПЕРАТУРА!

Примесь предназначена для создания дополнительных электронных уровней!

Появляется дополнительный ДОНОРСКИЙ или АКЦЕПТОРНЫЙ уровни, из-за которых меняется соотношение концентраций.



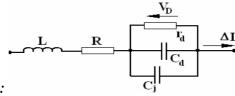
При создании **<u>р-п-перехода</u>** УРОВЕНЬ ФЕРМИ остаётся единым для всей системы!

Вакуумный уровень, характеризующий контактную разность потенциалов – искривляется.

Концентрации носителей принимают следующий вид:

 $n_n,\ n_p-$ равновесные концентрации

<u>СМЕЩЁННЫЙ p-n-переход</u> – под действием приложенного напряжения V:


Выражение для тока: $I = I_0 \cdot (e^{eV/kT} - 1)$

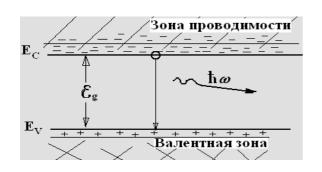
Общая скорость рекомбинации носителей

в единице объёма

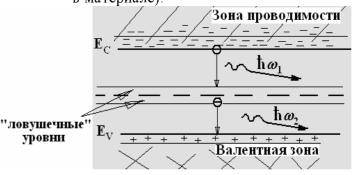
$$= \frac{\Delta n}{\tau_p}; \qquad = \frac{\Delta p}{\tau_n}$$

 $\Delta n,\; \Delta p-$ изменение концентрации носителей в объёме; $\tau_n,\; \tau_p-$ средние времена жизни избыточных носителей в материале п-типа и р-типа

ЭКВИВАЛЕНТНАЯ СХЕМА р-п-перехода:


$$C_{j}=rac{\Delta Q}{\Delta V_{D}},~\Delta {
m Q}$$
 — изменение заряда в обеднённом слое.

ПРОЦЕСС РЕКОМБИНАЦИИ В ПОЛУПРОВОДНИКАХ


Механизмы рекомбинации: 1) «зона - зона», т.е. между зонами через несколько уровней.

2) от уровня к уровню по шагам

Межзонная рекомбинация:

С использованием «ловушечных» уровней (из-за примесей и дислокаций в материале):

Спектры рекомбинационных переходов:

$$E_{_{\phi om}} = h \, v = \frac{h c}{\lambda}, \qquad \lambda = \frac{h c}{E_{_{\phi om}}} = \frac{1{,}24 \, [\text{Mkm}]}{E_{_{\phi om}} \, [\text{9}B]}$$

<u>ВЕРОЯТНОСТЬ ДАННОГО ПЕРЕХОДА</u> ← Концентрации N(E₂), N(E₁)

Энергия линии излучения

$$E = E_2 - E_1$$

Пусть $F(E_2)$ и $F(E_1)$ – функции Ферми

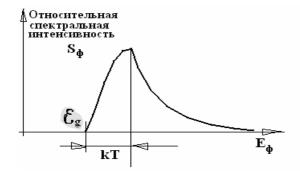
Тогда
$$N(E_2) = S_c(E_2) \cdot F(E_2)$$
 $N(E_1) = S_v(E_1) \cdot (1 - F(E_1)), S_c(E_2)$ и $S_v(E_1) - \varphi$ ункции плотностей вероятности распределения разрешённых состояний

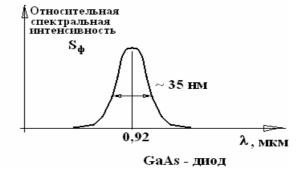
Эти функции имеют вид:

$$S_c(E_2) = 4\pi \cdot \left(\frac{2m_e}{h^2}\right)^{3/2} \cdot \sqrt{E_2 - E_c}$$
 и $S_{\rm v}(E_1) = 4\pi \cdot \left(\frac{2m_h}{h^2}\right)^{3/2} \cdot \sqrt{E_{
m v} - E_1}$

Энергия и концентрация на уровнях изменяется экспоненциально:

$$N(E_2)\cong A\cdot \exp\left[-rac{E_2-E_c}{kT}
ight]$$
 и $N(E_1)\cong B\cdot \exp\left[-rac{E_{
m v}-E_{
m l}}{kT}
ight]$ А, В – константы.


