import pandas as pd
df = pd.read_csv('city.csv', sep=';')
df
ID | Name | CountryCode | District | Population | |
---|---|---|---|---|---|
0 | 1 | Kabul | AFG | Kabol | 1780000 |
1 | 2 | Qandahar | AFG | Qandahar | 237500 |
2 | 3 | Herat | AFG | Herat | 186800 |
3 | 4 | Mazar-e-Sharif | AFG | Balkh | 127800 |
4 | 5 | Amsterdam | NLD | Noord-Holland | 731200 |
... | ... | ... | ... | ... | ... |
4074 | 4075 | Khan Yunis | PSE | Khan Yunis | 123175 |
4075 | 4076 | Hebron | PSE | Hebron | 119401 |
4076 | 4077 | Jabaliya | PSE | North Gaza | 113901 |
4077 | 4078 | Nablus | PSE | Nablus | 100231 |
4078 | 4079 | Rafah | PSE | Rafah | 92020 |
4079 rows × 5 columns
df.sort_values(by='Population', ascending=False)
ID | Name | CountryCode | District | Population | |
---|---|---|---|---|---|
1023 | 1024 | Mumbai (Bombay) | IND | Maharashtra | 10500000 |
2330 | 2331 | Seoul | KOR | Seoul | 9981619 |
205 | 206 | São Paulo | BRA | São Paulo | 9968485 |
1889 | 1890 | Shanghai | CHN | Shanghai | 9696300 |
938 | 939 | Jakarta | IDN | Jakarta Raya | 9604900 |
... | ... | ... | ... | ... | ... |
2315 | 2316 | Bantam | CCK | Home Island | 503 |
3537 | 3538 | Città del Vaticano | VAT | – | 455 |
3332 | 3333 | Fakaofo | TKL | Fakaofo | 300 |
2316 | 2317 | West Island | CCK | West Island | 167 |
2911 | 2912 | Adamstown | PCN | – | 42 |
4079 rows × 5 columns
df2 = pd.read_csv('country.csv', sep=';')
df2
Code | Name | Continent | Region | SurfaceArea | IndepYear | Population | LifeExpectancy | GNP | GNPOld | LocalName | GovernmentForm | HeadOfState | Capital | Code2 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | ABW | Aruba | North America | Caribbean | 193.0 | NaN | 103000 | 78.4 | 828.0 | 793.0 | Aruba | Nonmetropolitan Territory of The Netherlands | Beatrix | 129.0 | AW |
1 | AFG | Afghanistan | Asia | Southern and Central Asia | 652090.0 | 1919.0 | 22720000 | 45.9 | 5976.0 | NaN | Afganistan/Afqanestan | Islamic Emirate | Mohammad Omar | 1.0 | AF |
2 | AGO | Angola | Africa | Central Africa | 1246700.0 | 1975.0 | 12878000 | 38.3 | 6648.0 | 7984.0 | Angola | Republic | José Eduardo dos Santos | 56.0 | AO |
3 | AIA | Anguilla | North America | Caribbean | 96.0 | NaN | 8000 | 76.1 | 63.2 | NaN | Anguilla | Dependent Territory of the UK | Elisabeth II | 62.0 | AI |
4 | ALB | Albania | Europe | Southern Europe | 28748.0 | 1912.0 | 3401200 | 71.6 | 3205.0 | 2500.0 | Shqipëria | Republic | Rexhep Mejdani | 34.0 | AL |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
234 | YEM | Yemen | Asia | Middle East | 527968.0 | 1918.0 | 18112000 | 59.8 | 6041.0 | 5729.0 | Al-Yaman | Republic | Ali Abdallah Salih | 1780.0 | YE |
235 | YUG | Yugoslavia | Europe | Southern Europe | 102173.0 | 1918.0 | 10640000 | 72.4 | 17000.0 | NaN | Jugoslavija | Federal Republic | Vojislav Koštunica | 1792.0 | YU |
236 | ZAF | South Africa | Africa | Southern Africa | 1221037.0 | 1910.0 | 40377000 | 51.1 | 116729.0 | 129092.0 | South Africa | Republic | Thabo Mbeki | 716.0 | ZA |
237 | ZMB | Zambia | Africa | Eastern Africa | 752618.0 | 1964.0 | 9169000 | 37.2 | 3377.0 | 3922.0 | Zambia | Republic | Frederick Chiluba | 3162.0 | ZM |
