import pandas as pd
pd.get_option('max_rows')
60
df = pd.read_csv('city.csv', sep=';')
df
| ID | Name | CountryCode | District | Population | |
|---|---|---|---|---|---|
| 0 | 1 | Kabul | AFG | Kabol | 1780000 |
| 1 | 2 | Qandahar | AFG | Qandahar | 237500 |
| 2 | 3 | Herat | AFG | Herat | 186800 |
| 3 | 4 | Mazar-e-Sharif | AFG | Balkh | 127800 |
| 4 | 5 | Amsterdam | NLD | Noord-Holland | 731200 |
| ... | ... | ... | ... | ... | ... |
| 4074 | 4075 | Khan Yunis | PSE | Khan Yunis | 123175 |
| 4075 | 4076 | Hebron | PSE | Hebron | 119401 |
| 4076 | 4077 | Jabaliya | PSE | North Gaza | 113901 |
| 4077 | 4078 | Nablus | PSE | Nablus | 100231 |
| 4078 | 4079 | Rafah | PSE | Rafah | 92020 |
4079 rows × 5 columns
pd.set_option('max_rows', 100)
df.head(100)
| ID | Name | CountryCode | District | Population | |
|---|---|---|---|---|---|
| 0 | 1 | Kabul | AFG | Kabol | 1780000 |
| 1 | 2 | Qandahar | AFG | Qandahar | 237500 |
| 2 | 3 | Herat | AFG | Herat | 186800 |
| 3 | 4 | Mazar-e-Sharif | AFG | Balkh | 127800 |
| 4 | 5 | Amsterdam | NLD | Noord-Holland | 731200 |
| 5 | 6 | Rotterdam | NLD | Zuid-Holland | 593321 |
| 6 | 7 | Haag | NLD | Zuid-Holland | 440900 |
| 7 | 8 | Utrecht | NLD | Utrecht | 234323 |
| 8 | 9 | Eindhoven | NLD | Noord-Brabant | 201843 |
| 9 | 10 | Tilburg | NLD | Noord-Brabant | 193238 |
| 10 | 11 | Groningen | NLD | Groningen | 172701 |
| 11 | 12 | Breda | NLD | Noord-Brabant | 160398 |
| 12 | 13 | Apeldoorn | NLD | Gelderland | 153491 |
| 13 | 14 | Nijmegen | NLD | Gelderland | 152463 |
| 14 | 15 | Enschede | NLD | Overijssel | 149544 |
| 15 | 16 | Haarlem | NLD | Noord-Holland | 148772 |
| 16 | 17 | Almere | NLD | Flevoland | 142465 |
| 17 | 18 | Arnhem | NLD | Gelderland | 138020 |
| 18 | 19 | Zaanstad | NLD | Noord-Holland | 135621 |
| 19 | 20 | ´s-Hertogenbosch | NLD | Noord-Brabant | 129170 |
| 20 | 21 | Amersfoort | NLD | Utrecht | 126270 |
| 21 | 22 | Maastricht | NLD | Limburg | 122087 |
| 22 | 23 | Dordrecht | NLD | Zuid-Holland | 119811 |
| 23 | 24 | Leiden | NLD | Zuid-Holland | 117196 |
| 24 | 25 | Haarlemmermeer | NLD | Noord-Holland | 110722 |
| 25 | 26 | Zoetermeer | NLD | Zuid-Holland | 110214 |
| 26 | 27 | Emmen | NLD | Drenthe | 105853 |
| 27 | 28 | Zwolle | NLD | Overijssel | 105819 |
| 28 | 29 | Ede | NLD | Gelderland | 101574 |
| 29 | 30 | Delft | NLD | Zuid-Holland | 95268 |
| 30 | 31 | Heerlen | NLD | Limburg | 95052 |
| 31 | 32 | Alkmaar | NLD | Noord-Holland | 92713 |
| 32 | 33 | Willemstad | ANT | Curaçao | 2345 |
| 33 | 34 | Tirana | ALB | Tirana | 270000 |
| 34 | 35 | Alger | DZA | Alger | 2168000 |
| 35 | 36 | Oran | DZA | Oran | 609823 |