С учётом того, что энергия фотона имеет вид: $E_{\Phi} = E_2 - E_1$, получаем:


$$N(E_{\phi}) = Const \cdot \int_{E_1 - E_c}^{E_{\nu} + E_2} e^{-(E_2 - E_c)/kT} \cdot e^{-(E_{\nu} - E_1)/kT} \cdot dE_2 = Const \cdot \left(E_{\phi} - \mathcal{E}_g\right) \cdot e^{-(E_{\phi} - \mathcal{E}_g)/kT}$$

Спектральное распределение рекомбинационного излучения:

Теоретическое:

Реально наблюдаемый спектр:

$$\Delta \lambda = -\frac{hc}{E_{dom}^{2}} \cdot \Delta E_{dom}$$

$$\gamma = \left| \frac{\Delta \lambda}{\lambda} \right| = \frac{\Delta E_{\phi}}{E_{\phi}} \approx \frac{2kT}{E_{\phi}} \approx \frac{2kT\lambda}{1,24} \left[\text{MKM} \cdot 9B \right]$$

При комнатной температуре: $2kT = 0.052 \ \mathrm{эB};$ реальное значение $\Delta\lambda = 30....100 \ \mathrm{нм}.$ Отсюда можно оценивать вероятные значения для длин волн полупроводниковых излучателей.

Инверсная заселённость в полупроводниках:

В газовых и твердотельных лазерах

 из-за поглощения фотонов накачки активной средой для последующего спонтанного излучения

В полупроводниковых лазерах

 при положительном смещении p-n-перехода возможна инверсная заселённость зоны проводимости относительно валентной зоны.

Основной технический принцип:

скорость индуцированного излучения > скорости поглощения.

Вероятность заселения уровня 2 имеет вид:

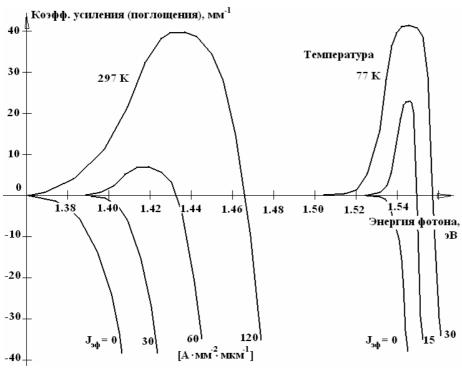
$$F_{_{2}}=F_{_{N}}(E_{_{2}})=rac{1}{\exp \Bigl(E_{_{2}}-E_{_{FN}}\Bigr/_{\!\!kT}\Bigr)+1}$$
 - в n-области,

Вероятность заселения уровня 1 имеет вид:

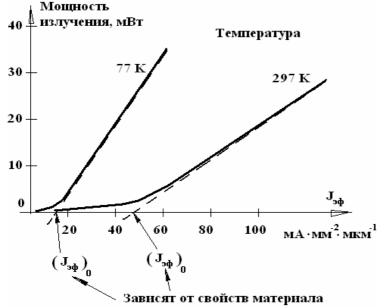
$$F_1 = F_P(E_1) = \frac{1}{\exp\left(E_1 - E_{FP}/kT\right) + 1}$$
 - в р-области.

Полупроводник будет усиливать излучение, если энергия фотона будет не меньше ширины запрещённой зоны: $E_{\Phi} > \mathbf{\mathcal{E}}_{\mathrm{g}}$!

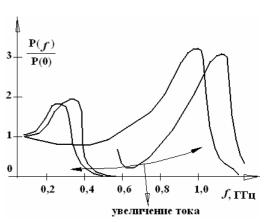
Лазерное излучение – это превышение усиления над суммарными потерями!.