238 | ZWE | Zimbabwe | Africa | Eastern Africa | 390757.0 | 1980.0 | 11669000 | 37.8 | 5951.0 | 8670.0 | Zimbabwe | Republic | Robert G. Mugabe | 4068.0 | ZW |
239 rows × 15 columns
df2.sort_values(by='GNPOld', na_position='first', ascending=False)
Code | Name | Continent | Region | SurfaceArea | IndepYear | Population | LifeExpectancy | GNP | GNPOld | LocalName | GovernmentForm | HeadOfState | Capital | Code2 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | AFG | Afghanistan | Asia | Southern and Central Asia | 652090.0 | 1919.0 | 22720000 | 45.9 | 5976.0 | NaN | Afganistan/Afqanestan | Islamic Emirate | Mohammad Omar | 1.0 | AF |
3 | AIA | Anguilla | North America | Caribbean | 96.0 | NaN | 8000 | 76.1 | 63.2 | NaN | Anguilla | Dependent Territory of the UK | Elisabeth II | 62.0 | AI |
5 | AND | Andorra | Europe | Southern Europe | 468.0 | 1278.0 | 78000 | 83.5 | 1630.0 | NaN | Andorra | Parliamentary Coprincipality | NaN | 55.0 | AD |
6 | ANT | Netherlands Antilles | North America | Caribbean | 800.0 | NaN | 217000 | 74.7 | 1941.0 | NaN | Nederlandse Antillen | Nonmetropolitan Territory of The Netherlands | Beatrix | 33.0 | AN |
10 | ASM | American Samoa | Oceania | Polynesia | 199.0 | NaN | 68000 | 75.1 | 334.0 | NaN | Amerika Samoa | US Territory | George W. Bush | 54.0 | AS |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
231 | VUT | Vanuatu | Oceania | Melanesia | 12189.0 | 1980.0 | 190000 | 60.6 | 261.0 | 246.0 | Vanuatu | Republic | John Bani | 3537.0 | VU |
58 | DMA | Dominica | North America | Caribbean | 751.0 | 1978.0 | 71000 | 73.4 | 256.0 | 243.0 | Dominica | Republic | Vernon Shaw | 586.0 | DM |
190 | SLB | Solomon Islands | Oceania | Melanesia | 28896.0 | 1978.0 | 444000 | 71.3 | 182.0 | 220.0 | Solomon Islands | Constitutional Monarchy | Elisabeth II | 3161.0 | SB |
212 | TON | Tonga | Oceania | Polynesia | 650.0 | 1970.0 | 99000 | 67.9 | 146.0 | 170.0 | Tonga | Monarchy | Taufa'ahau Tupou IV | 3334.0 | TO |
233 | WSM | Samoa | Oceania | Polynesia | 2831.0 | 1962.0 | 180000 | 69.2 | 141.0 | 157.0 | Samoa | Parlementary Monarchy | Malietoa Tanumafili II | 3169.0 | WS |
239 rows × 15 columns
df
ID | Name | CountryCode | District | Population | |
---|---|---|---|---|---|
0 | 1 | Kabul | AFG | Kabol | 1780000 |
1 | 2 | Qandahar | AFG | Qandahar | 237500 |
2 | 3 | Herat | AFG | Herat | 186800 |
3 | 4 | Mazar-e-Sharif | AFG | Balkh | 127800 |
4 | 5 | Amsterdam | NLD | Noord-Holland | 731200 |
... | ... | ... | ... | ... | ... |
4074 | 4075 | Khan Yunis | PSE | Khan Yunis | 123175 |
4075 | 4076 | Hebron | PSE | Hebron | 119401 |
4076 | 4077 | Jabaliya | PSE | North Gaza | 113901 |
4077 | 4078 | Nablus | PSE | Nablus | 100231 |
4078 | 4079 | Rafah | PSE | Rafah | 92020 |
4079 rows × 5 columns
# df.sort_values(by='Population', ascending=False, ignore_index=True)
df.sort_values(by='Population', ascending=False).reset_index(drop=True)
ID | Name | CountryCode | District | Population | |
---|---|---|---|---|---|
0 | 1024 | Mumbai (Bombay) | IND | Maharashtra | 10500000 |
1 | 2331 | Seoul | KOR | Seoul | 9981619 |