| 36 | 37 | Constantine | DZA | Constantine | 443727 |
| 37 | 38 | Annaba | DZA | Annaba | 222518 |
| 38 | 39 | Batna | DZA | Batna | 183377 |
| 39 | 40 | Sétif | DZA | Sétif | 179055 |
| 40 | 41 | Sidi Bel Abbès | DZA | Sidi Bel Abbès | 153106 |
| 41 | 42 | Skikda | DZA | Skikda | 128747 |
| 42 | 43 | Biskra | DZA | Biskra | 128281 |
| 43 | 44 | Blida (el-Boulaida) | DZA | Blida | 127284 |
| 44 | 45 | Béjaïa | DZA | Béjaïa | 117162 |
| 45 | 46 | Mostaganem | DZA | Mostaganem | 115212 |
| 46 | 47 | Tébessa | DZA | Tébessa | 112007 |
| 47 | 48 | Tlemcen (Tilimsen) | DZA | Tlemcen | 110242 |
| 48 | 49 | Béchar | DZA | Béchar | 107311 |
| 49 | 50 | Tiaret | DZA | Tiaret | 100118 |
| 50 | 51 | Ech-Chleff (el-Asnam) | DZA | Chlef | 96794 |
| 51 | 52 | Ghardaïa | DZA | Ghardaïa | 89415 |
| 52 | 53 | Tafuna | ASM | Tutuila | 5200 |
| 53 | 54 | Fagatogo | ASM | Tutuila | 2323 |
| 54 | 55 | Andorra la Vella | AND | Andorra la Vella | 21189 |
| 55 | 56 | Luanda | AGO | Luanda | 2022000 |
| 56 | 57 | Huambo | AGO | Huambo | 163100 |
| 57 | 58 | Lobito | AGO | Benguela | 130000 |
| 58 | 59 | Benguela | AGO | Benguela | 128300 |
| 59 | 60 | Namibe | AGO | Namibe | 118200 |
| 60 | 61 | South Hill | AIA | – | 961 |
| 61 | 62 | The Valley | AIA | – | 595 |
| 62 | 63 | Saint John´s | ATG | St John | 24000 |
| 63 | 64 | Dubai | ARE | Dubai | 669181 |
| 64 | 65 | Abu Dhabi | ARE | Abu Dhabi | 398695 |
| 65 | 66 | Sharja | ARE | Sharja | 320095 |
| 66 | 67 | al-Ayn | ARE | Abu Dhabi | 225970 |
| 67 | 68 | Ajman | ARE | Ajman | 114395 |
| 68 | 69 | Buenos Aires | ARG | Distrito Federal | 2982146 |
| 69 | 70 | La Matanza | ARG | Buenos Aires | 1266461 |
| 70 | 71 | Córdoba | ARG | Córdoba | 1157507 |
| 71 | 72 | Rosario | ARG | Santa Fé | 907718 |
| 72 | 73 | Lomas de Zamora | ARG | Buenos Aires | 622013 |
| 73 | 74 | Quilmes | ARG | Buenos Aires | 559249 |
| 74 | 75 | Almirante Brown | ARG | Buenos Aires | 538918 |
| 75 | 76 | La Plata | ARG | Buenos Aires | 521936 |
| 76 | 77 | Mar del Plata | ARG | Buenos Aires | 512880 |
| 77 | 78 | San Miguel de Tucumán | ARG | Tucumán | 470809 |
| 78 | 79 | Lanús | ARG | Buenos Aires | 469735 |
| 79 | 80 | Merlo | ARG | Buenos Aires | 463846 |
| 80 | 81 | General San Martín | ARG | Buenos Aires | 422542 |
| 81 | 82 | Salta | ARG | Salta | 367550 |
| 82 | 83 | Moreno | ARG | Buenos Aires | 356993 |
| 83 | 84 | Santa Fé | ARG | Santa Fé | 353063 |
| 84 | 85 | Avellaneda | ARG | Buenos Aires | 353046 |
| 85 | 86 | Tres de Febrero | ARG | Buenos Aires | 352311 |
| 86 | 87 | Morón | ARG | Buenos Aires | 349246 |
| 87 | 88 | Florencio Varela | ARG | Buenos Aires | 315432 |