Т.е. должно выполняться:
$$\frac{c^2}{8\pi} \cdot \frac{(n_2 - n_1)}{f_{21}^2 \cdot \tau_{cn}} \cdot \xi(f_{21}) \geq \alpha_{pac} + \frac{1}{2\ell} \cdot \ln\left(\frac{1}{\rho_1 \rho_2}\right)$$

 n_1, n_2 – концентрации атомов, f_{21} – частота перехода, $\alpha_{\rm pac}$ – угол расходимости в радианах, $\xi(f_{21})$ – спектральная плотность мощности на частоте f_{21} .

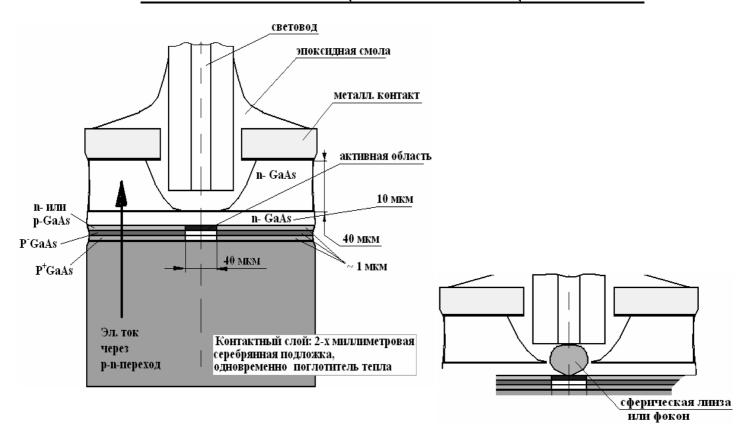

Если: $J_{\text{эф}}$ – эффективная плотность тока и $\eta_{\text{внут}}$ – внутренняя квантовая эффективность, характеризующая скорость рекомбинации, то $J_{\text{эф}} = \frac{\eta_{\text{внут}} \cdot J}{d}$. d – эффективный геометрический размер зоны усиления, J – ток накачки [A].

Коэффициент усиления в случае превышения тока накачки свыше порога лазерной генерации будет иметь вид: $g_{max} = \beta(J_{9\varphi} - (J_{9\varphi})_0)$.


Пороговый ток, при котором начинается лазерная генерация, имеет вид: $J_{nop} = \frac{\left(J_{\circ \phi}\right)_0 \cdot d}{\eta_{output}}$.

<u>Техническая задача при разработке СИД и ЛД</u>: получить как можно больше фотонов на один электрон тока накачки

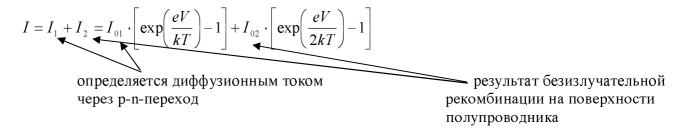
Частотные характеристики лазера при модуляции мощности излучения:

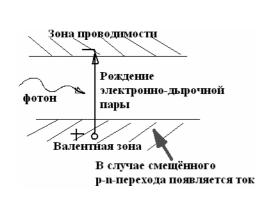

ЛЕКПИЯ 11.

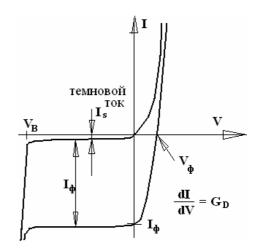
$$\frac{P(\omega)}{P(0)} = \frac{{\omega_0}^2}{{\omega_0}^2 - {\omega}^2} + j\beta\omega$$

Тогда ${\omega_0}^2 = \frac{\left(J_{_0} - J_{_{nop}}\right)}{\tau_{_{cn}} \cdot \tau_{_{\phi}} \cdot J_{_{nop}}}$, здесь $\beta = \frac{J_{_0}}{\tau_{_{cn}} \cdot J_{_{nop}}}$ и $\tau_{_{\Phi}}$ – время «жизни» фотона в резонаторе.

ТИПИЧНЫЕ КОНСТРУКЦИИ П/П ИЗЛУЧАЮЩИХ ПРИБОРОВ




ФОТОПРИЁМНИКИ


- 1) р-і-п-фотодиоды,
- 2) лавинные фотодиоды

Используется обратно смещённый р-п-переход.