2 | 206 | São Paulo | BRA | São Paulo | 9968485 |
3 | 1890 | Shanghai | CHN | Shanghai | 9696300 |
4 | 939 | Jakarta | IDN | Jakarta Raya | 9604900 |
... | ... | ... | ... | ... | ... |
4074 | 2316 | Bantam | CCK | Home Island | 503 |
4075 | 3538 | Città del Vaticano | VAT | – | 455 |
4076 | 3333 | Fakaofo | TKL | Fakaofo | 300 |
4077 | 2317 | West Island | CCK | West Island | 167 |
4078 | 2912 | Adamstown | PCN | – | 42 |
4079 rows × 5 columns
df.sort_values(by=['CountryCode', 'Name'], ascending=False).head(50)
ID | Name | CountryCode | District | Population | |
---|---|---|---|---|---|
4071 | 4072 | Mutare | ZWE | Manicaland | 131367 |
4070 | 4071 | Mount Darwin | ZWE | Harare | 164362 |
4067 | 4068 | Harare | ZWE | Harare | 1410000 |
4072 | 4073 | Gweru | ZWE | Midlands | 128037 |
4069 | 4070 | Chitungwiza | ZWE | Harare | 274912 |
4068 | 4069 | Bulawayo | ZWE | Bulawayo | 621742 |
3162 | 3163 | Ndola | ZMB | Copperbelt | 329200 |
3166 | 3167 | Mufulira | ZMB | Copperbelt | 123900 |
3161 | 3162 | Lusaka | ZMB | Lusaka | 1317000 |
3167 | 3168 | Luanshya | ZMB | Copperbelt | 118100 |
3163 | 3164 | Kitwe | ZMB | Copperbelt | 288600 |
3164 | 3165 | Kabwe | ZMB | Central | 154300 |
3165 | 3166 | Chingola | ZMB | Copperbelt | 142400 |
728 | 729 | Wonderboom | ZAF | Gauteng | 283289 |
743 | 744 | Witbank | ZAF | Mpumalanga | 167183 |
747 | 748 | Westonaria | ZAF | Gauteng | 159632 |
735 | 736 | Welkom | ZAF | Free State | 203296 |
727 | 728 | Vereeniging | ZAF | Gauteng | 328535 |
718 | 719 | Vanderbijlpark | ZAF | Gauteng | 468931 |
725 | 726 | Umlazi | ZAF | KwaZulu-Natal | 339233 |
737 | 738 | Uitenhage | ZAF | Eastern Cape | 192120 |
746 | 747 | Springs | ZAF | Gauteng | 162072 |
712 | 713 | Soweto | ZAF | Gauteng | 904165 |
732 | 733 | Soshanguve | ZAF | Gauteng | 242727 |
751 | 752 | Rustenburg | ZAF | North West | 97008 |
729 | 730 | Roodepoort | ZAF | Gauteng | 279340 |
748 | 749 | Randfontein | ZAF | Gauteng | 120838 |
724 | 725 | Randburg | ZAF | Gauteng | 341288 |
715 | 716 | Pretoria | ZAF | Gauteng | 658630 |
750 | 751 | Potchefstroom | ZAF | North West | 101817 |
714 | 715 | Port Elizabeth | ZAF | Eastern Cape | 752319 |
721 | 722 | Pinetown | ZAF | KwaZulu-Natal | 378810 |
722 | 723 | Pietermaritzburg | ZAF | KwaZulu-Natal | 370190 |
749 | 750 | Paarl | ZAF | Western Cape | 105768 |
744 | 745 | Oberholzer | ZAF | Gauteng | 164367 |
752 | 753 | Nigel | ZAF | Gauteng | 96734 |
733 | 734 | Newcastle | ZAF | KwaZulu-Natal | 222993 |
739 | 740 | Mdantsane | ZAF | Eastern Cape | 182639 |
754 | 755 | Ladysmith | ZAF | KwaZulu-Natal | 89292 |
740 | 741 | Krugersdorp | ZAF | Gauteng | 181503 |
731 | 732 | Klerksdorp | ZAF | North West | 261911 |
736 | 737 | Kimberley | ZAF | Northern Cape | 197254 |
719 | 720 | Kempton Park | ZAF | Gauteng | 442633 |
713 | 714 | Johannesburg | ZAF | Gauteng | 756653 |
716 | 717 | Inanda | ZAF | KwaZulu-Natal | 634065 |
745 | 746 | Germiston | ZAF | Gauteng | 164252 |
753 | 754 | George | ZAF | Western Cape | 93818 |
734 | 735 | East London | ZAF | Eastern Cape | 221047 |
717 | 718 | Durban | ZAF | KwaZulu-Natal | 566120 |