| 88 | 89 | San Isidro | ARG | Buenos Aires | 306341 |
| 89 | 90 | Tigre | ARG | Buenos Aires | 296226 |
| 90 | 91 | Malvinas Argentinas | ARG | Buenos Aires | 290335 |
| 91 | 92 | Vicente López | ARG | Buenos Aires | 288341 |
| 92 | 93 | Berazategui | ARG | Buenos Aires | 276916 |
| 93 | 94 | Corrientes | ARG | Corrientes | 258103 |
| 94 | 95 | San Miguel | ARG | Buenos Aires | 248700 |
| 95 | 96 | Bahía Blanca | ARG | Buenos Aires | 239810 |
| 96 | 97 | Esteban Echeverría | ARG | Buenos Aires | 235760 |
| 97 | 98 | Resistencia | ARG | Chaco | 229212 |
| 98 | 99 | José C. Paz | ARG | Buenos Aires | 221754 |
| 99 | 100 | Paraná | ARG | Entre Rios | 207041 |
pd.get_option('min_rows')
10
pd.set_option('min_rows', 20)
df
| ID | Name | CountryCode | District | Population | |
|---|---|---|---|---|---|
| 0 | 1 | Kabul | AFG | Kabol | 1780000 |
| 1 | 2 | Qandahar | AFG | Qandahar | 237500 |
| 2 | 3 | Herat | AFG | Herat | 186800 |
| 3 | 4 | Mazar-e-Sharif | AFG | Balkh | 127800 |
| 4 | 5 | Amsterdam | NLD | Noord-Holland | 731200 |
| 5 | 6 | Rotterdam | NLD | Zuid-Holland | 593321 |
| 6 | 7 | Haag | NLD | Zuid-Holland | 440900 |
| 7 | 8 | Utrecht | NLD | Utrecht | 234323 |
| 8 | 9 | Eindhoven | NLD | Noord-Brabant | 201843 |
| 9 | 10 | Tilburg | NLD | Noord-Brabant | 193238 |
| ... | ... | ... | ... | ... | ... |
| 4069 | 4070 | Chitungwiza | ZWE | Harare | 274912 |
| 4070 | 4071 | Mount Darwin | ZWE | Harare | 164362 |
| 4071 | 4072 | Mutare | ZWE | Manicaland | 131367 |
| 4072 | 4073 | Gweru | ZWE | Midlands | 128037 |
| 4073 | 4074 | Gaza | PSE | Gaza | 353632 |
| 4074 | 4075 | Khan Yunis | PSE | Khan Yunis | 123175 |
| 4075 | 4076 | Hebron | PSE | Hebron | 119401 |
| 4076 | 4077 | Jabaliya | PSE | North Gaza | 113901 |
| 4077 | 4078 | Nablus | PSE | Nablus | 100231 |
| 4078 | 4079 | Rafah | PSE | Rafah | 92020 |
4079 rows × 5 columns
pd.reset_option('min_rows')
df
| ID | Name | CountryCode | District | Population | |
|---|---|---|---|---|---|
| 0 | 1 | Kabul | AFG | Kabol | 1780000 |
| 1 | 2 | Qandahar | AFG | Qandahar | 237500 |
| 2 | 3 | Herat | AFG | Herat | 186800 |
| 3 | 4 | Mazar-e-Sharif | AFG | Balkh | 127800 |
| 4 | 5 | Amsterdam | NLD | Noord-Holland | 731200 |
| ... | ... | ... | ... | ... | ... |
| 4074 | 4075 | Khan Yunis | PSE | Khan Yunis | 123175 |
| 4075 | 4076 | Hebron | PSE | Hebron | 119401 |
| 4076 | 4077 | Jabaliya | PSE | North Gaza | 113901 |
| 4077 | 4078 | Nablus | PSE | Nablus | 100231 |
| 4078 | 4079 | Rafah | PSE | Rafah | 92020 |
4079 rows × 5 columns
pd.reset_option('all')
: boolean
use_inf_as_null had been deprecated and will be removed in a future
version. Use `use_inf_as_na` instead.