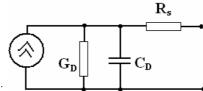
Вольт-амперная характеристика такого р-п-перехода:

 ${
m I}_{\Phi}$ появляется в случае взаимодействия излучения с валентными электронами

Пороговая длина волны связана с шириной запрещённой зоны: $\lambda_{nop} \approx \frac{1,24}{\mathcal{E}_g} \left[M \kappa M \cdot 9 B \right]$

Кол-во рождающихся электронно-дырочных пар Квантовый выход $\eta =$ ______ Кол-во падающих фотонов

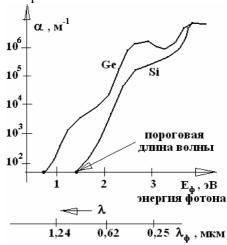
$$\eta = \frac{I_{\phi} \cdot hc}{\Phi \cdot e \cdot \lambda}, \, \Phi$$
 — мощность падающего оптического излучения


Устойчивый фототок будет протекать через фотодиод, если для падающего излучения выполняется соотношение: $\mathcal{E}_g < \frac{1,24}{\lambda} \left[\textit{мкм} \cdot \textit{э}B \right]$

ВАЖНАЯ ХАРАКТЕРИСТИКА — <u>ЧУВСТВИТЕЛЬНОСТЬ ФОТОДИОДА</u>: $R = \frac{\eta e \lambda}{hc}$

<u>Техническая задача при разработке фотодиодов</u>: получить как можно больше электронов на один падающий фотон

Фотодиоды подключаются так, что б получить обратно смещённый p-n-переход:


- 1) нет излучения фотодиод заперт,
- 2) есть излучение идёт ток через p-n-переход

Эквив. схема р-п-перехода фотодиода:

 G_D — дифференциальная проводимость, C_D — ёмкость p-n-перехода, R_s — омическое сопротивление при наличии темнового тока I_s

Зависимость коэфф. поглощения от энергии фотона:

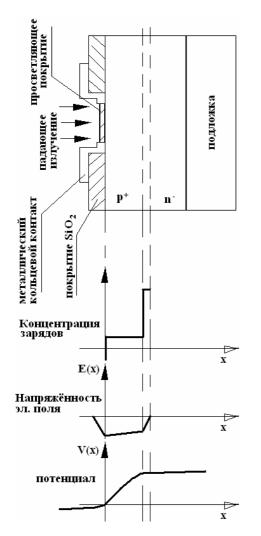
Идеальный фотодиод:

 $\Phi(x) = \Phi(0) \cdot e^{-\alpha x}$, α – коэфф. поглощения.

Внешнее поле (смещающее p-n-переход) разносит электроны и дырки до того момента, когда произойдёт рекомбинация.

 \underline{E} сли весь свет поглощается в полупроводнике, то квантовый выход $\pmb{\eta}$ = 1 и $I_{\phi} = \frac{e \cdot \Phi}{E_{\phi}} /$

Реально имеет место следующее:

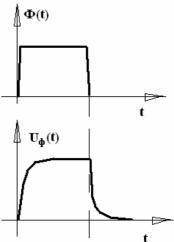

- 1) Часть излучения отражается от поверхности полупроводника,
- 2) Происходит не полное поглощение в обеднённом слое и обязательно $\eta < 1$.

<u>Мероприятия по улучшению η:</u>

- 1) Снижение отражения от поверхности,
- 2) Повышение поглощения внутри обеднённого слоя,
- 3) Снижение (избегать) поглощения света до обеднённого слоя.


МАТЕРИАЛЫ И КОНСТРУКЦИИ р-і-п-фотодиодов:

- 1. С излучателем типа **GaAs / GaAlAs** (0,8...0,9 мкм) используется **Si**-фотодиод.
- **2.** Для $\lambda = 1.8$ мкм используется **Ge-**фотодиод или **InGaAs** / **InP**-фотодиод



ТИПИЧНАЯ СХЕМА ВКЛЮЧЕНИЯ ФД:

 $i_{\varphi}(t)$ – ток через Φ Д, $U_{\varphi}(t)$ –напряжение на Φ Д

Временные характеристики входной оптической мощности и напряжения на ФД:

<u>ШУМЫ р-і-п-фотодиодов:</u>

Чувствительность $\Phi Д$ определяется величиной хаотических флуктуаций напряжения и тока на $\Phi Л$

Техническая задача: обнаружить сигнал на фоне шума (тепловой и дробовой виды шума).