738 | 739 | Chatsworth | ZAF | KwaZulu-Natal | 189885 |
df.sort_values(by=['CountryCode', 'Population'], ascending=True).head(50)
ID | Name | CountryCode | District | Population | |
---|---|---|---|---|---|
128 | 129 | Oranjestad | ABW | – | 29034 |
3 | 4 | Mazar-e-Sharif | AFG | Balkh | 127800 |
2 | 3 | Herat | AFG | Herat | 186800 |
1 | 2 | Qandahar | AFG | Qandahar | 237500 |
0 | 1 | Kabul | AFG | Kabol | 1780000 |
59 | 60 | Namibe | AGO | Namibe | 118200 |
58 | 59 | Benguela | AGO | Benguela | 128300 |
57 | 58 | Lobito | AGO | Benguela | 130000 |
56 | 57 | Huambo | AGO | Huambo | 163100 |
55 | 56 | Luanda | AGO | Luanda | 2022000 |
61 | 62 | The Valley | AIA | – | 595 |
60 | 61 | South Hill | AIA | – | 961 |
33 | 34 | Tirana | ALB | Tirana | 270000 |
54 | 55 | Andorra la Vella | AND | Andorra la Vella | 21189 |
32 | 33 | Willemstad | ANT | Curaçao | 2345 |
67 | 68 | Ajman | ARE | Ajman | 114395 |
66 | 67 | al-Ayn | ARE | Abu Dhabi | 225970 |
65 | 66 | Sharja | ARE | Sharja | 320095 |
64 | 65 | Abu Dhabi | ARE | Abu Dhabi | 398695 |
63 | 64 | Dubai | ARE | Dubai | 669181 |
124 | 125 | Tandil | ARG | Buenos Aires | 91101 |
123 | 124 | San Rafael | ARG | Mendoza | 94651 |
122 | 123 | Ezeiza | ARG | Buenos Aires | 99578 |
121 | 122 | San Luis | ARG | San Luis | 110136 |
120 | 121 | Pilar | ARG | Buenos Aires | 113428 |
119 | 120 | Concordia | ARG | Entre Rios | 116485 |
118 | 119 | Escobar | ARG | Buenos Aires | 116675 |
117 | 118 | San Juan | ARG | San Juan | 119152 |
116 | 117 | San Nicolás de los Arroyos | ARG | Buenos Aires | 119302 |
115 | 116 | Mendoza | ARG | Mendoza | 123027 |
114 | 115 | Comodoro Rivadavia | ARG | Chubut | 124104 |
113 | 114 | Río Cuarto | ARG | Córdoba | 134355 |
112 | 113 | San Fernando del Valle de Cata | ARG | Catamarca | 134935 |
111 | 112 | La Rioja | ARG | La Rioja | 138117 |
110 | 111 | Las Heras | ARG | Mendoza | 145823 |
109 | 110 | Formosa | ARG | Formosa | 147636 |
108 | 109 | San Fernando | ARG | Buenos Aires | 153036 |
107 | 108 | Ituzaingó | ARG | Buenos Aires | 158197 |
106 | 107 | Neuquén | ARG | Neuquén | 167296 |
105 | 106 | Hurlingham | ARG | Buenos Aires | 170028 |
104 | 105 | San Salvador de Jujuy | ARG | Jujuy | 178748 |
103 | 104 | Santiago del Estero | ARG | Santiago del Estero | 189947 |
102 | 103 | Guaymallén | ARG | Mendoza | 200595 |
101 | 102 | Posadas | ARG | Misiones | 201273 |
100 | 101 | Godoy Cruz | ARG | Mendoza | 206998 |
99 | 100 | Paraná | ARG | Entre Rios | 207041 |
98 | 99 | José C. Paz | ARG | Buenos Aires | 221754 |
97 | 98 | Resistencia | ARG | Chaco | 229212 |
96 | 97 | Esteban Echeverría | ARG | Buenos Aires | 235760 |
95 | 96 | Bahía Blanca | ARG | Buenos Aires | 239810 |
# df.groupby('CountryCode')[['Population']].max().sort_values('Population', ascending=False)
df.groupby('CountryCode')['Population'].max().to_frame().sort_values('Population', ascending=False).head(10)
Population | |
---|---|
CountryCode | |
IND | 10500000 |
KOR | 9981619 |
BRA | 9968485 |
CHN | 9696300 |
IDN | 9604900 |
PAK | 9269265 |
TUR | 8787958 |
MEX | 8591309 |
RUS | 8389200 |
USA | 8008278 |