C:\anaconda3\lib\site-packages\pandas\_config\config.py:620: FutureWarning:
: boolean
use_inf_as_null had been deprecated and will be removed in a future
version. Use `use_inf_as_na` instead.
warnings.warn(d.msg, FutureWarning)
pd.get_option('max_rows')
60
df_goods = pd.read_csv('price.csv', sep=';')
df_goods
| id | title | price | |
|---|---|---|---|
| 0 | 1 | Ноутбук Acer Aspire 5 A515-54G-502N (NX.HVGEU.006) Pure Silver | 10.000000 |
| 1 | 2 | Ноутбук Asus ROG Strix G15 G512LI-HN057 (90NR0381-M01640) Black | NaN |
| 2 | 3 | Ноутбук HP Pavilion Gaming 15-bc504ur (7DT87EA) Black Суперцена!!! | 7.123457 |
| 3 | 4 | Ноутбук HP Pavilion Notebook 15-cw1011ua (8RW14EA) Mineral Silver | 25.000000 |
| 4 | 5 | Ноутбук Acer Aspire 7 A715-41G-R7MZ (NH.Q8LEU.004) Charcoal Black | 35.000000 |
| 5 | 6 | Ноутбук Dell Inspiron 3582 (I3582C54H5NIL-BK) Black | 5.000000 |
| 6 | 7 | Ноутбук Apple MacBook Air 13" 256GB 2020 Space Gray (MWTJ2) | 11.000000 |
| 7 | 8 | Ноутбук Asus ROG Strix G15 G512LI-HN094 (90NR0381-M01620) Black | 16.000000 |
| 8 | 9 | Ноутбук HP Pavilion Notebook 15-cw1002ua (7KE54EA) Mineral Silver Суперцена!!! | 15.000000 |
| 9 | 10 | Ноутбук HP Pavilion Notebook 15-cw1005ua (7ZF75EA) Mineral Silver Суперцена!!! | NaN |
| 10 | 11 | Ноутбук Lenovo IdeaPad L340-15IRH Gaming (81LK01HCRA) Granite Black | 10.000000 |
pd.get_option('max_colwidth')
50
pd.set_option('max_colwidth', 100)
df_goods
| id | title | price | |
|---|---|---|---|
| 0 | 1 | Ноутбук Acer Aspire 5 A515-54G-502N (NX.HVGEU.006) Pure Silver | 10.000000 |
| 1 | 2 | Ноутбук Asus ROG Strix G15 G512LI-HN057 (90NR0381-M01640) Black | NaN |
| 2 | 3 | Ноутбук HP Pavilion Gaming 15-bc504ur (7DT87EA) Black Суперцена!!! | 7.123457 |
| 3 | 4 | Ноутбук HP Pavilion Notebook 15-cw1011ua (8RW14EA) Mineral Silver | 25.000000 |
| 4 | 5 | Ноутбук Acer Aspire 7 A715-41G-R7MZ (NH.Q8LEU.004) Charcoal Black | 35.000000 |
| 5 | 6 | Ноутбук Dell Inspiron 3582 (I3582C54H5NIL-BK) Black | 5.000000 |
| 6 | 7 | Ноутбук Apple MacBook Air 13" 256GB 2020 Space Gray (MWTJ2) | 11.000000 |
| 7 | 8 | Ноутбук Asus ROG Strix G15 G512LI-HN094 (90NR0381-M01620) Black | 16.000000 |
| 8 | 9 | Ноутбук HP Pavilion Notebook 15-cw1002ua (7KE54EA) Mineral Silver Суперцена!!! | 15.000000 |
| 9 | 10 | Ноутбук HP Pavilion Notebook 15-cw1005ua (7ZF75EA) Mineral Silver Суперцена!!! | NaN |
| 10 | 11 | Ноутбук Lenovo IdeaPad L340-15IRH Gaming (81LK01HCRA) Granite Black | 10.000000 |
pd.get_option('precision')
6
pd.set_option('precision', 2)
df_goods = pd.read_csv('price.csv', sep=';')
df_goods
| id | title | price | |
|---|---|---|---|
| 0 | 1 | Ноутбук Acer Aspire 5 A515-54G-502N (NX.HVGEU.006) Pure Silver | 10.0 |
| 1 | 2 | Ноутбук Asus ROG Strix G15 G512LI-HN057 (90NR0381-M01640) Black | NaN |
| 2 | 3 | Ноутбук HP Pavilion Gaming 15-bc504ur (7DT87EA) Black Суперцена!!! | 8.0 |
| 3 | 4 | Ноутбук HP Pavilion Notebook 15-cw1011ua (8RW14EA) Mineral Silver | 25.0 |
| 4 | 5 | Ноутбук Acer Aspire 7 A715-41G-R7MZ (NH.Q8LEU.004) Charcoal Black | 35.0 |
| 5 | 6 | Ноутбук Dell Inspiron 3582 (I3582C54H5NIL-BK) Black | 5.0 |
| 6 | 7 | Ноутбук Apple MacBook Air 13" 256GB 2020 Space Gray (MWTJ2) | 11.0 |
| 7 | 8 | Ноутбук Asus ROG Strix G15 G512LI-HN094 (90NR0381-M01620) Black | 16.0 |