Среднеквадратическая плотность шума теплового тока: $I_{menn} = \sqrt{2e\widetilde{I}\cdot\Delta f}$

 Δf – полоса частот, в которой работает $\Phi Д$,

 \widetilde{I} - средний ток через $\Phi \mathcal{J}$

КАЧЕСТВО ФД ОПРЕДЕЛЯЕТСЯ СЛЕДУЮЩИМИ ПАРАМЕТРАМИ:

- 1) Эквивалентная шумовая мощность (NEP),
- 2) Чувствительность к обнаружению (D),
- 3) Удельная чувствительность к обнаружению (D*).

$$NEP = \frac{2hc}{\eta\lambda}$$
, η - квантовый выход, для идеального Φ Д: $NEP = 2hf$

$$D = \frac{\eta e \lambda}{h c \sqrt{\eta e \cdot I_{_{memh}}}}$$
, I_{memh} – ток через $\Phi Д$ в отсутствие света,

$$D^* = D \cdot \sqrt{A}$$
, А – площадь детектора.

ЧАСТОТНАЯ ХАРАКТРИСТИКА ФД:

$$I_{\phi}(f) = \frac{1}{R_{\phi}(1 + j \cdot 2\pi \cdot C_{ex} \cdot f \cdot R_{ex})}$$

Время переходного процесса при подаче импульсного входного сигнала определяется выражением:

$$\frac{I(f)}{I(0)} = \frac{\sin(\pi f \cdot t)}{\pi f \cdot t}$$
, полоса частот p-i-n- Φ Д обычно составляет 1 ГГц.

ЛАВИННЫЕ ФОТОДИОДЫ

<u>Лавинное умножение</u> – это процесс порождения М носителей заряда каждым фотоносителем.

Цель: увеличить электрический сигнал в самом детекторе.

Но реально с возрастанием сигнала в M раз шум также увеличивается: в $M\cdot \sqrt{F}\;$ раз.

Количественная мера шума –среднеквадратическая плотность шумового тока. F – шум-фактор.

Физический принцип рождения лавины:

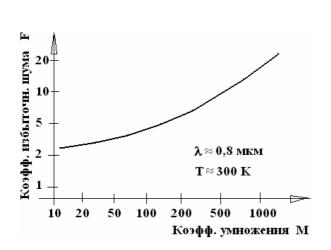
Электронно-дырочная пара рождение нескольких эл.-дыр. пар $hv \Rightarrow c$ высокой энергией $\Rightarrow c$ низкой энергией из-за соударений

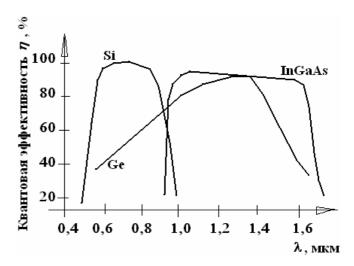
ВАЖНЫЙ ТЕХНИЧЕСКИЙ ПАРАМЕТР: коэффициент умножения: $M = \frac{1}{\left[1 - \frac{(V - IR)}{V_{npo6}}\right]^n}$

R` - сумма омического сопротивления полупроводника и температурного сопротивления,

V – приложенное напряжение,

 $V_{\text{проб}}$ – пробивное напряжение,


I – ток через $\Phi Д$


n – эмпирическая степень,

Шум-фактор:
$$F = M^{x}$$
, $x = 0, 2...1, 0$.

Величина М ограничивается образованием микротрещин и токами утечки.

Полоса частот Л Φ Д – до 1 ГГц.

Базовая схема полупроводникового приёмного модуля:

Свет **→** Фотоприёмник **→** Малошумящий **→** Главный **→** Демодулятор **→** Эл. сигнал предусилитель