import pandas as pd
df = pd.DataFrame({
'date': ['1.01.2008',
'2.02.2009',
'3.03.2010',
'4.04.2011',
'5.05.2012',
'6.06.2013',
'7.07.2014',
'8.08.2015',
'9.09.2016',
'10.10.2017',
'11.11.2018',
'12.12.2019',
'10.11.2020',
'30.11.2020']
})
pd.to_datetime('30.11.2020')
pd.to_datetime('12.11.2020')
pd.to_datetime('12.11.2020', dayfirst=True)
pd.to_datetime('12-11-2020', format='%d-%m-%Y').year
df
df.dtypes
df['dates'] = pd.to_datetime(df.date, format='%d.%m.%Y')
df
df.dtypes
df.dates.dt.day_name()
df.dates.dt.month_name()
df[~(df.dates.dt.day > 10)]
df.dates.max()
df.dates.min()
df.dates.max() - df.dates.min()
df[ df.dates > pd.to_datetime('2014-07-07') ]
df.dates.nunique()
df.set_index('dates', inplace=True)
df
df['2020']
df['2017':'2020']
df['2017-11':'2020']
df2 = pd.read_csv('ratings.csv')
df2
df2['dates'] = pd.to_datetime(df2.timestamp, unit='s')
df2
df2['year'] = df2.dates.dt.year
df2