| 8 | 9 | Ноутбук HP Pavilion Notebook 15-cw1002ua (7KE54EA) Mineral Silver Суперцена!!! | 15.0 |
| 9 | 10 | Ноутбук HP Pavilion Notebook 15-cw1005ua (7ZF75EA) Mineral Silver Суперцена!!! | NaN |
| 10 | 11 | Ноутбук Lenovo IdeaPad L340-15IRH Gaming (81LK01HCRA) Granite Black | 10.0 |
pd.get_option('max_columns')
20
my_dict = {}
for i in range(1, 31):
my_dict[f'column {i}'] = [n for n in range(6)]
my_dict
{'column 1': [0, 1, 2, 3, 4, 5],
'column 2': [0, 1, 2, 3, 4, 5],
'column 3': [0, 1, 2, 3, 4, 5],
'column 4': [0, 1, 2, 3, 4, 5],
'column 5': [0, 1, 2, 3, 4, 5],
'column 6': [0, 1, 2, 3, 4, 5],
'column 7': [0, 1, 2, 3, 4, 5],
'column 8': [0, 1, 2, 3, 4, 5],
'column 9': [0, 1, 2, 3, 4, 5],
'column 10': [0, 1, 2, 3, 4, 5],
'column 11': [0, 1, 2, 3, 4, 5],
'column 12': [0, 1, 2, 3, 4, 5],
'column 13': [0, 1, 2, 3, 4, 5],
'column 14': [0, 1, 2, 3, 4, 5],
'column 15': [0, 1, 2, 3, 4, 5],
'column 16': [0, 1, 2, 3, 4, 5],
'column 17': [0, 1, 2, 3, 4, 5],
'column 18': [0, 1, 2, 3, 4, 5],
'column 19': [0, 1, 2, 3, 4, 5],
'column 20': [0, 1, 2, 3, 4, 5],
'column 21': [0, 1, 2, 3, 4, 5],
'column 22': [0, 1, 2, 3, 4, 5],
'column 23': [0, 1, 2, 3, 4, 5],
'column 24': [0, 1, 2, 3, 4, 5],
'column 25': [0, 1, 2, 3, 4, 5],
'column 26': [0, 1, 2, 3, 4, 5],
'column 27': [0, 1, 2, 3, 4, 5],
'column 28': [0, 1, 2, 3, 4, 5],
'column 29': [0, 1, 2, 3, 4, 5],
'column 30': [0, 1, 2, 3, 4, 5]}
test = pd.DataFrame(my_dict)
test
| column 1 | column 2 | column 3 | column 4 | column 5 | column 6 | column 7 | column 8 | column 9 | column 10 | ... | column 21 | column 22 | column 23 | column 24 | column 25 | column 26 | column 27 | column 28 | column 29 | column 30 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ... | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | ... | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | ... | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | ... | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
| 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | ... | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
6 rows × 30 columns
pd.set_option('max_columns', 30)
test
| column 1 | column 2 | column 3 | column 4 | column 5 | column 6 | column 7 | column 8 | column 9 | column 10 | column 11 | column 12 | column 13 | column 14 | column 15 | column 16 | column 17 | column 18 | column 19 | column 20 | column 21 | column 22 | column 23 | column 24 | column 25 | column 26 | column 27 | column 28 | column 29 | column 30 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
| 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
pd.get_dummies(list(range(11)), prefix='column')
| column_0 | column_1 | column_2 | column_3 | column_4 | column_5 | column_6 | column_7 | column_8 | column_9 | column_10 | |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 3 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 4 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 5 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| 6 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| 7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| 9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
| 10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |